

-Driscoll Ce.m

# ECOLOGICAL RISK ASSESSMENT FOR SAUGET AREA I

SAUGET ST. CLAIR COUNTY, ILLINOIS

June 30, 2001

## Prepared for:

Solutia, Inc. 10300 Olive Boulevard St. Louis, MO 63141

#### Prepared by:

Menzie-Cura & Associates, Inc. One Courthouse Lane, Suite Two Chelmsford, MA 01824

Katherine A. Fogarty, PE

Project Manager

Susan Kane Driscoll, Ph.D.

Project Reviewer

Charles A. Menzie, Ph.D.

Principal

| Tab | 1_ | - C   | ~     | 4   | 4   |
|-----|----|-------|-------|-----|-----|
| ıяn | 16 | ebi ' | t .on | ren | 16: |
|     |    |       |       |     |     |

| 1.0   | INTRODUCTION                                                                                    | 1  |
|-------|-------------------------------------------------------------------------------------------------|----|
| 1.1   | REGULATORY GUIDANCE                                                                             | 2  |
| 1.2   |                                                                                                 |    |
| 1.3   | ORGANIZATION OF THE REPORT                                                                      | 3  |
| 2.0   | BACKGROUND                                                                                      |    |
| 2.1   | DEAD CREEK AND THE BORROW PIT LAKE                                                              |    |
| 2.2   | REFERENCE AREAS                                                                                 |    |
| 3.0   | PROBLEM FORMULATION                                                                             |    |
| 3.1   | CONCEPTUAL SITE MODEL                                                                           | 8  |
|       | 3.1.1 Environmental Setting and Contaminants Known or Suspected to Exist at The Site            |    |
| 3     | 3.1.2 Contaminant Fate and Transport Mechanisms.                                                |    |
| 3     | 3.1.3 Mechanisms of Ecotoxicity and Likely Categories of Potentially Affected Receptors         |    |
|       | 3.1.3.1 Ecotoxicity of Potential Site-Related Chemicals                                         |    |
|       | 3.1.3.2 Potentially Affected Receptors                                                          |    |
| 3     | 3.1.4 Complete Exposure Pathways                                                                |    |
| 3.2   | IDENTIFICATION OF RECEPTORS                                                                     |    |
| -     | 3.2.1 Aquatic Habitat                                                                           |    |
| 3     | 3.2.2 Terrestrial Receptors                                                                     | 23 |
| 4.0 S | SELECTION OF ASSESSMENT ENDPOINTS AND MEASURES OF EFFECTS                                       | 26 |
| 4.1   | ASSESSMENT ENDPOINTS                                                                            | 26 |
| 4.2   | MEASURES OF EFFECTS                                                                             | 26 |
| 4.3   | WEIGHT-OF-EVIDENCE EVALUATION                                                                   | 27 |
| 5.0 E | XPOSURE ASSESSMENT                                                                              | 29 |
| 5.1   | DATA USED IN ECOLOGICAL RISK ASSESSMENT                                                         | 29 |
| 5     | .1.1 Sampling Locations                                                                         | 29 |
| 5     | .1.2 Calculation of Summary Statistics                                                          |    |
| 5     | .1.3 Calculation of PCB and dioxin/furan concentrations                                         |    |
| 5     | .1.4 COPC Selection Process                                                                     |    |
| 5     | .1.5 Data Quality                                                                               |    |
| 6.0 E | COLOGICAL EFFECTS ASSESSMENT                                                                    | 39 |
| 6.1   | GENERAL APPROACH FOR ASSESSMENT OF ECOLOGICAL EFFECTS                                           | 39 |
| 6.2   | SEDIMENT AND SURFACE WATER BENCHMARKS                                                           | 39 |
| 6     | .2.1 Sediment Benchmarks                                                                        | 40 |
| 6     | .2.2 Surface Water Benchmarks                                                                   |    |
| 6.3   | SEDIMENT TOXICITY DATA                                                                          |    |
| 6.4   | BENTHIC COMMUNITY STRUCTURE                                                                     | 42 |
| 6.5   | TOXICITY REFERENCE VALUES FOR TISSUE CONCENTRATIONS IN FISH                                     |    |
| 6.6   | TOXICITY REFERENCE VALUES FOR DIETARY DOSES TO BIRDS AND MAMMALS                                |    |
| 6.7   | BENCHMARKS FOR EVALUATING SOIL TOXICITY                                                         | 45 |
| 7.0 P | USK CHARACTERIZATION                                                                            | 46 |
| 7.1   | ASSESSMENT ENDPOINT 1; SUSTAINABILITY OF WARM WATER FISH                                        | 46 |
| 7     | .1.1 Measure of effect 1a: body burdens of COPCs in selected fish species.                      | 46 |
| 7     | .1.2 Measure of effect 1b: COPC concentrations in surface water as compared to applicable water |    |
|       | quality criteria for protection of fish and wildlife                                            |    |

|     | 713           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|-----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|     | _             | prev base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49       |
|     |               | 3.1 Sediment Chemical Measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|     |               | 3.2 Field assessment of benthic macroinvertebrate community                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|     |               | 3.3 Sediment toxicity testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53       |
| _   |               | 3.4 Sediment Triad Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54       |
| -   |               | SESSMENT ENDPOINT 2; SURVIVAL, GROWTH, AND REPRODUCTION OF LOCAL POPULATIONS OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     |               | UATIC WILDLIFE AS REPRESENTED BY THE MALLARD DUCK, GREAT BLUE HERON, MUSKRAT, AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|     |               | TER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55       |
|     | 7. <b>2</b> I | Measure of effect 2a Wildlife species composition and habitat use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 56       |
|     | 7.2.2         | Measure of effect 2b Concentrations of COPCs in aquatic and marsh plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|     | 7.23          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64       |
|     | 7.2.4         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65       |
|     |               | 4.1 Evaluation of Measured Fish Concentrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|     | 7.2           | 4.2 Evaluation of Modeled Fish Concentrations in Dead Creek Section F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|     | 7.2.5         | The state of the s | 67       |
|     |               | 5.1 Evaluation of Measured Macroinvertebrate Concentrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67       |
|     |               | 5.2 Evaluation of Modeled Macroinvertebrate Concentrations in Dead Creek Section F and the Borro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 7   |               | SESSMENT ENDPOINT 3: SURVIVAL, GROWTH, AND REPRODUCTION OF INDIVIDUALS WITHIN THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|     | BAL           | LD EAGLE POPULATION THAT MAY OVERWINTER NEAR THE SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|     | 7.3.1         | Measure of effect 3a Concentration of COPCs in fish for use in evaluating exposure via the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -        |
|     |               | chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71       |
| 7   | 4 Ass         | SESSMENT ENDPOINT 4: SURVIVAL, GROWTH, AND REPRODUCTION OF LOCAL POPULATIONS OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     | TER           | RESTRIAL WILDLIFE ALONG THE BANKS AND FLOODPLAIN OF DEAD CREEK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72       |
|     | 7.4.1         | Measure of effect 4a COPC concentrations in soil samples from the creek bank and floodp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | olain as |
|     |               | compared to applicable soil screening levels for protection of wildlife, plants, and soil dwe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lling    |
|     |               | invertebrates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72       |
| 8.0 | DISCU         | USSION OF ECOLOGICAL RISK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78       |
| £   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 5   |               | STAINABILITY (SURVIVAL, GROWTH, AND REPRODUCTION) OF WARM WATER FISH SPECIES TYPIC.<br>DSE FOUND IN SIMILAR HABITATS (INCORPORATES THE ASSESSMENT OF BENTHIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AL OF    |
|     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78       |
| _   |               | CRONVERTEBRATES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 8   |               | RVIVAL, GROWTH, AND REPRODUCTION OF LOCAL POPULATIONS OF AQUATIC WILDLIFE REPRESE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|     |               | MALLARD DUCK, GREAT BLUE HERON, TREE SWALLOW, MUSKRAT, AND RIVER OTTER (INCORPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| _   |               | ASSESSMENT OF BENTHIC MACROINVERTEBRATES INCLUDING SHRIMP AND CLAMS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 8   |               | RVIVAL, GROWTH, AND REPRODUCTION OF INDIVIDUALS WITHIN THE LOCAL BALD EAGLE POPULA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|     | THA           | AT MAY OVERWINTER NEAR THE SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81       |
| 8   | .4 SUR        | RNIVAL, GROWTH, AND REPRODUCTION OF LOCAL POPULATIONS OF TERRESTRIAL WILDLIFE ALOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VG THE   |
|     | BAN           | NKS AND FLOODPLAIN OF DEAD CREEK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81       |
| 9.0 | DIS           | SCUSSION AND MANAGEMENT OF UNCERTAINTIES AND EXPOSURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|     |               | SUMPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83       |
| _   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 9   |               | POSURE ASSESSMENT UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
|     | 9.1.1         | Uncertainty Due to the Selection of Sampling Locations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|     | 912           | Uncertainty Due to Selection of Reference Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     | 913           | Uncertainty due to time of sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|     | 9.14          | Uncertainty in Selection of COPCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 9   | .2 UN         | CERTAINTY IN THE EFFECTS ASSESSMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85       |
|     | 921           | Food Chain Modeling Uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85       |
|     | 922           | Uncertainty in toxicological dose benchmarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| ^   | .3 Use        | CERTAINTY IN RISK CHARACTERIZATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| y   |               | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |

| 10.0 | FINDINGS                                    | 88 |
|------|---------------------------------------------|----|
| 10.1 | CREEK SECTION F UPSTREAM OF BORROW PIT LAKE | 88 |
|      | Borrow Pit Lake                             |    |
| 10.3 | DEAD CREEK FLOODPLAIN SOILS                 | 92 |
| 10.4 | WASTE DISPOSAL AREAS                        | 92 |
| 11.0 | REFERENCES                                  | 93 |

| TABLES     |                                                                                                                   |
|------------|-------------------------------------------------------------------------------------------------------------------|
| Table 2-1  | Water, Sediment, and Habitat Parameters of Dead Creek Section F, Borrow Pit Lake, and Reference Areas             |
| Table 4-1  | Assessment Endpoints and Associated Measures of Effect                                                            |
| Table 5-1  | List of Sample Stations, Dates, and QA'QC Samples for Fish Tissue Analysis                                        |
| Table 5-2  | Comparison of Maximum Surface Water Concentrations to Standards and Guidelines                                    |
| Table 5-3  | Comparison of Maximum Sediment Concentrations to Sediment Quality Guidelines                                      |
| Table 5-4  | Selection of COPCs for Ecological Risk Assessment                                                                 |
| Table 7-1  | Comparison of Largemouth Bass Concentrations to Toxicity Benchmarks                                               |
| Table 7-2  | Comparison of Brown Bullhead Concentrations to Toxicity Benchmarks                                                |
| Table 7-3  | Comparison of Forage Fish Concentrations to Toxicity Benchmarks                                                   |
| Table 7-4  | Whole Body Toxicity Values for Fish                                                                               |
| Table 7-5  | Comparison of Dead Creek Segment F Surface Water Concentrations to Criteria                                       |
| Table 7-6  | Comparison of Borrow Pit Surface Water Concentrations to Criteria                                                 |
| Table 7-7a | Comparison of Ecological Sediment Concentrations in Dead Creek Section F to Sediment Quality Guidelines           |
| Table 7-7b | Comparison of Industry Specific Sediment Concentrations in Dead Creek<br>Section F to Sediment Quality Guidelines |
| Table 7-8a | Comparison of Ecological Borrow Pit Sediment Concentrations to Sediment Quality Guidelines                        |
| Table 7-8b | Comparison of Industry Specific Borrow Pit Sediment Concentrations to Sediment Quality Guidelines                 |

| Table 7-9   | Number of Taxa, Number of Organisms, and Three Dominant Taxa in Dead Creek Section F and Borrow Pit Samples |
|-------------|-------------------------------------------------------------------------------------------------------------|
| Table 7-10  | Diversity Indices for Dead Creek Section F, the Borrow Pit Lake, and Reference Areas                        |
| Table 7-11  | Community Composition of Six Major Taxonomic Groups                                                         |
| Table 7-12  | Hilsenhoff's Biotic Index of Organic Stream Pollution                                                       |
| Table 7-13  | Hyalella azteca Acute Toxicity Results                                                                      |
| Table 7-14  | Hyalella azteca 42-Day Chronic Survival, Growth, and Reproduction Results                                   |
| Table 7-15  | Acute Sediment Toxicity Testing Results with Chironomus tentans                                             |
| Table 7-16  | Results of <i>Chironomus tentans</i> Chronic Survival, Growth, Emergence, and Reproduction Toxicity Tests   |
| Table 7-17  | Sediment Triad Evaluation                                                                                   |
| Table 7-18  | List of Fish and Wildlife Species Observed on and near Dead Creek and the Borrow Pit Lake                   |
| Table 7-19  | Plant Concentrations in Dead Creek Section F and both Reference Areas                                       |
| Table 7-20a | Results of Food Chain Modeling for Dead Creek Section F                                                     |
| Table 7-20b | Results of Food Chain Modeling for the Borrow Pit Lake                                                      |
| Table 7-21  | Comparison of Surface Water Concentrations in Dead Creek Section F to Wildlife Benchmarks                   |
| Table 7-22  | Comparison of Surface Water Concentrations in the Borrow Pit Lake to Wildlife Benchmarks                    |
| Table 7-23  | Shrimp Concentrations in the Borrow Pit Lake and both Reference Areas                                       |
| Table 7-24  | Clam Concentrations in the Borrow Pit Lake and both Reference Areas                                         |
| Table 7-25  | Comparison of Floodplain Surface Soil Concentrations to Ecological Benchmarks                               |

| Table 7-26  | Floodplain Surface Soil Locations that Exceed Ecological Benchmarks                   |
|-------------|---------------------------------------------------------------------------------------|
| Table 7-27a | Comparison of Site G Surface Soil Concentrations to Ecological Benchmarks             |
| Table 7-27b | Comparison of Site H Surface Soil Concentrations to Ecological Benchmarks             |
| Table 7-27c | Comparison of Site I Surface Soil Concentrations to Ecological Benchmarks             |
| Table 7-27d | Comparison of Site L Surface Soil Concentrations to Ecological Benchmarks             |
| Table 7-27e | Comparison of Site N Surface Soil Concentrations to Ecological Benchmarks             |
| Table 7-28  | Surface Soil Locations from Sites G. H, I, L, and N that Exceed Ecological Benchmarks |
| Table 7-29a | Comparison of Site G Subsurface Soil Concentrations to Ecological Benchmarks          |
| Table 7-29b | Comparison of Site H Subsurface Soil Concentrations to Ecological Benchmarks          |
| Table 7-29c | Comparison of Site I Subsurface Soil Concentrations to Ecological Benchmarks          |
| Table 7-29d | Comparison of Site L Subsurface Soil Concentrations to Ecological Benchmarks          |
| Table 8-1   | Weight of Evidence Evaluation of Ecological Risk                                      |

# **FIGURES** Figure 1-1 Site Locus and Sampling Locations Figure 2-1 Dead Creek Section F and Borrow Pit Lake Figure 2-2 Reference Area Locus Figure 2-3 Monroe County Reference Areas Figure 3-1 Ecological Conceptual Site Model for Dead Creek and Borrow Pit Lake Figure 3-2 Ecological Conceptual Site Model for Terrestrial Receptors and Dead Creek **Floodplains** Figure 5-1 Surface Water Sample Locations Figure 5-2 **Ecological Sediment Sample Locations** Figure 5-3 "Industry Specific" Sediment Sample Locations Figure 5-4 **Biota Sampling Summary** Figure 5-5 Soil Sampling Locations Figure 7-1 Summary of Functional Feeding Group Abundance

Figure 7-2

Dead Creek Section F and Borrow Pit Lake Vegetative Alliance Map

# APPENDICES

| Appendix A | Ecological Risk Assessment Work Plan for Sauget Area I         |
|------------|----------------------------------------------------------------|
| Appendix B | Photographs                                                    |
| Appendix C | Summary Statistics for Data Used in Ecological Risk Assessment |
| Appendix D | Benthic Community Analysis Results                             |
| Appendix E | Summary of Sediment Toxicity Testing Results                   |
| Appendix F | Food Chain Model Information and Results                       |
| Appendix G | BAF Modeling Results                                           |

#### **ACRONYMS**

AhR Aryl Hydrocarbon Receptor
AWQC Ambient Water Quality Criteria
COPC Compounds of Potential Concern

DAS Developed Area Soil

DDE Dichlorodiphenyl dichloroythelene, a breakdown product of DDT

DDT Dichlorodiphenyl trichloroethane, an insecticide EMPC Estimated Maximum Potential Concentration

FFG Functional Feeding Groups

IEPA Illinois Environmental Protection Agency
J Data Qualifier, Indicates Estimated Value

LEL Lowest Effect Levels

LOAEL Lowest Observed Adverse Effect Level

M Data qualifier; indicates estimated maximum potential concentrations for dioxins

MCPA 2-Methyl-4-chlorophenoxyacetic acid, an herbicide

MCPP 2-(2-Methyl-4-chlorophexoxy) proprionic acid, an herbicide

NOAEL No Observed Adverse Effect Level PAH Polynuclear Aromatic Hydrocarbons

PCB Polychlorinated Biphenyls
PEC Probable Effects Concentrations

QAPP/FSP Quality Assurance Project Plan/Field-Sampling Plan

RPM Remediation Project Manager

SEL Severe Effect Levels

SVOC Semi-volatile Organic Compounds
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
TEC Threshold Effect Concentrations

TEF Toxic Equivalency Factor
TEQ Toxic Equivalency Quotient
TOC Total Organic Carbon
TRV Toxicity Reference Value

U Data Qualifier; indicates not detected above given detection limit

UAS Undeveloped Area Soil

USEPA United States Environmental Protection Agency

USFWS United States Fish and Wildlife Service

USGS United States Geological Survey VOC Volatile Organic Compounds

#### 1.0 INTRODUCTION

This baseline ecological risk assessment for Sauget Area I in Sauget and Cahokia, Illinois, addresses Dead Creek surface water and sediment and surficial floodplain soils. Figure 1-1 shows the site locus. The risk assessment follows the work plan for the project (Ecological Risk Assessment Work Plan for Sauget Area I, Sauget, St. Clair County, Illinois, Prepared for Solutia, Inc., St. Louis, MO, Menzie-Cura & Associates, Inc., August 12, 1999; Appendix A) and notes where deviations from the work plan exist due to unanticipated differences in site conditions. It also addresses comments from regulatory agencies received in April and May, 2001.

With the agreement of the United States Environmental Protection Agency (USEPA) Remediation Project Manager (RPM) Michael McAteer, the portion of the ecological risk assessment that addresses the aquatic habitat of Dead Creek is restricted to a portion of Dead Creek Segment F and the Borrow Pit Lake. Creek Segments B through the upper portion of F are subject to a Unilateral Administrative Order (UAO) issued by the USEPA on May 31, 2000 to Monsanto Company and Solutia Inc. (Docket No. V-W-99-C-554) pursuant to section 106(a) of the Comprehensive Environmental Response, Compensation and Liability Act of 1980 as amended, 42 U.S.C. Section 9606(a). The Order requires the following response activities at Sauget Area 1 Creek Segments B and Site M and Creek Segments C, D, E, and F upstream of the Terminal Railroad Association embankment, which are located in Sauget and Cahokia, Illinois (Figure 1-1):

- Preparation of a Time Critical Removal Action Work Plan;
- Implementation of the Removal Action in accordance with the Work Plan to mitigate the threats posed by presence of contamination in Dead Creek sediments and certain adjacent soils and their potential migration via overflow and flood waters from the Site;
- Removal of materials from CS-B (creek sediments, creek bed soils and flood plain soils); CS-C, D, and E (non-native creek sediments only); and Site M (pond sediments and pond bottom soils) in Sauget Area 1, while minimizing adverse impacts to area wetlands and habitat;
- Proper handling, dewatering, treatment and placement of such materials in the on-site Containment Cell;
- A plan for management of Dead Creek storm water during the removal action;
- Sampling and analysis of areas where materials has been removed, for the purpose of defining remaining contamination;

- Placement of membrane liner material over CS-B and in all other excavated areas where, based on post-removal sample results, such liner is determined to be necessary; and
- Design of a containment cell which will provide adequate protection to human health and the environment.

The Order requires Solutia to conduct these removal activities to abate a potential imminent and substantial endangerment to the public health, welfare or the environment that may be presented by the actual or threatened release of hazardous substances at or from the site.

Currently, the UAO is being modified by the Agency to include removal of sediments in Creek Section F from Route 157 to the eastern boundary of the Borrow Pit Lake. Approximately 5,000 cubic yards of sediment will be removed from this 5,300 foot long stretch of Dead Creek and contained in the on-site disposal cell being constructed adjacent to Creek Section B.

These removal actions do not address Dead Creek floodplain soils. These are evaluated in a screening-level terrestrial ecological risk assessment.

## 1.1 Regulatory Guidance

The assessment follows current USEPA guidance in:

Ecological Risk Assessment Guidance For Superfund: Process For Designing and Conducting Ecological Risk Assessments (USEPA, 1997); and

Guidelines for Ecological Risk Assessment (EPA/630/R-95/002F, April 1998).

Previously, Environment and Ecology, inc. conducted a Preliminary Ecological Assessment of Dead Creek Segment F (environment and ecology, inc., 1997) for the USEPA, which essentially provides the screening analyses required in Steps 1 and 2 of the guidance (USEPA, 1997). This work was based on a site visit conducted in April 1997, and the collection of eight sediment samples (and one duplicate) from Dead Creek Section F and the Borrow Pit Lake. (Their terminology referred to the entire area as Dead Creek Section F.) Their "background" sediment sample was collected from the Borrow Pit Lake. Their observations indicated that:

The vegetation is of low floristic quality, consisting primarily of invasive and pioneer plants. This is consistent with the fact that the wetlands were drained and the woods cleared prior to the 1930s, and the surrounding land is highly

disturbed by agriculture and industry. However, the site does provide good quality wildlife habitat, as evidence by its use by the Black-Crowned Night Heron, a state-listed endangered species. Also, there are plentiful detrital inputs (twigs, bark, and leaf litter) to the creek, which provides a substantial food base to benthic invertebrate populations. One limitation to the benthic invertebrate population is the lack of riffle areas and therefore, a potential for periods of low dissolved oxygen levels.

Their data indicated that some metals, polychlorinated biphenyls (PCB), polynuclear aromatic hydrocarbons (PAH), and dioxin concentrations in sediment were above ecological screening levels. They concluded that the site warranted further investigation of ecological risks.

# 1.2 Site Description

Sauget Area I has been subjected to multiple historic industrial discharges, waste disposal and manufacturing activities over an extended period of time. A detailed description of site history and use is presented in the Engineering Evaluation/Cost Analysis, Remedial Investigation/Feasibility Study, Sauget Area 1, Sauget and Cahokia, Illinois, prepared by Roux Associates, Inc., March 9, 2001. Sauget Area 1 is centered on Dead Creek, an intermittent stream that is approximately 17,000 feet long, and its floodplain. Dead Creek is an industrialized drainage channel that flows through industrial, commercial, residential, and agricultural areas (Figure 1-1). Three closed municipal/industrial landfills (Sites G, H, and I), one backfilled wastewater impoundment (Site L), one flooded borrow pit (Site M), and one borrow pit backfilled with concrete rubble and demolition debris (Site N) are within Sauget Area I and the Dead Creek floodplain.

In the past, Dead Creek received direct wastewater discharges from industrial sources and served as a surcharge basin for the Village of Sauget municipal sewer collection system. When the system became backed up or overflowed, untreated wastes from industrial users of the sewer system were discharged directly into Dead Creek Section A. The culvert between Creek Sections A and B was blocked in 1968. Creek Section A was remediated and backfilled in 1990. The remainder of Dead Creek received wastes via downstream flow from Creek Section A prior to 1968. Creek Section B is hydraulically connected to Site M via a manmade ditch. Site M may have also received wastes in the past. Dead Creek continues to receive runoff from roadways, agricultural, industrial, and residential areas.

#### 1.3 Organization of the Report

All of the elements of a standard ecological risk assessment, as described in the standard guidance documents cited in Section 1.1, are contained in this report. However, the order of presentation of some of the elements has been changed to facilitate the implementation of a

weight-of-evidence approach for risk characterization. The organization of this report is presented below.

#### 1.0 INTRODUCTION

This section provides an introduction to the project and an overview of applicable regulatory guidance.

#### 2.0 BACKGROUND

This section discusses relevant background information for the site.

#### 3.0 PROBLEM FORMULATION

This section presents the Conceptual Site Model and identifies ecological receptors. The Problem Formulation section of the risk assessment was previously outlined in the scope of work for the project (Menzie-Cura & Associates, Inc., 1999; Appendix A).

#### 4.0 SELECTION OF ASSESSMENT AND MEASUREMENT ENDPOINTS

This section identifies Assessment Endpoints and Measures of Effects, although these elements are typically discussed in Problem Formulation.

#### 5.0 EXPOSURE ASSESSMENT

This section briefly describes the data used in the ecological risk assessment and the selection of COPCs.

#### 6.0 ECOLOGICAL EFFECTS ASSESSMENT

This section briefly describes the approaches that are used to assess ecological effects.

#### 7.0 RISK CHARACTERIZATION

This section presents the interpretation of the data. This section discusses measures of effects, together with other measures that are used to evaluate the individual assessment endpoints.

#### 8.0 DISCUSSION OF ECOLOGICAL RISK

This section discusses the weight-of-evidence for each assessment endpoint.

#### 9.0 DISCUSSION OF UNCERTAINTIES AND EXPOSURE ASSUMPTIONS

This section analyzes the uncertainties associated with the risk assessment.

#### 10.0 FINDINGS

This section briefly presents the findings of the assessment.

#### 2.0 BACKGROUND

This section provides a description of Dead Creek, the Borrow Pit Lake, and reference areas.

#### 2.1 Dead Creek and the Borrow Pit Lake

Dead Creek begins immediately south of Queeny Avenue in an industrial area of Sauget, Illinois and flows slowly south through residential neighborhoods (Figure 1-1). Along most of its length, the stream is bordered by a dense, narrow band of riparian trees and shrubs. Homeowners have cleared to the creek's edge and have established lawn along several sections. Creek Section B runs from Queeny Avenue south to Judith Lane, Section C from Judith Lane to Cahokia Street, Section D from Cahokia Street to Jerome Street, and Section E from Jerome Street to the intersection of Routes 3 and 157. Section F begins at the intersection with Route 3, crosses the intersection, passes through a culvert at railroad tracks, and continues to the southwest toward the Borrow Pit Lake. As discussed in Section 1.0, this ecological risk assessment addresses Dead Creek Section F from the railroad culvert south and the Borrow Pit Lake (Figure 2-1). Photographs of this area showing the predominant habitat types are in Appendix B.

West of Route 3, the creek flows south and west through the American Bottoms floodplain. This area contains active and abandoned agricultural land divided by levees and railroad right-of-ways. After Dead Creek flows under the railroad right-of-way, it is joined by a stream draining land from the north.

The Borrow Pit Lake is a borrow pond that was excavated during the construction of the local levee system. It covers approximately 530,000 square feet (approximately 200 feet by 2,650 feet). The United States Geological Survey (USGS) map of the area (Cahokia) indicates that the pond was dug to its current shape sometime after 1954. The pond is the largest non-flowing water body in the area. Its shore is surrounded with mature riparian trees. During time of high water, Dead Creek drains the pond through a pump station under a levee and flows into a ditched section of Old Prairie du Pont Creek. Storm water is allowed to accumulate in the Borrow Pit Lake until the water level reaches Elevation 10. Then the lift pumps are activated and accumulated water is pumped to Old Prairie du Pont Creek. This storm water management practice turns the Borrow Pit Lake into a storm water retention basin subject to large fluctuations in water level. The of channel of Old Prairie du Pont Creek flows northwest to Arsenal Island on the Mississippi River.

During the site reconnaissance and sampling in September, October, and November of 1999, water levels were extremely low in Dead Creek and the Borrow Pit Lake. Many areas of these water bodies were dry with exposed mud. Fish and other aquatic species (e.g., frogs) were concentrated in shallow puddles. These low water levels were persistent region-wide.

Observations made in the field in 1999 indicate that the water level in the Borrow Pit and Creek Sector F were low. This may be due to natural fluctuations in water level and may also be linked to the particularly dry growing season in 1999. Dead Creek is a series of small, shallow bodies of standing water. Examination of the creek bed and riparian vegetation suggests that Dead Creek does not retain substantial amounts of standing water during the summer months and that water levels are dependent on relatively recent precipitation. A memorandum authored by Bill McClain of the Illinois Department of Conservation dated July 23, 1992 to Tom Crause and dated received at the Illinois Department of Natural Resources on July 27, 1992 contains observations of Creek Sections B through F, indicating that a low water level is a normal condition in Dead Creek. Historical information obtained from a 1984 survey conducted in the American Bottoms by IEPA (1989) indicated that 12 out of 14 streams were at low flow conditions in summer. The report indicated that low to extremely low dissolved oxygen concentrations and elevated total suspended solids, total dissolved solids, turbidity, total phosphorus, and metals are common. Streams in the mid American Bottoms Basin (the area of Dead Creek) exhibit the greatest impact on macroinvertebrates and are considered moderate to limited aquatic resources.

Historical discharge data was obtained from the United States NWIS-W Data Retrieval system, maintained by the US Geological Survey (USGS), for other creeks in St. Clair County Illinois. The closest of these to Dead Creek were Canteen Creek (1972-1982), Mud Creek (1972-1982), and Richland Creek (1989-1999). A review of the historical discharge data from these creeks indicates a high variability in discharge over each year. However, for a large portion of each year, discharge is very low, often near zero. Both of these patterns occur each year, suggesting that low to zero flow conditions, as seen in Dead Creek in 1999, are common.

Section 7.2.1 provides additional detailed description of the habitat of Dead Creek and the Borrow Pit Lake.

### 2.2 Reference Areas

Reference areas for ecological risk assessment were selected during the ecological site reconnaissance and during the main sampling event. Details of the selection, summarized below, are included in the field report (Soil, Ground Water, Surface Water, Sediment, and Air Sampling Field Sampling Report, Sauget Area 1, Remediation Technology Group, Solutia, Inc., St. Louis, MO, O'Brien & Gere Engineers, Inc., September 2000).

The following criteria were applied for the selection of reference areas:

- a) physical similarity to Dead Creek or the Borrow Pit Lake
- b) location away from direct influence of industrial discharges, including major highways.

The reconnaissance survey was carried out over a three-day period in September 1999. The selection of reference sampling stations was discussed with Mr. Michael Ondrachek of Weston, who served as representative for the USEPA.

Two reference areas were selected during the reconnaissance survey. Reference Area 1 was a section of Old Prairie du Pont Creek near the town of East Carondelet, approximately 3 miles southwest of the end of Dead Creek in the Borrow Pit Lake. This section of Old Prairie du Pont Creek is a broad shallow water body with a mud substrate similar to the Borrow Pit Lake. It is distant from any influence from the site or other industrial areas, but is similar to the Borrow Pit Lake in that it is near agricultural land. Two sampling locations were selected in Reference Area 1. These are depicted on Figures 1-1 and 2-2; photographs are in Appendix B. It was not possible to obtain permission to sample in the second water body selected as a reference area during the reconnaissance survey.

To replace the second reference area selected during the reconnaissance survey, two bodies of water in Monroe County, collectively referred to as Reference Area 2, were selected during the main sampling event with the concurrence of Mr. Steven Broadman of Weston, the Agency's oversight contractor. These water bodies were approximately 20 miles south of Dead Creek and contained one sampling station each. Reference area 2-1 was in Long Slash Creek north of the culvert where Merrimac Road crosses the creek. This section was similar to Dead Creek sectors B through E in that it was shallow and muddy. It was similar to Dead Creek Section F in that it traversed an agricultural area. Reference area 2-2 was a flooded borrow pit north of Fountain Creek and was similar in depth, hydrology, and surrounding land use to the Borrow Pit Lake. These reference areas are shown on Figures 2-2 and 2-3. Photographs are in Appendix B. Table 2-1 presents water quality and sediment type in Dead Creek Section F, Borrow Pit Lake, and the reference areas.

Extensive effort was made during the site reconnaissance survey and the main sampling event to select appropriate reference areas. After completion of ecological sampling and preparation of the ecological risk assessment, the regulatory agencies in the end did not agree that the selected areas were appropriate to use as a reference area for Dead Creek or the Borrow Pit. Therefore, as directed by the regulatory agencies, the data collected from the reference areas will be presented in the report, but comparisons will not be made between measurements made at the site and the reference areas.

#### 3.0 PROBLEM FORMULATION

The problem formulation phase of an ecological risk assessment develops the nature of the problem and presents a plan for analyzing data and characterizing risk. The problem formulation section of this assessment defines the assessment and presents a conceptual model that describes key relationships between potential stressors and assessment endpoints. Assessment endpoints are expressions of the environmental value to be protected at a site that are selected by the consensus of the regulators, the regulated community, and state or local concerns. The problem formulation for this risk assessment was presented in the project work plan (Appendix A).

# 3.1 Conceptual Site Model

The foundation of an ecological risk assessment is the conceptual site model. According to USEPA guidance, the conceptual model addresses:

environmental setting and contaminants known or suspected to exist at the site; contaminant fate and transport mechanisms; mechanisms of ecotoxicity and likely categories of potentially affected receptors; complete exposure pathways.

Figure 3-1 provides a diagram of the Conceptual Site Model for the aquatic habitat of Dead Creek; Figure 3-2 is a diagram of the Conceptual Site Model for the terrestrial habitat of the floodplain. These models illustrate transport of compounds from the site media through the potentially affected habitats to important ecological receptors.

# 3.1.1 Environmental Setting and Contaminants Known or Suspected to Exist at The Site

The environmental setting is the aquatic environment of a shallow stream, broader semi-impounded basin, and floodplain as described in Section 2.1 of this report. The compounds of potential concern (COPCs) are selected in Section 5 of this report and include herbicides, pesticides, PCBs, metals, PAHs, and dioxins.

#### 3.1.2 Contaminant Fate and Transport Mechanisms

In general, the source of COPCs to Dead Creek Section F and the Borrow Pit Lake is downstream transport of industrial and municipal wastewater discharges from upstream portions of Dead Creek. Groundwater discharge in the upstream portion of Dead Creek in the vicinity of Sites G, H, I, and L does not appear to be a source for two reasons:

The EE/CA and RI/FS study performed by Roux Associates, Inc. (2001) indicated that except in times of a high water table, the bottom of Dead Creek and Borrow Pit Lake are above the water table.

Sampling of shallow groundwater in the Dead Creek floodplain indicated that COPCs have not been transported from Dead Creek to shallow groundwater or vice versa.

In addition, there has been little transport of creek sediments to floodplain soils.

The selected COPCs (herbicides, metals, PCBs, pesticides, and SVOCs) adsorb onto particulate matter to varying degrees. The transport mechanisms affecting particle distribution in aquatic systems include:

particulate runoff from the watershed,
deposition in areas of sluggishly flowing waters,
erosion in faster moving stream segments, and
resuspension of particulates from the stream bed and over the floodplain.

Chemicals with lower particle affinities may be more subject to dissolution in and transport by surface water. Increasing solubility generally correlates with increasing bioavailability. In particular, metals may be subject to transport in soluble form, depending on their valence states.

The major biological mechanisms affecting fate and transport are:

biological uptake directly from environmental media; bioaccumulation through ingestion of prey or media; and biomagnification through the food chain.

Most of the COPCs are subject to one or all of these biological fate and transport mechanisms. In particular, mercury, PCBs, organochlorine pesticides, and dioxins can biomagnify through the food chain.

- 3.1.3 Mechanisms of Ecotoxicity and Likely Categories of Potentially Affected Receptors
- 3.1.3.1 Ecotoxicity of Potential Site-Related Chemicals

The COPCs may affect the survival and reproductive capacity of benthic biota, fish, invertebrates, vascular plants, and wildlife. This section presents a short summary of the toxic mechanisms of some of the potentially site-related chemicals.

#### Herbicides

The available information on the effects of herbicides on plants, wildlife, aquatic organisms is largely confined to acute studies. Very few studies have investigated the chronic or subchronic effects of this class of compounds. In the USEPA's Environmental Effects Database (EEDB) (USEPA, 1995), toxicological data on terrestrial plants, insects, mammals, birds, and aquatic organisms (plants, invertebrates, fish) are available for the following herbicides:

- 2, 4-(dichlorophenoxy)acetic acid (2,4-D Acid);
- 2.4-(dichlorophenoxy)butanoic acid (2,4-DB Acid);
- 3,6-dichloro-2-methyoxybenzoic acid (Dicamba) and related compounds;
- 2-(2,4-dichlorophenoxy)propionic acid) (Dichlorprop(2,4-DP));
- 4-(chloro2-methylphenoxy)acetic acid (MCPA) and related compounds; and
- 2-(4-chloro-2-methylphenoxy)propanoic acid) (MCPP) and related compounds.

Summarized below are the effective concentration ranges of these herbicides for terrestrial and aquatic biota.

- Seed germination and seedling emergence of terrestrial plants is affected at 0.0027 to 4.2 pounds of herbicide acre of land.
- 3.6 to 100 ug of herbicide/insect will cause 50% of the test organisms to die.
- Dose of 400-800 mg herbicide/kg body weight resulted in death of 50% of the test mules.
- Herbicides at levels of 0.017 to 292 ppm can affect the growth of aquatic plant species.
- 100 to 35,440 ppm in food or 216 to 4640 mg/kg as a dose can result in 50% death of the exposed birds. Subchronic studies reveal that 1000 to 1600 ppm in food can lead to reproductive effects in birds.
- Aquatic invertebrates and fish are affected by herbicides at concentrations ranging from 1 to 1600 ppm. These effects include growth and mortality. Subchronic effects on invertebrates and fish fall within the acute effective concentration range.

#### Metals

Metals are naturally present in soil and sediment. Due to their varying toxicity, a few metals present in environmental media at the site will be discussed separately.

#### Arsenic

In many species of mammals, arsenic is a teratogen and carcinogen that can cross placental barriers and potentially cause fetal mortality or malformities. Wildlife may be exposed to

arsenic via ingestion, inhalation, or absorption through the skin or mucous membranes. Arsenic is usually transported into cells through an active transport mechanism intended for transport of phosphates. Studies have associated chronic arsenic exposure with liver, kidney, and heart damage, hearing loss, brain wave abnormalities, and impaired resistance to viral infections (Eisler, 1988).

The mechanism of arsenic toxicity depends upon its chemical form and route, dose, and duration of exposure as well as the species and lifestage exposed. In general, early developmental stages are more sensitive to arsenic toxicity than adults (Eisler, 1988). Arsenites (As<sup>3+</sup>) are more toxic than arsenates (As<sup>5+</sup>), soluble arsenic compounds are more toxic than insoluble compounds, and inorganic arsenic compounds are more toxic than organic derivatives (ATSDR, 1991). Trivalent arsenic reacts with sulfhydryl groups of proteins and enzymes. Pentavalent arsenic may interfere with oxidative phosphorylation (Eisler, 1988).

#### Cadmium

Cadmium can be bioaccumulated by both aquatic and terrestrial organisms. Dissolved cadmium is bioconcentrated in freshwater and marine animals to concentrations hundreds to thousands of times higher than in the water. Data also show that cadmium can accumulate in grasses, crops, earthworms, poultry, cattle, horses, and wildlife. Data on biomagnification of cadmium are inconclusive. In vertebrates, cadmium accumulates mainly in the liver and kidney rather than in muscle tissue, therefore, biomagnification through the food chain may not be significant (ATSDR, 1991). Cadmium has been implicated as the cause of severe deleterious effects on fish and wildlife.

#### Copper

The toxicity of copper to aquatic life is related primarily to the presence of the free cupric ion, Cu<sup>2+</sup> and possibly some of the hydroxy complexes (USEPA, 1984). Aquatic toxicity studies indicate that increasing alkalinity, hardness, and total organic carbon in natural waters decreases copper toxicity. Data for eight species indicate that acute toxicity decreases as hardness increases. Additional data for several species indicate that toxicity also decreases with increases in alkalinity and total organic carbon. Fish and invertebrate species seem to be about equally sensitive to the chronic toxicity of copper. Plants and phytoplankton are particularly sensitive to copper. Copper sulfate is used to treat algal blooms and growth of aquatic macrophytes in some lakes.

Copper is an essential nutrient for mammalian species. However, ingestion of elevated amounts of copper is associated with gastrointestinal, hepatic, hematological, musculoskeletal, cardiovascular, and renal effects, and changes in body weight in animals (ATSDR, 2000).

#### Lead

Exposure to lead may affect behavior and various body systems including the hematopoietic, skeletal, vascular, nervous, renal, and reproductive systems. In general, younger organisms are more sensitive to the adverse effects of lead exposure. In mammals, absorbed inorganic lead enters the blood and attaches to red blood cells. Lead is quickly distributed to extracellular fluid and other storage sites (possibly soft tissues and bone). Lead is excreted via bile to the small intestine for fecal excretion (Eisler, 1988).

Bioconcentration of lead has been observed in plants and animals. Generally limited by the strong absorption of lead to soil organic matter, the bioavailability of lead in soil to plants increases as pH and organic content of the soil decreases. There is no evidence that indicates that lead biomagnifies in terrestrial or aquatic food chains (ATSDR, 1993).

#### Mercury

Mercury is recognized as one of the most toxic of the heavy metals. Mercury is bioconcentrated and biomagnified in food chains. Mercury is not an essential element and has no known biological function. Studies have shown that it is a mutagen, teratogen, and a carcinogen. In general, younger life stages are most sensitive to the toxic effects of mercury. Organic forms of mercury (e.g. methylmercury) are more toxic than inorganic mercury (Eisler, 1987).

Numerous physical and biological factors can affect the acute and chronic toxicities and bioaccumulation of the various forms of mercury. For aquatic organisms, mercury accumulation is generally greatest at elevated water temperatures, reduced water salinities or hardness, reduced water pH, reduced organic matter content of the medium, and in the presence of zinc, cadmium, and selenium in solution. Elimination of mercury varies among aquatic species, however, it tends to be slow (Eisler, 1987).

Mammals can absorb organic forms of mercury through the respiratory tract, gastrointestinal tract, skin, or mucus membranes, and organic mercury compounds can cross placental barriers. Organic forms of mercury are more completely absorbed than inorganic forms, and they pass more readily through biological membranes and are excreted more slowly. Methylmercury can cross the blood-brain barrier (Eisler, 1987).

### Nickel

Nickel is considered moderately to highly toxic to most aquatic plant species. To invertebrates, nickel is one of the least toxic inorganic agents. To both marine and freshwater fish, nickel is relatively nontoxic but when exposed to low levels over extended periods effects include reduced skeletal calcification and reduced diffusion capacity of gills. Both acute and chronic toxicity of nickel is strongly related to water hardness.

#### Zinc

Zinc is an essential micronutrient for all living organisms. Because zinc is essential, zinc is bioaccumulated by all organisms. The toxicity of zinc is dependent upon its chemical form and degree of interconversion among the various forms. Zinc will not be sorbed or bound unless it is dissolved, but bound zinc will dissolve in the digestive tract following the ingestion of particulates. The toxicity of undissolved zinc to a particular species depends on the feeding habits. Aquatic plants and most fish are relatively unaffected by suspended zinc in the water column. Both terrestrial and aquatic invertebrates and filter feeder fish might be adversely affected by ingestion of sufficient quantities of particulates containing zinc. The acute toxicity of zinc to aquatic animals is influenced by several parameters including increasing hardness, abundant dissolved oxygen and low temperatures which lower its potential toxicity.

Reported acute toxicity testing for freshwater organisms indicates that insects are most resistant whereas cladocerans and the striped bass are the most sensitive to zinc.

#### **PAHs**

The PAHs have been categorized by the number of aromatic rings in their chemical structure as well as by their carcinogenicity in laboratory animals. Although naphthalene is a two-ringed molecule, it is frequently categorized as a PAH. The other compounds are listed below and are three, four or five-ringed structures.

| 2-Ringed PAH | 3-Ringed PAHs  | 4-Ringed PAHs      | > 4-Ringed PAHs        |
|--------------|----------------|--------------------|------------------------|
| naphthalene  | Acenaphthene   | Benzo(a)anthracene | Benzo(b)fluoranthene   |
|              | Acenaphthylene | Benzo(a)pyrene     | Benzo(k)fluoranthene   |
|              | Anthracene     | Chrysene           | Benzo(g,h,i)perylene   |
|              | Fluorene       | Fluoranthene       | Dibenz(a,h)anthracene  |
|              | Phenanthrene   | Pyrene             | Indeno(1,2,3-cd)pyrene |
|              |                |                    |                        |

Many of the 4 to 7 ring PAHs are carcinogenic, mutagenic, or teratogenic to a variety of organisms including fish and other aquatic biota, amphibians, birds, and mammals. In addition to tumor formation, other adverse effects have been observed for many species under laboratory conditions including effects on survival, growth, and metabolism (Eisler, 1987). Rather than enhancing detoxification, metabolism of some carcinogenic PAHs in induced animals could result in a higher steady-state level of toxic products (Stegeman, 1981).

In mammals, PAHs are readily absorbed after exposure by inhalation or oral intake and distributed to many tissues in the body. However, intestinal absorption of PAHs is dependent upon the presence of bile in the stomach. PAHs are also absorbed via dermal exposure, although very little is distributed to tissues (USEPA, 1982). Following absorption, metabolism via the cytochrome P-450 monooxygenase system is required for detoxification to more water-soluble forms of the compounds for efficient elimination from the body. The unmetabolized PAHs are not believed to be carcinogenic. During the detoxification process, some PAHs are metabolically activated to their carcinogenic intermediates. These intermediates can then bind to cellular macromolecules such as DNA, RNA, and proteins, resulting ultimately in the induction of cancer. For any of the PAHs, however, the majority of the metabolism results in detoxified metabolites that are rapidly excreted.

The formation of PAH-induced cancers in laboratory animals is well documented (USEPA, 1982). The genotoxicity and carcinogenicity of benzo(a)pyrene [B(a)P] is well established. Experimental data demonstrate that exposure to B(a)P yields gene mutations, chromosome aberrations, and tumorigenesis in mammalian cells. B(a)P, the most widely studied PAH congener, produces tumors in mice, rats, hamsters, guinea pigs, rabbits, ducks and monkeys after oral, dermal, and intratracheal administration. Immune suppression has also been observed in humans and mice exposed to B(a)P. Developmental effects in utero and lymphoreticular effects have been observed in mice exposed to B(a)P.

There is very little data available on the effects of PAHs on birds. In one study, mallards fed diets containing 4,000 mg PAHs/kg (mostly as naphthalenes, naphthenes, and phenanthrene) for 7 months showed a 25% liver weight increase and 30% increase in blood flow to the liver when compared to controls. Another study showed that some PAHs may have embryotoxic effects in birds (Eisler, 1987).

#### **PCBs**

Polychlorinated biphenyls (PCBs) are a class of synthetic chemicals that contain 209 individual compounds (congeners). Aroclor is the industrial trade name of some commercial PCB mixtures.

PCB exposure may result in a variety of toxic effects to wildlife including death, birth defects, reproductive failure, liver damage, skin lesions, tumors, and a wasting syndrome. Two main factors influence the toxicological properties of individual PCBs: the octanol-water partition coefficient (K<sub>om</sub>) and steric factors which are determined by patterns of chlorination. Individual PCBs with high K<sub>om</sub> values and high numbers of substituted chlorines in adjacent positions are generally of greatest concern.

Sensitivity to adverse effects of PCBs varies greatly even in closely related species. Several studies have demonstrated that mink are one of the most sensitive mammalian species tested

for the effects of PCB exposure. It is well documented that PCBs interfere with reproduction in wildlife and in experimental animals. Reproductive failure due to high death rate of kits was observed in mink given diets supplemented with either 2 mg/kg Aroclor 1254 for 8 months or 5 mg/kg Aroclor 1254 for 4 months. Dietary levels of 1 mg/kg of Aroclor 1254 did not adversely affect reproduction. Placental transfer of PCBs has been documented in mink as well as in several other mammalian species. Mammary transport is an even more effective method of transferring PCBs from parent to offspring (Eisler, 1986).

The carcinogenic effects of PCBs have been reported in laboratory studies with mice and rats. Other systemic effects of PCBs reported in several species include hepatic disorders, increased thyroxin metabolism and ultrastructural changes in the thyroid, inhibition of ATP-ases, interference with oxidative phosphorylation, alterations in steroid hormone activities, immunosuppressive effects, and altered vitamin A metabolism (Eisler, 1986).

For birds, exposure to PCBs may result in disruption of growth, reproduction, metabolism, and behavior, such as courtship, nesting, and incubation. Signs of PCB poisoning in birds include morbidity, tremors, beak pointed upwards, and muscular incoordination, however, birds appear to be more resistant to acute effects of PCBs than mammals.

## Organochlorine Pesticides

Organochlorine pesticides are one of several classes of insecticides, which include the chlorinated ethane derivatives (DDT and methoxychlor), the cyclodienes (chlordane, aldrin, dieldrin, heptachlor, endrin, and toxaphene), and the hexachlorocyclohexanes (lindane).

The persistence of organochlorines in the environment varies with each individual compound. Organochlorines, including aldrin, chlordane, endosulfan, and heptachlor, are reported as ranging from moderately persistent, with effectiveness ranging from 1 to 18 months, to persistent, retaining toxicity for years, perhaps as many as 50 to 100 years (Briggs, 1992). Lindane, DDT, DDE, DDD, dieldrin, endrin, and methoxychlor are persistent insecticides (Briggs, 1992).

Organochlorine insecticides are classified as neurotoxins. DDT is believed to act on the sensory and motor nerve fibers and the motor cortex, inducing repetitive firing in the presynaptic nerve membrane (Klaassen et al., 1986). Although the central nervous system is the primary site of toxic action, primary pathologic changes resulting from subacute or chronic feeding are observed in the liver. Large doses of DDT in animal studies result in centrolobular necrosis of the liver, while smaller doses result in liver enlargement. Methoxychlor and lindane have low central nervous system toxicity. Lindane and alpha-BHC are convulsants, while beta and delta-BHC are CNS depressants. The mechanism of neurotoxic action of these compounds has not been demonstrated.

As a result of the bioconcentration of organochlorine insecticides in ecosystems, organisms at the top of natural food chains may sustain injury due to the gradual accumulations of residues in organisms that make up their food sources. Reproductive success of certain species of wild birds is adversely affected by exposure to DDT or its metabolites (Klaassen et al., 1986). Eggshell thinning has been demonstrated following ingestion of DDT and related chlorinated hydrocarbon insecticides. In addition, the ability of DDT to enhance the metabolism of estrogen may have an impact on reproductive success in birds by creating an endocrine imbalance affecting egg laying and nesting cycles (Klaassen et al., 1986). Fish and some lower aquatic organisms are extremely sensitive to the acute toxicity of DDT.

Significant evidence of endocrine disruption exists for the following groups of organisms: snails, oysters, fish, alligators and other reptiles, and birds, such as gulls and eagles (USEPA, 1997). Significant population declines as a result of exposure to endocrine-disrupting chemicals have been reported for alligators in Central Florida and some populations of marine invertebrate species

#### Dioxins and Furans

Dioxins and furans include two classes of halogenated aromatic hydrocarbons, or congeners. Furans are often referred to as "dioxin-like compounds" because their structure and toxicity are similar to dioxins.

Exposure to dioxins and furans has been shown to cause acute toxicity to the liver in rodents and rabbits and the thymus in guinea pigs. Epidermal effects, such as chloracne have been seen in subchronic studies with rodents and monkeys. Other effects due to chronic exposure to dioxin-like compounds are wasting syndrome, hepatotoxicity, enzyme induction and endocrine effects. In general, congeners without lateral substitution of chlorines and with greater number of chlorine substitutions are more toxic than other congeners.

There is evidence from animal and epidemiological studies that dioxins are furans are immunotoxic. These compounds have also been found to cause developmental and reproductive toxicity in animals. Dioxin-like compounds have also been found to be genotoxic by activating gene transcription through aryl hydroxylase activity (AHH). TCDD, the most potent of all the dioxin congeners, has been shown to be a multisite carcinogen in both sexes of mice and in hamsters. It is believed that there are multiple mechanisms for TCDD's "tumor promoting" activity. The carcinogenic effects of TCDD are hepatocellular carcinomas and hepatocellular hyperplastic nodules.

Early life stages of animals have been shown to be more sensitive to TCDD than adult animals. Studies have shown that TCDD is directly toxic to pike, rainbow trout, lake trout, and Japanese medaka. The toxic effects on young fry of these fish species are edema, hemorrhage, arrested growth and development, and death. TCDD has been shown to be

extremely toxic to bird eggs. Signs of toxicity are species-specific; however, embryo mortality is common to all species.

# 3.1.3.2 Potentially Affected Receptors

The categories of likely potentially affected receptors for an aquatic system such as the Dead Creek and the Borrow Pit include:

the benthic macroinvertebrate community;

warm water fish (e.g., largemouth bass);

waterfowl (e.g., mallard) that feed on plants and macroinvertebrates (including shrimp);

piscivorous birds (e.g., great blue heron, bald eagle);

insectivorous birds that feed on hatched insects that were exposed to COPC in sediment in the larval stage;

aquatic mammals (e.g., muskrat) that feed on plants and macroinvertebrates (including freshwater clams);

aquatic mammals (e.g., river otter) that feed on fish and macroinvertebrates (including freshwater clams).

Section 3.2 provides more detail on these receptors.

The possibility for exposure of terrestrial plants and wildlife to COPCs in soil or through soil-based food chains was also considered in the evaluation. The categories of likely potentially affected terrestrial receptors include:

terrestrial plants; soil invertebrates (e.g., earthworms); vermivorous mammals (e.g., short-tailed shrews) omnivorous or herbivorous mammals (e.g., white-footed mice); vermivorous birds (e.g., American woodcock).

These receptors were selected because they may be present in the Dead Creek floodplain and screening-level benchmarks are available for them. The benchmarks developed by Oak Ridge National Laboratory (Efroymson et al., 1997) were developed for plants, earthworms, and six additional species: short-tailed shrew, a vermivorous mammal; white-footed mouse, an omnivorous mammal; red fox, a carnivorous mammal; white-tailed deer, a herbivorous mammal; American woodcock, a vermivorous bird; and red-tailed hawk, a carnivorous raptor.

Efroymson et al. (1997) selected the lowest of these values which for wildlife represented the short-tailed shrew, white-footed mouse, and American woodcock. Screening values protective of these species will also be protective of the white-tailed deer and the carnivorous red fox and red-tailed hawk.

## 3.1.4 Complete Exposure Pathways

The USEPA guidance indicates that the risk assessment must identify complete exposure pathways before a quantitative evaluation of toxicity to allow the assessment to focus on COPCs that can reach ecological receptors. The likely complete exposure pathways in Dead Creek and the Borrow Pit Lake and the Dead Creek floodplain are:

Sediment to benthic invertebrates via direct contact and ingestion;

Sediment and surface water to aquatic plants via uptake;

Surface water to invertebrates and fish though direct contact and ingestion;

Benthic biota (including freshwater shrimp and clams) to higher order predators (e.g., fish) through the food chain;

Fish and macroinvertebrates (clams and shrimp) to piscivorous fish, mammals, or birds via ingestion;

Soil to soil invertebrates in the soils of the Dead Creek floodplain (including Sites G, H, I, L, and N) via direct contact and/or ingestion;

Soil to plants or wildlife in the Dead Creek floodplain (including Sites G, H, I, L, and N) via uptake through roots, direct ingestion, or ingestion via the food chain.

#### 3.2 Identification of Receptors

This subsection of the ecological risk assessment identifies the receptors (receptor species) and provides the rationale for their selection as representative of the species that occur or are likely to occur near the site. This subsection also provides an ecological characterization of each receptor for use in developing the exposure assessment.

The selected receptors represent those types of organisms most likely to encounter the contaminants of concern at the site. They include a reasonable (although not comprehensive) cross-section of the major functional and structural components of the ecosystem under study based on:

Relative abundance and ecological importance within the selected habitats;

Availability and quality of applicable toxicological literature;

Relative sensitivity to the contaminants of concern;

Trophic status;

Relative mobility and local feeding ranges;

Ability to bioaccumulate contaminants of concern.

The selected species represent different feeding guilds. A guild is a group of animals within a habitat that use resources in the same way. Coexisting members of guilds are similar in terms of their habitat requirements, dietary habits, and functional relationships with other species in the habitat. Guilds may be organized into potential receptor groups. The use of the guild approach allows focused integration of many variables related to potential exposure. These variables include characteristics of COPCs (toxicity, bioaccumulation, and mode of action) and characteristics of potential receptors (habitat, range and feeding requirements, and relationships between species). This approach evaluates potential exposures by considering the major feeding guilds found in a habitat. It is assumed that evaluation of the potential effects of COPCs on the representative species will be indicative of the potential effects of COPCs to individual member classes of organisms within each feeding guild.

The selected species represent the ecological community and its sensitivity to the contaminants of concern and were arrived at based, in part, on knowledge of the area and on discussions with the USEPA and other government agencies.

# 3.2.1 Aquatic Habitat

The ecological receptors selected for evaluation in Dead Creek and Borrow Pit Lake include: benthic invertebrates, shellfish, local fin fish, tree swallow, great blue heron, mallard, bald eagle, muskrat, and river otter.

#### Benthic invertebrates

Benthic invertebrates are potential receptor species in Dead Creek and the Borrow Pit Lake because they:

Have the greatest exposure to sediments;

Provide food for bottom-feeding fish species;

Provide food for bottom-feeding fish species, insectivorous birds, and waterfowl;

Are relatively immobile (sessile) in habit, and therefore their general health and condition reflects local conditions.

## Warm Water Fish Species

Warm water resident fish species were selected to reflect local sediment and water quality conditions. The typical warm water fish species such as centrachids (sunfish, bass) and bottom feeding fish such as bullheads are abundant local residents with a limited foraging range and are present in small ponds and borrow ponds throughout the region. These organisms are potential receptor species representing local fish because they are:

Resident in the Borrow Pit Lake;

Exposed to sediments as well as surface water,

Represent fish and higher order predators feeding on smaller fish and invertebrates.

Fish were abundant in the Borrow Pit Lake, but only a few small minnows were observed in Dead Creek Section F. Therefore, these receptors were evaluated in the Borrow Pit Lake only.

#### Aquatic Birds

We have selected tree swallow, great blue heron, mallard duck, and bald eagle to represent birds feeding on aquatic biota in Dead Creek and the Borrow Pit Lake for at least a portion of the time.

Tree Swallow (Iridoprocne bicolor)

Tree swallows are insectivores that consume flying insects. They feed over open or running water, and their diet consists almost exclusively of emergent adult forms of aquatic insects including Diptera, Hemiptera, Ephemeroptera, Zygoptera, Anisoptera, Plecoptera, and Trichoptera. Tree swallows will occasionally catch emerging insects directly from the water surface, but most insects are captured in flight. Tree swallows feed throughout the day, but the most intensive feeding occurs from late morning through late afternoon (Cohen, 1984).

These organisms are potential receptor species because they:

Consume aquatic insects that have been in contact with fish;

Have a foraging range smaller than the downstream area of the Dead Creek sectors;

Are a lower trophic level bird in the vicinity of the creek.

Tree swallows, therefore, represent insectivorous birds.

Great Blue Heron (Ardea herodias)

The great blue heron inhabits salt and freshwater environments, typically shallow waters and shores of lakes, flooded gravel pits, marshes and oceans. In marsh environments, the great blue heron is an opportunistic feeder; they prefer fish, but they will also eat amphibians, reptiles, crustaceans, insects, birds, and mammals. The diet varies but may include up to 100% fish. Great blue heron generally tend to forage near nesting sites (USEPA, 1993).

These organisms are potential receptor species because they:

Consume fish;

Have a foraging range about equal to the downstream area of the Dead Creek sectors;

Are a higher trophic level predator in the creek and Mississippi River.

Great blue heron, therefore, represent piscivorous birds.

Mallard (Anas platyrhynchos)

The mallard is the most common freshwater duck of the United States, found on lakes, rivers, ponds, etc. It is a dabbling duck, and feeds (usually in shallow water) by "tipping up" and eating food off the bottom of the water body. Primarily, it consumes aquatic plants and seeds, but it will also eat aquatic insects, other aquatic invertebrates, snails and other molluscs, tadpoles, fishes, and fish eggs. Ducklings and breeding females consume mostly aquatic invertebrates. The mallard's home range is variable, but an approximate range is 500 hectares. It prefers to nest on ground sheltered by dense grass-like vegetation, near the water.

Mallards are a potential receptor species because they:

Consume both aquatic plants and aquatic invertebrates;

Live on or near the water:

Are a lower trophic level duck in the creek and in the Mississippi River.

Mallards, therefore, represent waterfowl.

Bald Eagle (Haliaeetus leucocephalus)

Bald eagles are generally found in coastal areas or near lakes and rivers. Their preferred breeding sites are in large trees near open water. They are usually found in areas with minimal human activity. Bald eagles are federally-listed endangered species that overwinter in the Mississippi River valley north of Dead Creek and the Borrow Pit Lake. A pair of bald eagles was observed attempting to nest on the southern tip of Arsenal Island in 1993 and 1994. The nest has since blown down and has not been reconstructed (Collins, 2001). Two bald eagles were observed by USEPA and Illinois EPA representatives approximately 1 mile west of Dead Creek Section B and 0.5 miles east of the Mississippi River in late 1999. A bald eagle was also observed in the same location in December 2000.

Bald eagles, although primarily carrion feeders, are opportunistic and will eat whatever is plentiful including fish, birds, and mammals. Foraging areas vary according to season and location. The USEPA (1993) reports a foraging length of 2 to 4.5 miles along a river.

These organisms are potential receptor species because they:

Consume fish:

Are a higher trophic level predator;

Are sensitive to contaminants that biomagnify in the food chain.

The bald eagle, therefore, represents predatory birds.

**Aquatic Mammals** 

This assessment assumes that river otter and muskrat represent aquatic mammals in Dead Creek and the Borrow Pit Lake.

River Otter (Lutra canadensis)

The river otter can be found in primarily freshwater but also saltwater environments, but seems to prefer flowing-water habitats rather than still water. It has been found in lakes, marshes, streams, and seashores. It consumes largely fish, but is opportunistic and will consume aquatic invertebrates (crabs, crayfish, etc.), aquatic insects, amphibians, birds (e.g. ducks), small or young mammals, and turtles. They may also sift through sediment for food. The otter dens in banks, in hollow logs, or similar burrow-like places. Home range varies depending on habitat and sex, but an approximate measure is 300 hectares (USEPA, 1993).

River otter were not observed during the wildlife surveys that at the site. However, river otters were selected as a receptor because of the concern given to them in Illinois (the Illinois Department of Natural Resources has released river otters trapped in Louisiana as part of a recovery program), their susceptibility to bioaccumulative COPCs, and the fact that the stream and wetland habitat of Dead Creek and Borrow Pit Lake could support river otter.

River otters are a potential receptor species because they:

Consume fish and aquatic invertebrates;

Live in or near the water;

Are a higher trophic level predator in the creek and in the Mississippi River.

River otters, therefore, represent higher trophic level aquatic mammal.

Muskrat (Ondatra zibethicus)

The muskrat is a semiaquatic large rodent which lives near freshwater and brackish aquatic environments: marshes, ponds, creeks, lakes, etc. Muskrat feed largely on aquatic plants, but depending on location and time of year may also consume aquatic invertebrates (crayfish, crabs, etc.), small amphibians, turtles, fish, mollusks, and even young birds (USEPA, 1993). The muskrat lives quite close to the water, either on the bank of the water body or in a lodge constructed in the water body. Muskrat tracks and dens were observed in and along the upper reaches of Dead Creek during the wildlife surveys. The home range of muskrat is small (0.17 hectares on average) and one study found that muskrats remain within 15 meters of their primary dwellings 50 percent of the time (MacArthur, 1978).

Muskrats are a potential receptor species because they:

Consume aquatic plants and aquatic invertebrates;

Live on or near the water;

Are a lower trophic level omnivore in the creek and Borrow Pit Lake.

Muskrats, therefore, represent lower trophic level aquatic mammals.

# 3.2.2 Terrestrial Receptors

The ecological receptors selected for evaluation in the Dead Creek floodplain include: plants, soil invertebrates, woodcock, short-tailed shrew, and white-footed mouse. These receptors were selected because screening-level soil benchmarks are available for them that were

developed by Oak Ridge National Laboratory (Efroymson et al., 1997). Many of these receptors are present or likely to be present in the Dead Creek floodplain. In addition, these receptors were selected because they have a high exposure to soil via direct contact (plants and earthworms) or via ingestion of soil and earthworms (woodcock and short-tailed shrew) or plants (white-footed mouse).

#### **Plants**

Plants are potential receptors in the Dead Creek floodplain because they:

Are exposed to COPCs via direct root contact with soil and uptake of soil moisture through the roots;

Provide food for birds and mammals.

#### Soil invertebrates

Soil invertebrates are potential receptor species in the Dead Creek floodplain because they:

Have the greatest exposure to soil;

Provide food for birds and mammals;

Are relatively immobile in habit, and therefore their general health and condition reflects local conditions.

#### American woodcock (Scolopax minor)

Woodcock are a summer breeding species in Illinois. They inhabit woodlands and abandoned fields and feed mostly on soil invertebrates (predominantly earthworms). Because of their feeding method of probing soil for earthworms, they have a high percentage of soil in their diet (USEPA, 1993).

Woodcock are a potential receptor species in the Dead Creek floodplain because they:

Are likely to be present in and near the abandoned fields near the site;

Have a high exposure to soil contaminants via ingestion of earthworms and soil.

Woodcock, therefore, represent vermivorous songbirds.

Short-tailed shrew (Blarina brevicauda)

Shrews are ubiquitous and abundant in Illinois and can exist in almost any habitat (INHS, 1999). Short-tailed shrews generally consume insects, earthworms, slugs, and snails. If these are unavailable, they may substitute small mammals and plants. They burrow in and have close contact with soil.

Short-tailed shrew are a potential receptor species in the Dead Creek floodplain because they:

Are likely to be present in the Dead Creek floodplain;

Have a high exposure to soil via ingestion of soil and earthworms;

Have a high direct contact exposure to soil.

Short-tailed shrew, therefore, represent vermivorous small mammals.

White-footed mouse (Peromyscus leucopus)

White-footed mice can be found in brushy cleared areas and pastures and in streamside thickets. They eat mostly plant material, but can also eat insects and carrion (DeGraaf and Rudis, 1987).

White-footed mice are a potential receptor species in the Dead Creek floodplain because they:

Are likely to be present in the Dead Creek floodplain;

May be exposed to COPCs that have been taken up into plants.

White-footed mice, therefore, represent herbivorous small mammals.

# 4.0 SELECTION OF ASSESSMENT ENDPOINTS AND MEASURES OF EFFECTS

#### 4.1 Assessment Endpoints

Assessment endpoints are expressions of the environmental value to be protected at a site. Assessment endpoints are often not directly measurable. Therefore, the assessment employs measures of effects. These are biological or measurable ecological characteristics which reflect the assessment endpoint (USEPA, 1997). Where the assessment endpoint is not directly measurable, the use of a measure of effect may result in some uncertainty in the risk characterization. Ultimately, the selection of assessment endpoints requires the consensus of the regulators, the regulated community, and state or local concerns. The following assessment endpoints were selected for this ecological risk assessment in the work plan (Appendix A):

Sustainability (survival, growth, and reproduction) of warm water fish species typical of those found in similar habitats (incorporates the assessment of benthic macroinvertebrates). (Although this endpoint included crayfish in the work plan, this species was not observed in Dead Creek Section F or the Borrow Pit Lake. The field report (OBG, Inc., 2000) provides the details of these observations).

Survival, growth, and reproduction of local populations of aquatic wildlife represented by tree swallow, mallard duck, great blue heron, muskrat, and river otter (incorporates the assessment of benthic macroinvertebrates including shrimp and clams).

Survival, growth, and reproduction of individuals within the local bald eagle population that may overwinter near the site.

Survival, growth, and reproduction of local populations of terrestrial wildlife along the banks and floodplain of Dead Creek.

The assessment will evaluate risk relative to these assessment endpoints in Creek Section F, the Borrow Pit Lake, and the floodplain.

#### 4.2 Measures of Effects

The measures of effect direct data collection needs for the baseline ecological risk assessment. They provide the actual measurements for estimating risk. A weight-of-evidence approach (Menzie et al., 1996) weighs each of the measures of effects by considering:

Strength of association between the measure of effects and assessment endpoint;

Data quality; and

Study design and execution.

Strength of association refers to how well a measure of effects represents an assessment endpoint. The greater the strength of association between the measurement and assessment endpoint, the greater the weight given to that measure of effect in the risk analysis.

The weight given a measure of effect also depends on the quality of the data as well as the overall study design and execution. The data developed in the QAPP/FSP and collected as described in the field sampling report (OBG, Inc., 2000) provides information to evaluate each selected measure.

There is considerable uncertainty associated with estimating risks, because ecological systems are complex and exhibit high natural variability. Measures of effect typically have specific strengths and weaknesses related to the factors discussed above. Therefore, it is common practice to use more than one measure of effect to evaluate each assessment endpoint.

The assessment endpoints and associated measures of effect are summarized in Table 4-1. The endpoints and measures of effect were modified slightly from the work plan to better represent species observed at the site.

# 4.3 Weight-of-Evidence Evaluation

A weight-of-evidence evaluation takes into account the strengths and limitations of different measurement methods and considers the logical relationships among them by considering:

- 1. the level of confidence, or weight, given to the various measures;
- 2. whether the result of the measurement indicates there is an effect;
- 3. the strength of the result, and
- 4. concurrence among the various measures.

Some measures address different aspects of the same assessment endpoint. In these cases, the measures are examined separately as well as collectively. This avoids the possibility that these measures would inappropriately cancel each other out if they yielded conflicting information. For example, the benthic invertebrate community was evaluated with regard to the prey base it provides for fish. Because this type of effect is different from a direct toxic effect of chemicals on fish, measures of the benthic community were also evaluated separately from measures of fish toxicity.

Actual field measurements have been given a medium to high weight because they represent quantifiable conditions at the site. Qualitative field observations such as species presence/absence have been given a low to medium weight. Although these observations

provide information on site conditions, they are not quantifiable, and could vary depending on the time of year in which they occurred.

Many of the measures of effect used in this ecological risk assessment are a comparison to benchmark or literature-based values. These measures have been given a low to medium weight. Benchmarks and literature toxicity values represent potential effects based, for the most part, on laboratory studies, that may or may not relate to effects that may be in evidence in a field situation. Any screening level assessment (such as the comparison of soil concentrations to screening-level benchmarks) is given a low weight because of the high degree of conservatism built into such an assessment.

#### 5.0 EXPOSURE ASSESSMENT

This section describes the data used in this ecological risk assessment and selects COPCs for assessment.

# 5.1 Data used in Ecological Risk Assessment

The chemical data for surface water, sediment, and floodplain soil that were used in this assessment were collected in 1999 specifically for this project. Some older soil data were used for Sites G, H, I, L and N. The 1999 data collection followed the Quality Assurance Project Plan/Field-Sampling Plan (QAPP/FSP) for the project (Ecological Risk Assessment Quality Assurance Project Plan Field Sampling Plan for Sauget Area 1, Prepared for Solutia, Inc., St. Louis, MO, Menzie-Cura & Associates, Inc., August 12, 1999). The QAPP included sampling and analysis for dioxin congeners, herbicides, metals, polychlorinated biphenyls (PCBs), organochlorine pesticides, semi-volatile organic compounds (SVOCs), and volatile organic compounds (VOCs). The field work was documented in:

Soil, Ground Water, Surface Water, Sediment, and Air Sampling Field Sampling Report, Sauget Area 1, Remediation Technology Group, Solutia Inc., St. Louis, MO, O'Brien & Gere Engineers, Inc., September 2000.

The data and data validation were originally presented in:

Sauget Area 1 Site, Support Sampling Project, Data Validation Report, Solutia Inc., St. Louis, MO, O'Brien & Gere Engineers, Inc., August 2000.

## 5.1.1 Sampling Locations

The chemical data used in this ecological risk assessment are by medium. The original sampling locations in the upstream reaches of Dead Creek presented a gradient of concentrations of various compounds. However, this assessment has been restricted to the farthest downstream portions of the creek, Section F and the Borrow Pit Lake.

Surface water: Surface water samples (designated "SW") were collected from Dead Creek Section F (3 samples), the Borrow Pit Lake (3 samples), and the reference areas (2 samples from each of two areas). Samples were co-located with surficial sediment samples collected for ecological risk assessment (designated "ESED"). These locations are shown on Figure 5-1 (Dead Creek and the Borrow Pit Lake), Figure 1-1 (reference area 1), and Figure 2-3 (reference area 2).

Sediment: Surficial sediment samples to be used for ecological risk assessment (designated "ESED" or "SED") were collected from depths of 0 to 2 inches from Dead Creek Section F (3 samples), the Borrow Pit Lake (3 samples), and the reference areas (2 samples from each of two areas). These sediment samples were co-located with surface water sampling locations. These locations are shown on Figure 5-2 (Dead Creek and the Borrow Pit Lake), Figure 1-1 (reference area 1) and Figure 2-3 (reference area 2).

An additional 37 sediment samples (designated "FASED") were collected from Dead Creek Section F and the Borrow Pit to evaluate the extent of migration of certain "industry specific chemicals". These samples were collected from the sediment surface to refusal (generally about 1 foot). These samples were only analyzed for petroleum hydrocarbons (TPH), total organic carbon, PCBs, copper, and zinc. Sample locations are shown on Figure 5-3. The TPH data were not presented or used here because TPH is a mixture of many compounds found in petroleum, and PAH and VOC data were available for ecological sediment samples.

Biota – Plants: Creeping buttercup (Ranunculus reptans) was selected as a target vegetation species due to its occurrence at many sample stations and its close proximity to surface water and exposed (dried) creek bed. This species was selected with the concurrence of Mr. Steve Broadhouse of Weston, the USEPA's oversight contractor. This species has a fleshy stem which would appear to make it appealing to herbivorous wildlife. It was the only vegetation observed in most sections of Dead Creek and the reference areas. No submerged or emergent vegetation was observed in Borrow Pit Lake. Two samples of creeping buttercup were collected from Dead Creek Section F (co-located with sediment sampling locations; Figure 5-4) and two samples were collected from the reference areas (also co-located with sediment sampling locations; Figure 1-1 and Figure 2-3). The entire plant was collected as a sample (rather than roots and stems separately) because the root system was very shallow and comprised a very small amount of the total plant mass. The plant was flowering at the time of sample collection so no seeds could be obtained. Two to four individual plants comprised a composite plant sample at each sampling station where plants were collected. A photograph of this species is in Appendix B.

Biota – Clams: Freshwater clams (Pyganodon grandis) were selected for analysis as macroinvertebrates because they are abundant in the Borrow Pit Lake and the reference areas. These clams are large (approximately 6 inches in diameter) and provide food for wildlife such as muskrat and river otter. Three composite freshwater samples were collected from the Borrow Pit Lake (Figure 5-4) and three composite samples were collected from the reference areas (Figures 1-1 and 2-3). Two to four individuals made up each composite. A photograph of this species is in Appendix B.

Biota – Shrimp: The work plan called for the collection of crayfish, but none were observed during the site reconnaissance or during the main sampling event. Traps were set overnight for crayfish during the site reconnaissance and none were caught. It is likely that the substrate

of Dead Creek and the Borrow Pit Lake is too silty and muddy to support crayfish. During the main sampling event the abundance of the shrimp species (*Palaemonetes kadiakensis*) was observed in Borrow Pit Lake and the reference areas. This species was substituted for crayfish because it is a decapod and would be a ready substitute for crayfish in the diet of wildlife. In particular, dabbling waterfowl and other water birds would be expected to consume shrimp. A photograph of this species is in Appendix B. One composite shrimp sample was collected from the Borrow Pit Lake and two composite samples were collected from the reference areas. The composites comprised many individuals and varied in total weight from 74 to 89 grams.

Biota – Fish: Fish were abundant in the Borrow Pit Lake but very few small minnows were present in Dead Creek Section F. The habitat and morphology of Dead Creek Section F were different from both the Borrow Pit Lake and the rest of Dead Creek, and although up to a foot of water was present in the portion of Section F upstream of the Borrow Pit, no fish were observed there. Whole bodies were analyzed for use in the ecological risk assessment. The data used in this risk assessment include: three composite largemouth bass samples from the Borrow Pit Lake and two each from each of the two reference areas; three composite brown bullhead samples from the site and three from the reference areas; and three composite forage fish samples from the site and three from the reference areas. Table 5-1 summarizes the number of fish per composite sample.

Soil: Surficial floodplain soil samples were collected from depths of 0 to 6 inches from developed (designated "DAS") and undeveloped (designated "UAS") areas. Sample locations are shown on Figure 5-5. Background soil samples (designated "BS") are also shown on Figure 5-5. The background soil locations were selected and approved during discussions with USEPA representatives during the development of the Site Sampling Plan. Soil samples are not available for the 6 inch to 24 inch interval which could also be an exposure medium for ecological receptors (in particular, invertebrates and burrowing mammals). The background surface soil samples were collected near the three groundwater monitoring wells used to evaluate upgradient groundwater conditions. These wells are on the east (upgradient) sides of Sites I, H, and L.

Four surface soil samples (0 to 6 inches) were collected from each of Sites G, H, I, L, and N. These Sites are shown on Figure 5-5. The only existing subsurface soil data for these areas were available from historical sources. These data were obtained from the following: Sauget Area 1 Data Tables/Maps, ecology and environment, inc., February 1998, prepared for USEPA Region 5 Office of Superfund, Chicago, IL, ARCS Contract No. 68-W8-0086, Work Assignment No. 47-5N60. The historical data are unvalidated, and detection limits were not available for the majority of results reported as not detected. Therefore, only results reported as detected were used in this evaluation. Any sample for which all results were reported as not detected was eliminated from further evaluation. Samples used in the subsurface soil evaluation are presented in Appendix C. Many of these subsurface samples came from depths greater than 2 feet. However, since these were the only subsurface data available for these areas, they were used in the screening level analysis.

The summary statistics for these data (by medium and site location or reference area) are presented in Appendix C.

# 5.1.2 Calculation of Summary Statistics

The data for each area and medium were summarized for use in the risk assessment. The steps used to summarize the data by area and medium are:

## Treatment of Duplicates

Data for samples and their duplicates were averaged before summary statistics were calculated, such that a sample and its duplicate were treated as one sample for calculation of summary statistics (including maximum detection and frequency of detection).

### Treatment of Non-Detects

Summary statistics were not calculated for constituents that were not detected in a particular area/medium. (For example, Dead Creek Section F sediment represents an "area/medium").

Where constituents were detected in some samples and not in others in a particular area/medium, one half the reported sample quantitation limit (SQL) was used to represent the concentration for the samples reported as nondetect.

For non-detects for which one half the SQL was calculated, one half the SQL was compared to the maximum detected concentration for that area and medium. Where one half the SQL was greater than the maximum detected concentration in a particular area/medium, the SQL value was not used in the calculation of summary statistics for that constituent in that area and medium.

## Frequency of Detection

The frequency of detection is reported as a percentage based on the total number of samples analyzed and the number of samples reported as detected for a specific constituent. The number of samples used to calculate statistics reflects the treatment of non-detects described above.

#### Minimum Detected Concentration

This is the minimum detected concentration for each constituent/area/medium combination, after duplicates have been averaged.

Maximum Detected Concentration

This is the maximum detected concentration for each constituent/area/medium combination, after duplicates have been averaged.

Average Concentration

This is the arithmetic mean concentration for each constituent/area/medium combination, after duplicates have been averaged and non-detects have been evaluated.

For most of the samples used in the ecological risk assessment, there were too few data to calculate a 95% upper confidence limit (UCL) on the mean, so the concentrations used in calculations were either the maximum concentration in that area/medium or the average concentration. For surficial floodplain soil, sufficient data were available to calculate a 95% UCL.

The equation used to calculate the 95% UCL is dependent upon the distribution of the data set. If data are normally distributed, the following equation is used (USEPA, 1992a):

95% 
$$UCL = \overline{x} + t(s / \sqrt{n})$$

where:

 $\bar{x}$  = mean of data

s = standard deviation of the data

t = student t-statistic

n = number of samples

If the data are lognormally distributed, the 95% UCL is calculated using the transformed data set and the H-statistic (USEPA, 1992). The data are "transformed" by using the natural logarithmic function, i.e., by calculating ln(x) for each x value in the data set.

$$e^{(\bar{x} + 0.5s^2 + sH/\sqrt{n-1})}$$

where:

e = base of the natural log, equal to 2.718

x = mean of the transformed data

s = standard deviation of the transformed data

H = H-statistic

n = the number of samples in the population

H-statistic and t-statistic values were obtained from Gilbert (1987).

The Shapiro-Wilk Test for Normality (W-test) is used to whether the transformed or the non-transformed 95% UCL better represents the data. The results of the W-test indicate whether the data set is more likely to be normally or lognormally distributed. The UCL based on the student t-statistic is selected where the data set is more likely to be normally distributed, while the UCL based on the H-statistic is selected where the data set is more likely to be lognormally distributed. The W-test values were calculated and compared for the log-transformed and untransformed data sets. If the log-transformed data have the higher W-test value, the data are assumed to be more lognormally distributed, and the H-statistic 95% UCL value is the appropriate UCL. Similarly, if the untransformed data have the higher W-test value, the data are assumed to be more normally distributed, and the t-statistic 95% UCL is the appropriate UCL.

Appendix C presents the summary statistics by area and medium.

# 5.1.3 Calculation of PCB and dioxin/furan concentrations

Samples were analyzed for PCB homologs, and polychlorinated dioxin and polychlorinated furan congeners. PCBs, dioxins, and furans are complex mixtures of individual congeners that have different volatilities, solubilities, and rates of biodegradation and metabolism as well as different toxicities. This section discusses how these data were handled in this ecological risk assessment.

Total PCBs were calculated by summing the concentration of the detected homologs and one half the detection limit for homologs that were not detected. If a homolog was never detected in any sample in a particular medium or area, it was not included in the total. Only two out of

ten homologs, hexachlorobiphenyl and pentachlorobiphenyl, were detected in ecological sediment samples and most site biota. An additional two homologs, heptachlorobiphenyl and tetrachlorobiphenyl, were detected only in largemouth bass tissue at the site. Additional homologs were detected only in the "industry specific" sediment samples (decachlorobiphenyl, nonachlorobiphenyl, octachlorobiphenyl, and trichlorobiphenyl).

Polychlorinated dioxin and polychlorinated furan congeners were evaluated collectively as a dioxin Toxic Equivalency Quotient (TEQ). 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most potent of a group of compounds that bind to an intracellular protein called the aryl hydrocarbon receptor (AhR). Other dioxin congeners also bind to this receptor and have been shown to exert toxic responses similar to those exerted by TCDD. The biological activity of these compounds seems to correlate with their binding affinity to this receptor (WHO, 1998). The toxic equivalency quotient (TEQ) approach was developed to represent the fractional toxicity of dioxin congeners relative to TCDD. TEQs are calculated as follows:

 $TEQ = \Sigma[$  (Dioxin-like Congener Concentration)<sub>i</sub> ·  $TEF_i]_n$ 

where,

TEF = toxic equivalency factor for congener i, and n = number of dioxin-like congeners in the mixture of concern.

Toxic equivalency factors (TEFs) for each dioxin-like congener are available for mammals (the same values used for humans), birds, and fish to account for differing wildlife sensitivities (Van den Berg et al., 1998).

TEQs for dioxins were calculated for each medium by multiplying the detected concentration (or half the detection limit) of each by its TEF and adding the products to obtain the dioxin TEQ. If a congener was never detected in a particular medium or area, it was not included in the total. Data designated with an "M" in the data validation to indicate "estimated maximum potential concentration" were also treated as not detected. According to the laboratory, an "M" is used to indicate that the information for the peak meets some but not all of the criteria required to establish a positive identification, i.e., not only is the quantitation estimated, but the identity of the constituent is also estimated. In the data validation process, the "M" qualified data were qualified as "U," or not detected, at the reported concentration because there was not a conclusive constituent identification.

# 5.1.4 COPC Selection Process

In this assessment, COPCs are selected for surface water, sediment, and biota. The selected COPCs are then carried through the ecological risk assessment.

The screening level evaluation for soil is in itself a comparison to benchmarks. Compounds with concentrations above soil benchmarks will not be carried through a baseline ecological risk assessment at this time. Therefore, the selection of COPCs does not address soil.

The selection of COPCs for ecological risk assessment was a multi-step process. The first step was comparison of combined surface water and sediment data to published benchmarks. Table 5-2 compares the maximum concentration detected in surface water of Dead Creek Section F and the Borrow Pit Lake to Illinois Surface Water Quality Standards (Illinois, 1999), National Recommended Water Quality Criteria (USEPA, 1999a), Great Lakes Initiative Tier II Water Quality Guidelines (summarized in Suter and Tsao, 1996), and other water quality guidelines assembled by Suter and Tsao (1996). Precedence was given to these standards and guidelines in the order given. If multiple values were available for a compound, the Illinois value superceded the national value, which superceded the Great Lakes value. Compounds that exceeded the corresponding benchmarks or for which no benchmark was available were retained as COPCs.

Table 5-3 compares maximum sediment concentrations for Dead Creek Section F and the Borrow Pit Lake to consensus-based sediment quality guidelines for freshwater developed by MacDonald et al. (2000), Florida sediment quality guidelines (MacDonald, 1994), and Ontario Sediment Quality Guidelines (Persaud et al., 1993). The use of these guidelines for ecological screening was recommended by Scott Cieniawski of USEPA Region 5. If the concentration exceeded any of the benchmark values, or no benchmarks value was available, the compound was retained as a COPC.

Compounds considered non-toxic (calcium, magnesium, sodium, and potassium) were not included as COPCs. In addition, two compounds were excluded as COPCs because they were detected at a very low overall frequency (ethylbenzene was detected in one sediment sample out of six at 11 ug/kg and in no other medium; 2,4-dimethylphenol was detected in one of two plant samples at 51 ug/kg and in no other medium). Ethylbenzene was not detected in upstream sediment (Sectors B, C, D, and E) and surface water (Sectors B, D, and E) samples. 2,4-dimethylphenol detected only once in an upstream plant sample in Sector B. Phenolic compounds (Salisbury and Ross, 1992) are naturally produced by plants.

As a final screen for COPCs presented on Table 5-4, additional compounds were retained as COPCs that were detected in site biota, but that had not been detected in surface water and sediment.

The resulting COPCs for ecological risk assessment in Dead Creek are: 2,4-D, 2,4-DB, dicamba, dichloroprop, MCPA, MCPP, pentachlorophenol, aluminum, antimony, arsenic, barium, beryllium, cadmium, chromium, copper, iron, fluoride, lead, manganese, mercury, molybdenum, nickel, selenium, silver, vanadium, zinc, total PCBs, total DDT, aldrin, alphachlordane, delta-BHC, dieldrin, endosulfan I, endosulfan II, endosulfan sulfate, endrin

aldehyde, endrin ketone, gamma chlordane, gamma-BHC, heptachlor, heptachlor epoxide, methoxychlor, acenaphthalene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, bis(2-ethylhexyl)phthalate, di-n-butylphthalate, dibenzo(a,h)anthracene, diethylphthalate, fluoranthene, indeno(1,2,3-c,d)pyrene, and dioxin calculated as the toxicity equivalent of 2,3,7,8-TCDD. Note that total concentrations of DDT and PAHs were calculated as the sum of the concentrations of individual compounds detected in that sample using one half the detection limit for compounds not detected in that sample but detected in that medium and at that location.

# 5.1.5 Data Quality

To evaluate the quality of the data for ecological risk assessment, detection limits were compared to screening benchmarks to evaluate data quality objectives. These comparisons are presented in Appendix C and discussed below.

#### Surface Water

Table C-1-9 compares surface water detection limits to screening benchmarks. Detection limits were higher than screening benchmarks for beryllium, cadmium, total cyanide, selenium, PCBs, 11 pesticides, three PAHs, dibenzofuran, and three VOCs. Of these compounds, cadmium, selenium, PCBs, 8 pesticides, and benzo(a)pyrene were included as COPCs due to their detection in other media. There is some uncertainty in the overall analysis because these compounds could be present in surface water at a low concentration that exceeds a screening benchmark. The organic compounds, however, have very low solubility and are not expected to be present in surface water.

## Sediment

Table C-2-11 compares detection limits for ecological sediment samples to screening benchmarks. Detection limits were below screening criteria or screening criteria were not available for most of the analytes in sediment. The exceptions are discussed here.

Detection limits for total cyanide, 14 PAHs, bis(2-ethylhexyl)phthalate, and hexachlorobenzene exceeded sediment screening levels. These compounds were not detected in ecological sediment samples. Of the compounds mentioned above, six PAHs and bis(2-ethylhexyl)phthalate were selected as COPCs because they were detected in another medium. There is some uncertainty in the overall analysis because these compounds could be present in sediment at a low concentration that exceeds a screening benchmark.

The detection limits for silver, total PCBs, and 10 pesticides exceeded screening criteria in some samples. These compounds were detected in at least one sample, and with the exception of beta-BHC and endrin, were included as COPCs. Therefore, uncertainty due to detection

limits for these compounds is limited.

"Industry Specific" Sediment Samples

Tables C-2-12 and C-2-13 compare detection limits for the "industry specific" sediment samples to screening benchmarks for Dead Creek Section F and Borrow Pit Lake, respectively. Detection limits for PCBs exceeded the lowest screening benchmarks used to select COPCs, but not the TEC or LEL. Since PCBs were not screened out as COPCs in the "industry specific" sediment samples, there is little uncertainty resulting from these detection limits.

Surface Soils from Developed and Undeveloped Areas

Table C-4-12 compares the highest detection limit in Dead Creek floodplain soil (UAS and DAS samples) to screening benchmarks. Screening benchmarks for soil were available for few compounds detected in this medium. Detection limits exceeded soil screening benchmarks for selenium and thallium. The resulting uncertainty due to this assessment is slight because the highest detection limit for selenium, 1.3 mg/kg, is within the range of background for soil in Illinois (IEPA, 1994). The highest detection limit for thallium, 1.3 mg/kg, exceeds the screening benchmark of 1 mg/kg slightly and does not introduce much uncertainty into the assessment.

Surface Soils from Sites G, H, I, L, and N

Table C-4-13 compares the highest detection limit in surface soils from Sites G, H, I, L, and N to screening benchmarks. Screening benchmarks for soil were available for few compounds detected in this medium. Detection limits exceeded soil screening benchmarks for selenium and thallium, and the detection limit for some PCB homologs exceeded the benchmark for total PCBs. The highest detection limit for selenium, 1.2 mg/kg, is within the range of background for soil in Illinois (IEPA, 1994). The highest detection limit for thallium, 1.2 mg/kg, exceeded the screening benchmark of 1 mg/kg slightly. Although the detection limit for some PCB homologs exceeded the screening benchmark for PCBs, other homologs had detection limits below the benchmark. Therefore, the little uncertainty in the analysis results from these detection limits.

#### 6.0 ECOLOGICAL EFFECTS ASSESSMENT

The effects assessment summarizes and weighs available evidence regarding the potential for contaminants to cause adverse effects. These adverse effects may include impacts on growth, reproduction, and survival. The general approaches used to assess ecological effects are summarized below. Additional details are provided in the following sections.

# 6.1 General Approach for Assessment of Ecological Effects

Various approaches are used to assess risk to ecological receptors. These individual lines of evidence are evaluated to provide an overall weight of evidence regarding risk.

In the aquatic portion of the assessment, these include for benthic invertebrates and fish:

- Comparison of concentrations of COPCs in sediment and surface water to established benchmarks:
- Evaluation of sediment toxicity data;
- Analysis of benthic community structure; and
- Comparison of concentrations of COPCs in tissue to toxicity reference values (TRVs) that have been reported to cause adverse effects in similar organisms.

For aquatic wildlife (birds and mammals), the approach is:

• Comparison of estimated dietary doses to TRVs that have been reported to cause adverse effects in similar organisms. The assessment also uses observations of wildlife and habitat that have been made during several site visits to Dead Creek and the Borrow Pit Lake.

For terrestrial receptors, the approach is a screening level assessment that compares soil concentrations to available benchmarks for the protection of plants, soil invertebrates, and terrestrial wildlife.

## 6.2 Sediment and Surface Water Benchmarks

Concentrations of COPCs in individual sediment and surface water sampling locations are compared to benchmarks to assess the potential risk of adverse impacts to aquatic organisms, including invertebrates and fish. These benchmarks are described in this section.

#### 6.2.1 Sediment Benchmarks

The sediment benchmarks used for sediment were the lower of the freshwater Threshold Effect Concentrations and Probable Effects Concentrations developed by MacDonald et. (2000) and the Ontario Ministry of the Environment Sediment Quality Guidelines (Persaud et al, 1993). Note that exceeding these benchmarks is an indication of possible effects to benthic invertebrates, but does not indicate that effects are expected to occur.

# Threshold Effect Concentrations and Probable Effects Concentrations

MacDonald et al. (2000) evaluated previously existing sediment quality guidelines for freshwater ecosystems. Based on the strengths and weakness of each type of sediment quality guideline, they selected consensus-based criteria applicable to freshwater systems. They also evaluated the predictive ability of these guidelines. Their Threshold Effects Concentrations (TEC) represent concentrations below which harmful effects to benthic biota are unlikely to occur. Their Probable Effects Concentrations (PEC) represent concentrations above which harmful effects to biota are likely to be observed.

## Ontario Ministry of the Environment Sediment Quality Guidelines

The Ontario Ministry of the Environment (Persaud et al., 1993) developed Lowest Effect Levels (LEL) and Severe Effect Levels (SEL) for freshwater ecosystems. According to the authors, the Lowest Effect Level indicates a level of contamination which has no effect on the majority of the sediment-dwelling organisms, and the Severe Effect Level represents a level at which the sediment is considered likely to affect the health of sediment-dwelling organisms.

## 6.2.2 Surface Water Benchmarks

The primary benchmarks used for surface water were the Illinois Surface Water Quality Standards. These were selected as most appropriate for Illinois waters. If a state value was not available, the benchmarks used in order of priority were National Recommended Water Quality Criteria, Great Lakes Water Quality Initiative Tier II Criteria, and other benchmarks developed by Oak Ridge National Laboratory (Suter and Tsao, 1996).

## Illinois Surface Water Quality Standards

Illinois Surface Water Quality Standards were selected as the primary benchmarks. According to the Clean Water Act Section 304, States are allowed to establish their own criteria different from federal criteria that take into account site specific conditions or use other scientifically defensible methods. Therefore, these standards were selected as most appropriate for Illinois waters. Where appropriate, they were adjusted for the average water hardness of the water body.

# National Recommended Water Quality Criteria

National Recommended Water Quality Criteria (NRWQC) were developed under the Clean Water Act Section 304 for the protection of aquatic life for both freshwater and saltwater environments (USEPA 1999a). Development of these criteria requires results of at least eight acute toxicity tests from eight different families and three chronic tests. For metals, some AWQC are based on concentrations in the dissolved phase, rather than total concentrations, because dissolved metal concentrations more closely approximate the bioavailable fraction of metal in the water column. The surface water samples collected from Dead Creek, Borrow Pit Lake, and the reference water bodies were analyzed for total metals; therefore, the criteria were adjusted accordingly. Also, where appropriate, the criteria were adjusted to the average water hardness of the water body.

## Great Lakes Water Quality Initiative Tier II Criteria

Tier II values were developed for the Great Lakes Basin; fewer toxicity test data are required to establish these criteria than for the NRWQC (USEPA, 1995). The Tier II Values are concentrations that would be expected to be higher than NRWQC in no more than 20% of cases.

# Oak Ridge National Laboratory Surface Water Guidelines

Suter and Tsao (1996) developed alternative benchmarks from the toxicity literature for some compounds that do not have other criteria. These have been used if no other benchmark is available.

# 6.3 Sediment Toxicity Data

The measures of effects on benthic invertebrates included acute and chronic toxicity tests with two freshwater species at each sediment triad station including the reference areas. Ten-day acute toxicity tests were run with the amphipod *Hyalella azteca*. These tests measured survival and growth. A 42 day chronic survival, growth and reproduction toxicity bioassay was also run with this species at each location. A 10 day acute toxicity text that measured growth and survival was performed with a Chironomid larvae *Chironomus tentans* at each sediment triad sampling location. A 20 day chronic survival, growth, emergence, and reproduction toxicity bioassay was also run with each sediment sample for which survival was high enough to continue the test beyond 10 days. These tests were performed by Aquatec Biological Sciences of South Burlington, Vermont. Their laboratory reports are in Appendix E.

# 6.4 Benthic Community Structure

The structure of the benthic community is analyzed using several approaches that examine whether the COPCs in Dead Creek Section F and the Borrow Pit Lake may be exerting stress on benthic invertebrates. These include benthic community metrics that analyze abundance of individuals and diversity of species.

The results of these analyses are included in the weight-of-evidence analysis to assess impact at each sediment triad sampling location. The results are examined in comparison to factors that could influence benthic community structure such as concentrations of COPCs, sediment grain size and organic carbon content.

Descriptions of the various approaches to analyzing benthic community structure are provided in the following sections.

A number of different measures of benthic community health and diversity are used in this assessment which assesses numbers of benthic invertebrates at Dead Creek Section F, the Borrow Pit Lake, and reference areas.

- Abundance is a direct count of the number of individual organisms. The number of
  individuals is a measure of the "standing stock" of the benthic community and provides an
  indication of the ability of the benthic community to serve as a prey base for higher trophic
  levels.
- Taxa richness is a count of the number of different taxa (in most cases taxa are counted at the level of the species). The assumption is that high diversity is indicative of a benthic community with a greater diversity of microhabitats and a broader range of species with varying tolerances to physical, biological, and chemical interactions.
- The Shannon-Weiner Diversity Index (H') provides another useful comparative measure of benthic community structure (Begon et al., 1990; Gallagher, 2000). The index is species-based and assesses diversity using both the number of species (species richness) and the number of individuals (abundance) per species. Although more complex statistical testing can be employed to compare H' statistics, generally the greater the Shannon-Weiner Diversity Index, the greater the diversity of benthic species at a station.

The Shannon-Weiner Index is calculated as follows:

$$H' = -\sum_{i=1}^{s} p_{i} \log p_{i}$$

Where,

 $p_i$  = frequency of species i in the sample =  $\frac{N}{N}$ 

 $N_i$  = number of individuals of species i

N = total individuals in sample

S = number of species

# Simpson's Index

Simpson's index is a comparative measure of diversity that addresses species evenness. The Simpson's index of a benthic community sample is indirectly proportional to the heterogeneity of the community and will range between 0 and 1. Statistically, Simpson's index is a measure of the probability of two randomly selected organisms belonging to the same species (Cole, 1994). Samples in which a large proportion of individuals belong to a small number of species will have a high Simpson's index while a sample with individuals more evenly distributed among species will have a lower Simpson's index. The formula used to calculate Simpson's index, taken from Cole (1994) is:

$$\lambda = \sum_{p_i}^2$$

Where,

 $p_i$  = the frequency of species i in the sample.

## Modified Hilsenhoff's Biotic Index

Hilsenhoff's biotic index (HBI) is a species-specific community index which measures the proportion of species which are tolerant to disturbance. The underlying assumption of the HBI is that species deemed sensitive to disturbance decrease in abundance as disturbance to the community increases. Species specific tolerance values, taken from Barbour, et al. (1999), range from zero (extremely sensitive) to ten (tolerant), and are multiplied by the relative abundance of each species within a sample. The resulting values are summed to produce a single tolerance value for each sample. In cases where tolerance values were not available for a species, the tolerance value for the next taxonomic level was used, typically a single tolerance value for the entire genus. In general, the higher the tolerance value assigned to a benthic community, the greater the degree of impairment.

# 6.5 Toxicity Reference Values for Tissue Concentrations in Fish

Toxicity Reference Values for aquatic life are based on critical body burdens or concentrations of COPCs in animal tissues that correspond with toxicological effects. Comparison of actual measured tissue concentrations to critical body residues is a more direct and less uncertain measure of effect than are comparisons to water or sediment concentrations, which are often used as a surrogate for the concentration a the actual site of toxic action. Concentrations measured in samples of forage fish, largemouth bass, and brown bullhead are compared to these values to assess the potential for risk of harm to fish exposed to COPCs in the Borrow Pit Lake.

The US Army Engineer Waterways Experiment Station (WES), the research and development branch of the US Army Corps of Engineers, has developed the Environmental Residue Effects Database (ERED) (USACE, 2001). ERED compiles reports from the literature on adverse effects of COPCs based on whole body concentrations of COPCs in aquatic life. WES conducts a quality control review on entries and updates the database annually. A similar database compiled by US EPA (Jarvinen and Ankley, 1999) was also used. This ecological risk assessment uses both sources for development of toxicity reference values for fish.

Studies that examined effects on growth, survival or reproduction were selected for development of body burden toxicity reference values. If more than one appropriate study was available, the lowest of the lowest observed effects levels (LOAEL) and corresponding no observed effects level (NOAEL) were selected. Table 7-4 presents the test species, residue effect level, literature reference, and value selected.

# 6.6 Toxicity Reference Values for Dietary Doses to Birds and Mammals

The chronic NOAELs and LOAELs for the wildlife species are based on the results of laboratory studies reported in the literature. The NOAEL is the highest concentration of a particular contaminant at which no adverse effects are observed in the test species. The LOAEL is the lowest concentration of a particular contaminant at which adverse effects are observed in the test species. NOAELs and LOAELs are daily doses of chemicals (mg chemical consumed/kg body wt/day) which are compared to the exposure doses (mg/kg/d) calculated in the food chain models in Appendix F.

Sources of the chronic NOAEL and LOAEL doses for avian and mammalian species include Sample et al. (1996) and other sources. Values available in Sample et al. (1996), were preferred. If avian doses were not available in Sample et al. (1996), the USEPA ECOTOX on-line database and/or the scientific literature were searched. For those mammalian doses not available in Sample et al. (1996), the latest versions of toxicological profiles compiled by the Agency of Toxic Substances and Disease Registry (ATSDR), the USEPA Integrated Risk

Information System (IRIS), and/or scientific literature were searched for appropriate mammalian NOAEL and LOAEL doses.

NOAEL doses and LOAEL doses were taken from studies that met the following criteria:

- Close taxonomic relationship between the test species and the receptor species;
- Ecologically relevant endpoints Endpoints, such as reproduction, development, growth, and mortality, were chosen because they can lead to population-level effects;
- Appropriate exposure duration Chronic studies were considered to be longer than 70 days for birds and 1 year for mammals or for shorter periods during critical life stages;
- Appropriate exposure route Studies in which the test species received the chemical dose by the diet were preferred to those that in which the test species received an oral capsule or by gavage. However, for some chemicals, the only data available are gavage.

If only subchronic studies were available for selecting chronic NOAELs or LOAELs, an Acute to Chronic Ratio of 10 (Sample et al., 1996) was applied. If only a LOAEL was provided by the authors of the selected study, then the LOAEL was divided by a factor of 10 to derive the NOAEL benchmark. The resulting NOAEL and LOAEL doses are presented in Appendix F.

# 6.7 Benchmarks for Evaluating Soil Toxicity

Oak Ridge National Laboratory (Efroymson et al., 1997a) has developed preliminary remediation goals for soils based on toxicity to plants, soil invertebrates, and uptake into the food chain and subsequent effects on wildlife. The benchmarks for plants and earthworms were selected from literature data on field or laboratory studies (Efroymson et al., 1997b,c). The wildlife values were calculated using a food chain model for short-tailed shrew, white-footed mouse, red fox, white-tailed deer, American woodcock, and red-tailed hawk. They used the LOAEL values from Sample et al. (1996) and uptake factors (into plants, earthworms, and small mammals) from Efroymson et al. (1997), and Sample et al. (1997a,b). They then selected the lowest of the plant, earthworm, and wildlife values as a soil benchmark.

### 7.0 RISK CHARACTERIZATION

This section describes the measures of effect for each assessment endpoint, the data collected as part of those measures, and analyses performed with those measures to evaluate each assessment endpoint

# 7.1 Assessment Endpoint 1; Sustainability of Warm Water Fish

The COPCs may exert direct effects on warm water fish through exposure in the water, sediment, or prey, and indirectly by affecting their prey, the macroinvertebrate community. The associated measures of effects assess exposure pathways and potential effects. Some rely upon direct observations of conditions; some involve measures of toxicity; and others use literature values.

# 7.1.1 Measure of effect 1a: body burdens of COPCs in selected fish species

Purpose and Rationale. Fish exposed to bioaccumulative compounds in their diet or in water can accumulate these COPCs in their tissues. Contaminants tend to accumulate in organs such as the liver and kidney to a greater degree than in the musculature. However, COPC levels in tissue on a whole body basis are useful for evaluating risks to animals that eat fish. The assessment uses measurements of COPCs in fish tissue to evaluate exposure and effects on the fish, and to provide data for use in other parts of the assessment.

Approach. The assessment uses this endpoint to evaluate effects as a measure of effects, the assessment compares measured body burdens to literature values at which effects have been reported. The assessment will also use the body burden data in subsequent sections as input to the food chain exposure models for the representative piscivores (the great blue heron, bald eagle, and river otter).

Evaluation: Tables 7-1, 7-2 and 7-3 present concentrations detected in largemouth bass, brown bullhead, and forage fish (small minnows), respectively, from the Borrow Pit Lake and concentrations detected in these species in reference areas. Compounds detected in Borrow Pit Lake fish were: dicamba, MCPA, aluminum, chromium, copper, mercury, selenium, zinc, total PCBs, DDE, gamma chlordane, heptachlor, di-n-butylphthalate, and 2,3,7,8-TCDD TEQs in largemouth bass; dichloroprop, aluminum, chromium, copper, lead, mercury, zinc, total PCBs, DDE, alpha chlordane, gamma chlordane, heptachlor, bis(2-ethylhexyphthalte, diethylphthalate, and 2,3,7,8-TCDD TEQs in brown bullhead; and 2,4-DB, dicamba, dichloroprop, MCPA, pentachlorophenol, aluminum, chromium, copper, lead, mercury, selenium, zinc, total PCBs, DDE, bis(2-ethylhexyl)phthalate, diethylphthalate, indeno(1,2,3-c,d)pyrene, dibenz(a,h)anthracene, and 2,3,7,8-TCDD TEQs in forage fish (minnows).

Table 7-4 presents NOAEL and LOAEL concentrations in fish tissue from the literature. Where the information is available, NOAEL and LOAEL concentrations have been selected for effects on mortality, growth, and reproduction or development. Tables 7-1, 7-1, and 7-3 also compare these values to the maximum concentration detected in site fish.

The only COPC for which a NOAEL or LOAEL body burden is exceeded in site fish is mercury. The maximum mercury concentration (0.26 mg/kg wet weight) but not the average mercury concentration in brown bullheads slightly exceeded the benchmark of 0.25 mg/kg mercury wet weight. This was due to one composite brown bullhead sample. The other two brown bullhead samples had lower mercury concentrations (0.05 and 0.075 mg/kg wet weight). The maximum mercury concentration in forage fish samples (0.6 mg/kg wet weight) also exceeded the benchmark, but the average concentration did not. This was also due to the concentration in one composite sample. The concentrations in the two other samples were 0.052 mg/kg wet weight and not detected at a detection limit of 0.1 mg/kg wet weight Largemouth bass concentrations did not exceed any of the available benchmarks. Note that body burden benchmarks were not available for all COPCs detected in fish.

The benchmark value of 0.25 mg/kg wet weight represents a no observed effects concentration for mortality, but a lowest observed effects concentration for reproductive effects (Friedmann et al., 1996). In a feeding study with walleye, a predatory fish, using low and high doses of methylmercury, Friedmann et al. (1996) found that ingestion of methylmercury in prey resulted in an inhibition of growth, testicular development, and immune function. The resulting body burdens from both the low and high methylmercury level diets were associated with these effects. The body burden associated with the low dietary level was 0.25 mg/kg mercury wet weight. Walleye with body burdens at this level exhibited the effects described above, but not mortality. Friedmann et al. point out that a concentration of 0.25 mg/kg mercury wet weight is within the range of mercury concentrations typically detected in North American fish. They gave a range of 0.03 to 0.7 mg/kg mercury (wet weight) in the Northeastern United States and Canada.

The USEPA (1999b) nationwide database on total mercury concentrations in fish tissue contains information on mercury concentrations in fish tissue in Illinois. Most of the samples collected in Illinois are composites of 2 to 5 fish fillets of several species collected in various lakes and rivers in the upper Mississippi River basin from 1990 to 1993. A total of 85 samples were collected in these lakes and rivers. For the fish species in water bodies in the upper Mississippi River basin in Illinois, the concentration of total mercury in composite fillets ranged from less than 0.010 mg/kg (wet weight) to 0.730 mg/kg (wet weight). The minimum concentration (<0.010 mg/kg) was in a composite of 5 channel catfish (*Ictalurus punctatus*) collected from the upper Mississippi River in East Grand Tower, Jackson County. The maximum concentration (0.730 mg/kg) was in a composite of 5 largemouth bass (*Micropterus salmoides*) collected from Cedar Lake near Makanda, Jackson County. It should be noted that there is an active mercury fish advisory for largemouth bass in Cedar Lake.

Fish can have elevated mercury concentrations far from any source of mercury due to aerial deposition from sources such as power plant emissions and emissions from waste to energy plants. For this reason, site-specific mercury concentrations were compared to regional data. Elevated region-wide concentrations of mercury reflect sources that exist outside of the influence of Dead Creek. Weston, USEPA's oversight contractor, does not believe that these region-wide data are appropriate for comparison to the site due to the active fish advisories,

Seventy-one largemouth bass samples are listed in the USEPA's database for Illinois. Most of these are composite samples, however there are seven individual fish samples. The total mercury concentrations in fillets ranged from 0.010 mg/kg (in a composite of 4 fish collected from the Mississippi River in Rock Island County) to 0.730 mg/kg (in a composite of 5 fish from Cedar Lake). In the individual largemouth bass samples, the mercury concentrations ranged from 0.250 mg/kg to 0.460 mg/kg (both ends of the range measured in Chicago).

Therefore, the benchmark concentration of 0.25 mg/kg mercury wet weight is within the range of concentrations detected in fish in the Mississippi River basin in Illinois. The mercury concentrations in Borrow Pit Lake fish that exceed the benchmark concentration may reflect regional conditions and may not necessarily be related to the site.

7.1.2 Measure of effect 1b: COPC concentrations in surface water as compared to applicable water quality criteria for protection of fish and wildlife

Purpose and Rationale. Water concentrations provide a measure of exposure, and water quality criteria indicate levels above which effects may occur. This measure of effect evaluates the potential for water concentrations of COPCs in Dead Creek and the Borrow Pit Lake to cause adverse effects.

Approach: The assessment compares measured concentrations of COPCs in surface water to water quality criteria. Exposure of individual fish and the populations of fish partly depend on the exposure field and the distribution and behavior of the fish. Thus, the area over which water quality criteria are exceeded is an important consideration when evaluating exposure. We evaluate effects with respect to spatial extent and degree to which surface water concentrations exceed water quality criteria.

Evaluation: Tables 7-5 and 7-6 compare surface water concentrations in Creek Section F and the Borrow Pit Lake to Illinois Water Quality Standards, National Recommended Water Quality Criteria (or Ambient Water Quality Criteria (AWQC)), Great Lakes Initiative Tier II values, and other water quality guidelines summarized by Suter and Tsao (1996). For metals, the Illinois standards and AWQC were adjusted for measured water hardness and total metals, as noted in the tables. The analyses were conducted on unfiltered water samples.

Ten metals and dioxin congeners were detected in surface water in Creek Section F. The acute criterion was exceeded for barium in each sample, and the chronic criteria were exceeded in one or two samples for manganese and aluminum.

In the Borrow Pit Lake, 11 metals, ten pesticides, and dioxin congeners were detected in surface water. Acute criteria were exceeded for aluminum and barium in one or two samples. Chronic criteria were exceeded for aluminum, barium, iron, and manganese in each sample.

There were no AWQC or other guidelines available for 2,3,7,8-TCDD based only on toxicity. For three pesticide compounds detected in Borrow Pit Lake surface water (dieldrin, endrin, and heptachlor epoxide), detection limits were greater than standards or criteria in one or two out of three samples.

7.1.3 Measure of effect 1c: Sustainability of benthic macroinvertebrate communities that comprise a prey base

Purpose and Rationale. Benthic macroinvertebrates are an important source of food for many fish species. They experience direct sediment exposures due to their life histories. Exposures that result in reduced abundance, diversity, or biomass of these aquatic macroinvertebrates could indirectly effect fish populations. Further, quantitative studies of benthic macroinvertebrates have a long history of use in water quality studies.

The assessment uses the sediment triad approach as part of a weight-of-evidence analysis to evaluate the sustainability of benthic macroinvertebrate communities in Dead Creek and the Borrow Pit Lake. The sediment triad approach evaluates three elements of a benthic community:

Sediment chemistry measurements;

Field assessment of benthic macroinvertebrates;

Sediment toxicity testing using indicator benthic macroinvertebrates.

## 7.1.3.1 Sediment Chemical Measurements

Concentrations of COPCs in sediment are compared to sediment benchmarks to evaluate whether adverse biological effects to benthic macroinvertebrates could occur. The sediment guidelines used in this assessment are the consensus-based Threshold Effect Concentrations (TECs) and Probable Effects Concentrations (PECs) developed by MacDonald et al. (2000) and the Ontario (Persaud et al., 1993) Lowest Effect Levels (LEL) and Severe Effects Levels (SEL). Sediment concentrations which exceed these benchmarks do not necessarily indicate

that adverse effects to benthic macroinvertebrates have occurred. This risk uses multiple lines of evidence to assess if benthic macroinvertebrates are adversely affected by COPCs.

Tables 7-7 and 7-8 compare sediment concentrations in the Creek Section F and the Borrow Pit Lake to Sediment Quality Guidelines.

In Creek Section F, Probable Effects Concentrations or Severe Effects Levels were exceeded for six metals, cadmium, copper, lead, mercury, nickel, and zinc. Threshold Effects Concentrations were exceeded for these metals and for arsenic, iron, manganese, total PCBs, seven pesticides, and fluoranthene.

In the Borrow Pit Lake, PEC and SEL guidelines were exceeded by manganese and nickel. These metals and arsenic, cadmium, copper, iron, lead, zinc, DDE, total DDT, gamma-BHC, and heptachlor epoxide exceed the TEC and LEL values.

Tables 7-7b and 7-8b compare sediment concentrations in the "industry specific" composite sediment samples from Dead Creek Section F and the Borrow Pit Lake to Sediment Quality Guidelines. The "industry specific" sediment samples were collected from depths of approximately 0 to 12 inches and generally contained higher concentrations than the ecological sediment triad samples collected from depths of 0 to 2 inches. The ecological sediment samples are more representative of current exposures.

In Creek Section F, both PECs/SELs and TEC/LELs were exceeded for copper, zinc, and PCBs in the "industry specific" samples. Copper exceeded PEC/SELs in 15 out of 29 samples and the TEC/LEL in 22 out of 29 samples. Zinc exceeded PEC/SELs in 17 out of 29 samples and the TEC/LEL in 22 out of 29 samples. PCBs exceeded PEC/SELs in 8 out of 29 samples and the TEC/LEL in 17 out of 29 samples.

In Borrow Pit Lake both PECs/SELs and TEC/LELs were exceeded for zinc in the "industry specific" samples. Zinc exceeded the PECs/SELs in one out of eight samples and the TEC/LELs in eight out of eight samples. Copper did not exceed the TEC/LEL in these samples. PCBs were not detected.

In both Borrow Pit Lake and Creek Section F, there is some uncertainty because detection limits for some COPCs were greater than the Sediment Quality Guideline values. These included total PCBs in one sample location in Creek Section F. Other compounds that had detection limits greater than sediment guidelines in one or two out of three sample locations in Creek Section F or Borrow Pit Lake were 4,4,'-DDT, aldrin, dieldrin, endrin, heptachlor, heptachlor epoxide, gamma chlordane, and gamma-BHC (lindane).

# 7.1.3.2 Field assessment of benthic macroinvertebrate community

Effects are evaluated by comparing the composition and abundance of benthic macroinvertebrates within Dead Creek and the Borrow Pit Lake at different levels of concentrations of COPCs in sediment. Typically, these data would also be compared to data from a reference area that reflects conditions in water bodies unaffected by site COPCs. At the direction of the regulatory agencies, and after the ecological risk assessment was completed, these comparisons were eliminated because agreement was not reached over the appropriateness of the reference areas. However, since data were collected from the reference areas, they are presented here, but no comparison with site data is made.

Several metrics described by Barbour et al. (1999) were employed to discern the status of the benthic macroinvertebrate community in Creek Sector F, the Borrow Pit Lake, and the reference locations (PDC-1, PDC-2, Ref 2-1, and Ref 2-2). These metrics addressed the richness, evenness, and composition of the benthic community as well as the tolerance of each taxon to perturbation.

Samples for benthic community analysis were co-located with sediment sampling locations for chemical analysis and samples for sediment toxicity testing. The results and the data summary table are in Appendix D.

Seven metrics were used to assess the benthic community at each station. The number of organisms, the number of taxa, and the three dominant taxa at each station are presented in Table 7-9. The number of taxa was used as a simple measure of richness. Dominant taxa was used as a simple measure of evenness. Three indices were used to measure diversity in terms of heterogeneity at each station, the Shannon-Weaver Index (H'), relative H', and Simpson's Index  $(\lambda)$ . The results of these indices are in Table 7-10. The relative H' index is a comparison of actual diversity to maximum diversity (H'/H'<sub>max</sub>), where maximum diversity is defined as equal abundance among all taxa. Simpson's Index expresses the probability that two randomly sampled benthic organisms will belong to the same taxa and is a measure of heterogeneity of the benthic community. The composition (Table 7-11) of the benthic community was measured by assessing the relative abundance of six major taxonomic groups (Chironomids, Oligochaetes, Non-chironomid insects, Mollusks, Crustaceans, and Other). A version of Hilsenhoff's Biotic Index of Organic Stream Pollution (Hilsenhoff, 1987), modified to include all benthic macroinvertebrates (Table 7-12), was employed to measure the degree of benthic community impairment based on the tolerance to perturbation of the benthic macroinvertebrates. Data on tolerance were taken from Barbour et al. (1999). Abundance of functional feeding groups (FFG) was also looked at as an additional measure of community impairment and is summarized in Figure 7-1. Data on functional feeding groups were taken from Barbour et al. (1999).

In terms of the number of taxa, dominant taxa, and taxonomic group abundance (Table 7-9), the benthic community from each of the sampling locations resembles the benthic community

in deep portions of an eutrophic lake. This community composition reflects the available habitat, as samples were taken from the littoral zones of lentic bodies (Borrow Pit Lake) and the low order stream habitats of Dead Creek Section F. A typical profundal benthic community consists of a low number of taxa dominated by chironomids, oligochaetes and other organisms which are tolerant to low dissolved oxygen concentrations. The benthic community is most likely due to the conditions (e.g., silty substrate, low dissolved oxygen, etc.) in these locations.

Compared to the Borrow Pit Lake, the benthic community in Creek Sector F reflects a more diverse habitat: a closed canopy, relatively heterogeneous substrate, and higher water level. Overall, effects on the benthic community associated with low water levels and high water temperatures are seen in each location. The organically rich sediments of the sampling locations can exacerbate the effects of low water and high temperatures by decreasing already low dissolved oxygen concentrations in the surface water. Concentrations of total organic carbon (TOC) ranged from 12,000 to 84,000 mg/kg dry weight (Appendix A-2). Secondary effects on the benthic community include high homogeneity of substrate (no riffles), silty and very soft sediment, and little to no aquatic macrophytic growth. These are all evident in Dead Creek and the Borrow Pit Lake.

The indices of diversity (H', H'max, and Shannon's) indicate that some locations (i.e., BP-1 and Creek Sector F-1) have a relatively diverse benthic community (Table 7-10). The low number of taxa and the low number of organisms seen in each location, however, overshadow these results (Table 7-11).

According to the modified Hilsenhoff's Biotic Index (Table 7-12), that gives a value to the community structure based on the degree of impairment, the stations in Creek Sector F and the Borrow Pit Lake range from significantly impaired to severely impaired.

Functional Feeding Groups were summarized to assess the community structure (Figure 7-1). Generalists, such as gather/collectors and omnivores, are the dominant functional feeding groups in nearly all stations. This is a reflection of the conditions in the Creek and Borrow Pit Lake, as generalists are considered more tolerant than specialists such as scrapers and shredders. The abundance of predators is proportionately high in stations F-2 and BP-1. Most of the predators in F-2 were ceratopogonids (biting midges; Order diptera). The predators of BP-1 were a diverse group consisting mainly of odonates (dragon and damselflies) and two species of the Order hemiptera.

The only historical information identified for the region is a survey of fourteen streams in the American Bottoms Basin conducted in the spring and summer of 1984 by the IEPA Division of Water Pollution Control (IEPA, 1989). This survey assessed water quality, macroinvertebrates, fish populations, and sediment and fish fillet chemistry. Biological stream characterization and aquatic life use support were also addressed.

Of the fourteen streams surveyed in 1984, six were reported at zero 7-day, 10-year low flow, including Prairie DuPont Creek. An additional six streams were reported at non-zero 7-day, 10-year low flow.

Dead Creek and Borrow Pit Lake are located within the mid-section of the American Bottoms Basin. This part of the basin was considered to be most adversely affected, primarily by industry and urban development in the 1984 study. Within this part of the basin, degradation was greatest in the East St. Louis area. Characterization of streams within the mid-American Bottoms Basin show that low to extremely low dissolved oxygen concentrations and elevated total suspended solids, total dissolved solids, turbidity, total phosphorus, and metals are common. Out of the entire American Bottoms Basin, streams in mid-Basin exhibit the greatest impact on macroinvertebrates and are considered moderate to limited aquatic resources.

The benthic community in Dead Creek Sector F and the Borrow Pit Lake reflect the available habitat. The community is neither diverse nor abundant due to physical conditions (i.e., low water levels, low dissolved oxygen, and silty substrate). This is consistent with observations made by IEPA in 1984.

# 7.1.3.3 Sediment toxicity testing

The assessment uses laboratory sediment bioassays conducted on sediments from Dead Creek and the Borrow Pit Lake to evaluate the potential effects of whole sediment on representative benthic macroinvertebrates (amphipods and chironomid larvae). The sediment used in the sediment bioassays were collected with the samples for chemical analysis and benthic invertebrate enumeration. Except for VOCs, the chemical sample was subsampled from the sediment collected for toxicity testing. VOC samples were collected directly from the sediment to minimize loss due to volatilization.

The toxicity of the sediment is compared to that of the standard control sediment used by the laboratory as part of the laboratory's standard operating procedures. In samples where the sediment was found to be acutely toxic, chronic toxicity tests were not performed. The laboratory testing reports are in Appendix E.

The amphipod bioassays do not suggest toxicity in Dead Creek Section F and little toxicity in Borrow Pit Lake sediments, while the chironomid bioassays do suggest toxicity in both locations. Toxicity bioassays are complex and can contain a high degree of variability in their results. These data suggest that site sediments may be toxic to some organisms. The agent causing the toxicity is unknown.

## Hyalella azteca (Amphipod) Acute Toxicity

Survival of the amphipod in the 10-day acute toxicity bioassay was high at all stations in Creek Sector F and the Borrow Pit Lake, and reference locations, indicating that sediment was not acutely toxic to *H. azteca*. There were no statistically significant differences in survival between samples and laboratory controls. Growth of the amphipod was statistically lower in stations 1 and 3 in the Borrow Pit Lake. The results of the *H. azteca* acute toxicity bioassay are presented in Table 7-13.

## H. azteca Chronic Toxicity

The results of the 42-day chronic survival, growth, and reproduction toxicity bioassay are presented in Table 7-14. This is a test that is relatively new and there is less experience with its execution and performance as compared to the acute toxicity tests.

The results of the laboratory controls were unexpectedly low. Therefore, in this situation only, the results of the reference locations were used for comparison instead (PDC-1 and PDC-2 for Creek Sector F; PDC-1, PDC-2, and Ref 2-2 for the Borrow Pit Lake. With the exception of one reference station (Ref 2-1), survival, growth, and reproduction were statistically similar to the reference stations, indicating that sediments were not chronically toxic to *H. azteca*.

## Chironomus tentans (Chironomid) Acute Toxicity

Survival of the chironomid larvae in the 10-day acute toxicity bioassay was significantly lower than the laboratory controls in all stations in Creek Sector F, the Borrow Pit Lake, and reference locations. Growth was significantly lower than the laboratory controls in stations F-2, and the reference stations PDC-1, and Ref 2-1. Sediment from Creek Sector-F and stations BP-2, PDC-1, and Ref 2-2 were found to be acutely toxic to *C. tentans* larvae. The results of the *C. tentans* acute toxicity bioassay are presented in Table 7-15.

# C. tentans Chronic Toxicity

The results of the 20-day chronic survival, growth, emergence, and reproduction toxicity bioassay are presented in Table 7-16. Survival, emergence, and reproduction in stations BP-1 and BP-3 in the Borrow Pit Lake were significantly lower than laboratory controls. Emergence and reproduction in reference station PDC-2 were significantly lower than laboratory controls.

## 7.1.3.4 Sediment Triad Evaluation

The three elements of the sediment triad are the sediment chemistry measurements, benthic community evaluation, and sediment toxicity tests. This section uses a weight of evidence

approach to evaluate sediment toxicity using these three measurements. The evaluation is adapted from information presented in Long and Chapman (1985) and Chapman et al. (1987).

Table 7-17 presents a summary of the results of the Sediment Triad measurements. The shaded areas indicate where a measurement indicates a greater likelihood of effects in Dead Creek Section F or Borrow Pit Lake sediment. For the first measurement, sediment chemistry, many COPCs exceeded TECs or LELs in Dead Creek Section F and Borrow Pit Lake sediment. The number of exceedances on site ranged from 6 to 14. Similarly, Dead Creek Section F and Borrow Pit Lake sediment also exceeded PECs or SELs. The number of exceedances of these values, which represent probable effects, was 0 to 6 on site. There were more exceedances of both TECs/LELs and PECs/SELs in Dead Creek Section F sediment samples than in Borrow Pit Lake sediment samples.

The benthic community measures indicated that organisms in Dead Creek Section F and the Borrow Pit Lake reflect the available habitat. Numbers of organisms and numbers of taxa were generally low. The Shannon-Weaver measure of diversity and Simpsons Index (a measure of heterogeneity) indicated that the site samples demonstrated relatively low diversity The modified Hilsenhoff Index values for the Dead Creek Section F and Borrow Pit Lake indicated impairment of the benthic community. These effects may be attributable to poor habitat conditions of low water levels, silty substrate, and low dissolved oxygen.

The results of the sediment toxicity testing indicated that few effects were measured for amphipods, while acute and chronic effects were measured for chironomid larvae. Effects on growth were measured in the acute toxicity tests on amphipods in two Borrow Pit Lake samples. These two samples had the lowest number of exceedances of TEC/LEL and PEC/SEL values. One of these Borrow Pit Lake samples had no COPCs exceeding Probable Effects Levels. Therefore, there does not appear to be a correlation between the measurement of effects on amphipod growth and sediment chemistry in the two Borrow Pit Lake samples where effects on amphipod growth were measured..

Overall, the evaluation indicated that the benthic community at the site is affected by the available habitat. Toxicity effects measured in Borrow Pit Lake did not correlate with sediment chemistry

7.2 Assessment Endpoint 2; Survival, growth, and reproduction of local populations of aquatic wildlife as represented by the mallard duck, great blue heron, muskrat, and river otter

The assessment uses five measures of effects to evaluate risks to aquatic wildlife. The assessment will use exposure models to evaluate different routes of exposure including ingestion of water, sediment and food (plants, benthic macroinvertebrates and fish). This subsection describes these measures of effects.

## 7.2.1 Measure of effect 2a: Wildlife species composition and habitat use

Purpose and Rationale. This measure of effect directly examines the receptors, wildlife, to estimate if they are using Dead Creek and the Borrow Pit Lake. It provides qualitative information on the degree to which local and migratory wildlife use the habitat.

Approach: The assessment documents the habitat use by wildlife in Dead Creek Section F and Borrow Pit Lake. This type of survey is qualitative. Because of the qualitative nature of the observations and the high natural variability that can exist in wildlife populations, direct observations may not reveal effects.

Evaluation: Menzie-Cura & Associates, Inc. made observations of the site in 1996, and made observations of the site and reference areas during the site reconnaissance survey conducted in September 1999 and during sampling in October and November 1999. The information here is also based on research on ecological receptors at the site.

The Dead Creek channel and adjacent riparian communities form a narrow, linear wetland system that passes through suburban Cahokia. Portions of Dead Creek are adjacent to residential and business lots that contain mowed lawns, buildings, driveways, and roads. To a great extent, these areas have been modified so that only relict portions of natural vegetation alliances exist. Furthermore, many areas are also influenced by non-native plant species. Sections of the creek, however, are used by rare species monitored by the Illinois Endangered Species Protection Board. This illustrates that Dead Creek does possess value for wildlife habitat and as a travel corridor.

The portion of Dead Creek Section F included in this assessment flows through riparian woods and shrubs and into the Borrow Pit Lake. The Borrow Pit Lake is the largest non-flowing water body in the area. Its shore is surrounded with mature riparian trees. Based on observations of the Borrow Pit Lake at the end of the growing season in September 1999, very little submerged or emergent vegetation appears to grow in the pond. Photographs of these areas in October 1999 are in Appendix B. At that time, water levels were extremely low and sediment was exposed in large portions of the Borrow Pit Lake. Ducks, herons, and fish were observed in the lake. Fish species observed in the pond include: white crappie, largemouth bass, bluegill sunfish, brown bullhead, yellow bullhead, walleye, drum, silver carp, and gar. Table 7-18 lists fish and wildlife species observed at and near the site during the site visit in 1996 and field sampling in 1999.

During high water conditions, Dead Creek flows from the Borrow Pit Lake into the ditched section of Prairie du Pont Creek. At the confluence of Dead Creek and Prairie du Pont Creek and above it, the ditch shore is vegetated with grasses, herbs, and small shrubs. The flow in the ditch is northwest to Arsenal Island on the Mississippi River. Arsenal Island contains areas of mature riparian woods and agricultural fields. The shoreline of the lower end of the

ditch (referred to on the USGS map as Cahokia Chute) is lined with riparian woods, principally large cottonwoods and willow. Large catfish, wood duck, wading birds, and turtles were observed in the channel. Cahokia Chute forms the eastern border of Arsenal Island. The waterway flows north to south, draining the region northeast of the island. It appears that during times when the Mississippi River is high, the river uses the chute channel to flow around Arsenal Island. Any water from the Dead Creek watershed therefore only flows through the lower half of the Cahokia Chute between the confluence with the ditched Prairie du Pont and the Mississippi River. The remains of a bald eagle nest and congregating wading birds were observed in 1996 at the southern tip of Arsenal Island, where the Chute flows into the Mississippi.

Nine vegetation alliances were identified in the vicinity of Dead Creek based on vegetation, landscape position, and hydrological characteristics. These are: White Ash (Fraxinus americana) – American elm (Ulmus americana) Temporarily Flooded Forest, Eastern Cottonwood (Populus deltoides) Temporarily Flooded Forest, Black Willow (Salix nigra) Temporarily Flooded Forest, Buttonbush (Cephalanthus occidentalis) Semi-permanently Flooded Shrubland, Persicaria—Mixed Forb Temporarily Flooded Herbaceous, Typha Seasonally Flooded Herbaceous, Potamogeton—Ceratophyllum—Elodea Permanently Flooded Herbaceous, Temporary Open Water, and Permanent Open Water. The location and extent of each community is shown on Figure 7-2.

Extensive wetlands occur west of Route 3, particularly in the vicinity of the Borrow Pit Lake. The Creek's wetlands appeared healthy with no evidence of ecological stress (no chlorotic plants, no monospecific stands of vegetation, no areas of dying or dead vegetation, no observed surface water sheens or sediment staining) with the exception of extremely low water levels observed in the Fall of 1999 when portions of Dead Creek and the Borrow Pit Lake dried out completely. The wetlands also appeared to support a diverse aquatic and terrestrial wildlife community, with abundant prey species (i.e., fish, frogs, turtles) and predatory species (i.e., wading birds, waterfowl, raccoons). The wetlands west of Route 3 receive water from both Dead Creek and from drainage areas to the north.

Animal use of the Dead Creek study area is generally limited to species that do not require large tracts of pristine land and can tolerate some level of habitat modification and disturbance. These animals are mostly species that can use residential areas for foraging and/or shelter or are smaller vertebrates that have limited space requirements. The juxtaposition of forest, shrubland, and open water does provide for some landscape diversity. Additionally, the proximity of the site to the Mississippi River and presence of wetlands provide feeding areas for migratory waterfowl and wading birds. The early age of most of the communities (due to disturbance), however, provided limited structural diversity.

Several species of birds were observed using Dead Creek and the adjacent riparian corridor for foraging and roosting. Many of the birds seen were those that frequent residential areas (e.g., American robin, northern cardinal, blue jay, northern mockingbird) and could use the area of

the Dead Creek floodplain for nesting. Carolina wrens, several species of sparrows, and Eurasian tree sparrows were noted using dense shrub and liana thickets. European starlings were seen roosting in large flocks in the larger trees along Dead Creek. Limited use of the open water sections by waterfowl and wading birds does occur. These open water areas of Dead Creek are likely also used during the breeding season for feeding by swallows, phoebes, and flycatchers. On two occasions, a great horned owl was seen in or near the study area. Bird species known or likely to occur in the Dead Creek study area are presented in Table 7-18.

Mammals using Dead Creek habitats were primarily rodents, small omnivores, and likely bats and insectivores (i.e., shrews). Eastern chipmunks and gray squirrels were seen frequently during the surveys. Raccoon tracks were found nearly everywhere the ground surface was conducive to track formation. The only large mammal documented in the study area was white-tailed deer. Numerous tracks were observed of this species. Mammal species known or likely to occur in the Dead Creek study area are presented in Table 7-18.

Few amphibian and reptiles (collectively called herpetiles) were observed in the vicinity of Dead Creek. However, the stream channel and adjacent riparian forest provide habitat for a number of species that can occur in small, somewhat disturbed, water bodies. Animals that are ubiquitous in many wetland types in the United States, such as bullfrogs, northern cricket frogs, painted turtles, red-eared sliders, and common garter snakes, are expected to use Dead Creek for feeding and shelter. Herpetile species known or likely to occur in the Dead Creek study area are presented in Table 7-18.

Though Illinois has a rich fish fauna, it was expected that few species would be found in Dead Creek. Due to blocked drainages and elevated culverts, much of the upper Dead Creek functions more as a series of linear, shallow ponds rather than a flowing stream course. Therefore, during much of the year, it would be difficult for fish to move through the watershed to escape declining water levels or other stressful conditions (e.g., high water temperature, low dissolved oxygen, avian predators). Furthermore, Dead Creek generally possessed turbid water and had a soft bottom, eliminating species that require clear water and firm substrate. No fish were observed in Dead Creek Section F. However, a large variety of fish species were present in Borrow Pit Lake. Fish observed in Dead Creek and Borrow Pit Lake are in Table 7-18.

Habitat Known to be Used by Federal Designated or Proposed Endangered or Threatened Species

According to the records of the Illinois Department of Natural Resources' Natural Heritage Inventory, the only federally endangered or threatened species in the study area is the federally threatened bald eagle (*Haliaeetus leucocephalus*). In 1993, a pair of eagles unsuccessfully attempted to nest at the southern tip of Arsenal Island, where the ditched portion of Prairie du

Pont Creek enters the Mississippi River. The pair apparently was scared off the site based on the unsuccessful nesting attempt. The next year the pair returned to the island, but no monitoring was conducted to determine if they successfully nested. The nest has since blown down and no other nests have been constructed on the island.

Portions of the area suitable for eagle foraging include waterbodies large enough to support large fish such as carp and catfish. The Mississippi River, the channelized section of Prairie du Pont Creek, and the Borrow Pit Lake appear to support large fish and provide enough open water for eagles to fish. Two bald eagles were observed by USEPA and Illinois EPA representatives approximately 1 mile west of Dead Creek Section B and 0.5 miles east of the Mississippi River in late 1999. A bald eagle was also observed in the same location in December 2000.

The US Fish and Wildlife Service Region 3 (USFWS, 2001) also lists the Indiana bat (Myotis sodalis), and the Illinois cave amphipod (Gammarus acherondytes) as federally-listed endangered species and the plant Decurrent false aster (Boltonia decurrens) as a federally-listed threatened species potentially present in the vicinity of the site (St. Clair, Illinois). The Indiana bat requires a habitat of small stream corridors with well developed riparian woods and nearby upland forest. The wooded areas around Dead Creek and the Borrow Pit Lake are not well developed due to nearby residential and agricultural uses, and therefore, do not provide good habitat for the Indiana bat. The Illinois cave amphipod is listed for St. Clair county, but exists in cave streams in Illinois sinkhole plains, a habitat not present on the site. The Decurrent false aster is present in disturbed alluvial soils in the Mississippi River floodplain, and could be present at the site, although none was observed there.

Habitat Known to be Used by State Designated Endangered or Threatened Species

The Illinois Natural Heritage Inventory did not have any records of state-listed endangered or threatened species in the study area. However a number of state-listed wading birds were observed throughout the wetlands and waterways. Illinois endangered species observed were little blue heron (Egretta caerulea), snowy egret (Egretta thula), and black-crowned night heron (Nycticorax nycticorax). Great egret (Casmerodius albus), an Illinois threatened species, was also observed. Small numbers (one to ten individuals) of these wading birds were found foraging along sections of Dead Creek, the ditched length of Prairie du Pont Creek, Cahokia Chute, and the Mississippi River. The largest concentrations of foraging herons (approximately ten individuals at a location) were observed at the confluence of Dead Creek and the ditched Prairie du Pont Creek, and where the ditched Prairie du Pont flows into the Mississippi. These areas likely support the best concentrated fishing areas for wildlife along the waterways.

No wading bird colonies were located within the study area. However, the Illinois Natural Heritage Inventory has documented two 1000-2000 nest mixed-species colonies in East St. Louis. The closest of these two colonies is approximately one mile east of Sauget Area I near the Alton & Southern rail yards in Alorton. The second site is over two miles to the north at Audubon Avenue and 26th Street. These two colonies contain the only breeding little blue heron and snowy egret in Illinois. In addition, black-crowned night heron, great egret, cattle egret (Bubulcus ibis), great blue heron (Ardea herodias), and green-backed heron (Butorides virescens) nest in the colonies.

In 1988, because the region is heavily industrialized with numerous Superfund sites, the U.S. Fish & Wildlife Service (USFWS) collected black-crowned night heron and little blue heron eggs from the Alorton colony for contaminant analysis (Young, 1989 - unpublished draft). Sediment samples were also taken in areas of observed wading bird foraging around the East St. Louis region. No testing was done of sediments in the Dead Creek drainage. Polychlorinated biphenyls (PCBs), DDE, and metals were detected at varying levels in the wading bird eggs.

The observed endangered and threatened wading birds forage on a wide range of aquatic organisms, such as fish, frogs, and crayfish, as well as some terrestrial species such as reptiles and insects. The USFWS study found that wading birds forage over a wide area around East St. Louis. The Dead Creek Prairie du Pont wetlands system composes a relatively small percentage of the available wetland foraging area in the region.

Also observed in the vicinity of Dead Creek were a Illinois-listed threatened bird species, the brown creeper (Serthia americana) and a rare grass species, early wild-rye (Elymus macregorii).

The brown creeper is a small, brown-streaked bird related to nuthatches that occurs throughout most of the United States and southern Canada. As its name implies, it forages by moving closely over the stem and main branches of trees. Its diet is comprised largely of insects, though some seeds and nuts are eaten as well (Ehrlich et al., 1988). This bird commonly nests in conifer, mixed conifer-hardwood, or hydric forests. Special habitat requirements include standing dead trees with loose bark for feeding and trees greater than 25 cm in diameter for nesting (Thomas et al., 1979). This species was heard singing in November 2000 from Dead Creek Section B. The general Dead Creek area possesses a few, very large diameter, standing dead trees. It is likely that brown creeper use of the Dead Creek area is minor due to limited intact forest and the young age of most trees.

Early wild-rye is a recently described species belongs to a group of taxonomically challenging grasses. Early wild-rye possesses a single spike of congested flowers tipped by long bristles. It occurs primarily in rich forests and floodplains in eastern United States and has been documented from five counties in Illinois (e.g., Fulton, Jersey, Knox, Peoria, Union) based on review of museum specimens performed by Campbell (in ed.). Because this species occurs in

floodplain forests, a community that has largely been converted to agricultural land in Illinois, this species may be extirpated from portions of the state. Though this species is not formally listed by the Illinois Endangered Species Protection Board, early wild-rye appears to be rare in the state and information on its occurrence is being supplied in the event it becomes a state-tracked species. The only occurrence of this grass in the Dead Creek study area was from a White Ash – American Elm Temporarily Flooded Forest on the east bank of Dead Creek Section C. The plants were limited to a small area (2 m²) and were senescent with dispersing fruits at the time of observation. Poison ivy, trumpet-creeper, white snakeroot, rough-leaved dogwood, and black raspberry were associated species.

Reference Areas: Reference area 1 was a section of Old Prairie du Pont Creek near the town of East Carondelet, approximately 3 miles southwest of the end of Dead Creek in the Borrow Pit Lake. This section of Old Prairie du Pont Creek is a broad shallow water body with a mud substrate similar to the Borrow Pit Lake. It is distant from any influence from the site or other industrial areas, but is similar to the Borrow Pit Lake in that it is near agricultural land. It is also similar to the Borrow Pit Lake in that it has a narrow riparian zone but little to no emergent or submerged vegetation. Great and/or snowy egret were observed in this area. It supports a similar fish community to the Borrow Pit Lake. Many of the same species of fish (brown bullhead, crappie, bluegill sunfish, largemouth bass) and invertebrates (clams and shrimp) were present in this reference area.

Two bodies of water in Monroe County comprise reference area 2 and were selected during the main sampling event. These water bodies were approximately 20 miles south of Dead Creek. Reference area 2-1 was in Long Slash Creek north of the culvert where Merrimac Road crosses the creek. This section was similar to Dead Creek sectors B through E in that it was shallow and muddy. It was also similar to these areas (but not Creek Section F) in that it had a road crossing and agricultural fields coming down to the water's edge. There was evidence of beaver activity at the culvert under the road crossing. Biota present in this area included creeping buttercup and snails. Reference area 2-2 was a flooded borrow pit north of Fountain Creek. Reference area 2-2 had a muddy substrate and similar fish community to the Borrow Pit Lake. Surrounding vegetation consists of a thin riparian zone similar to Reference Area 1. The same fish and invertebrate species were found at this reference area as well.

Conclusions: During the various field surveys and contact with state and federal agencies, three categories of sensitive environments were identified in the Dead Creek area: Habitat Known to be Used by Federal Designated or Proposed Endangered or Threatened Species, Habitat Known to be Used by State Designated Endangered or Threatened Species, and Wetlands. The state-listed endangered and threatened species observed on site (herons and

egrets) forage over a wide area, with the Dead Creek watershed forming only a small part of their available feeding territory. The brown creeper makes only minor use of the Dead Creek area because the habitat is not suitable (not enough mature trees).

The Dead Creek watershed also appears to support a diverse plant and animal community. While much of the creek flows through residential neighborhoods, sufficient natural riparian vegetation remains to support local aquatic and terrestrial communities. The ecological stresses observed (lack of emergent or submerged vegetation, impaired benthic invertebrate community) are due to poor habitat conditions including low water levels, silty substrate, and low dissolved oxygen concentrations. No other evidence of ecological stress was evident in Dead Creek or the Borrow Pit Lake. Birds and wildlife species are abundant and making use of the habitat.

# 7.2.2 Measure of effect 2b: Concentrations of COPCs in aquatic and marsh plants

Purpose and Rationale. The assessment discusses concentrations of COPCs in creeping buttercup in Dead Creek Section F. No submerged or emergent aquatic vegetation was present in the Borrow Pit Lake. Therefore, during the site reconnaissance, creeping buttercup was selected as a plant species that could be grazed upon by waterfowl and herbivorous mammals and that was present in most sections of Dead Creek. This species of plant has a fleshy stem, but a tiny root system. Therefore, the entire plant was analyzed for COPCs. If plants take up metals and PAHs from the water or sediments, waterfowl and herbivorous mammals could be exposed to these COPCs in their diet.

Approach: The endpoint is evaluated in multi-pathway exposure models for the mallard and the muskrat that consider concentrations of COPCs in sediment, water, and food. Exposures of waterfowl and herbivorous mammals within Dead Creek Section F are compared to appropriate NOAEL and LOAEL values. The COPC concentrations measured in creeping buttercup will be used to evaluate potential dietary exposures of the mallard and muskrat.

Evaluation: Table 7-19 presents maximum and average concentrations of COPCs detected in creeping buttercup samples from Dead Creek Section F. Compounds detected in plants from Dead Creek Section F include the metals aluminum, antimony, arsenic, cadmium, copper, lead, nickel, and zinc, the PAHs acenaphthylene, benzo(a)pyrene, benzo(b)fluoranthene, and benzo(k)fluoranthene, benzo(g,h,i)perelene, indeno(1,2,3-c,d)pyrene, and dibenz(a,h)anthracene, the herbicide dicholoroprop, the pesticides aldrin, gamma chlordane, heptaclor, and dioxins. This indicates that herbivorous wildlife receptors could be exposed to some site COPCs via the food chain.

Concentrations of COPCs detected in plants from Dead Creek Section F were used in food chain models to evaluate potential risks to mallards and muskrat, as representative species of herbivorous wildlife. The details of the food chain model are discussed in Appendix E. Results are summarized in Table 7-20a. The food chain models were run separately with

average and maximum sediment concentrations from the ecological sediment samples and with the average and maximum sediment concentrations from the combined ecological sediment samples and "industry specific" samples.

Food Chain Model Results – ecological sediment samples (0 to 2 inch depth)

#### Muskrat

Using data from the ecological sediment samples, food chain modeling indicated that the average doses of COPCs that muskrats receive from ingesting plants, sediment, and surface water from Dead Creek Section F do not exceed NOAEL or LOAEL concentrations, with the exception of aluminum. The hazard indices for aluminum were 50 and 5 compared to the NOAEL and LOAEL using average concentrations and 70 and 7 using maximum concentrations. Surface water concentrations of aluminum did not contribute appreciably to these hazard indices. Two thirds of the calculated aluminum dose are from sediment and one third is from food (plants). The sediment aluminum concentrations in Dead Creek Section F (7,800 to 17,000 mg/kg) are within the range of Illinois background soil (up to 37,200 mg/kg; IEPA, 1994). Because a muskrat's foraging area is smaller than Creek Section F, the model assumed that a muskrat eats vegetation from Dead Creek Section F year round. This indicates that under current conditions represented by the ecological sediment samples, the site-related exposures of herbivorous mammals are indistinguishable from Illinois background.

#### Mallard

Using data from the ecological sediment samples, food chain modeling for mallards ingesting plants from Dead Creek Section F year round resulted in hazard indices less than 1 compared to NOAEL doses for each COPC using average concentrations and a foraging area of 580 hectares (USEPA, 1993; vs. 0.3 hectares in Dead Creek Section F). Hazard indices were also less than one compared to NOAEL doses using maximum concentrations and assuming the mallard feeds only in Dead Creek Section F. This indicates that waterfowl that ingest plants from Dead Creek Section F under current conditions represented by the ecological sediment samples are not at risk from COPCs.

Food Chain Model Results - combined ecological and "Industry Specific" sediment samples

#### Muskrat

Using the average or maximum data from the combined ecological and "industry specific" sediment samples, average doses of copper, zinc, and PCBs that muskrats receive from ingesting plants, sediment, and surface water from Dead Creek Section F do not exceed NOAEL or LOAEL concentrations. The exposure concentrations for the remaining COPCs were the same as described above for the ecological sediment samples (hazard indices for aluminum greater than 1 based on background aluminum concentrations in sediment).

#### Mallard

When the data from the combined ecological and "industry specific" sediment samples are used in the food chain model for mallards that ingest plants in Dead Creek Section F, hazard indices for copper, zinc, and PCBs do not exceed one. However, when maximum sediment concentrations are used from these samples, hazard indices exceed one for zinc for the NOAEL but not the LOAEL dose. This indicates that under the most conservative assumptions, zinc in deeper Dead Creek Section F sediments could pose a potential risk to mallards. The deeper sediments do not represent current exposure conditions, and would only pose this potential risk if exposed by a scour event. The exposure concentrations for the remaining COPCs were the same as described above for the ecological sediment samples (hazard indices less than 1).

# 7.2.3 Measure of effect 2c: Concentration of COPCs in surface waters

Purpose and Rationale. Many wildlife species will use Dead Creek and associated wetlands as a drinking water source. The presence of COPCs in water could be a source of exposure to these species. This measure of effect examines this potential route of exposure.

Approach: This endpoint is evaluated by two methods. Concentrations of COPCs in surface water are compared to drinking water values for wildlife developed by Sample et al. (1996). In addition, surface water concentrations are used in multi-pathway exposure models for wildlife that develop exposure doses based on concentrations in sediment, water, and food.

Evaluation: Surface water concentrations of COPCs in Dead Creek were compared to drinking water no observed adverse effects levels (NOAEL) and lowest observed adverse effects levels (LOAEL) developed by Sample et al. (1996). Tables 7-21 and 7-22 summarize these comparisons for Dead Creek Section F and the Borrow Pit Lake. For each compound, the lowest NOAEL values for water were used as benchmarks. In Creek Section F and the Borrow Pit Lake, surface water concentrations do not exceed any of the wildlife benchmarks. Note that there is no benchmark available for some constituents.

The results of food chain modeling are in Appendix E. In each of the food chain models, average and maximum surface water concentrations from Dead Creek Section F and the Borrow Pit Lake did not result in a potential risk to wildlife. Surface water concentrations contributed a minor portion to the hazard indices for each COPC.

# 7.2.4 Measure of effect 2d: Concentration of COPCs in fish

Purpose and Rationale: Some wildlife species such as the great blue heron and river otter eat primarily fish. This measure of effect evaluates this potential route of exposure.

Approach: The COPC levels measured in fish are used in the multi-pathway exposure model for the great blue heron and river otter that incorporate concentrations in sediment, water, and food. Exposures of the great blue heron and river otter within Dead Creek and the Borrow Pit Lake are compared to appropriate NOAEL and LOAEL values. Because plants were the only biota collected in Dead Creek Section F (few minnows were present in this section of Dead Creek and were not abundant enough to collect), concentrations of COPCs in fish were modeled for this area using site-specific bioaccumulation factors (BAFs). The details of how these BAFs were calculated are presented in Appendix G.

# 7.2.4.1 Evaluation of Measured Fish Concentrations

Evaluation: Tables 7-1, 7-2, and 7-3 present maximum and average concentrations of COPCs detected in largemouth bass, brown bullhead, and forage fish, respectively, from the Borrow Pit Lake.

Concentrations of COPCs detected in fish the Borrow Pit Lake were used in food chain models to evaluate potential risks to great blue herons and river otter, as representative species of piscivorous wildlife. The details of the food chain model are discussed in Appendix E. Results are summarized in Table 7-20b.

Food Chain Model Results – ecological sediment samples (0 to 2 inch depth)

#### River Otter

For the river otter eating a diet of large and small fish (72% "large fish" such as largemouth bass or brown bullhead and 28% forage fish, based on information in USEPA (1993)) from the Borrow Pit Lake, average concentrations of COPCs in fish tissue, ecological sediment samples, and surface water resulted in hazard indices less than 1 compared to the NOAEL dose. This model used average concentrations of COPCs to represent an otter integrating exposure from different species of fish consumed and different locations within the Borrow Pit Lake. It also assumes that the Borrow Pit Lake comprises approximately 0.01 of a river otter's foraging area (5 hectares of the Borrow Pit Lake/400 hectare foraging area (USEPA, 1993). When maximum concentrations were used and the river otter was assumed to forage only in the Borrow Pit Lake, hazard indices exceeded 1 for aluminum and mercury. Two thirds of the river otter's aluminum dose comes from sediment, and aluminum concentrations in Borrow Pit Lake sediment are within Illinois background for soil (4,000 to 16,000 mg/kg in

the Borrow Pit vs. up to 37,200 mg/kg in Illinois background soil; IEPA, 1994). Mercury concentrations in sediment were similar in the Borrow Pit Lake are also within background (0.10 to 0.16 mg/kg at the Borrow Pit compared to up to 0.99 mg/kg in Illinois background soil (IEPA, 1994). This conservative maximum assessment places an upper bound on potential risk, but does not imply risk to piscivorous mammals at the Borrow Pit Lake.

Food Chain Model Results - combined ecological and "industry specific" sediment samples

#### River Otter

Using average and maximum concentrations of copper, zinc, and PCBs from the "industry specific" sediment samples did not result in hazard indices greater than one for the river otter ingesting fish, sediment, and surface water. Exposure point concentrations for the remaining COPCs were the same as discussed above for the ecological sediment samples (hazard indices above 1 for aluminum and mercury only for the most conservative case restricting the river otter's foraging area to the Borrow Pit Lake).

### Food Chain Model Results - great blue heron

For the great blue heron, the food chain model using average concentrations of COPCs in small (73% forage fish) and large fish (27% "large" fish such as largemouth bass and brown bullhead based on information in USEPA (1993)) and surface water, the hazard index for mercury compared to the NOAEL dose was 4. The hazard index compared to the LOAEL dose was 0.4. The hazard indices for the rest of the COPCs were less than 1 compared to the NOAEL dose. This model also assumed that great blue heron were foraging onsite from early March to late November (Illinois, 2000) and that a heron's foraging area is approximately the size of the Borrow Pit Lake (a foraging area of 0.6 to 8.4 hectares as reported in USEPA (1993) compared to 4.9 hectares of the Borrow Pit Lake). When a larger foraging area was used (3-mile radius that is likely to be more representative of herons known to nest in the area (East St. Louis and Alorton, Illinois), hazard indices compared to the NOAEL dose were less than 1. When maximum concentrations were used in the model and the herons were assumed to forage on site year round, only mercury had a hazard index greater than one compared to the NOAEL dose, but not the LOAEL dose. These hazard indices greater than one for mercury are due to concentrations in brown bullhead and small minnows. This indicates some potential risk to piscivorous birds due to mercury in fish tissue at the Borrow Pit Lake. The potential risk may be indistinguishable from regional conditions, as concentrations of mercury in Borrow Pit Lake fish were within the range of concentrations detected in Illinois fish.

# 7.2.4.2 Evaluation of Modeled Fish Concentrations in Dead Creek Section F

Modeled average concentrations of COPCs in fish in Dead Creek Section F were used in food chain models to evaluate potential risks to great blue herons and river otter, as representative species of piscivorous wildlife. The methods used to model the fish concentrations are

presented in Appendix G. The details of the food chain model are discussed in Appendix F. Results are summarized in Table 7-20a.

Food Chain Results - river otter

For the river otter eating a diet of fish (modeled based on forage fish concentrations) and also ingesting surface water and sediment, hazard indices are less than one compared to NOAEL doses. Therefore, river otter consuming fish from Dead Creek Section F would not be at risk.

Food Chain Model Results – great blue heron

For the great blue heron, the food chain model using average modeled concentrations of COPCs in fish and measured surface water concentrations, the hazard index for mercury is one and the hazard indices for the remaining COPCs are less than one compared to NOAEL doses. This indicates that great blue heron would not be at risk from consuming fish in this area.

# 7.2.5 Measure of effect 2e: Concentration of COPCs in benthic macroinvertebrates

Purpose and Rationale. Waterfowl (such as the mallard) and mammals (such as the muskrat and river otter) eat benthic macroinvertebrates as a portion of their diet. This measure of effect evaluates this potential route of exposure.

Approach: The COPC levels measured in benthic macroinvertebrates are used in a multipathway exposure model for the mallard, muskrat, and river otter that incorporates concentrations in sediment, water, and food. Exposures of waterfowl and mammals within Dead Creek and the Borrow Pit Lake are compared to appropriate NOAEL and LOAEL values. Because plants were the only biota detected in Dead Creek Section F, concentrations of COPCs in macroinvertebrates were modeled for this area using site-specific bioaccumulation factors (BAFs). The details of how these BAFs were calculated are presented in Appendix G. In addition, a combination of literature values and site specific BAFs were used to model concentrations of COPCs in aquatic insects (Appendix G). These modeled concentrations were used to evaluate potential risk to three swallows.

# 7.2.5.1 Evaluation of Measured Macroinvertebrate Concentrations

Evaluation: Tables 7-22 and 7-23 present maximum and average concentrations of COPCs detected in shrimp and clams, respectively, from the Borrow Pit Lake. Only one composite shrimp sample was collected from the Borrow Pit Lake. Pentachlorophenol, aluminum, antimony, chromium, copper, lead, silver, zinc, diethyl phthalate, and dioxins were detected in this sample. The clam samples from Borrow Pit Lake contained dichloroprop, MCPP, aluminum, arsenic, cadmium, chromium, copper, lead, silver, zinc, heptachlor, methorychlor, two phthalates, and dioxin.

Concentrations of COPCs detected in shrimp from the Borrow Pit Lake were used in food chain models to evaluate potential risks to mallards; concentrations detected in clams were used to evaluate potential risks to muskrat and river otter. The details of the food chain model are discussed in Appendix E. Results are summarized in Table 7-20b.

Food Chain Model Results – ecological sediment samples (0 to 2 inch depth)

# Muskrats feeding on clams

Food chain modeling indicated that the average doses of COPCs that muskrats receive from ingesting clams, sediment from ecological sediment samples (0 to 2 inches), and surface water from the Borrow Pit Lake do not exceed NOAEL or LOAEL concentrations, with the exception of aluminum. Approximately 80% of the muskrat's aluminum dose is from sediment, and the sediment concentration in the Borrow Pit Lake is within Illinois background for soil. The hazard indices for aluminum were 40 and 4 compared to the NOAEL and LOAEL using average concentrations and 50 and 5 using maximum concentrations. Surface water concentrations of aluminum did not contribute appreciably to these hazard indices.

#### River otter feeding on clams

For the river otter eating clams from the Borrow Pit Lake, average concentrations of COPCs in clam tissue, surface sediment (represented by the ecological sediment samples), and surface water resulted in hazard indices less than 1 compared to a NOAEL dose. This model used average concentrations of COPCs to represent an otter integrating exposure different locations within the Borrow Pit Lake. It also assumes that the Borrow Pit Lake comprises approximately 0.01 of a river otter's foraging area. When maximum concentrations were used and the river otter was assumed to forage only in the Borrow Pit Lake, the hazard index exceeded 1 for aluminum. Approximately 80% of the river otter's dose of aluminum is due to sediment, and the sediment concentrations of aluminum in Borrow Pit Lake is within the range of background for Illinois soil.

# Mallards feeding on shrimp

Food chain modeling for mallards that eat shrimp from Dead Creek Section F resulted in hazard indices less than 1 compared to the NOAEL dose for each COPC using both average and maximum concentrations for shrimp, surface water, and surface (ecological) sediment samples.

Food Chain Model Results - combined ecological and "industry specific sediment samples

# Muskrats feeding on clams

For muskrats feeding on clams, when average and maximum concentrations from the combined ecological and "industry specific" sediment samples from Borrow Pit Lake are used, hazard indices for copper, zinc, and PCBs do not exceed one compared to a NOAEL dose. Exposure point concentrations for the remaining COPCs are the same as for the ecological sediment samples discussed above. Only aluminum has a hazard index above 1 due mostly to sediment concentrations within the background range for Illinois soil.

### River otter feeding on clams

For river otter feeding on clams, when average and maximum concentrations from combined ecological and "industry specific" sediment samples from Borrow Pit Lake are used, hazard indices for copper, zinc, and PCBs do not exceed one compared to a NOAEL dose. Exposure point concentrations and hazard indices for the remaining COPCs are the same as for the ecological sediment samples described above (only aluminum has a hazard index above 1 for the most conservative case restricting the river otter's foraging to the Borrow Pit Lake).

# Mallards feeding on shrimp

Food chain modeling for mallards that eat shrimp from Dead Creek Section F resulted in hazard indices less than 1 compared to the NOAEL doses for each COPC using both average and maximum for shrimp, surface water, and combined ecological and "industry specific" sediment samples.

The results of the food chain modeling indicate that wildlife that consume macroinvertebrates (clams and shrimp) from the Borrow Pit Lake are not at risk. The exposure of some wildlife to aluminum above a NOAEL or LOAEL dose is represents background conditions.

# 7.2.5.2 Evaluation of Modeled Macroinvertebrate Concentrations in Dead Creek Section F and the Borrow Pit

Modeled average concentrations of COPCs in snails in Dead Creek Section F were used in food chain models to evaluate potential risks to mallards and muskrat. Modeled average concentrations of COPCs in aquatic insects in Dead Creek Section F and the Borrow Pit Lake were used in a food chain model to evaluate potential risks to tree swallows. The methods used to model the snail and insect concentrations are presented in Appendix G. The details of the food chain model are discussed in Appendix F. Results are summarized in Tables 7-20a and 7-20b.

# Mallard feeding on snails in Creek Section F

For the mallard ingesting snails, surface water and sediment, hazard indices are less than one compared to NOAEL doses. Therefore, mallards consuming snails from Dead Creek Section F would not be at risk.

# Muskrat feeding on snails in Creek Section F

For the muskrat in Dead Creek Section F, the food chain model using average modeled concentrations of COPCs in macroinvertebrates and measured surface water and sediment concentrations, hazard indices exceed one for aluminum, antimony, copper, and dioxins. The modeled doses exceed the NOAEL dose but not the LOAEL dose for antimony and dioxin. The modeled doses exceed the LOAEL dose for aluminum and copper. This indicates a potential risk for muskrats foraging for macroinvertebrates in Dead Creek Section F.

# Tree swallow feeding on aquatic insects in Creek Section F

For a tree swallow that feeds on aquatic insects (concentrations modeled from ecological sediment samples and from combined ecological and "industry specific" sediment samples) in Creek Section F, hazard indices exceed one for aluminum, cadmium, chromium, mercury, zinc, Total PCBs, Total DDT, and dioxin compared to a NOAEL dose. Hazard indices exceed 1 for mercury and Total PCBs compared to a LOAEL dose.

# Tree swallow feeding on aquatic insects in the Borrow Pit Lake

The modeling results for a tree swallow the feeds on aquatic insects in the Borrow Pit Lake indicate that hazard indices are greater than one for aluminum, chromium, mercury, zinc, Total DDT, and dioxin when insect concentrations are modeled from the concentrations in the ecological sediment samples (0 to 2 inch depth). These hazard indices indicate that exposure exceeds the NOAEL, but not the LOAEL dose. When the insect concentrations are modeled from the concentrations from the combined ecological and "industry specific" sediment samples, hazard indices exceed one compared to the NOAEL dose, but not the LOAEL dose for aluminum, chromium, mercury, zinc, Total PCBs, Total DDT, and dioxin. The hazard index for PCBs also exceeds the LOAEL dose.

# 7.3 Assessment Endpoint 3: Survival, growth, and reproduction of individuals within the local bald eagle population that may overwinter near the site

The assessment uses an exposure model to evaluate different routes of exposure including ingestion of water, sediment and fish.

7.3.1 Measure of effect 3a: Concentration of COPCs in fish for use in evaluating exposure via the food chain

Purpose and Rationale. Bald eagle may use fish in Dead Creek and associated wetlands as food. The presence of COPCs in fish could be a source of exposure to this species. This measure of effect examines this potential route of exposure.

Approach: This endpoint is evaluated via an exposure model for the bald eagle. The assessment compare exposures to) appropriate NOAEL and LOAEL values.

Evaluation: Tables 7-2 and 7-3 present maximum and average concentrations of COPCs detected in largemouth bass and brown bullhead, respectively, from the Borrow Pit Lake.

As stated in Section 7.2.4, some COPCs were detected in largemouth bass and brown bullhead samples from the Borrow Pit Lake.

Concentrations of COPCs detected in fish from the Borrow Pit Lake were used in food chain models to evaluate potential risks to the bald eagle. The details of the food chain model are discussed in Appendix F. Results are summarized in Table 7-20b.

Food Chain Model Results - measured fish concentrations in Borrow Pit Lake

The food chain model for the bald eagle using average concentrations in large fish and surface water did not result in hazard indices for any COPC greater than 1 compared to the NOAEL dose. This model assumed that eagles overwinter in the vicinity of the site from October through March and that the Borrow Pit Lake comprises about 0.003 of the eagles foraging area (5 hectares vs. 1880 hectares foraging area; USEPA, 1993). Using maximum concentrations in large fish and surface water and assuming that the eagle forages year round and only at the Borrow Pit Lake resulted in a hazard index for mercury of 5 compared to the NOAEL dose. However, even for this conservative case, the estimated exposure dose is still less than the LOAEL value. The maximum mercury concentration in largemouth bass and brown bullhead combined was measured in one composite brown bullhead sample that was approximately 5 times higher than mercury concentrations from other large fish from the Borrow Pit Lake.

Food Chain Model Results - modeled fish concentrations in Creek Section F

An additional evaluation was conducted using modeled average concentrations of COPCs in fish in Dead Creek Section F to evaluate potential risks to bald eagles. The methods used to model the fish concentrations are presented in Appendix G. The details of the food chain model are discussed in Appendix F. Results are summarized in Table 7-20a.

The results predict that hazard indices for the eagle eating fish from Dead Creek Section F are less than one for the NOAEL dose. Therefore, bald eagles consuming fish from Dead Creek Section F would not be at risk.

- 7.4 Assessment Endpoint 4: Survival, growth, and reproduction of local populations of terrestrial wildlife along the banks and floodplain of Dead Creek
- 7.4.1 Measure of effect 4a: COPC concentrations in soil samples from the creek bank and floodplain as compared to applicable soil screening levels for protection of wildlife, plants, and soil dwelling invertebrates

Purpose and Rationale. Soil concentrations provide a measure of exposure, and screening level criteria indicate levels above which effects may occur. This measure of effect evaluates the potential for soil concentrations of COPCs in the Dead Creek floodplain to cause adverse effects.

Approach: The assessment compares measured concentrations of total contaminant concentrations in soils to existing benchmarks as summarized in Efroymson et al. (1997).

These soil benchmarks are developed from values that represent a LOAEL for plants, soil invertebrates, and wildlife (birds and mammals). Efroymson et al. (1997) selected the lowest of the available values as a soil benchmark.

Discussion: Tables 7-25, 7-27 (a through e), and 7-29 (a through d) compare concentrations detected in Dead Creek floodplain soil to soil screening benchmarks and background concentrations. The floodplain soil concentrations are represented by either the maximum concentration detected in or the 95% upper confidence limit (UCL) on the mean. For some areas, there were many more surface soil samples than sediment or surface water samples, and therefore a 95% UCL could be calculated. The background soil concentrations are represented as twice the average background soil concentration. The background data set comes from three soil samples selected during discussions with USEPA regarding development of the Site Sampling Plan workplan for the project. Soil constituents fall into several categories including:

- 1) constituents for which the maximum site concentrations exceed the benchmark (indicated in yellow on the reference tables);
- constituents for which the lower of the site maximum or 95% UCL on the mean exceeds background (or the constituent was not detected in background soil) and no benchmark is available or no background concentration was available (indicated in green on the referenced tables);
- 3) constituents for which the maximum site concentration is less than the benchmark;
- 4) constituents for which the lower of the site maximum or 95% UCL on the mean is within background and there is no benchmark;

5) constituents detected at a frequency of less than 5%; and constituents of low toxicity.

The conclusions that can be drawn from these comparisons are:

Constituents in the first category may pose a potential risk to wildlife because soil concentrations exceed a toxicity benchmark;

Toxicity information is not available to draw conclusions about constituents in the second category;

Constituents in the third, fourth, and fifth are unlikely to present an ecological risk because the maximum concentration is less than a conservative benchmark, concentrations are consistent with background, low frequency of detection (less than 5%), or low toxicity (calcium, magnesium, and potassium).

The remainder of this section discusses the results of these comparisons for the sampling areas and soil sample types.

Undeveloped and Developed Area Surface Soils

These soil samples locations are shown on Figure 5-5. The samples are from depths of 0 to 6 inches. For these soils, the first category above represents constituents that are present in soil in at least one location at concentrations greater than a published ecological toxicity benchmark. Constituents in this category are 2,3,7,8-TCDD TEQs, total PCBs, arsenic, barium, cadmium, copper, lead, molybdenum, nickel, selenium, thallium, vanadium, and zinc. Table 7-26 identifies individual soil sample locations that exceed the benchmark. Note that many of the identified locations have concentrations slightly above the benchmark and within background. Constituents that exceed both background and the benchmark include: 2,3,7,8-TCDD TEQs (1 location out of 29 surface soil sampling locations); arsenic (1 location out of 65 surface soil sampling locations); barium (1 location out of 65 surface soil sampling locations); copper (2 locations out of 65); lead (2 locations out of 65); molybdenum (2 locations out of 65); nickel (1 location out of 65); selenium (16 locations out of 65); thallium (4 locations out of 65); vanadium (1 location out of 65); and zinc (3 locations out of 65). Detection limits for selenium in the remaining 49 samples were above the benchmark of 0.21 mg/kg.

Selenium was not detected in background soil. The Illinois Environmental Protection Agency (IEPA, 1994) reports a background range of less than 0.12 mg/kg to 2.6 mg/kg selenium in soils within metropolitan statistical areas. The average reported background concentration in

these areas is 0.58 mg/kg. Therefore, the selenium concentrations detected in site surface soil are likely to be within the range of Illinois background, although selenium was not detected in the three site-specific background samples.

Few soil concentrations from the Undeveloped and Developed Areas exceed both soil benchmarks and background. These sample locations are scattered throughout the Dead Creek floodplain and do not represent a spatial or geographical pattern. The uncertainty in this screening is due to the lack of soil benchmarks for many compounds and, in the case of selenium, detection limits greater than benchmarks.

The second category represents constituents that are present in floodplain surface soils at concentrations above background, but for which little toxicity information is available. Many constituents fall into this second category (including herbicides, pesticides, SVOCs (mainly PAHs), and VOCs), because soil benchmarks are available for only a few of the compounds detected in soil.

#### Site G Surface Soils

Four surface soil samples (from depths of 0 to 6 inches) were collected from Site G (Figure 5-5; Table 7-27a). In these samples, copper was the only constituent that exceeded both the benchmark and background concentrations. This occurred in one out of four samples (Table 7-28). 2,3,7,8-TCDD TEQs. vanadium, and zinc exceeded benchmark concentrations but were within background. Twelve pesticides were at concentrations above background, but did not have screening level benchmarks. Concentrations of the remaining constituents were either lower than the benchmarks, lower than the background concentrations, or both.

#### Site G Subsurface Soils

The subsurface soil data from Site G (Figure 5-5) came from 22 historical soil samples. Some of these samples came from greater depths (up to depths of 30 feet) than one expects to find ecological receptors. As shown on Table 7-29a, of the 63 compounds detected in these samples, 16 compounds had maximum or UCL concentrations that exceeded a screening benchmark and background. In addition, one metal, arsenic, exceeded the screening benchmark but was at a concentration within background. Thirty-three compounds didn't have screening benchmarks, but concentrations detected in Site G subsurface soil exceeded background concentrations (or no background information was available). The exceedances noted here do not necessarily represent a risk to wildlife. Some of the samples came from deeper samples at which ecological exposures will not occur.

#### Site H Surface Soils

Four surface soils were collected from Site H (Figure 5-5). As shown on Tables 7-27b and 7-28, constituents that had concentrations above the screening benchmark and above

background included 2,3,7,8-TCDD TEQs (in 3 out of 4 samples), arsenic (in 1 out of 4 samples), cadmium (in 2 out of 4 samples), copper (in 3 out of 4 samples), lead (in 2 out of 4 samples), molybdenum (in 3 out of 4 samples), nickel (in 1 out of 4 samples), selenium (in 3 out of 3 samples in which it was detected), silver (in 1 out of 4 samples), thallium (in the one sample in which it was detected), zinc (in 1 out of 4 samples), and PCBs (in 1 out of 4 samples). Vanadium exceeded its benchmark level, but was within background. One herbicide (2,4-DB), three metals (aluminum, cobalt, and mercury), nine pesticides, three PAHs, and two VOCs were detected at concentrations above background but did not have screening level benchmarks. Concentrations of the remaining constituents were either lower than the benchmarks, lower than the background concentrations, or both.

#### Site H Subsurface Soils

The subsurface soil data from Site H came from 11 historical soil samples. The depths of these soil samples are unknown. As shown on Table 7-29b, of the 68 compounds detected in these samples, 17 compounds had maximum or UCL concentrations that exceeded a screening benchmark and background. Forty-six compounds didn't have screening benchmarks, but concentrations detected in Site H subsurface soil exceeded background concentrations (or no background information was available). The exceedances noted here do not necessarily represent a risk to wildlife. These data were included to provide information on potential risks at Site H due to soils at depth greater than 6 inches, but may not represent wildlife exposures.

### Site I Surface Soils

As shown on Tables 7-27c and 7-28, constituents detected in the four surface soil samples collected from Site I (Figure 5-5) at concentrations above background and above screening levels included: 2,3,7,8-TCDD TEQs (in 2 out of 4 samples), antimony (in 3 out of 4 samples), barium (in 1 out of 4 samples), cadmium (in 2 out of 4 samples), cobalt (in 1 out of 4 samples), copper (in 4 out of 4 samples), lead (in 4 out of 4 samples), molybdenum (in 4 out of 4 samples), nickel (in 1 out of 4 samples), selenium (in the 3 samples in which it was detected), silver (in 4 out of 4 samples), zinc (in 3 out of 4 samples) and PCBs (in 2 out of 4 samples). Arsenic and vanadium concentrations exceed screening benchmarks, but are less than background. One herbicide (2,4-DB), two metals (chromium and mercury), 16 pesticides, and19 SVOCs including PAHs were at concentrations above background, but did not have screening levels. Concentrations of the remaining constituents were either lower than the benchmarks, lower than the background concentrations, or both. Site I is covered with crushed stone and is used for parking trucks and heavy equipment. Its value as habitat for wildlife is extremely limited. Therefore, these exceedances of screening benchmarks in both surface and subsurface soil are unlikely to have an ecological significance.

#### Site I Subsurface Soils

The subsurface soil data from Site I came from 16 historical soil samples. The depths of these soil samples are unknown. As shown on Table 7-29c, of the 65 compounds detected in these samples, 18 compounds had maximum or UCL concentrations that exceeded a screening benchmark and background. In addition to these, one metal, arsenic was at a concentration that exceeded the benchmark, but was within background. Thirty-eight compounds did not have screening benchmarks, but concentrations detected in Site I subsurface soil exceeded background concentrations (or no background information was available). As stated above, the habitat for wildlife is extremely limited at Site I, and these exceedances are unlikely to have an ecological significance.

#### Site L Surface Soils

In Site L (Figure 5-5) surface soils, 2,3,7,8-TCDD TEQs (in 2 out of 4 samples), antimony (in 1 out of 4 samples), arsenic (in 4 out of 4 samples), cadmium (in 1 out of 4 samples), copper (in 1 out of 4 samples), lead (in 3 out of 4 samples), molybdenum (in 4 out of 4 samples), nickel (in 3 out of 4 samples), selenium (in 4 out of 4 samples), thallium (in 4 out of 4 samples), and zinc (in 1 out of 4 samples) were above screening levels and background as shown on Tables 7-27d and 7-28. Concentrations of vanadium and PCBs exceeded screening levels but were within background. Two metals (chromium and mercury), cyanide, nine pesticides, and 17 PAHs were at concentrations above background but did not have screening level benchmarks. Concentrations of the remaining constituents were either lower than the benchmarks, lower than the background concentrations, or both. Site L is covered with cinders and used for storing heavy equipment. Its value as habitat for wildlife is extremely limited. Therefore, these exceedances of screening benchmarks in surface and subsurface soil are unlikely to have an ecological significance.

#### Site L Subsurface Soils

The subsurface soil data from Site L came from 18 historical soil samples. The depths of these soil samples are unknown. As shown on Table 7-29d, of the 66 compounds detected in these samples, 14 compounds had maximum or UCL concentrations that exceeded a screening benchmark and background. Thirty-seven compounds didn't have screening benchmarks, but concentrations detected in Site L subsurface soil exceeded background concentrations (or no background information was available). As stated above, Site L provides very little habitat for ecological receptors. Therefore, exceedance of these screening values is likely to have little ecological significance.

#### Site N Surface Soils

At Site N (Figure 5-5), concentrations of 2,3,7,8-TCDD TEQs (in 1 out of 4 samples), barium (in 2 out of 4 samples), lead (in 1 out of 4 samples), and selenium (in the one sample in which

it was detected) exceeded screening benchmarks and background concentrations in surface soils as shown on Tables 7-27e and 7-28. Copper, vanadium, and zinc concentrations exceeded screening levels, but were less than background. Six pesticides and ten PAHs were at concentrations above background but did not have screening level benchmarks. . Concentrations of the remaining constituents were either lower than the benchmarks, lower than the background concentrations, or both. There are no subsurface soil data available for Site N.

#### 8.0 DISCUSSION OF ECOLOGICAL RISK

The assessment endpoints used in this evaluation are:

Sustainability (survival, growth, and reproduction) of warm water fish species typical of those found in similar habitats (incorporates the assessment of benthic macroinvertebrates);

Survival, growth, and reproduction of local populations of aquatic wildlife represented by mallard duck, great blue heron, tree swallow, muskrat, and river otter (incorporates the assessment of benthic macroinvertebrates including shrimp and clams);

Survival, growth, and reproduction of individuals within the local bald eagle population that may overwinter near the site; and

Survival, growth, and reproduction of local populations of terrestrial wildlife along the banks and floodplain of Dead Creek.

This section evaluates the results of each measure of exposure or effect and draws conclusions with regard to each assessment endpoint. Table 8-1 demonstrates this evaluation.

# 8.1 Sustainability (survival, growth, and reproduction) of warm water fish species typical of those found in similar habitats (incorporates the assessment of benthic macroinvertebrates)

Several COPCs including herbicides, metals, PCBs, pesticides, phthalates, PAHs, and dioxins were detected in fish from the Borrow Pit Lake indicating that fish at the site are exposed to these site-related compounds. Of the COPCs detected in fish tissue, only mercury was detected at concentrations exceeding a toxicity benchmark. Mercury concentrations exceeded a toxicity benchmark in one out of three brown bullhead samples and one out of three small forage fish (minnow) samples, but not in largemouth bass. This indicates that there is some potential for adverse effects on fish due to mercury at the site. Mercury was also detected in site sediment. These measures of exposure are given medium weight on Table 8-1 because they measure actual field conditions. They are assigned a low evidence of harm because, in general, they indicate exposure, not effect. Although mercury in fish tissue exceeds a toxicity benchmark, the benchmark is a literature value (given low to medium weight) and the evidence of harm is low. The only evidence in this case was the exceedance of benchmarks.

The COPCs in surface water that exceeded available criteria or guidelines were aluminum, barium, iron, and manganese. Surface water samples were unfiltered, and the detection of

these common soil constituents in surface water may be due to sediment particles in the samples. This condition is likely to be present in other similar water bodies in the region. Therefore, concentrations of COPCs in surface water are unlikely to pose a risk to fish in the Borrow Pit Lake. These measurements were given a medium weight because although they measure actual field conditions, the exceedance of a benchmarks does not necessarily result in an effect.

Results of the evaluation of the benthic community indicated that benthic invertebrate community reflects the available habitat in Dead Creek and the Borrow Pit Lake. This measurement was given medium weight as measurement of actual field conditions. It was not given a high weight because it represents a measurement of a variable community taken at one point in time. Although concentrations of some COPCs were elevated above sediment guidelines for the protection of benthic invertebrates, it is not possible to differentiate the possible effects of COPCs in sediment from the effects of low water conditions. Even when water levels are higher, Dead Creek and the Borrow Pit Lake have silty, muddy sediments and stagnant water. The exceedance of sediment benchmarks was given low weight and a low evidence of harm. Results of toxicity testing were conflicting, but indicated toxicity in site sediment. This measure was given medium weight as an actual field measure. Overall, the prey base for fish in the Borrow Pit Lake (and Dead Creek Section F) reflects regional habitat conditions.

Some species of fish in the Borrow Pit Lake may be at risk due to body burdens of mercury elevated over a toxicity benchmark. Table 8-1 reflects low evidence of harm to fish from surface water and sediment. It should be noted that fish in many regions of the United States and Canada, in general, and Mississippi River basin in Illinois, in particular, have mercury concentrations in the same range and are not near known sources of mercury contamination. In general, fish at the site are affected by habitat conditions that are no different from conditions in other water bodies in the region including fluctuating water levels and a reduced prey base due to silty, muddy substrate. Potential risks due to site-related chemicals to fish within the Borrow Pit Lake appear to be negligible to small and are unlikely to influence the sustainability of these populations.

8.2 Survival, growth, and reproduction of local populations of aquatic wildlife represented by mallard duck, great blue heron, tree swallow, muskrat, and river otter (incorporates the assessment of benthic macroinvertebrates including shrimp and clams)

Wildlife species presence and use of the habitat appears to be high. This was given low weight because it is based on qualitative observations.

Some COPCs (metals, PAHs, herbicides, and pesticides) were detected in plants in Dead Creek Section F. This indicates that plants and wildlife that eat plants (mallards and muskrats) may be exposed to these COPCs. Food chain modeling indicated that these exposures do not result in an estimate of risk to mallards or muskrats (that is distinguishable from background risks) except when the most conservative assumptions are used with the data from the combined shallow and deeper "industry specific" sediment samples. The risks due to maximum concentrations of zinc from deeper sediment samples assuming that a mallard forages only at Dead Creek Section F year round is conservative and not representative of current conditions. Concentrations in the surface sediment were lower and did not present a risk to these species. The measure of exposure was given medium weight because it reflects actual site conditions. The measure of effect, the results of the food chain modeling, was given low weight because it is based on literature values of species behaviors and literature values for toxicity.

Since the only type of biota collected from Dead Creek Section F was plants, concentrations in other biota likely to be found there (i.e., snails and fish) were modeled using site-specific BAFs. These modeled concentrations were then evaluated using food chain models. Results indicated that COPCs that might be present in Dead Creek Section F fish do not present a risk to great blue heron or river otter. Modeled concentrations of COPCs in snails do not present a risk to mallards. Modeled concentrations of aluminum, antimony, copper, and 2,3,7,8-TCDD TEQs in snails could pose a risk to muskrats. The modeled doses of aluminum and copper exceeded the LOAEL dose, while aluminum and 2,3,7,8-TCDD exceeded the NOAEL, but not the LOAEL. This measure of effect, the results of the food chain modeling, was given low weight because it is based on literature values of species behaviors, modeled concentrations in site biota, and literature values for toxicity.

The modeling results for a tree swallow the feeds on aquatic insects in Dead Creek Section F and the Borrow Pit Lake indicate risks due to aluminum, chromium, mercury, zinc, Total PCBs, Total DDT, and dioxin when insect concentrations are modeled from sediment concentrations. This measure of effect, the results of the food chain modeling, was given low weight because it is based on literature values of species behaviors, modeled concentrations in site biota, and literature values for toxicity.

Concentrations of COPCs in surface water do not pose a risk to wildlife. As a comparison to literature values it was given a low to medium weight.

Some COPCs including herbicides, metals, PCBs, pesticides, phthalates, PAHs, and dioxin are present in fish from the Borrow Pit Lake. This measure of exposure was given a medium weight as a measure of actual site conditions. Food chain modeling indicated that these exposures do not result in risks to river otter that eat fish except under the most conservative conditions. It did indicate potential risks above a NOAEL dose (but below a LOAEL dose) to great blue heron that eat fish from the Borrow Pit Lake. This potential risk is due to mercury levels in some fish species, if herons forage mainly in the Borrow Pit Lake. If herons forage

over a wider area (which is likely since the nesting areas are at least one mile away), no risk due to mercury is estimated (or the risk due to mercury is at a background level). This measure of effect, the results of the food chain modeling, was given low weight because it is based on literature values of species behaviors and literature values for toxicity. It was given a low evidence of harm, because the modeling (not actual observations) constitutes the only evidence of harm.

Some COPCs were detected in shrimp and clams from the Borrow Pit Lake. This indicates a potential for exposure of these organisms and wildlife that eat them. This measure of exposure was given a medium weight as a measure of actual site conditions. Food chain modeling indicated that these increased exposures do not result in risks above background to mallards, muskrats, or river otter. This measure of effect, the results of the food chain modeling, was given low weight because it is based on literature values of species behaviors and literature values for toxicity.

Wildlife appear to make ample use Dead Creek and the Borrow Pit Lake. The only potential risk due to COPCs measured at the site (above concentrations attributable to background) is to piscivorous birds due to mercury in fish. This potential for risk is considered to be low because the mercury dose in fish exceeds a no effects level, but not a level associated with effects on birds. In addition, the mercury concentration in fish is similar to levels measured in fish in many regions of the U.S. and Canada and throughout the Mississippi River basin in Illinois. The use of modeled concentrations in invertebrates in Dead Creek Section F resulted in predicted risks to muskrats.

# 8.3 Survival, growth, and reproduction of individuals within the local bald eagle population that may overwinter near the site

Food chain modeling did not predict risks to bald eagles that may eat fish from the Borrow Pit Lake. The measure of exposure (COPCs detected in Borrow Pit Lake fish) is given a medium weight as actual field measurements. The modeling results are given low weight because of the literature values for eagle behavior and toxicity used in the modeling.

# 8.4 Survival, growth, and reproduction of local populations of terrestrial wildlife along the banks and floodplain of Dead Creek

The measure of effect used to evaluate this assessment endpoint was a screening of floodplain soil concentrations against ecological benchmarks and background surface soil concentrations. This measure was given low weight and low evidence of harm because it consists of a conservative screening against benchmark values which in turn are based on literature information on toxicity.

For the larger floodplain represented by Undeveloped Area and Developed Area soils, this screening indicated that some COPCs exceeded ecological benchmarks and background. However, only a few locations had COPC concentrations that exceeded both the ecological benchmark and background. The locations where concentrations exceed both screening values and background concentrations were scattered over the floodplain and did not exhibit a spatial pattern. Therefore, although a conservative screening analysis indicated that there may be some risks to terrestrial wildlife in the floodplain of Dead Creek, the scattered nature of the exceedances indicates infrequent exposure of wildlife to these scattered areas. Therefore, the screening analysis of floodplain soils does not indicate wide spread ecological risks in this area.

There were also exceedances of screening benchmarks at Sites G, H, I, L, and N. The exceedances in the surface soils at Sites G, H, and N indicate there may be some potential risk to wildlife in these areas. There were exceedances in surface soils at Sites I and L. However, since these Sites are crushed stone or cinder covered and used for parking trucks and heavy equipment, they provide little ecological habitat. Therefore, exceedances at Sites I and L are unlikely to result in ecological risk. Exceedance of screening benchmarks in subsurface soils at Sites G, H, I, and L provide some measure of potential risk if these soils become uncovered. However, because the some of the samples came from depths greater than one expects to find ecological receptors, the exceedances of benchmarks in subsurface soil do not necessarily indicate ecological risk.

# 9.0 DISCUSSION AND MANAGEMENT OF UNCERTAINTIES AND EXPOSURE ASSUMPTIONS

To insure that uncertainties in the assessment have been identified and appropriately addressed and managed to insure the results lead to decisions that are environmentally protective, this section presents potential sources of uncertainty. This section of the report identifies the major sources of uncertainty along with actions that have been taken to manage this uncertainty within the assessment.

# 9.1 Exposure Assessment Uncertainty

A variety of measurement endpoints are selected to reduce the uncertainty inherent in the evaluation of exposure in complex ecological systems. While it is impossible to evaluate the condition of every species and local population using the site, it is important to select species that may use the site, are representative of larger feeding guilds, and have a high potential for exposure.

# 9.1.1 Uncertainty Due to the Selection of Sampling Locations

The number and location of surface water, sediment, biota and soil sampling locations appear to be sufficient to characterize concentrations in these media in Dead Creek and its floodplain.

Surface water samples were not filtered prior to analysis for metals. The use of total metals concentrations for comparison to National Recommended Water Quality Criteria overstates actual exposure and results in an overestimate of risk. Although the NRWQC as used in this assessment were adjusted for total metals, it is still likely that the concentrations detected in surface water were due to entrained sediment particles, rather than metals dissolved in surface water.

Sediment samples represented both current exposures (depth of 0 to 2 inches) and potential future exposure events due to sediment scours ("industry specific" samples generally from depths of 0 to 12 inches). The use of a 0 to 2" (or even smaller layer for freshwater biota) is a standard approach for assessing current risks and was arrived at based on discussions with Dr. Chris Ingersoll of USGS. After the work was completed, the Agency requested an evaluation of potential exposure to deeper sediment. The industry specific samples were not analyzed for the same number of constituents as were the ecological sediment triad samples. Therefore, there is some uncertainty as to concentrations of some constituents in deeper sediment. This may have lead to an underestimate of potential future risk because, generally, constituent concentrations were higher in deeper sediments. However, use of the combined shallow and

deeper samples in this ecological risk assessment results in an overestimate of current risk, because concentrations in the surficial, accessible sediment are lower.

The numbers of surface soil samples in the Undeveloped and Developed Areas of the Dead Creek flood plain provide sufficient coverage of these areas. Soil samples collected from these areas came from depths of 0 to 6 inches and 3 to 6 feet. The surface samples were used in ecological risk assessment because ecological exposures are not expected to occur at depths of 3 to 6 feet. However, since some receptors, such as earthworms and burrowing mammals, may be exposed to soils deeper than 6 inches, the lack of data from these depths results in uncertainty in the assessment.

Surface soil samples at Sites G, H, I, L, and N were also collected from depths of 0 to 6 inches. Two of these sites, I and L, are covered with cinders and/or crushed stone and used for parking trucks and storing heavy equipment. Any estimate of ecological risk in these areas is an overestimate in that ecological receptors would not be expected to occur there with any frequency due to the lack of habitat.

Historical subsurface soil data were evaluated for Sites G, H, I, and L. These data were not validated, detection limits were not available, and data represent a variety of depths. Statistics for these data used only the detected values. The use of these data results in an overestimate of ecological risk. The use of detected data only results in a high bias of average or upper confidence limit concentrations. In addition, the use of samples from depths greater than approximately 2 feet results in concentrations not representative of ecological exposures.

# 9.1.2 Uncertainty Due to Selection of Reference Areas

The selection of reference areas creates uncertainty in any ecological assessment because no two waterbodies or areas are similar in all aspects. For this reason, great care was taken in the selection of reference areas. Significant effort was made to select appropriate reference areas and to obtain agreement with regulatory agencies on the areas selected. The selection process is also fraught with difficulty in that suitable areas may be on private land and unavailable for sampling. The selected areas provide suitable reference for most of Dead Creek and Borrow Pit Lake. Dead Creek Section F had fewer similarities to the reference areas than the rest of Dead Creek or the Borrow Pit Lake. At the direction of the regulatory agencies, the comparison to reference areas was removed from the ecological risk assessment because they disagreed with the selected reference areas.

The lack of a suitable reference areas introduces great uncertainty in the risk assessment. It leads to evaluating ecological risks at a site out of context and without any reference to the environmental setting that may result in non-site related ecological risks. In the area of Dead Creek, non-site related risks are likely present due to use of agricultural chemicals (herbicides and pesticides) in the surrounding watershed and aerial deposition of contaminants from off-

site sources (power plants and automotive traffic). In addition, Dead Creek receives runoff from roadway and residential areas in the surrounding watershed. Without comparison to a suitable reference water body, effects that may be present in Dead Creek and Borrow Pit Lake absent the presence of COPCs (toxicity due to non-site related chemicals, low benthic invertebrate abundance and diversity due to low water levels, low dissolved oxygen, and silty substrate) can not be evaluated on a regional basis. Therefore, the lack of a comparison to a comparable reference area is likely to result in an overestimation of risk in Dead Creek.

# 9.1.3 Uncertainty due to time of sampling

The present assessment represents conditions at one point in time and may not reflect conditions throughout the year or in the future. This demonstrates variability in the data more than uncertainty. The low water levels at the time of sampling may have confounded some of the elements of the risk assessment. The number and species of benthic invertebrates present may have been depressed by these conditions, although these conditions were similar throughout the region. It is also likely that low water conditions occur seasonally. In the absence of additional remediation, sedimentation could continue to bury and isolate COPCs identified in sediment, thereby reducing exposure to surface-dwelling benthic invertebrates and the organisms that prey upon them. Alternatively, storm events and erosion could uncover contaminated sediments, making them more available to aquatic organisms.

#### 9.1.4 Uncertainty in Selection of COPCs

This risk assessment selects COPCs based on a comparison of concentrations in surface water and sediment to toxicity benchmarks and guidelines. Surface water and sediment benchmarks are not available for all of the compounds detected. If a compound did not have a benchmark, it was carried through the risk assessment. In some cases, the potential risks due to this compound were evaluated in another portion of the risk assessment, if another type of toxicity value was available for it (e.g., tissue toxicity benchmark or wildlife NOAEL dose). In other cases, no toxicity values were available for the compound, and no conclusions could be drawn regarding its potential risk.

### 9.2 Uncertainty in the Effects Assessment

#### 9.2.1 Food Chain Modeling Uncertainty

There is uncertainty in the estimates of ingestion rates for wildlife. We rely on studies that present conservative estimates of quantity of food, water and soil in each species' diet (USEPA 1993; Beyer et al. 1994). For example, we assume that some species incidentally ingest sediment during feeding

The actual diets of the species analyzed in the food chain models include a larger diversity of food types than represented in the food chain models. The assessment relied on site data (plants, clam, fish, and shrimp) where possible and representative food types (both plant and animal tissue). It cannot capture each unique diet item in the diet of wildlife.

The quantity of sediment that an animal ingests while consuming plants or invertebrates is uncertain. The assumptions used in the food chain models are conservative to minimize the effect of the uncertainty. For certain COPCs, sediment is a significant component of the total dose. In certain cases, and for certain compounds, tissue concentrations represent a significant component of the total dose.

The food chain models were applied for two conditions; the first took into account the species foraging area and whether or not the species migrates from the site. The second condition assumed that the species forages only at Dead Creek Section F or the Borrow Pit Lake year round. There is uncertainty inherent in both sets of assumptions. The second set of assumptions greatly overestimates risk for species that migrate or range over a wide area.

Some of the food chain models used modeled concentration in biota. The biota concentrations were modeled based on site-specific BAFs and literature values. The use of these modeled concentrations results in uncertainty in the analysis an overestimate of risk. The site-specific BAFs were calculated as an average BAF using data both from the site (the entire length of Dead Creek and the Borrow Pit) and from the reference areas. Because concentrations of COPCs were generally higher at in Dead Creek, especially in the upstream areas, the BAFs from those areas were lower than those calculated for the reference areas. However, averaging these values into the assessment resulted in higher BAFs and higher modeled concentration in biota. The use of literature BAFs for aquatic insects lead to uncertainty because these values are not specific to the Dead Creek area.

# 9.2.2 Uncertainty in toxicological dose benchmarks

The development of toxicological benchmarks involves uncertainty because they are derived from laboratory studies and must be extrapolated to the field. In many cases, extrapolations are also made between species. This is standard practice in ecological risk assessment and yields benchmarks that are likely to be conservative. Testing is often rigorous, however the tests are generally performed on standard laboratory species and then the results are adjusted for other species based on body weight. While the species assessed are not standard laboratory species, they are species with readily available toxicological benchmarks.

There is considerable uncertainty in the development of dietary dose benchmarks for wildlife because few studies are available on effects on wildlife. For example, very little data are available for aluminum toxicity to mammals. A literature search for aluminum toxicity to the

muskrat returned zero articles. In many cases, it is necessary to extrapolate from studies conducted on laboratory species to effects in wildlife species of concern at the site. The magnitude of uncertainty associated with this extrapolation is unknown, but is often estimated to be within a factor of ten (Dourson and Stara, 1983). However, it could be higher for some contaminants. For example, the toxicity benchmark doses that were derived for aluminum and selenium for mammals are quite low and likely to over-predict risk or predict risk at background concentrations. The assumption that COPCs are 100% bioavailable from surface water, sediment, biota, and soil also is likely to lead to the overestimation of risk.

### 9.3 Uncertainty in Risk Characterization

This assessment calculates hazard indices using both NOAELs and LOAELs to capture uncertainty in the risk estimates. The assessment concludes that hazard indices that reflect a comparison to a NOAEL and are less than one do not indicate a risk of potential harm, and that hazard indices that reflect a comparison to a LOAEL and exceed one do indicate a risk of potential harm. However, there is considerable uncertainty for cases in which the NOAEL dose is exceeded, but not the LOAEL dose. In those cases, it cannot be established that there is no risk, because exposure is not below the NOAEL, and it cannot be established that there is risk, because exposure is not above the LOAEL.

The goal of this assessment is to examine the risk of harm to *populations* of aquatic organisms and aquatic and terrestrial wildlife. The assessment uses the hazard index approach to estimate this risk, but this does not provide the basis for estimating the likelihood that the population will be affected if a hazard index exceeds one. The simplifying assumption is made that if a hazard index based on a LOAEL for a measurement endpoint based on growth, reproduction, or survival exceeds one, then there is a risk to the population. However, effects on individuals may not always affect the population. This conservative assumption is used because few methods exist to predict population level effects.

#### 10.0 FINDINGS

The findings of the ecological risk assessment for Sauget Area I are presented below:

#### 10.1 Creek Section F Upstream of Borrow Pit Lake

#### Surface Water

 Surface water concentrations of aluminum, barium, and manganese exceeded National Recommended Water Quality Criteria. Surface water samples were unfiltered; and these metals are typical soil constituents.

#### **Sediments**

- Arsenic, cadmium, copper, iron, lead, manganese, mercury, nickel and zinc concentrations exceed TECs/PECs or LELs/SELs.
- PCBs, Total DDT, aldrin, alpha chlordane, dieldrin, gamma chlordane, heptachlor, heptachlor epoxide, and fluoranthene concentrations exceed TECs or LELs.

#### Benthic Invertebrates

- A benthic invertebrate survey indicated that these organisms are present and making use of the habitat, but that the silty substrate and low water conditions limit the numbers and types of organisms that are present.
- Amphipod toxicity testing indicated no acute or chronic toxicity.
- Chironomid toxicity testing indicated acute toxicity in Creek Section F and other waterbodies in the region far from sources of site-related COPCs.

#### Fish

• A few small minnows were observed in Creek Section F upstream of the Borrow Pit Lake. They were not abundant enough to collect for analysis.

#### Wildlife

 Wildlife appear to use Creek Section F to the same degree as other waterbodies in the region. • Food chain modeling using measured concentrations in sediment (0 to 2 inch depth), surface water, and plants indicated:

No risks to mallards foraging in this area year round.

No risk to muskrats foraging year round with the exception of a risk due to aluminum concentration in sediment that is indistinguishable from aluminum concentrations in regional background soil.

 Food chain modeling using measured concentrations in combined shallow and deeper sediment, surface water, and plants indicated:

A potential risk to mallards due to the maximum concentration of zinc detected in the deeper sediment.

No risk to muskrats foraging year round with the exception of a risk due to aluminum in sediment that is indistinguishable from aluminum concentrations in regional background soil.

 Food chain modeling using measured concentrations in sediment and surface water and estimated biota (fish or invertebrate) concentrations calculated using site-specific or literature BAFs indicated:

No risk to river otter eating fish;

No risk to great blue heron eating fish;

No risk to a mallard eating invertebrates;

Potential risk to a muskrat eating invertebrates due to aluminum, antimony, copper, and dioxin;

Potential risk to a tree swallow eating emergent aquatic insects due to aluminum, cadmium, chromium, mercury, zinc, PCBs, DDT, and dioxin.

#### 10.2 Borrow Pit Lake

Surface Water

Surface water concentrations of aluminum, barium, iron, and manganese exceeded
National Recommended Water Quality Criteria. Surface water samples were unfiltered
and these metals are typical soil constituents.

#### Sediments

- Arsenic, cadmium, copper, iron, lead, manganese, nickel and zinc concentrations exceed TECs/PECs and LELs SELs.
- DDE, DDT, gamma-BHC and heptachlor epoxide concentrations exceed TECs and LELs.

#### Benthic Invertebrates

- A benthic invertebrate survey indicated that these organisms are present and making use of the habitat, but that the silty substrate and low water conditions limit the numbers and types of organisms that are present.
- Amphipod toxicity testing indicated:

No acute effects on survival.

Statistically lower growth in the acute test period (10 days) in these organisms at two of the three stations in Borrow Pit Lake.

No chronic effects on survival, growth, or reproduction in the 42 day test period.

• Chironomid toxicity testing indicated:

Acute toxicity in the 10 day test period in one of three stations in the Borrow Pit Lake and other waterbodies in the region far from sources of site-related COPCs.

Chronic effects on survival, emergence, and reproduction in the two other (out of three) stations in Borrow Pit Lake in the 20 day test period and in other waterbodies in the region far from sources of site-related COPCs.

#### Fish

- Fish in the Borrow Pit Lake appear to be at risk due to seasonally low water levels and drought conditions that reduce the available habitat to a shallow puddle.
- Fish may be at risk due to body burdens of mercury; however, these measured body burdens are within the range measured in the Illinois portion of the Mississippi River Basin.

#### Wildlife

- Wildlife appear to use the Borrow Pit lake to the same degree as other water bodies in the region.
- Food chain modeling using measured concentrations in sediment (0 to 2 inch depth or combined shallow or deeper sediment), surface water, and fish indicated:

Great blue herons and similar piscivorous birds may be at risk due to consumption of mercury in fish if they forage only in the Borrow Pit Lake. This potential for risk is considered low because:

Herons forage over a three mile radius, and are therefore not restricted to foraging at the Borrow Pit Lake;

Mercury concentrations in fish do not exceed the level associated with adverse effects on birds.

No risks to river otter using average concentrations in environmental media.

A potential risk to river otter using maximum concentrations and restricting their foraging to the Borrow Pit Lake.

• Food chain modeling using measured concentrations in sediment (0 to 2 inch depth or combined shallow or deeper sediment), surface water, and invertebrates indicated:

No risks to mallards foraging year round on shrimp.

No risk to muskrats foraging year round on clams with the exception of a risk due to aluminum in sediment that is indistinguishable from aluminum concentrations in regional background soil.

 Food chain modeling using measured concentrations in sediment and surface water and estimated biota (invertebrate) concentrations calculated using site-specific or literature BAFs indicated:

Potential risk to a tree swallow eating emergent aquatic insects due to aluminum, chromium, mercury, zinc, DDT, and dioxin.

Food chain modeling indicates that bald eagles are not at risk unless they:

Feed year round at the Borrow Pit Lake (bald eagles overwinter in this portion of the Mississippi River basin but are not present there in the breeding season); and

Feed only at the Borrow Pit Lake (their foraging area along 2 to 4.5 miles of a river).

# 10.3 Dead Creek Floodplain Soils

Concentrations of some COPCs exceed ecological benchmarks and background soil concentrations at scattered locations in the floodplain.

These scattered exceedances of benchmarks do not have a spatial distribution and do not indicate widespread risk.

# 10.4 Waste Disposal Areas

Screening benchmarks were exceeded in surface soils at Sites G, H, I, L, and N.

Screening benchmarks were exceeded in subsurface soils at Sites G, H, I, and L.

#### 11.0 REFERENCES

Agency for Toxic Substances and Disease Registry. (ATSDR). 2000. Toxicological Profile for Copper. U.S. Department of Health and Human Services.

Agency of Toxic Substances and Disease Registry (ATSDR). 1993. Toxicological Profile for Lead. U.S. Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ATSDR). 1991. Toxicological Profile for Arsenic. U.S. Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ATSDR), 1991. Draft Toxicological Profile for Cadmium. U.S. Department of Health and Human Services.

Barbour, M.T. J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.

Begon, M., J.L. Harper, and C.R. Townshend. 1990. Ecology: Individuals, Populations and Communities. Blackwell Scientific Publications, Boston.

Beyer, W.N., E.E. Connor, and S. Gerould. 1994. Estimates of soil ingestion by wildlife. J. Wildl. Manage. 58: 375-382.

Borgmann, U. and D.M. Whittle. 1992. DDD, PCB, and mercury concentrations trends in Lake Ontario rainbow smelt (*Osmerus mordax*) and slimy sculpin (*Cottus cognatus*): 1977-1988. J. Great Lakes Res., 18: 298-308.

Briggs, S.A. and Rachel Carson Council. 1992. Basic Guide to Pesticides: Their Characteristics and Hazards. Washington, D.C.: Taylor & Francis.

Chapman, J.A., and G.A. Feldhamer. 1982. Wild Mammals of North America. Johns Hopkins University Press, Baltimore, MD and London.

Cohen, R.R. 1984. Behavioral Determinants of Nest Site Tenacity and Mate Fidelity Patterns in Tree Swallows (*Tachycineta bicolor*). J. Colo.-Wyo. Acad. Sci. 16:16.

Cole, G.A. Textbook of Limnology, 4th Ed. Waveland Press, Inc. Prospect Heights, IL: 1994. pp. 89-90.

Collins, Randall. 2001. Personal Communication with Menzie-Cura & Associates, Inc. Illinois Department of Natural Resources, Natural Heritage Inventory, Springfield, Illinois.

DeGraaf, R.M., and D.D. Rudis. New England Wildlife: Habitat, Natural History, and Distribution. United States Department of Agriculture Forest Service. General Technical Report NE-108.

Ecology and Environment, Inc., 1997. Preliminary Ecological Risk Assessment for Sauget Area I, Creek Segment F, Sauget, St. Clair County, Illinois; prepared for USEPA Emergency and Enforcement Response Branch, Chicago, IL.

Efroymson., R.A., G.W. Suter, B.E. Sample, and D.S. Jones. 1997. Preliminary Remediation Goals for Ecological Endpoints. Oak Ridge National Laboratory for the U.S. Department of Energy. ES/ER/TM-162/R2.

Efroymson, R.A., M.E. Will, and G.W. Suter II. 1997. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision, ES/ER/TM-126/R2, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Eisler, R., 1988. Lead Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. Biological Report 85(1.14). Contaminant Hazard Reviews Report No. 14., US Fish and Wildlife Service Patuxent Wildlife Research Center. Laurel, MD.

Eisler, Ronald. 1988. Arsenic Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review, U.S. Fish and Wildlife Service, Patuxent Wildlife Research Center, Laurel, MD.

Eisler, R. 1987. Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. Laurel MD. United States Fish and Wildlife Service.

Ehrlich, P.R., D.S. Dobkin, and D. Wheye. 1988. The Birder's Handbook: A Field Guide to the Natural History of North American Birds. Simon and Schuster, Inc., New York, NY.

Friedmann, A.S., M.C. Watzin, T. Brinck-Johnsen, and J.C. Leiter. 1996. Low levels of dietary methymercury inhibit growth and gonadal development in juvenile walleye (*Stizostedion vitreum*), Aquatic Toxicology 35, 265-278.

Gallagher, Dr. E.D. 2000. Department of Environmental, Coastal and Ocean Sciences, University of Massachusetts, Boston. Correspondence.

Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. John Wiley & Sons, Inc. New York.

Harris, C. J. 1968. Otters: a study of the recent Lutrinae. London, U.K.: Weidenfield & Nicolson.

Hilsenhoff, W.L. 1987. An improved biotic index of organic stream pollution. Great Lakes Entomologist. 20: 31-39.

Illinois, 1999. Title 35 of the Illinois Administrative Code, Subtitle C, Chapter I, Part 302 Water Quality Standards, Subpart B.

Illinois, 2000. Illinois Natural History Survey Website. www.inhs.uiuc.edu.

Illinois Environmental Protection Agency, 1994. A Summary of Selected Background Conditions for Inorganics in Soil. IEPA/ENV/94-161.

Illinois Environmental Protection Agency, Division of Water Pollution Control. 1989. An intensive survey of the American Bottoms Basin, 1984. IEPA/WPC/89-211.

Jarvinen, A.W. and G.T. Ankley. 1999. Linkage Effects to Tissue Residues: Development of a Comprehensive Database for Aquatic Organisms Exposed to Inorganic and Organic Chemicals. Pensacola FL, Society of Environmental Toxicology and Chemistry Press, 364pp.

Khera, K.S. and W.P. McKinley. 1972. Pre- and postnatal studies of 2,4,5-trichlorophenoxyacetic acid, 2,4-dichlorophenoxyacetic acid and their derivatives in rats, Toxicology and Applied Pharmacology, 22, 14-28.

Klaassen, C.D., Amdur, M.O. & Doull, J. 1986. Casarett and Doull's Toxicology: The Basic Science of Poisons. Third Edition. New York: Macmillan Publishing Company.

Long, E.R. and P.M. Chapman, 1985. A Sediment Quality Triad: Measures of sediment contamination, toxicity and infaunal community composition in Puget Sound, Marine Pollution Bulletin, Vol. 16, No. 10, pp. 405-415.

MacArthur, R.A. 1978. Winter movements and home range of the muskrat. Can. Field-Nat. 92:345-349.

MacDonald, D.D. 1994. Approach to the Assessment of Sediment Quality in Florida Coastal Waters, Volume 1 – Development and Evaluation of Sediment Quality Assessment Guidelines, November 1994.

MacDonald, D.D., D.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39: 20-31.

Mathers, R.A. and P.H. Johansen. 1985. The effects of feeding ecology on mercury accumulation in walleye (*Stizostedion vitreum*) and pike (*Esox lucius*) in Lake Simcoe. Can. J. Zool., 63: 2006-2012.

Menzie, C.A., M. Hope Henning, J. Cura, K. Finkelstein, J. Gentile, J. Maughan, D. Mitchell, S. Petron, B. Potocki, S. Svirsky, P. Tyler. 1996. Special report of the Massachusetts weight-of-evidence workgroup: A weight-of-evidence approach for evaluating ecological risks. Human and Ecological Risk Assessment: (HERA): 2(2)277-304.

Nagy, K.A. 1987. "Field Metabolic Rate and Food Requirement Scaling in Mammals and Birds". Ecological Monographs, 57(2), 1987, pp 111-128

O'Brien & Gere Engineers, Inc. (OBG). 2000. Soil, Ground Water, Surface Water, Sediment, and Air Sampling Field Sampling Report, Sauget Area 1, Remediation Technology Group, Solutia Inc., St. Louis, MO.

Persaud, D., R. Jaagumagi, and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of Environment and Energy. August 1993.

Roux Associates, Inc. 2001. Engineering Evaluation/Cost Analysis Remedial Investigation Feasibility Study Sauget Area I, Sauget and Cahokia, IL. Prepared for Solutia, Inc.

Salisbury, F.B. and C.W. Ross. 1992. Plant Physiology: Fourth Edition. Wadsworth Publishing, Belmont, California.

Sample, B.E., D.M. Opresko, et al. 1997. Toxicological Benchmarks for Wildlife: 1997. Revision. Oak Ridge National Laboratory.

Sample, B.E., Opresko, D.M., Suter, G.W., II. 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. National Laboratory Health Research Division, Oak Ridge, TN.

Simonin, H. A., S.P. Gloss, C.T. Driscoll, C.L. Schofield, W.A. Krestser, and J. Symula. 1994. Mercury in yellow perch from Adirondack drainage lakes (New York, US). In: C.J. Watras, ed., Mercury Pollution: Integration and Synthesis. Lewis Publishers, Boca Raton, FL. pp. 457-469.

Steggeman, J.J., 1981. PAHs and their Metabolism in the Marine Environment. In: PAHs and Cancer, Vol. 3, edited by H.V. Gelboin and P. Tso. Academic Press, NY. (pp1-60).

STORET, 2001. (http://www.epa.gov/storet)

- Suter, G.W. II, and C.L. Tsao. 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effect on Aquatic Biota: 1996 Revision. Risk Assessment Program, Health Sciences Research Division, Oak Ridge, Tennessee, ES/ER/TM-96/R2.
- Svihla, A.; Svihla, R. D. 1931. The Louisiana muskrat. J. Mammal. 12: 12-28.
- Thomas, J.W., R. Anderson, C. Maser, and E. Bull. 1979. Snags in Thomas, J.W., editor, Wildlife Habitats in Managed Forests the Blue Mountains of Oregon and Washington. Agricultural Handbook 553. United States Department of Agriculture, Washington, DC.
- United States Army Corps of Engineers (USACE). 2001. Environmental Residue-Effects Database. <a href="http://www.wes.army.mil/el/ered/index.html">http://www.wes.army.mil/el/ered/index.html</a> Searched January 4, 2001.
- U.S. Environmental Protection Agency. (USEPA). 1999a. National Recommended Water Quality Criteria Correction, Office of Water, EPA 82-2-Z-99-001 (April 1999).
- U.S. Environmental Protection Agency. (USEPA). 1999b. The National Survey of Mercury Concentrations in Fish, Database Summary 1990-1995. US Environmental Protection Agency, Office of Water, EPA-823-R-99-014.
- U.S. Environmental Protection Agency. (USEPA). 1998. Guidelines for Ecological Risk Assessment. Risk Assessment Forum, Washington, DC. EPA 630-R-95/002F.
- U.S. Environmental Protection Agency. (USEPA). 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments. Interim Final. Environmental Response Team. Edison, NJ. EPA 540-R97-006.
- U.S. Environmental Protection Agency. (USEPA). 1995. Environmental Effects Database (EEDB). Environmental Fate and Effects Division, Washington, DC.
- U.S. Environmental Protection Agency. (USEPA). 1993. Wildlife Exposure Factors Handbook. Volume I. USEPA Office of Research and Development. EPA/600/R-93/187a.
- U.S. Environmental Protection Agency. (USEPA). 1992. Supplemental Guidance to RAGS: Calculating the Concentration Term. Office of Solid Waste and Emergency Response. OSWER Directive No. 9285.7-081.
- U.S. Environmental Protection Agency 1984. Ambient Water Quality Criteria for Copper, Office of Water Regulations and Standards, EPA 440/5-84-031, January 1985.
- U.S. Fish and Wildlife Service. (USFWS). http://midwest.fws.gov/index.htm

Van den Berg, M., Birnbaum, L., Bosveld, A.T.C., Brunstrom, B., Cook, P., Feeley, M., Giesy, J.P., Hanberg, A., Hasegawa, R., Kennedy, S.W., Kubiak, T., Larsen, J.C., van Leeuwen, F.X.R., Liern, A.K.D., Nolt, C., Peterson, R.E., Poellinger, L., Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Waern, F, and Zacharewsk, T. 1998. Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife, Environmental Health Perspectives, Vol. 106, Number 12, pp. 775-792.

Vermont Agency of Natural Resources. 1990. A compendium of fish tissue contaminant data for Vermont and adjoining waters. Department of Environmental Conservation, Agency of Natural Resources, Vermont.

World Health Organization (WHO) European Centre for Environment and Health. 1998. Executive Summary: Assessment of the Health Risk of Dioxins: Re-evaluation of the Tolerable Daily Intake (TDI). WHO Consultation, May 25-29, 1998, Geneva, Switzerland.



Table 2-1
Water, Sediment, and Habitat Parameters of Dead Creek Section F, Borrow Pit Lake, and Reference Areas
Sauget Area I

|                                         | Creek Section F | Borrow Pit Lake | Ref-1<br>(Prairie du Pont Creek) | Ref 2-1<br>(Long Slash Creek) | Ref 2-2 |
|-----------------------------------------|-----------------|-----------------|----------------------------------|-------------------------------|---------|
| Water Quality Parameters                |                 |                 |                                  |                               |         |
| Average pH                              | 7.87            | 9.07            | 7.3                              | 8                             | 8.1     |
| Average Total Suspended Solids (mg/L)   | 8.3             | 84              | 485                              | 340                           | 370     |
| Average Total Dissolved Solids (mg/L)   | 347             | 370             | 420                              | 310                           | 320     |
| Sediment Parameters                     |                 | <b></b>         |                                  |                               | }       |
| Average Total Organic Carbon (mg/kg dw) | 80333           | 42667           | 17500                            | 13000                         | 20000   |
| Grain size                              | <u> </u>        |                 |                                  |                               |         |
| Average % Gravel                        | 1.8             | 0               | 0                                | 0                             | 0       |
| Average % Sand                          | 13.1            | 4.7             | 5.9                              | 0.4                           | 3.9     |
| Average % Silt                          | 42.5            | 62.0            | 57.8                             | 65.9                          | 54.5    |
| Average % Clay                          | 42.6            | 33.3            | 36.3                             | 33.7                          | 41.6    |
| Habitat                                 | <del> </del>    |                 |                                  |                               |         |
| Habitat Assessment Score <sup>1</sup>   | 181             | 167             | 115                              | 92                            | 115     |

<sup>&</sup>lt;sup>1</sup>Habitat Assessment Field Data Sheets (Low Gradient Streams) were completed for each creek section and reference areas (USEPA, 1997). These were presented in the field sampling report for the project (O'Brien & Gere Engineers, Inc., September 2000).

# TABLE 4-1 ASSESSMENT ENDPOINTS AND ASSOCIATED MEASURES OF EFFECT DEAD CREEK AND THE BORROW PIT LAKE SAUGET AREA I

#### Assessment Endpoint 1: Sustainability of warm water fish

Measure of effect 1a: body burdens of COPCs in selected fish species as a measure of exposure and effects (compared to benchmark values).

Measure of effect 1b: COPC concentrations in surface water as compared to applicable water quality criteria for protection of fish and wildlife.

Measure of effect 1c: sustainability of a benthic macroinvertebrate community that can serve as a prey base for fish:

Concentration of COPCs in sediment:

Field assessment of benthic macroinvertebrate community structure;

Sediment toxicity tests.

# Assessment Endpoint 2: Survival, growth, and reproduction of local populations of aquatic wildlife as represented by the, mallard duck, great blue heron, muskrat, and river otter

Measure of effect 2a: Wildlife species composition and habitat use.

Measure of effect 2b: Concentration of COPCs in aquatic/marsh plants for use in evaluating exposure via the food chains for mallard duck and muskrat.

Measure of effect 2c: Concentration of COPCs in surface waters in comparison to wildlife benchmarks.

Measure of effect 2d: Concentration of COPCs in fish for use in evaluating exposure via the food chain for great blue heron and river otter.

Measure of effect 2e: Concentration of COPCs in macroinvertebrates (shrimp and/or clams) for use in evaluating exposure via the food chain for mallard duck, river otter and muskrat\*.

### Assessment Endpoint 3: Survival, growth, and reproduction of individuals within the local bald eagle population that may overwinter near the site

Measure of effect 3a: Concentration of COPCs in fish for use in evaluating exposure via the food chain.

### Assessment Endpoint 4: Survival, growth, and reproduction of local populations of terrestrial wildlife along the banks and floodplain of Dead Creek

Measure of effect 4a: Soil screening effect levels for the protection of wildlife, plants, and soil dwelling invertebrates.

includes modeling of aquatic insect concentrations and food chain evaluation of a tree swallow, an insectivorous bird.

#### Table 5-1 List of Sample Stations, Dates, and QA/QC Samples for Fish Tissue Analysis Dead Creek, Borrow Pit and Reference Areas Sauget Area I

| Sample Type     | Sample ID        | Date    | Location   | Species                         | Sample Type | Tissue Type | No. in Composite | Total Wt (g) | Notes*            |
|-----------------|------------------|---------|------------|---------------------------------|-------------|-------------|------------------|--------------|-------------------|
|                 |                  |         |            |                                 |             |             |                  |              |                   |
| Largemouth bass | LMBBP COMP-01    | 10/4/99 | Borrow Pit | Largemouth Bass                 | Composite   | Whole Body  | 3                | 1467.8       | MS/MSD Sample     |
| whole bodies    | LMBBP COMP-02    | 11/3/99 | Borrow Pit | Largemouth Bass                 | Composite   | Whole Body  | 2                | 769.7        | <u> </u>          |
|                 | LMBBP COMP-03    | 11/1/99 | Borrow Pit | Largemouth Bass                 | Composite   | Whole Body  | 3                | 1004         | Split with Weston |
|                 | LMBREF1 COMP-01  | 11/1/99 | Ref-01     | Largemouth Bass                 | Composite   | Whole Body  | 3                | 1321,7       |                   |
|                 | LMBREF1 COMP-02  | 11/1/99 | Ref-01     | Largemouth Bass                 | Composite   | Whole Body  | 3                | 1027.3       |                   |
|                 | LMBREF2 COMP-01  | 10/8/99 | Ref-02-2   | Largemouth Bass                 | Composite   | Whole Body  | 3                | 922.3        |                   |
|                 | LMBREF2 COMP-02  | 11/2/99 | Ref-02-2   | Largemouth Bass                 | Composite   | Whole Body  | 3                | 1642.2       |                   |
|                 |                  |         | CS-F       |                                 |             |             |                  |              | None present      |
|                 | FFBP COMP-01     | 10/4/99 | Borrow Pit | Lepomis                         | Composite   | Whole Body  | 14               | 115          |                   |
|                 | FFBP COMP-02     | 10/6/99 | Borrow Pit | Lepomis                         | Composite   | Whole Body  | 151              | 96.1         |                   |
| Ì               | FFBP COMP-03     | 10/6/99 | Borrow Pit | Lepomis                         | Composite   | Whole Body  | 157              | 92           | <del> </del>      |
| ł               | FFREF1 COMP-01   | 10/8/99 | Ref-01     | Lepomis                         | Composite   | Whole Body  | 3                | 120.8        |                   |
|                 | FFREF2 COMP-01   | 10/8/99 | Ref-02-2   | Crappie                         | Composite   | Whole Body  | 38               | 126.9        |                   |
|                 | FFREF2 COMP-02*  | 10/8/99 | Ref-02-2   | 4 LMBass,1 minnow and 4 Lepomis | Composite   | Whole Body  | 9                | 69.7         |                   |
| ļ               | FFREF2 COMP-03   | 10/8/99 | Ref-02-1   | Minnow                          | Composite   | Whole Body  | 278              | 78.6         |                   |
| Bullheads whole | BBBP COMP-01     | 11/1/99 | Borrow Pit | Bullhead                        | Composite   | Whole Body  | 9                | 513.7        | Field duplicate   |
| bodies          | BBBP COMP-02     | 11/1/99 | Borrow Pit | Bullhead                        | Composite   | Whole Body  | 3                | 352.2        | ,                 |
|                 | BBBP COMP-03     | 10/7/99 | Borrow Pit | Bullhead                        | Composite   | Whole Body  | 4                | 227.4        |                   |
|                 | BBREF1-2 COMP-01 | 10/8/99 | Ref-01     | Bullhead                        | Composite   | Whole Body  | 3                | 148.8        |                   |
| 1               | BBREF1-2 COMP-02 | 10/8/99 | Ref-01     | Bullhead                        | Composite   | Whole Body  | 4                | 259.6        |                   |
|                 | BBREF2-2 COMP-01 | 11/2/99 | Ref-02-2   | Bullhead                        | Individual  | Whole Body  | 1                | 509.2        | MS/MSD sample     |

<sup>\*</sup>At the request of the regulatory agencies, this sample was not included in the assessment because it was comprised of different species.

Table 5-2

Comparison of Maximum Surface Water Concentrations to Standards and Guidelines

Dead Creek Sector F and Borrow PH Lake

Sauget Area I

|                               | Bre                 | Min                   | we <sup>1</sup>         | NAWQ          | Caleur         | Tier II '                | /atuas                     | Oak Hidge                                 | ynantmileri |                           |
|-------------------------------|---------------------|-----------------------|-------------------------|---------------|----------------|--------------------------|----------------------------|-------------------------------------------|-------------|---------------------------|
| lampounds                     | Maximum<br>Detected | Acule WQ<br>Blandards | Chronic WQ<br>Blandards | CMC           | ccc            | Secondary<br>Acute Value | Secondary<br>Chronic Value | Lowest Chronic Value<br>for All Organisms | Screening   | Comments                  |
| lerbicides (ug/l)             | 1                   |                       |                         |               |                | 1                        |                            |                                           |             |                           |
| 4,6·T                         | - 1                 | ł                     | 1                       | 1             |                | l                        | 1 :                        |                                           | Out         | not detected in tw        |
|                               | 1                   | ł                     | ł                       | ł             |                | ł                        |                            |                                           | Out         | not detected in sw        |
| 4,5-TP (Bilvex)               |                     |                       |                         |               |                | ł                        | }                          |                                           |             |                           |
| ,4-D                          |                     | ļ                     | ļļ                      |               |                |                          | ļ .                        |                                           | Out         | noi delected in sw        |
| ,4-DB                         | , j                 | )                     | ] ]                     | ļ             |                | 1                        | ]                          |                                           | Out         | not detected in ew        |
| Nalapon                       |                     | Į                     |                         |               |                | l                        |                            |                                           | Out         | not detected in fiw       |
| Icamba                        | j                   | 1                     | ]                       |               |                | 1                        | l                          |                                           | Out         | not detected in tw        |
| ichloroprop                   | 1                   | ł                     | 1                       |               |                | 1                        | ł                          | }                                         | Out         | not detected in 6w        |
| inoseb                        | 1                   | I                     | 1                       | 1             |                | ĺ                        | Ī                          | ľ                                         | Oùi         | not detected in 8w        |
| ICPA                          | 1                   | 1                     | †                       | 1             | '              | 1                        | f                          | t                                         | Out         | not detected in sw        |
| KCPP                          | i                   | Ť                     | t t                     |               |                | Í                        | t                          | l                                         | Out         | not detected in sw        |
| entachiorophenol at pH / 4    |                     |                       | <del>}</del>            | 13            | 10             | 1                        | ł                          | ł                                         | Out         | not detected in sw        |
|                               |                     |                       | 1                       | 13            | 10             | ł                        | ł                          | +                                         | UM          | LKM DEIOCIOCI III EW      |
| letale/Inorganics (mg/l)      |                     | ŀ                     | ļ                       |               |                | ł                        | Į.                         | ł                                         |             |                           |
| luminum                       | 34                  | 1                     | [                       | 0.76*         | 0.087*         | 1                        | ļ                          | 1                                         | i in i      | greater than criteria     |
| ntimeny                       | - 1                 | ]                     | ļ <b>i</b>              |               |                | 0.18                     | 0.03                       | i                                         | Out ]       | not detected in sw        |
| /Benic                        | 0 0 1 6             | 0.36                  | 0 19                    | 0.34          | 0 16           | 0.066                    | 0.0031*                    | 1                                         | l ou l      | no exceedance             |
| iarium                        | 0.32                | 1                     | `                       |               |                | 0 11                     | 0.004                      | 1                                         | in          | greater than Tier II      |
| Hervillium<br>Hervillium      | """                 | 1                     |                         |               |                | 0 035                    | 0.00066                    | l .                                       | Out         | riol detected in aw       |
|                               | l l                 | 0 024                 | 0 0021                  | 0.011         | 0 0046         | 1 -0.55                  | - CANADA                   |                                           | Out         | not detected in sw        |
| mumba                         |                     | 0024                  | 1 00021                 | 0011          | 0.0040         | ł                        | ł                          | 116                                       |             |                           |
| Calcium                       | 89                  |                       |                         |               |                | ł                        | ł                          | 1 ''6                                     | Out         | low toxicity, nutrient    |
| hromium                       | 0.0041              | 3 3'/0 016"           | 0 39'/0 011"            | 3 4" / 0 016" | 0 16"/ 0 01 1" | !                        |                            |                                           | Out         | no exceedance             |
| oball                         | 0.0015              | 1                     | 1                       |               |                | 1 1 8                    | 0.023                      | 1                                         | Out         | nu exceedance             |
| Copper                        | 0 012               | 0 037                 | 0 023                   | 0 029         | 0.018          |                          | [                          | Ĭ                                         | Out         | no exceedance             |
| yanide, Total                 |                     | 0.022                 | 0 0052                  | 0 022         | 0.0052         | l .                      | i                          | Ī                                         | Out         | not detected in sw        |
|                               | 8.7                 |                       |                         |               | 1              |                          |                            | i                                         | ln          | greater than criteria     |
| ron                           | 0 02                | 0 26                  | 0.055                   | 0 27          | 0 0087         | 1                        | j                          | ]                                         | in          | greater then NAWO criters |
| ead                           |                     | 0.20                  | פפט ט                   | 0 //          | ימטטי ע        |                          | 1                          | 82                                        | Out         | low toxicity, nutrient    |
| Angnesium                     | 33                  | ł                     | ! !                     |               |                |                          |                            | 1 67                                      |             |                           |
| Aanganese                     | 1.7                 |                       | 1 .                     |               |                | 23                       | 0.12                       | 1                                         | ln .        | greater then criteria     |
| Anroury                       | - 1                 | 0 0026                | 0.0013                  | 0 0014        | 0.00077        |                          | 0.0013                     | 1                                         | Out         | not detected in aw        |
| Aolybdenum                    | 0.004               | ł                     |                         |               | 1              | 16                       | 0.37                       | i                                         | Out         | no <b>exceedance</b>      |
| lickel                        | 0.021               | į                     | 1 .                     | 0.91          | 01             | į.                       | l .                        | l                                         | Out         | no exceedance             |
|                               | 7.6                 | 1                     |                         |               | }              | ]                        | i                          | 53                                        | Out         | low toxicity, nutrient    |
| nuizaelum.                    | '*                  | i                     | ł                       |               | 0.005          | 1                        |                            | 1                                         | Out         | not detected in aw        |
| Selenium                      | ì                   | 1                     | }                       | 0.016         |                | ì                        | 0.00036                    | 1                                         | Out         | not detected in aw        |
| Hiver                         | _ l                 |                       |                         | 0.016         | 1              |                          | 17 00000                   | 680                                       | Out         | low toxicity, nutrient    |
| lodium                        | 24                  |                       |                         |               |                |                          |                            | 1 000                                     |             | not detected in sw        |
| l hallium                     |                     | 1                     |                         |               |                | 0,11                     | 0 012                      | 1                                         | Out         |                           |
| /anadium                      | 0 014               | 1                     |                         |               |                | 0.58                     | 0.05                       | 1                                         | Out         | no exceedance             |
| ine                           | 0.076               | 1                     | 1 :                     | 0.23          | 0 23           | 1                        | ļ                          | J                                         | Out         | no exceedance             |
| luntide (mg/l)                | 0 29                | 1                     |                         | _             | I              | 1                        |                            | 1                                         | Out         | water quality parameter   |
| fardness as CaCO3 (mg/l)      | 350                 | 1                     | 1                       |               | 1              | 1                        |                            |                                           | Out         | water quality parameter   |
|                               | 0.83                |                       | 1                       |               |                | 1                        | 1                          |                                           | Out         | water quality parameter   |
| Ortho-Phosphate-P (mg/l)      |                     | 1                     |                         |               | 65.9           | i                        | 1                          |                                           | Oui         | water quality parameter   |
| eH _                          | 9.7                 | 1                     |                         |               | 00.4           | 1                        |                            | i                                         | Out         | water quality parameter   |
| Ruspended Solids (mg/l)       | 160                 | 1                     | 1                       |               |                | 1                        |                            | [                                         |             |                           |
| Total Dissolved Solids (mg/l) | 480                 | 1                     | 1                       | ł             | 1              | 1                        | 1                          | J                                         | Out         | water quality parameter   |
| Total Phosphorus (mg/l)       | 1.2                 |                       |                         |               |                |                          |                            | 1                                         | Out         | water quality parameter   |
| PCB (ug/l)                    |                     |                       | 1                       |               | 0.014          |                          |                            |                                           | 1           |                           |
| Decachiorobiphenyl            | ŀ                   | 1                     | I                       | ŀ             |                | 1                        | 1                          | 1                                         | Out         | not detected in sw        |
|                               |                     | i                     | 1                       | l             | i              | i                        | 1                          | 1                                         | Out         | not detected in sw        |
| Dichlorobiphenyl              |                     | 1                     | 1                       | l             | 1              | 1                        | 1                          |                                           | Out         | not detected in sw        |
| Haptachlorobiphenyl           | - 1                 | ł                     | 1                       | ł             | {              | 1                        | 1                          | 1                                         | Out         | not detected in sw        |
| Hexachlorobiphenyl            |                     | 1                     |                         | l             |                | 1                        | 1                          |                                           |             | not detected in sw        |
| Monochiorobiphenyl            | <b>I</b>            | Į.                    |                         | l             |                | I                        |                            |                                           | Out         |                           |
| Nonachlorobiphenyl            | l i                 | I                     |                         | l             |                |                          | Į.                         | 1                                         | Out         | not detected in aw        |
| Octachlorobiphenyl            | - 1                 | I                     |                         | 1             | ļ              | i                        | 1                          | i                                         | Out         | not detected in sw        |
| Pentachiorobiphenyl           |                     |                       | 1                       | 1             |                |                          |                            | 1                                         | Out         | not detected in sw        |
| Tetrachiorobiphenyl           |                     | 1                     |                         | l             |                | 1                        |                            | 1                                         | Out         | not detected in sw        |
|                               | ſ                   | 1                     | 1                       | ſ             | ſ              | í                        | 1                          | i                                         | Out         | not detected in sw        |
| [richlorobiphenyl             | l l                 | 1                     |                         |               | I              | 1                        | 1                          | I                                         | T 4.4.      | 1                         |

### Table 5-2 Comparison of Maximum Surface Water Concentrations to Standards and Guidelines Dead Creek Sector F and Borrow Pit Lake Sauget Area I

|                               | Site                | Illin                                   | ois <sup>1</sup>                                 | NAWQ              | Criteria <sup>2</sup> | Tier II                  | Values <sup>3</sup>                              | Oak Ridge                                        | Preliminary  |                                          |
|-------------------------------|---------------------|-----------------------------------------|--------------------------------------------------|-------------------|-----------------------|--------------------------|--------------------------------------------------|--------------------------------------------------|--------------|------------------------------------------|
| Compounds                     | Maximum<br>Detected | Acute WQ<br>Standards                   | Chronic WQ<br>Standards                          | CMC               | CCC                   | Secondary<br>Acute Value | Secondary<br>Chronic Value                       | Lowest Chronic Value                             | Screening    | Comments                                 |
| Pesticides (ug/l)             |                     | Otendards                               | Ciarioares                                       |                   |                       | Acute value              | Chronic value                                    | TOT AIT OTIGATIONS                               | <del> </del> |                                          |
| 4,4'-DDD                      |                     |                                         | -                                                |                   |                       | 0.19                     | 0.011                                            |                                                  |              |                                          |
| 4,4'-DDE                      |                     |                                         | <del> </del>                                     |                   |                       | 0.19                     | 0.011                                            |                                                  | Out          | not detected in sw                       |
| 4.4'-DDT                      | <del> </del> -      |                                         | t                                                |                   | 0.001                 | ļ                        | 0.040                                            |                                                  | Out          | not detected in sw                       |
| Aldrin                        |                     |                                         | <del> </del>                                     | 1.1<br>3          | 0.001                 | ļ                        | 0.013                                            | ·                                                | Out          | not detected in sw                       |
|                               |                     |                                         |                                                  | 2.4*              | 0.00100               | ļ                        |                                                  |                                                  | Out          | not detected in sw                       |
| Alpha Chlordane               | 0.004               |                                         | <del> </del>                                     | 2.4               | 0.0043°               | l                        |                                                  |                                                  | Out          | not detected in sw                       |
| alpha-BHC                     | 0.001               | l                                       | l                                                |                   |                       | 39 <sup>h</sup>          | 2.2h                                             |                                                  | Out          | no exceedance                            |
| beta-BHC                      | 0.02                | ļ                                       | ļ                                                |                   |                       | 39 <sup>h</sup>          | 2.2 <sup>h</sup>                                 |                                                  | Out          | no exceedance                            |
| delta-BHC                     | 0.0022              | l                                       |                                                  |                   |                       | 39 <sup>h</sup>          | 2.2 <sup>h</sup>                                 |                                                  | Out          | no exceedance                            |
| Dieldrin                      | 0.001               |                                         |                                                  | 0.24              | 0.056                 |                          |                                                  |                                                  | Out          | no exceedance                            |
| Endosulfan I                  | 0.0024              |                                         | ļ                                                | 0.22              | 0.056                 |                          | 0.51                                             |                                                  | Out          | no exceedance                            |
| Endosulfan II                 |                     |                                         |                                                  | 0.22 <sup>f</sup> | 0.056                 |                          | 0.51                                             |                                                  | Out          | not detected in sw                       |
| Endosulfan sulfate            | 0.0032              | ·                                       |                                                  |                   |                       |                          | T                                                |                                                  | In           | no criteria                              |
| Endrin                        | 0.00095             |                                         |                                                  | 0.086             | 0.036                 | 1                        |                                                  |                                                  | Out          | no exceedance                            |
| Endrin aldehyde               | 0.0032              |                                         |                                                  |                   |                       | ]                        |                                                  | i                                                | In           | no criteria                              |
| Endrin ketone                 | 0.0027              |                                         | <u> </u>                                         |                   |                       |                          | L                                                |                                                  | ln_          | no criteria                              |
| Gamma Chlordane               |                     |                                         |                                                  |                   |                       |                          |                                                  |                                                  | Out          | not detected in sw                       |
| gamma-BHC (Lindane)           | 0.0038              |                                         | l                                                | 0.95              |                       |                          |                                                  |                                                  | Out          | no exceedance                            |
| Heptachlor                    | 0.0029              |                                         | ļ                                                | 0.52              | 0.0038                | 0.125                    | 0.0069                                           |                                                  | Out          | no exceedance                            |
| Heptachlor epoxide            | 0.00096             |                                         |                                                  | 0.52              | 0.0038                |                          |                                                  |                                                  | Out          | no exceedance                            |
| Methoxychlor                  | _                   | <b> </b>                                | ļ                                                |                   | 0.03                  | <u> </u>                 | 0.019                                            |                                                  | Out          | not detected in sw                       |
| Toxaphene                     | <del></del>         |                                         | ļ                                                | 0.73              | 0.0002                | <del> </del>             | ļ                                                |                                                  | Out          | not detected in sw                       |
| SVOC (ug/l)                   | +                   |                                         | <del>                                     </del> |                   |                       | 1                        | <del> </del>                                     |                                                  |              |                                          |
| 1,2,4-Trichlorobenzene        |                     |                                         |                                                  |                   |                       | 700                      | 110                                              |                                                  | Out          | not detected in sw                       |
| 1,2-Dichlorobenzene           |                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                                  |                   |                       | 260                      | 14                                               |                                                  | Out          | not detected in sw                       |
| 1,3-Dichlorobenzene           |                     |                                         |                                                  |                   |                       | 630                      | 71                                               |                                                  | Out          | not detected in sw                       |
| 1,4-Dichlorobenzene           |                     |                                         | i i                                              |                   |                       | 180                      | 15                                               |                                                  | Out          | not detected in sw                       |
| 2,2'-Oxybis(1-Chloropropane)  |                     |                                         |                                                  |                   |                       |                          |                                                  |                                                  | Out          | not detected in sw                       |
| 2,4,5-Trichlorophenol         |                     |                                         |                                                  |                   |                       |                          | L                                                |                                                  | Out          | not detected in sw                       |
| 2,4,6-Trichlorophenol         |                     |                                         |                                                  |                   |                       |                          |                                                  |                                                  | Out          | not detected in sw                       |
| 2,4-Dichlorophenol            |                     | L                                       |                                                  |                   |                       | J                        | <u> </u>                                         | 1                                                | Out          | not detected in sw                       |
| 2,4-Dinitrophenol             |                     |                                         |                                                  |                   | l                     | 1                        |                                                  |                                                  | Out          | not detected in sw                       |
| 2,4-Dinitrotoluene            |                     |                                         | 1                                                |                   | L                     |                          |                                                  |                                                  | Out          | not detected in sw                       |
| 2,6-Dinitrotoluene            |                     | Ļ                                       | ļ <u>-</u>                                       |                   |                       |                          |                                                  |                                                  | Out          | not detected in sw                       |
| 2-Chloronaphthalene           |                     | 1                                       |                                                  |                   | <b>↓</b>              |                          |                                                  | <u> </u>                                         | Out          | not detected in sw                       |
| 2-Chlorophenol                |                     |                                         | <u> </u>                                         |                   | ļ                     | <u> </u>                 |                                                  |                                                  | Out          | not detected in sw                       |
| 2-Methylnaphthalene           |                     | <u> </u>                                |                                                  |                   | L                     | <u> </u>                 |                                                  | <del></del>                                      | Out          | not detected in sw                       |
| 2-Methylphenol (o-cresol)     |                     |                                         |                                                  |                   |                       | 230                      | 13                                               |                                                  | Out          | not detected in sw                       |
| 2-Nitroaniline                |                     | <b>!</b>                                | -                                                |                   |                       | <u> </u>                 |                                                  |                                                  | Out          | not detected in sw                       |
| 2-Nitrophenol                 |                     | ļ                                       | <b>↓</b>                                         |                   |                       | <b>_</b>                 |                                                  |                                                  | Out          | not detected in sw                       |
| 3,3'-Dichlorobenzidine        |                     | L                                       | <del>  </del>                                    |                   | <del></del>           |                          | <del> </del>                                     |                                                  | Out          | not detected in sw                       |
| 3-Methylphenol/4-Methylphenol | <b></b>             | <b></b> _                               | ļ <b>.</b>                                       |                   | -                     |                          | <del> </del>                                     | <del></del>                                      | Out          | not detected in sw                       |
| 3-Nitroaniline                |                     | ļ                                       | <del>  </del>                                    |                   | <del></del>           |                          | <del> </del>                                     | <del> </del>                                     | Out          | not detected in sw                       |
| 4,6-Dinitro-2-methylphenol    | <del></del>         | <b> </b>                                | ļ                                                |                   | <del></del>           |                          | <del>                                     </del> | <del></del>                                      | Out          | not detected in sw                       |
| 4-Bromophenylphenyl ether     | <b></b>             | <u> </u>                                | <u> </u>                                         |                   | <del> </del>          | <del> </del>             | 1.5_                                             | <del></del>                                      | Out          | not detected in sw                       |
| 4-Chloro-3-methylphenol       | <b></b>             | ļ                                       |                                                  |                   | <del></del>           |                          | <del> </del>                                     | <u> </u>                                         | Out          | not detected in sw                       |
| 4-Chloroaniline               |                     | ļ                                       | ļi                                               |                   | <del></del>           |                          |                                                  | <del> </del>                                     |              | not detected in sw                       |
| 4-Chlorophenylphenyl ether    |                     | <b>├-</b>                               | ļ                                                |                   | <del> </del>          | <del></del>              | <del> </del>                                     | <del>                                     </del> | Out          | not detected in sw                       |
| 4-Nitroaniline                |                     | <del></del>                             | ·                                                |                   | <del> </del>          | 4200                     | 300                                              | <del></del>                                      | Out          | not detected in sw                       |
| 4-Nitrophenol                 |                     | <b></b>                                 | <del>                                     </del> |                   | <del></del>           | 1200                     | 300                                              | <del> </del>                                     |              |                                          |
| Acenaphthene                  | +                   | <b> </b>                                | <b>├</b>                                         |                   | <del> </del>          |                          | <del> </del>                                     | <del> </del>                                     | Out          | not detected in sw                       |
| Acenaphthylene                |                     | <u> </u>                                | - <del></del>                                    |                   | <del> </del>          | <del> </del> _           | 0.72                                             | <del></del>                                      | Out          | not detected in sw<br>not detected in sw |
| Anthracene                    | <del></del>         | ļ                                       | <b> </b>                                         |                   | <del></del>           | 13                       | 0.73                                             | <del> </del>                                     | Out          |                                          |
| Benzo(a)anthracene            | <del></del>         | <u> </u>                                | <del>                                     </del> |                   | <del> </del>          | 0.49                     | 0.027                                            | <del> </del>                                     | Out<br>Out   | not detected in sw                       |
| Benzo(a)pyrene                |                     | <del> </del>                            | <del> </del>                                     |                   | <del> </del>          | 0.24                     | 0.014                                            | <del> </del>                                     | Out          | not detected in sw                       |
| Benzo(b)fluoranthene          |                     | <del></del>                             | <del> </del> -                                   |                   | <del> </del>          | <del> </del>             | +                                                | <del> </del>                                     | Out          | not detected in sw                       |
| Benzo(g,h,i)perylene          |                     | <del></del>                             | +                                                |                   | <del> </del>          | <b>_</b>                 | <b> </b>                                         | ļ                                                | Out          | not detected in sw                       |

#### Table 5-2 Comparison of Maximum Surface Water Concentrations to Standards and Guidelines Dead Creek Sector F and Borrow PH Lake Bauget Area I

|                                    | Site      | Biin               | CMA <sup>T</sup> | NAWO Criteria | flore de    | Velues <sup>3</sup> | (Jak Hidge                        | Preliminary |                      |
|------------------------------------|-----------|--------------------|------------------|---------------|-------------|---------------------|-----------------------------------|-------------|----------------------|
|                                    | Maximum   | Acute WG           | Čivenic WQ       | CMC CHIEFE    |             | Secondary           | Lowest Chronic Value              | Screening   | Comments             |
|                                    | Detected' | Standards          | Standards        | CMC CCC       | Acute Value |                     |                                   | screening   | ('(niniming          |
| mpounds                            | Ceretion  | COCCUM PERSON LANS | 948708709        |               | VCOIS ABIOS | CHICKLE AND         | ion to the females of             |             |                      |
| (2-Chloroethosy)methene            |           |                    | 1                | <b>.</b>      |             | 1 .                 |                                   | Out         | not detected in sw   |
| (2-Chloroethyl)ether               |           |                    | ļ ļ              | }             |             |                     | ļ .                               | Qui         | not detected in tw   |
| (2-Ethythexyt)phthalate            |           |                    | 1 1              |               | 27          | 3                   |                                   | Out         | not detected in sw   |
| lylbenzylphthalale                 |           |                    |                  |               |             | 19                  | Į .                               | Out         | not detected in 5w   |
| rhazole                            |           |                    |                  |               | l l         | ļ                   |                                   | Out         | not delected in sw   |
| rysene                             |           |                    | 1                | 1             | i           | 1                   | ]                                 | Out         | not detected in five |
| n-butylphthalala                   |           |                    | 1 1              | ļ             | 190         | 36                  |                                   | Out         | not detected in sw   |
| n-octylphthalais                   |           |                    | 1 1              |               |             | 1                   | 706                               | Out         | not detected in sw   |
| onzo(a,h)anthracene                |           |                    | !!!              |               |             | 1                   | 1                                 | Out         | not detected in sw   |
| enzofuran                          |           |                    | ł I              |               | 66          | 3.7                 | I                                 | Out         | not detected in sw   |
| thylphthalate                      |           |                    | ł [              |               | 1800        | 210                 | Ī                                 | Out         | not detected in sw   |
| nethylphthalate                    |           |                    |                  |               |             |                     | Į.                                | Out         | not detected in tw   |
| oranthene                          | 07        |                    |                  | i i           |             | Ī                   | 1 15                              | Out         | no exceedance        |
| one v                              |           |                    | 1                | Ī             | 70          | 3.9                 | 1                                 | Out         | ned detected in sw   |
| achiorobenzana                     |           |                    |                  | Ī             |             | i                   | 1                                 | 1 Out 1     | not detected in sw   |
| achiorobuladiene                   |           |                    | j İ              |               | t           | i                   | 1                                 | Out         | nut detected in tw   |
| achiorocyclopeniadiene             | '         | 1                  | 1                |               | 1           | 1                   | 1                                 | Oui         | not detected in Sw   |
| achioroethana                      |           | i                  | 1                | İ             | 210         | 12                  | 1                                 | Out         | not detected in sw   |
| eno(1,2,3-cd)pyrene                |           | i                  | 1 1              |               | 1           | 1 .                 | 1                                 | Out         | not detected in tw   |
| phorone                            | i e       | l                  | 1 1              | ł             | 1           | 1                   | 1                                 | Out         | not detected in sw   |
|                                    |           | ł                  | ) j              | ł             | J           | 1                   |                                   | Out         | not detected in sw   |
| Vitroso-di-n-propylamine           |           | 1                  | 1                | f             | 3800        | 210                 | (                                 | Out         | not detected in sw   |
| Hirosodiphenylamine                |           | }                  | 1                | ļ             | 190         | 12                  | <u>†</u>                          | Out         | nut detected in sw   |
| shthalene                          |           | ŀ                  | }                | ł             | 190         | 1 12                | <b>!</b>                          | Out         | not detected in sw   |
| oben <b>zene</b>                   |           | ļ                  | 1                | - 1           | i           | 1                   | į.                                |             |                      |
| tachlorophenol                     |           |                    | 1                |               | Į.          | +                   | ł                                 | Out         | not detected in aw   |
| nanthrene                          | 07        | Į.                 | ļ ļ              | ļ             | ļ           |                     | 200                               | Out         | no exceedance        |
| Pnol                               |           | Į.                 | ļ į              | 1             | k           | į.                  |                                   | Out         | not detected in sw   |
| rene                               |           |                    |                  | +             |             |                     |                                   | Out         | not detected in sw   |
| OC (ug/l)                          |           | ļ                  | 1                |               | 1           |                     | 1                                 |             |                      |
| 1,1-1richloroethane                |           |                    | 1 1              |               | 200         | 11                  | }                                 | Out         | not detected in sw   |
| .2.2-1etrachloroethane             | j         |                    | 1 1              |               | 2100        | 610                 |                                   | Out         | not detected in aw   |
| .2-Trichloroethane                 | l         |                    | 1 1              | 1             | 5200        | 1200                | ļ                                 | Out         | not detected in sw   |
| -Dichloroethane                    |           | 1                  | 1 1              |               | 630         | 47                  |                                   | Out         | not detected in sw   |
| Cichloroethene                     |           | Ì                  | 1 1              | ŀ             | 450         | 25                  | j                                 | Out         | not detected in sw   |
| -(Archigroethane                   | l         |                    | 1                |               | 8800        | 910                 | 1                                 | Out         | not detected in aw   |
| -(Xichloropropene                  | i         | Į.                 | 1                | 1             | Ī           | Ī                   | Î                                 | Out         | not detected in aw   |
|                                    |           | i .                | 1 1              | i             | 240000      | 14000               | 1                                 | Out         | not detected in sw   |
| Julanone (MEK)                     | ì         | 1                  | 1 1              |               | 1800        | 99                  |                                   | Out         | not detected in aw   |
| lexanone                           | ł         | ł                  | }                |               | 2200        | 170                 | t                                 | Out         | not detected in aw   |
| lethyl-2-pentanone (MIBK)          | ۱         | 1                  | 1                |               | 28000       | 1800                | t                                 | Out         | no exceedance        |
| rione                              | 16        | l                  | 1                |               | 2300        | 130                 | 1                                 | Out         | less than criteria   |
| izene                              | 1.7       | 1                  |                  |               | 2300        | 130                 | 1                                 | Out         | not detected in sw   |
| modichloromethane                  | I         | ]                  | 1                |               |             | 1                   | ĺ                                 |             |                      |
| motorm                             | l         | 1                  | 1                |               |             | 1                   | 1                                 | Oul         | not detected in sw   |
| momethane (Methyl bromide)         | l         | 1                  | , I              |               | 1           | 1                   | 1                                 | Out         | not detected in sw   |
| bon disulfide                      | ì         | ľ                  | 1                | ł             | 17          | 0.92                | 1                                 | Oul         | not detected in aw   |
| thon letrachloride                 | 1         |                    | 1                | 1             | 180         | 9.8                 | ļ                                 | Out         | not detected in sw   |
| probenzene                         | i         | 1                  |                  |               | 1100        | 64                  | 1                                 | Out         | not detected in sw   |
| orgelhane                          | 1         | 1                  | 1                |               |             | 1                   | 1                                 | Oul         | not delected in sw   |
| oroform                            |           | i                  | l                |               | 490         | 28                  | .1                                | ָ טָטָן     | not detected in sw   |
| oromethane                         |           | ì                  | 1                |               |             | 1                   | .1 .                              | Out         | not detected in sw   |
|                                    |           | 1                  | 1                |               |             | 1                   | 1                                 | Out         | not detected in sw   |
| 1,3-Dichloropropene                |           | ł                  | 1 1              |               |             |                     | 1                                 | Out         | not detected in sw   |
| /Trans-1,2-Dichloroethene          | l .       |                    |                  |               |             |                     | 1                                 | Out         | not detected in sw   |
| romochloromethane                  | 1         | l                  |                  |               | 130         | 7.3                 | · · · · - · · · · · · · · · · · · | Out         | not detected in sw   |
| ylbenzene                          | 1         | ı                  | 1                |               |             |                     | ·                                 | Out         | not detected in sw   |
| thylene chloride (Dichloromethane) | I         | 1                  | ] [              |               | 26000       | 2200                | -                                 |             | not detected in sw   |
| rene                               | ŀ         | 1                  | } !              |               |             |                     |                                   | Out         |                      |
| Irachloroethene                    | ı         | 1                  | 1 1              |               | 830         | 90                  |                                   | Out         | not detected in sw   |
| uene                               | 1         | 1                  | 1                |               | 120         | 9.8                 | <del>-</del>                      | Out         | not detected in sw   |
| ans-1,3-Dichloropropene            | 1         | t                  | ι ι              | Į.            | 1           | t                   | l                                 | Out         | not detected in sw   |

#### Comparison of Maximum Surface Water Concentrations to Standards and Guidelines Dead Creek Sector F and Borrow Pit Lake Sauget Area I

|                      | Site                             | Illin                 | ois'                    | NAWQ | Criteria <sup>2</sup> | Tier II                            | Values <sup>3</sup>                | Oak Ridge            | Preliminary |                               |
|----------------------|----------------------------------|-----------------------|-------------------------|------|-----------------------|------------------------------------|------------------------------------|----------------------|-------------|-------------------------------|
| Compounds            | Maximum<br>Detected <sup>1</sup> | Acute WQ<br>Standards | Chronic WQ<br>Standards | СМС  | ccc                   | Secondary<br>Acute Value           | Secondary<br>Chronic Value         | Lowest Chronic Value | Screening   | Comments                      |
| richloroethene       |                                  |                       |                         |      |                       | 440                                | 47                                 |                      | Out         | not detected in sw            |
| /inyl chloride       |                                  |                       |                         |      |                       |                                    |                                    |                      | Out         | not detected in sw            |
| Xylenes, Total       |                                  |                       |                         |      |                       | 230 <sup>j</sup> / 32 <sup>k</sup> | 13 <sup>l</sup> / 1.8 <sup>k</sup> |                      | Out         | not detected in sw            |
| Dioxins (ug/l)       |                                  |                       |                         |      |                       |                                    |                                    |                      |             |                               |
| 1,2,3,4,6,7,8,9-OCDD | 0.00143                          |                       |                         |      |                       |                                    |                                    |                      | In          | COPC in sediment              |
| 1,2,3,4,6,7,8,9-OCDF | 0.00026                          |                       |                         |      |                       | i                                  |                                    |                      | In          | COPC in sediment              |
| 1,2,3,4,6,7,8-HpCDD  | 0.0000692                        |                       |                         |      |                       |                                    |                                    |                      | ln .        | COPC in sediment              |
| 1,2,3,4,6,7,8-HpCDF  | 0.0000505                        |                       |                         |      |                       |                                    | İ                                  |                      | In          | COPC in sediment              |
| 1,2,3,4,7,8,9-HpCDF  | 0.000548                         |                       |                         |      |                       |                                    |                                    |                      | In          | COPC in sediment              |
| 1,2,3,4,7,8-HxCDD    |                                  |                       |                         |      |                       |                                    |                                    |                      | in          | COPC in sediment              |
| 1,2,3,4,7,8-HxCDF    | 0.000024                         |                       |                         |      |                       | -                                  |                                    |                      | In          | COPC in sediment              |
| 1,2,3,6,7,8-HxCDD    |                                  |                       |                         |      |                       |                                    |                                    |                      | In          | COPC in sediment              |
| 1,2,3,6,7,8-HxCDF    | 0.0000089                        |                       |                         |      |                       |                                    |                                    |                      | In I        | COPC in sediment              |
| 1,2,3,7,8,9-HxCDD    |                                  |                       |                         |      |                       |                                    |                                    | _                    | In          | COPC in sediment              |
| 1,2,3,7,8,9-HxCDF    |                                  |                       |                         |      |                       |                                    |                                    | <u> </u>             | In          | COPC in sediment              |
| 1,2,3,7,8-PeCDD      |                                  |                       |                         | · -  |                       |                                    | 1                                  |                      | ln l        | COPC in sediment              |
| 1,2,3,7,8-PeCDF      |                                  |                       |                         |      |                       |                                    |                                    |                      | ln l        | COPC in sediment              |
| 2,3,4,6,7,8-HxCDF    |                                  |                       |                         |      |                       |                                    |                                    |                      | ln          | COPC in sediment              |
| 2,3,4,7,8-PeCDF      | 1                                |                       |                         |      |                       |                                    |                                    |                      | In          | COPC in sediment              |
| 2,3,7,8-TCDD         |                                  |                       |                         |      |                       |                                    |                                    |                      | ln l        | COPC in sediment              |
| 2.3.7.8-TCDF         |                                  |                       |                         |      |                       |                                    |                                    |                      | ln .        | COPC in sediment              |
| Total HpCDD          | 0.000128                         |                       |                         |      |                       |                                    |                                    |                      | In          | COPC in sediment              |
| Total HpCDF          | 0.0006                           |                       |                         |      |                       |                                    |                                    |                      | In          | COPC in sediment              |
| Total HxCDD          | 0.0000902                        |                       |                         |      |                       |                                    |                                    |                      | In          | COPC in sediment              |
| Total HxCDF          | 0.000581                         |                       |                         |      | ,                     |                                    |                                    |                      | In          | COPC in sediment              |
| Total PeCDD          |                                  |                       |                         |      |                       | _                                  | 1                                  |                      | In          | COPC in sediment              |
| Total PeCDF          |                                  |                       |                         |      |                       |                                    |                                    |                      | In          | COPC in sediment              |
| Total TCDD           |                                  |                       |                         |      | 1                     | . 1                                |                                    |                      | In          | COPC in sediment              |
| Total TCDF           |                                  |                       |                         |      | 1                     |                                    |                                    |                      | In          | COPC in sediment              |
| Total TEQ (mammal)   | 1.901E-05                        | <b>—</b> —            | 1                       |      |                       |                                    | 3.1E-09                            |                      | ln          | greater than Great Lakes Tier |

\*Criterion is for total recoverable Aluminum at pH 6.5 - 9.0; USEPA says Water-Effects ratios may be more appropriate.

<sup>b</sup>Criterion is for Arsenic V

<sup>c</sup>Criterion is for Chromium III

<sup>d</sup>Criterion is for Chromium VI

\*Criterion is for Chlordane

'Criterion is for alpha- and beta-Endosulfan

<sup>9</sup>Criterion is for PCBs

<sup>h</sup>Criterion is for BHC forms other than gamma-BHC

Criterion is for DDT

Criterion is for Xylene

\*Criterion is for m-Xylene

out = excluded from further consideration in surface water

in = selected as a COPC

For the purposes of COPC selection, hardness dependent criteria were calculated at a hardness of 220 mg/l as CaCO<sub>3</sub> (the lowest value detected on site and therefore, the most conservative value to use. Results in ug/l for organic constituents; mg/l for inorganic constituents

<sup>&</sup>lt;sup>1</sup> Illinois, 1999, Title 35 of the Illinois Administrative Code, Subtitle C, Chapter I, Part 302 Water Quality Standards, Subpart B.

<sup>&</sup>lt;sup>2</sup> USEPA, 1999, National Recommended Water Quality Criteria - Correction, Office of Water, EPA 82-2-Z-99-001 (April 1999)

<sup>3</sup> Suter, G.W. II, and C.L. Tsao, 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effect on Aquatic Biota: 1996 Revision. Risk Assessment, Health Sciences Research Division, Oak F Tennessee, ES/ER/TM-96/R2.

Table 5-3
Comparison of Maximum Sediment Concentrations to Sediment Quality Guidelines
Dead Creek Segment F and Borrow Pit Lake
Sauget Area I

|                                         |                       | Sediment<br>Quality | Florida | Ontario                 |             |                           |
|-----------------------------------------|-----------------------|---------------------|---------|-------------------------|-------------|---------------------------|
|                                         | Mandania              | Guidelines'         | SQAG'   | Guidelines <sup>3</sup> |             |                           |
|                                         | Maximum               |                     |         |                         | Preliminary | 1                         |
| Compounds                               | Detected <sup>4</sup> | TEC                 | TEL     | LEL                     | Screening   | Comment                   |
| Herbicides (ug/kg)                      |                       |                     |         |                         |             |                           |
| 2,4,5-T                                 |                       |                     |         | ļ                       | ļ           |                           |
| 2,4,5-TP (Silvax)                       |                       |                     |         |                         | İ           |                           |
| 2,4-D                                   | 23                    | 1                   |         |                         | IN          | No criteria               |
| 2,4-DB                                  |                       |                     | ļ       |                         | OUT         | Not detected in sediment. |
| Dalapon                                 |                       | 1                   |         |                         | OUT         | Not detected in sediment. |
| Dicamba                                 |                       |                     |         | ļ                       | OUT         | Not detected in sediment. |
| Dichloroprop                            |                       | i                   |         | į                       | OUT         | Not detected in sediment. |
| Dinoseb                                 |                       | ļ                   |         | j                       | OUT         | Not detected in sediment. |
| MCPA                                    | 1                     | ļ                   | ļ       | ļ                       | OUT         | Not detected in sediment. |
| MCPP                                    |                       |                     |         | ļ                       | OUT         | Not detected in sediment. |
| Pentachlorophenol                       |                       |                     | ļ       | ļ                       | OUT         | Not detected in sediment. |
| Metals (mg/kg)                          |                       | ļ                   | ļ       | ļ                       | ļ           |                           |
| Aluminum                                | 17000                 | ļ                   | }       | !                       | IN          | No criteria.              |
| Antimony                                | 4.7                   | ļ                   | l       | ļ _                     | IN          | No criteria.              |
| Arsenic                                 | 19                    | 9.79                | 7.24    | 6                       | IN          | Greater than criteria.    |
| Barlum                                  | 420                   |                     | ļ       |                         | IN IN       | No criteria.              |
| Beryllium                               | 0.89                  |                     |         | ļ                       | IN          | No criteria.              |
| Cadmium                                 | 47                    | 0.99                | 0.676   | 0.6                     | IN          | Greater than criteria.    |
| Calcium                                 | 17000                 |                     |         | ļ                       | OUT         | Common nutrient.          |
| Chromium                                | 38                    | 43.4                | 52.3    | 26                      | IN          | Greater than criteria.    |
| Cobalt                                  | 13                    | ŀ                   |         | 50                      | OUT         | Loss than criteria.       |
| Copper                                  | 410/5400              | 31.6                | 18.7    | 16                      | IN          | Greater than criteria.    |
| Cyanide, Total                          |                       |                     |         | 0.1                     | OUT         | Not detected in sediment. |
| Iron                                    | 38000                 |                     |         | 20000                   | IN          | Greater than criteria     |
| Lead                                    | 320                   | 35.8                | 30.2    | 31                      | IN          | Greater than criteria.    |
| Magnesium                               | 6800                  |                     | İ       |                         | OUT         | Common nutrient.          |
| Manganese                               | 1400                  |                     |         | 460                     | IN          | Greater than criteria.    |
| Mercury                                 | 1.1                   | 0.18                | 0.13    | 0.2                     | IN          | Greater than criteria.    |
| Molybdenum                              | 3.7                   |                     |         |                         | IN          | No criteria.              |
| Nickel                                  | 390                   | 22.7                | 15.9    | 16                      | IN          | Greater than criteria.    |
| Potassium                               | 2900                  | ]                   |         |                         | OUT         | Common nutrient           |
| Selenium                                |                       |                     |         |                         | OUT         | Not detected in sediment. |
| Silver                                  | 0.79                  | ĺ                   | 0.733   | 0.5                     | IN          | Greater than criteria     |
| Sodium                                  | 1                     |                     |         |                         | OUT         | Not detected in sediment. |
| Thallium                                |                       | l                   | l       |                         | OUT         | Not detected in sediment. |
| Vanadium                                | 51                    | }                   | }       | j                       | IN          | No criteria.              |
| Zinc                                    | 3700/11000            | 121                 | 124     | 120                     | IN          | Greater than criteria.    |
| pH                                      | 7.06                  |                     |         |                         | OUT         | NA                        |
| Total Organic Carbon (mg/kg dry weight) | 140000                | 1                   |         |                         | OUT         | NA                        |

Table 5-3

Comparison of Maximum Sediment Concentrations to Sediment Quality Guidelines

Dead Creek Segment F and Borrow Pit Lake

Sauget Area I

|                                  |                       | Sediment                |                                                  |                                                  | [           | <del></del>                                   |  |  |
|----------------------------------|-----------------------|-------------------------|--------------------------------------------------|--------------------------------------------------|-------------|-----------------------------------------------|--|--|
|                                  |                       | Quality                 | Florida                                          | Ontario                                          | [           | ł                                             |  |  |
|                                  | Maximum               | Guidelines <sup>1</sup> | SQAG <sup>2</sup>                                | Guidelines <sup>3</sup>                          | Preliminary | •                                             |  |  |
| Compounds                        | Detected <sup>4</sup> | TEC                     | TEL                                              | LEL                                              | Screening   | Comment                                       |  |  |
| PCBs and Pesticides (ug/kg)      |                       |                         |                                                  |                                                  |             |                                               |  |  |
| Decachlorobiphenyl               | ND/460                |                         |                                                  |                                                  | IN          | Included in "industry specific" sediment only |  |  |
| Dichlorobiphenyl                 |                       |                         |                                                  |                                                  |             | Not detected in sediment.                     |  |  |
| -leptachlorobiphenyl             | ND/260                |                         |                                                  |                                                  | IN          | Included in "industry specific" sediment only |  |  |
| Hexachlorobiphenyl               | 22/19                 |                         |                                                  |                                                  | IN          | Included as Total PCBs                        |  |  |
| Monochlorobiphenyl               |                       |                         |                                                  |                                                  | OUT         | Not detected in sediment.                     |  |  |
| Nonachlorobiphenyl               | ND/270                |                         |                                                  |                                                  | IN          | Included in "industry specific" sediment only |  |  |
| Octachlorobiphenyl               | ND/27                 |                         |                                                  |                                                  | IN          | Included in "industry specific" sediment only |  |  |
| Pentachlorobiphenyl              | 66/3700               |                         |                                                  |                                                  | IN          | Included as Total PCBs                        |  |  |
| letrachlorobiphenyl              | ND/1600               |                         |                                                  |                                                  | IN          | Included in "industry specific" sediment only |  |  |
| Trichlorobiphenyl                | ND/17                 |                         |                                                  |                                                  | IN          | Included in "industry specific" sediment only |  |  |
| Total PCBs                       | 83/6470.5             | 59.8                    | 21.6                                             | 70                                               | IN          | Greater than criteria                         |  |  |
| \$,4'-DDD                        | 3.8                   | 4.88                    | 1.22                                             | 8                                                | IN          | Greater than criteria                         |  |  |
| 1,4'-DDE                         | 11                    | 3.16                    | 2.07                                             | 5                                                | IN          | Greater than criteria                         |  |  |
| 1,4'-DDT*                        | 4.5                   | 4.16                    | 1.19                                             | 8                                                | IN          | Greater than criteria                         |  |  |
| Total DDT                        | 43                    | 5.28                    | 3.89                                             | 7                                                | IN          | Greater than criteria                         |  |  |
| Aldrin                           | 4.1                   |                         |                                                  | 2                                                | IN          | Greater than criteria                         |  |  |
| Alpha Chlordane**                | 5.3                   | 3.24                    | 2.26                                             | 7                                                | IN          | Greater than criteria                         |  |  |
| alpha-BHC                        |                       |                         | <u> </u>                                         | 6                                                | OUT         | Not detected in sediment.                     |  |  |
| beta-BHC                         |                       |                         |                                                  | 5                                                | OUT         | Not detected in sediment,                     |  |  |
| delta-BHC                        | 0.34                  |                         |                                                  |                                                  | IN          | No criteria.                                  |  |  |
| Dieldrin                         | 9.3                   | 1.9                     | 0.715                                            | 2                                                | IN          | Greater than criteria.                        |  |  |
| Endosulfan I                     | 5.7                   |                         |                                                  |                                                  | IN          | No criteria.                                  |  |  |
| Endosulfan II                    | 8.1                   |                         |                                                  |                                                  | IN          | No criteria.                                  |  |  |
| Endosulfan sulfate               | 9.5                   | ·                       | 1                                                | <del>                                     </del> | IN          | No criteria.                                  |  |  |
| Endosunan sunate<br>Endrin       | 1.7                   | 2.22                    | <del>                                     </del> | 3                                                | OUT         | Less than criteria.                           |  |  |
| Endrin aldehyde                  | 14                    |                         | 1 -                                              | † <b>-</b>                                       | IN          | No criteria.                                  |  |  |
| Endrin aldenyde<br>Endrin ketone | 10                    | <del> </del>            | <del>                                     </del> | 1                                                | IN          | No criteria.                                  |  |  |
| Gamma Chlordane**                | 17                    | 3.24                    | 2.26                                             | 7                                                | IN IN       | Greater than criteria.                        |  |  |
|                                  | 4.8                   | 2.37                    | 0.32                                             | 3                                                | IN          | Greater than criteria.                        |  |  |
| gamma-BHC (Lindane)              | 0.93                  | 2.31                    | 0.32                                             | 0.3 NEL                                          | IN          | Greater than criteria.                        |  |  |
| Heptachlor                       | 5.4                   | 2.47                    | <del> </del>                                     | 0.3 NEL 5                                        | IN          | Greater than criteria.                        |  |  |
| Heptachlor epoxide               |                       | 2.41                    | <del> </del>                                     | <del> </del> -                                   | IN          | No criteria.                                  |  |  |
| Methoxychlor                     | 24                    | <del> </del>            | -                                                | <del> </del>                                     | OUT         |                                               |  |  |
| Toxaphene                        |                       | <u></u>                 |                                                  | <u> </u>                                         | 001         | Not detected in sediment.                     |  |  |

Table 5-3 Comparison of Maximum Sediment Concentrations to Sediment Quality Guidelines Dead Creek Segment F and Borrow Pit Lake Sauget Area I

|                                             |                       | Sediment<br>Quality     | Florida | Ontario     |             |                           |
|---------------------------------------------|-----------------------|-------------------------|---------|-------------|-------------|---------------------------|
|                                             | Maximum               | Guidelines <sup>1</sup> | SQAG'   | Guidelines' | Preliminary |                           |
| Compounds                                   | Detected <sup>4</sup> | TEC                     | TEL     | LEL         | Screening   | 1                         |
| BVOCs ug/kg                                 |                       |                         |         |             |             |                           |
| 1,2,4-Trichlorobenzene                      | İ                     | 1                       |         |             | OUT         | Not detected in sediment. |
| I.2-Dichlorobenzene                         | 1                     |                         |         | Í           | OUT         | Not detected in sediment. |
| I.3-Dichlorobenzene                         |                       |                         | Ì       |             | OUT         | Not detected in sediment. |
| 1.4-Dichlorobenzene                         |                       | İ                       | ľ       | ľ           | OUT         | Not detected in sediment. |
| 2,2'-Oxybis(1-Chloropropane)                | 1                     | 1                       |         | ł           | OUT         | Not detected in sediment. |
| 2,4,5-Trichlorophanol                       |                       | ľ                       | 1       | ţ           | OUT         | Not detected in sediment. |
| 2,4,6-Trichlorophenol                       |                       |                         | 1       | j           | OUT         | Not detected in sediment. |
| 2,4-Dichlorophenol                          | 1                     | ł                       | ľ       | i           | OUT         | Not detected in sediment. |
| 2,4-Dinitrophenol                           | 1                     | 1                       |         | Ì           | OUT         | Not detected in sediment. |
| P,4-Dinitrotoluene                          | 1                     | 1                       |         | ľ           | OUT         | Not detected in sediment. |
| 2,6-Dinitrotoluene                          | ľ                     | 1                       | ł       | ł           | OUT         | Not detected in sediment. |
| 2-Chloronaphthalene                         | 1                     |                         | ì       | 1           | OUT         | Not detected in sediment. |
| 2-Chlorophenol                              | 1                     |                         | 1       | 1           | OUT         | Not detected in sediment. |
| 2-Methylnaphthalene                         | 1                     | †                       | 20.2    | }           | OUT         | Not detected in sediment. |
| - ·                                         |                       | 1                       | 20.2    | ł           | OUT         | Not detected in sediment. |
| 2-Methylphenol (o-cresol)<br>2 Nitronniline |                       |                         |         | ł           | OUT         | Not detected in sediment. |
|                                             | ŀ                     | 1                       | ľ       |             | OUT         | Not detected in sediment. |
| 2-Nitrophenol                               |                       | 1                       | 1       | }           | OUT         | Not detected in sediment. |
| 3,3'-Dichlorobenzidine                      |                       | 1                       | 1       | 1           | OUT         | Not detected in sediment. |
| 3-Methylphenol/4-Methylphenol               |                       |                         | ł       |             | OUT         |                           |
| 3-Nitroaniline                              |                       |                         | ł       |             |             | Not detected in sediment. |
| 4,6-Dinitro-2-methylphenol                  |                       |                         | ł       | }           | OUT         | Not detected in sediment. |
| 4-Bromophenylphenyl ether                   |                       |                         | ł       |             | OUT         | Not detected in sediment. |
| 4-Chloro-3-methylphenol                     |                       | ł                       | ł       | ł           | OUT         | Not detected in sediment. |
| 4-Chloroaniline                             |                       |                         | 1       | 1           | OUT         | Not detected in sediment. |
| 4-Chlorophenylphenyl ether                  |                       |                         | l       |             | OUT         | Not detected in sediment. |
| 4-Nitroaniline                              |                       |                         |         |             | OUT         | Not detected in sediment. |
| 4-Nitrophenol                               |                       | 1                       | l       |             | OUT         | Not detected in sediment. |
| Acenaphthene                                |                       | İ                       | 6.71    |             | OUT         | Not detected in sediment. |
| Acenaphthylene                              |                       | ļ                       | 5.87    |             | OUT         | Not detected in sediment. |
| Anthracene                                  |                       | 57.2                    | 46.9    | 220         | OUT         | Not detected in sediment. |
| Bonzo(a)anthracene                          |                       | 108                     | 74.8    | 320         | OUT         | Not detected in sediment. |
| Benzo(a)pyrene                              | ļ                     | 150                     | 88.8    | 370 _       | OUT         | Not detected in sediment. |
| Benzo(b)fluoranthene                        | 1                     |                         |         |             | OUT         | Not detected in sediment. |
| Benzo(g,h,i)perylene                        |                       | 1                       |         | 170         | OUT         | Not detected in sediment. |
| Benzo(k)fluoranthene                        |                       |                         |         | 240         | OUT         | Not detected in sediment. |
| bis(2-Chloroethoxy)methane                  |                       |                         |         |             | OUT         | Not detected in sediment. |
| bls(2-Chloroethyl)ether                     | l l                   | 1                       |         |             | OUT         | Not detected in sediment. |
| bis(2-Ethylhexyl)phthalate                  | 1                     | 1                       | 182     |             | OUT         | Not detected in sediment. |
| Butylbenzylphthalate                        | 1                     | 1                       | ì       | ł           | OUT         | Not detected in sediment. |

# Table 5-3 Comparison of Maximum Sediment Concentrations to Sediment Quality Guidelines Dead Creek Segment F and Borrow Pit Lake Sauget Area I

|                             |                       | Sediment                                         | Γ                 |                         | <u> </u>         |                                                      |
|-----------------------------|-----------------------|--------------------------------------------------|-------------------|-------------------------|------------------|------------------------------------------------------|
|                             |                       | Quality                                          | Florida           | Ontario                 |                  |                                                      |
|                             | Maximum               | Guidelines <sup>1</sup>                          | SQAG <sup>2</sup> | Guidelines <sup>3</sup> | <br> Preliminary |                                                      |
| Compounds                   | Detected <sup>4</sup> | TEC                                              | TEL               | LEL                     | ,                | Comment                                              |
| Carbazole                   |                       | 120                                              | 1 1 1 1 1 1       |                         | OUT              | Not detected in sediment.                            |
| Chrysene                    | 74                    | 166                                              | 108               | 340                     | OUT              |                                                      |
| Di-n-butylphthalate         | — <del> '</del>       | 100                                              | 100               | 340                     | OUT              | Less than criteria.                                  |
| Di-n-octylphthalate         | <del></del>           |                                                  | <u> </u>          |                         | OUT              | Not detected in sediment.                            |
| Dibenzo(a,h)anthracene      | <del></del>           | 33                                               | 6.22              | 60                      | OUT              | Not detected in sediment.                            |
| Dibenzofuran                |                       | <del>  33</del>                                  | 0.22              | 60                      | OUT              | Not detected in sediment.  Not detected in sediment. |
| Diethylphthalate            | <del></del>           |                                                  | <del> </del>      | ļ                       | OUT              |                                                      |
| Dimethylphthalate           |                       |                                                  |                   |                         | OUT              | Not detected in sediment.  Not detected in sediment. |
| Fluoranthene                | 130                   | 423                                              | 113               | 750                     | IN               | Greater than criteria.                               |
| Fluorene                    | 130                   | 77.4                                             | 21.2              | 190                     | OUT              | Not detected in sediment.                            |
| Hexachlorobenzene           |                       | 11.4                                             | 21.2              | 190                     | OUT              |                                                      |
| Hexachlorobutadiene         |                       | <del> </del>                                     |                   |                         | OUT              | Not detected in sediment.  Not detected in sediment. |
| Hexachlorocyclopentadiene   |                       | <del> </del>                                     |                   | }                       | OUT              | Not detected in sediment.                            |
| Hexachloroethane            |                       |                                                  | -                 | 1                       | OUT              | Not detected in sediment.                            |
| Indeno(1,2,3-cd)pyrene      |                       |                                                  | <u> </u>          | 200                     | OUT              | Not detected in sediment.                            |
|                             |                       | 1                                                | -                 | 200                     | OUT              | Not detected in sediment.                            |
| Isophorone                  | <del></del>           | <del> </del>                                     |                   | <del> </del>            | OUT              | Not detected in sediment.                            |
| N-Nitroso-di-n-propylamine  |                       | <del>                                     </del> |                   | <del> </del>            | OUT              |                                                      |
| N-Nitrosodiphenylamine      | -                     | 176                                              | 24.0              |                         | <del></del>      | Not detected in sediment.                            |
| Naphthalene                 |                       | 1/0                                              | 34.6              |                         | OUT              | Not detected in sediment.  Not detected in sediment. |
| Nitrobenzene                |                       | <b> </b>                                         |                   |                         | OUT              | Not detected in sediment.                            |
| Pentachlorophenol           |                       | 204                                              | -007              | 560                     | OUT              |                                                      |
| Phenanthrene                |                       | 204                                              | 86.7              | 200                     | OUT              | Not detected in sediment.                            |
| Phenol                      |                       | 405                                              | 450               | 400                     |                  | Not detected in sediment.                            |
| Pyrene                      | 440                   | 195                                              | 153               | 490                     | OUT              | Not detected in sediment.                            |
| Total PAHs                  | 440                   | 1610                                             | 1684              | 4000                    | OUT              | Less than criteria                                   |
| VOCs ug/kg                  |                       |                                                  | ļ                 |                         |                  | <u></u>                                              |
| 1,1,1-Trichloroethane       |                       |                                                  | <del> </del>      |                         | OUT              | Not detected in sediment.                            |
| 1,1,2,2-Tetrachloroethane   |                       |                                                  | <del> </del>      |                         | OUT              | Not detected in sediment.                            |
| 1,1,2-Trichloroethane       |                       |                                                  | ļ                 |                         | OUT              | Not detected in sediment.                            |
| 1,1-Dichloroethane          |                       |                                                  | ļ                 |                         | OUT              | Not detected in sediment.                            |
| 1,1-Dichloroethene          |                       |                                                  | <b> </b>          |                         | OUT              | Not detected in sediment.                            |
| 1,2-Dichloroethane          |                       |                                                  |                   |                         | OUT              | Not detected in sediment.                            |
| 1,2-Dichloropropane         |                       | <u> </u>                                         | ļ                 | <del> </del>            | OUT              | Not detected in sediment.                            |
| 2-Butanone (MEK)            |                       | 1                                                | <del> </del>      | <u> </u>                | OUT              | Not detected in sediment.                            |
| 2-Hexanone                  |                       |                                                  | <b> </b>          | ļ                       | OUT              | Not detected in sediment.                            |
| 4-Methyl-2-pentanone (MIBK) |                       |                                                  | ļ                 | ļ                       | OUT              | Not detected in sediment.                            |
| Acetone                     |                       |                                                  | <u> </u>          |                         | OUT              | Not detected in sediment.                            |
| Benzene                     |                       | .                                                | <u> </u>          |                         | OUT              | Not detected in sediment.                            |
| Bromodichloromethane        | 1                     |                                                  | <u> </u>          | ļ                       | OUT              | Not detected in sediment.                            |
| Bromoform                   | _                     |                                                  | 1                 | <u> </u>                | OUT              | Not detected in sediment.                            |

Table 5-3
Comparison of Maximum Sediment Concentrations to Sediment Quality Guidelines
Dead Creek Segment F and Borrow Pit Lake
Sauget Area I

|                                      | Maximum               | Sediment<br>Quality<br>Guidelines |     | Ontario<br>Guidelines³ | Preliminary |                           |
|--------------------------------------|-----------------------|-----------------------------------|-----|------------------------|-------------|---------------------------|
| Compounds                            | Detected <sup>4</sup> | TEC                               | TEL | LEL                    | Screening   | Comment                   |
| Bromomethane (Methyl bromide)        |                       |                                   |     |                        | OUT         | Not detected in sediment. |
| Carbon disulfide                     | 1                     | 1                                 | 1   |                        | OUT         | Not detected in sediment. |
| Carbon tetrachloride                 | 1                     |                                   | Ì   |                        | OUT         | Not detected in sediment. |
| Chlorobenzene                        | 1                     | 1                                 | ]   |                        | OUT         | Not detected in sediment. |
| Chloroethane                         |                       | 1                                 |     |                        | OUT         | Not detected in sediment. |
| Chloroform                           | 1                     |                                   | [   |                        | OUT         | Not detected in sediment. |
| Chloromethane                        |                       |                                   |     |                        | OUT         | Not detected in sediment. |
| cis-1,3-Dichloropropene              |                       |                                   |     | ì                      | OUT         | Not detected in sediment. |
| Cis/Trans-1,2-Dichloroethene         | Į.                    |                                   |     | l                      | OUT         | Not detected in sediment. |
| Dibromochloromethane                 | i                     | Į.                                |     | 1                      | OUT         | Not detected in sediment. |
| Ethylbenzene                         | 11                    |                                   | ]   | [                      | IN          | No criteria.              |
| Methylene chloride (Dichloromethane) | 1                     | ]                                 |     | ]                      | OUT         | Not detected in sediment. |
| Styrene                              | j                     |                                   | ]   | ]                      | OUT         | Not detected in sediment. |
| Tetrachloroethene                    |                       | ľ                                 | ,   | ,                      | OUT         | Not detected in sediment. |
| Toluene                              | {                     |                                   | j   |                        | OUT         | Not detected in sediment. |
| trans-1,3-Dichloropropene            |                       |                                   |     |                        | OUT         | Not detected in sediment. |
| Trichloroethene                      |                       |                                   | 1   | 1                      | OUT         | Not detected in sediment. |
| Vinyl chloride                       |                       |                                   |     | [                      | OUT         | Not detected in sediment. |
| Xylenes, Total                       |                       |                                   |     | [                      | OUT         | Not detected in sediment. |
| Dioxin TEQ (mammal) pg/g             | 333                   |                                   |     |                        | IN          | No criteria.              |

Notes: Except where noted, concentrations in ug/kg for organic constituens; mg/kg for inorganic constituents.

OUT = excluded from further consideration in sediment

IN = selected as COPC

NA = Not applicable

ND = Not detected

NEL = No-Effect Level

<sup>&</sup>lt;sup>1</sup> Threshold Effects Concentration -

<sup>&</sup>lt;sup>2</sup> Sediment Quality Assessment

<sup>&</sup>lt;sup>3</sup> Lowest Effects Level - Persaud, D., R.

<sup>&</sup>lt;sup>4</sup> A blank in this column indicates that compound was not detected in sediment in this location. If two values appear, the first is for ecological sediment samples (0 to 2 inch depth) and the second is for "industry specific" sediment samples (sediment cores to refusal; generally about 1 to 1.5 foot depth).

<sup>\*</sup> Ontario and Sediment Quality Guideline values are for 2,4'-DDT and 4,4'-DDT combined

<sup>\*\*</sup> Florida, Ontario, and Sediment Quality Guideline values are for Chlordane

Table 5-4 Selection of COPCs for Ecological Risk Assessment Sauget Area I

| 2.4.5 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Compounds         | Maximum<br>Detected<br>Sediment | Sediment<br>Screened<br>In | Maximum<br>Detected<br>in Surface<br>Water | Surface<br>Water<br>Screened In       | Maximum<br>Detected<br>LMB<br>Site | Maximum<br>Detected<br>BB<br>Site | Maximum<br>Detected<br>Clam<br>Site | Maximum<br>Detected<br>Forage Fish<br>Site | Maximum<br>Detected<br>Plants<br>Site | Maximum<br>Detected<br>Shrimp<br>Site | Selected as |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------|----------------------------|--------------------------------------------|---------------------------------------|------------------------------------|-----------------------------------|-------------------------------------|--------------------------------------------|---------------------------------------|---------------------------------------|-------------|
| 2.4-D 23 IN 2.4-DB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HERBICIDES        |                                 |                            |                                            |                                       |                                    |                                   |                                     |                                            |                                       |                                       |             |
| 2.4-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                 | -                          |                                            |                                       |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| 2.4-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,4,5-TP (Silvex) |                                 |                            |                                            |                                       |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Dalapon   Dicamba   1.9   2.6     Dichloroprop   6.6   32   6.7   7     Dicoseb   Dichloroprop   1800   3300     Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   Dicomba   D   |                   | 23                              | IN                         |                                            |                                       |                                    |                                   |                                     |                                            |                                       |                                       | YES         |
| Dalapton   1.9   2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,4-DB            |                                 |                            |                                            |                                       |                                    |                                   |                                     | 10                                         |                                       |                                       | YES         |
| Dicamba   1.9   2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dalapon           |                                 |                            |                                            |                                       |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Dichloroprop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dicamba           |                                 |                            |                                            |                                       | 1.9                                |                                   |                                     | 2.6                                        | •                                     |                                       | YES         |
| Dinoseb   MCPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dichloroprop      |                                 |                            |                                            |                                       |                                    | 6.6                               | 32                                  | 6.7                                        | 7                                     |                                       | YES         |
| MCPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dinoseb           |                                 |                            |                                            |                                       |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| MCPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MCPA              |                                 |                            |                                            |                                       | 1800                               |                                   |                                     | 3300                                       |                                       | <u> </u>                              | YES         |
| Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MCPP              |                                 |                            |                                            |                                       |                                    |                                   | 4000                                |                                            |                                       |                                       | YES         |
| NORGANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pentachlorophenol |                                 |                            |                                            |                                       |                                    |                                   |                                     | 2.2                                        |                                       | 1.8                                   | YES         |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                                 |                            |                                            |                                       |                                    |                                   |                                     |                                            |                                       |                                       |             |
| Antimony   4.7   IN   0.015   0.96   0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | 17000                           | IN                         | 3.4                                        | IN                                    | 33                                 | 18                                | 13                                  | 52                                         | 44                                    | 28                                    | YES         |
| Arsenic   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                 |                            |                                            |                                       |                                    |                                   |                                     |                                            |                                       |                                       | YES         |
| Barlum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                 |                            | 0.015                                      |                                       |                                    |                                   | 0.96                                |                                            |                                       | 0.10                                  | YES         |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                 |                                 |                            |                                            | IN                                    |                                    |                                   |                                     |                                            | 0.00                                  |                                       | YES         |
| Cadmium         47         IN         0.12           Calcium         17000         89           Chromium         38         IN         0.0041         0.93         0.7         1.1         0.32         0.097         0.23           Cobalt         13         0.0015         0.68         0.89         0.99         1.7         2.1         8.3           Cyanide, Total         Iron         38000         IN         8.7         IN           Lead         320         IN         0.02         IN         0.064         0.25         0.25         0.59         2.1         0.39           Magnesium         6800         33         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                 |                            |                                            |                                       |                                    |                                   |                                     |                                            |                                       |                                       | YES         |
| Calcium         17000         89           Chromium         38         IN         0.0041         0.93         0.7         1.1         0.32         0.097         0.23           Cobalt         13         0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                 |                            |                                            |                                       |                                    |                                   | 0.12                                |                                            |                                       |                                       | YES         |
| Chromium         38         IN         0.0041         0.93         0.7         1.1         0.32         0.097         0.23           Cobalt         13         0.0015         Copper         410/5400         IN         0.012         0.68         0.89         0.99         1.7         2.1         8.3           Cyanide, Total         Iron         38000         IN         8.7         IN           Lead         320         IN         0.02         IN         0.064         0.25         0.25         0.59         2.1         0.39           Magnesium         6800         33         Magnesium         6800         33         Magnesium         6800         33         Magnesium         0.26         0.6           Molybdenum         3.7         IN         0.004         IN         0.02         0.6           Potassium         2900         7.6         5           Selenium         0.63         0.54           Silver         0.79         IN         0.02         0.09           Sodium         0.0014         0.014         0.0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                                 |                            | 89                                         |                                       |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Cobalt         13         0.0015           Copper         410/5400         IN         0.012         0.68         0.89         0.99         1.7         2.1         8.3           Cyanide, Total         Iron         38000         IN         8.7         IN           Lead         320         IN         0.02         IN         0.064         0.25         0.25         0.59         2.1         0.39           Magnesium         6800         33         33         33         33         33         34         34         34         34         35         35         35         35         35         36         35         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                                 | IN                         |                                            |                                       | 0.93                               | 0.7                               | 1.1                                 | 0.32                                       | 0.097                                 | 0.23                                  | YES         |
| Copper         410/5400         IN         0.012         0.68         0.89         0.99         1.7         2.1         8.3           Cyanide, Total         Iron         38000         IN         8.7         IN           Lead         320         IN         0.02         IN         0.064         0.25         0.25         0.59         2.1         0.39           Magnesium         6800         33         33         33         33         33         34         34         35         36         36         36         36         36         36         36         37         37         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         39         2.1         0.39         39         18         39         18         39         39         18         39         39 <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NO</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                 |                            |                                            |                                       | <u> </u>                           |                                   |                                     |                                            |                                       |                                       | NO          |
| Cyanide, Total         Iron         38000         IN         8.7         IN           Lead         320         IN         0.02         IN         0.064         0.25         0.25         0.59         2.1         0.39           Magnesium         6800         33         33         33         33         33         34         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                 | IN                         |                                            |                                       | 0.68                               | 0.89                              | 0.99                                | 1.7                                        | 21                                    | 8.3                                   | YES         |
| Iron         38000         IN         8.7         IN           Lead         320         IN         0.02         IN         0.064         0.25         0.25         0.59         2.1         0.39           Magnesium         6800         33         Manganese         1400         IN         1.7         IN           Mercury         1.1         IN         0.26         0.6           Molybdenum         3.7         IN         0.004           Nickel         390         IN         0.021         2.6           Potassium         2900         7.6         3         0.54           Selenium         0.79         IN         0.02         0.09           Soliver         0.79         IN         0.02         0.09           Thallium         Vanadium         51         IN         0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | 410/0400                        |                            | 0.012                                      |                                       | 0.00                               | 0.00                              | 0.00                                | •••                                        |                                       |                                       | NO          |
| Lead         320         IN         0.02         IN         0.064         0.25         0.25         0.59         2.1         0.39           Magnesium         6800         33         Manganese         1400         IN         1.7         IN           Mercury         1.1         IN         0.26         0.6           Molybdenum         3.7         IN         0.004           Nickel         390         IN         0.021         2.6           Potassium         2900         7.6         30.63         0.54           Selenium         0.63         0.54         0.09           Sodium         24         0.02         0.09           Thallium         Vanadium         51         IN         0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | 38000                           | IN                         | 8.7                                        | IN                                    |                                    | ***                               |                                     |                                            |                                       |                                       | YES         |
| Magnesium         6800         33           Manganese         1400         IN         1.7         IN           Mercury         1.1         IN         0.26         0.6           Molybdenum         3.7         IN         0.004           Nickel         390         IN         0.021         2.6           Potassium         2900         7.6         30.63         0.54           Selenium         0.63         0.54         0.09           Sodium         24         0.02         0.09           Thallium         Vanadium         51         IN         0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                                 |                            |                                            |                                       | 0.064                              | 0.25                              | 0.25                                | 0.59                                       | 2.1                                   | 0.39                                  | YES         |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                 |                            |                                            |                                       | 0.001                              |                                   | 0.20                                | <u> </u>                                   |                                       | - 0.00                                | NO          |
| Mercury   1.1   IN   0.26   0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                 | IN                         |                                            | IN                                    |                                    |                                   |                                     |                                            |                                       |                                       | YES         |
| Molybdenum         3.7         IN         0.004           Nickel         390         IN         0.021         2.6           Potassium         2900         7.6         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                 |                            |                                            |                                       |                                    | 0.26                              |                                     | 0.6                                        |                                       |                                       | YES         |
| Nickel   390   IN   0.021   2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                 |                            | 0.004                                      | ·                                     | _                                  | <u> </u>                          |                                     | 0.0                                        |                                       |                                       | YES         |
| Potassium   2900   7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                 |                            |                                            |                                       |                                    |                                   |                                     |                                            | 26                                    |                                       | YES         |
| Selentum         0.63         0.54           Silver         0.79         IN         0.02         0.09           Sodium         24         1         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                 | 114                        |                                            |                                       | ~                                  |                                   |                                     |                                            |                                       |                                       | NO          |
| Silver         0.79         IN         0.02         0.09           Sodium         24           Thallium         51         IN         0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | 2900                            |                            | 1.0                                        |                                       | 0.63                               |                                   |                                     | 0.54                                       |                                       |                                       | YES         |
| Sodium   24     Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 0.70                            | IM                         |                                            |                                       | 0.03                               |                                   | 0.02                                | 0.07                                       |                                       | 0.09                                  | YES         |
| Thallium  Vanadium 51 IN 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | 0.79                            | IIN                        | 24                                         | · · · · · · · · · · · · · · · · · · · |                                    |                                   | 0.02                                |                                            |                                       | 0.00                                  | NO          |
| Vanadium 51 IN 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | ·                               |                            |                                            |                                       |                                    |                                   |                                     |                                            |                                       |                                       | NO<br>NO    |
| Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transaction Transa |                   | E4                              | INI                        | 0.014                                      |                                       |                                    |                                   |                                     |                                            |                                       |                                       | YES         |
| Zinc 3700/11000 IN 0.075 19 22 22 33 26 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                 |                            | 0.075                                      |                                       | 19                                 | 22                                | 22                                  | 33                                         | 26                                    | 16                                    | YES         |

Table 5-4
Selection of COPCs for Ecological Risk Assessment
Sauget Area I

|                     | Maximum<br>Detected | Sediment<br>Screened | Maximum<br>Detected<br>in Burface | Surface<br>Water | Maximum<br>Detected<br>LMB | Maximum<br>Detected<br>BB | Maximum<br>Detected<br>Clam | Maximum<br>Detected<br>Forage Fish      | Maximum<br>Detected<br>Plants | Maximum<br>Detected<br>Shrimp | Selected as |
|---------------------|---------------------|----------------------|-----------------------------------|------------------|----------------------------|---------------------------|-----------------------------|-----------------------------------------|-------------------------------|-------------------------------|-------------|
| Compounds           | Sediment            | ln _                 | Water                             | Screened in      | Bite                       | Site                      | Site                        | Site                                    | 8Ite_                         | Site                          | COPC        |
| PCBs_               | ·                   |                      |                                   |                  |                            |                           |                             |                                         |                               |                               |             |
| Decachiorobiphenyl  | ND/460              | IN'                  |                                   |                  |                            |                           |                             |                                         |                               |                               |             |
| Dichlorobiphenyl    |                     |                      |                                   |                  |                            |                           |                             |                                         |                               |                               |             |
| Heptachlorobiphenyl | ND/460              | IN*                  |                                   |                  | 21                         |                           |                             |                                         |                               |                               |             |
| Hexachlorobiphenyl  | 22/19               | IN                   |                                   |                  | 150                        | 52                        |                             | 22                                      |                               |                               |             |
| Monochlorobiphenyl  |                     |                      |                                   |                  |                            |                           |                             |                                         |                               |                               |             |
| Nonachlorobiphenyl  | ND/270              | IN*                  |                                   |                  |                            |                           |                             |                                         |                               |                               |             |
| Octachiorobiphenyl  | ND/270              | IN*                  |                                   |                  |                            |                           |                             |                                         |                               |                               |             |
| Pentachiorobiphenyl | 00/3700             | IN                   |                                   |                  | 130                        | 52                        |                             | 8 7                                     |                               |                               |             |
| Tetrachlorobiphenyl | ND/1600             | IN.                  |                                   |                  | 46                         |                           |                             |                                         |                               |                               |             |
| Trichlorobiphenyl   | ND/17               | IN.                  |                                   | _                |                            |                           |                             | _                                       |                               |                               |             |
| Total PCBs          | 83/8470.5           | IN                   |                                   |                  | 320                        | 104                       |                             | 39                                      |                               |                               | YE8         |
| PESTICIDES          |                     |                      |                                   |                  |                            |                           |                             |                                         |                               |                               |             |
| 4,4'-DDD            | 3.8                 | IN                   |                                   |                  |                            |                           |                             |                                         |                               |                               | YE8         |
| 4,4'-DDE            | 11                  | IN                   |                                   |                  | 21                         | 29                        |                             | 10                                      |                               |                               | YES         |
| 4.4'-DDT            | 4.5                 | IN                   |                                   |                  |                            |                           |                             | *************************************** |                               |                               | YES         |
| Total DDT           | 43                  | IN                   |                                   |                  | 21                         | 29                        |                             | 10                                      |                               |                               | YE8         |
| Aldrin              | 4.1                 | IN                   |                                   |                  |                            |                           |                             |                                         |                               |                               | YES         |
| Alpha Chlordane     | 5.3                 | IN                   |                                   |                  |                            | 12                        |                             |                                         | 0.81                          |                               | YES         |
| alpha-BHC           |                     |                      | 0.001                             |                  |                            |                           |                             |                                         | ,                             |                               | NO          |
| beta-BHC            |                     |                      | 0.02                              |                  |                            |                           |                             |                                         |                               |                               | NO          |
| delta-BHC           | 0.34                | IN                   | 0.0022                            |                  |                            |                           |                             |                                         |                               |                               | YES         |
| Dieldrin            | 9.3                 | IN                   | 0.001                             |                  |                            |                           |                             |                                         |                               |                               | YES         |
| Endosulfan I        | 5.7                 | IN                   | 0.0024                            |                  |                            |                           |                             |                                         |                               |                               | YES.        |
| Endosulfan II       | 8.1                 | IN                   |                                   |                  | -                          |                           |                             |                                         |                               |                               | YE8         |
| Endosulfan sulfate  | 9.5                 | IN                   | 0.0032                            | IN               |                            |                           |                             |                                         |                               |                               | YE8         |
| Endrin              | 1.7                 |                      | 0.00095                           |                  | -                          |                           |                             |                                         |                               |                               | NO          |
| Endrin aldehyde     | 14                  | IN                   | 0.0032                            | IN               |                            |                           |                             |                                         |                               |                               | YES         |
| Endrin ketone       | 10                  | IN                   | 0.0027                            | IN               |                            |                           |                             |                                         |                               |                               | YES         |
| Gamma Chiordane     | 17                  | IN                   |                                   |                  | 19                         | 11                        |                             |                                         | 3.1                           |                               | YES         |
| gamma-BHC (Lindane) | 4.8                 | IN                   | 0.0038                            |                  |                            |                           |                             |                                         |                               |                               | YES         |
| Heptachior          | 0.93                | IN                   | 0.0029                            |                  | 1.5                        | 2.8                       | 2.3                         |                                         | 1.9                           |                               | YES         |
| Heptachior epoxide  | 5.4                 | IN                   | 0.00096                           |                  | .,-                        | =: ₹                      |                             |                                         |                               |                               | YE8         |
| Methoxychlor        | 24                  | iN                   |                                   |                  |                            |                           | 5.4                         |                                         |                               |                               | YES         |
| Toxaphene           |                     | ***                  |                                   |                  |                            |                           |                             |                                         |                               |                               | NO          |

#### Table 5-4 Selection of COPCs for Ecological Risk Assessment Sauget Area I

| <del></del>                   |                                       | -        | Maximum                                |                                       | Maximum      | Maximum       | Maylmum    | Maximum                               | Mandan              | Mandana             |             |
|-------------------------------|---------------------------------------|----------|----------------------------------------|---------------------------------------|--------------|---------------|------------|---------------------------------------|---------------------|---------------------|-------------|
|                               | Maximum                               | Sediment | Detected                               | Surface                               | Detected     | Detected      | Detected   | maximum<br>Detected                   | Maximum<br>Detected | Maximum<br>Detected |             |
|                               | Detected                              | Screened | in Surface                             | Water                                 | LMB          | BB            | Clam       | Forage Fish                           | Plants              | Shrimp              | Selected as |
| Compounds                     | Sediment                              | In       | Water                                  | Screened In                           | Site         | Site          | Site       | Site                                  | Site                | Site                | COPC        |
| SVOC                          |                                       |          |                                        |                                       |              |               |            |                                       |                     |                     |             |
| 1.2.4-Trichlorobenzene        |                                       | •        |                                        |                                       |              |               |            | <del></del>                           |                     | <del></del>         | NO          |
| 1.2-Dichlorobenzene           |                                       |          |                                        |                                       |              |               |            | <del></del>                           |                     |                     | NO NO       |
| 1,3-Dichlorobenzene           |                                       | -        |                                        |                                       |              |               |            |                                       |                     |                     | NO NO       |
| 1,4-Dichlorobenzene           |                                       | -        | <del></del> -                          |                                       |              |               |            | <del></del>                           |                     |                     | NO NO       |
| 2,2'-Oxybis(1-Chloropropane)  |                                       | _        |                                        |                                       |              |               |            | ·                                     |                     |                     | NO NO       |
| 2,4,5-Trichlorophenol         |                                       |          |                                        |                                       |              |               |            | ·                                     |                     | <del></del>         | NO NO       |
| 2,4,6-Trichlorophenol         |                                       | _        |                                        |                                       |              |               |            | ·                                     | <del></del>         |                     | NO NO       |
| 2,4-Dichlorophenol            |                                       |          |                                        |                                       |              |               | – –        | ·                                     |                     |                     | NO NO       |
| 2,4-Dinitrophenol             | ··· <del>-</del>                      |          | ······································ |                                       |              |               |            |                                       |                     |                     | NO NO       |
| 2,4-Dinitrotoluene            |                                       |          | ·                                      |                                       | -            |               |            |                                       |                     |                     | NO          |
| 2,6-Dinitrotoluene            |                                       |          |                                        |                                       |              |               |            |                                       |                     | ··                  | NO NO       |
| 2-Chloronaphthalene           |                                       |          |                                        |                                       | <del> </del> |               |            | ·                                     |                     |                     | NO          |
| 2-Chlorophenol                |                                       |          |                                        |                                       | _            |               |            |                                       |                     |                     | NO NO       |
| 2-Methylnaphthalene           |                                       | -        |                                        |                                       |              |               |            | ·                                     |                     |                     | NO          |
| 2-Methylphenol (o-cresol)     | <del></del>                           |          |                                        |                                       |              |               |            |                                       |                     |                     | NO          |
| 2-Nitroaniline                |                                       |          |                                        |                                       | <del>-</del> |               |            |                                       |                     |                     | NO NO       |
| 2-Nitrophenol                 |                                       |          | ·····                                  |                                       |              |               |            |                                       |                     |                     | NO          |
| 3,3'-Dichlorobenzidine        | · · · · · · · · · · · · · · · · · · · |          |                                        |                                       |              |               | -          | •                                     |                     |                     | NO NO       |
| 3-Methylphenol/4-Methylphenol | ·                                     |          |                                        |                                       |              |               |            | ·                                     |                     |                     | NO          |
| 3-Nitroaniline                |                                       |          |                                        |                                       |              |               |            |                                       |                     |                     | NO          |
| 4,6-Dinitro-2-methylphenol    |                                       |          |                                        |                                       |              |               |            |                                       |                     |                     | NO          |
| 4-Bromophenylphenyl ether     |                                       |          |                                        |                                       |              |               |            |                                       |                     |                     | NO          |
| 4-Chloro-3-methylphenol       |                                       |          |                                        |                                       |              |               |            |                                       |                     |                     | NO          |
| 4-Chloroaniline               |                                       |          | -                                      |                                       |              |               |            |                                       |                     | -                   | NO          |
| 4-Chlorophenylphenyl ether    |                                       |          |                                        | · · · · · · · · · · · · · · · · · · · |              |               |            |                                       |                     |                     | NO          |
| 4-Nitroaniline                |                                       |          | <del></del>                            |                                       |              |               |            |                                       |                     | -                   | NO          |
| 4-Nitrophenol                 | ****                                  |          |                                        |                                       |              |               |            |                                       |                     |                     | NO          |
| Acenaphthene                  |                                       |          |                                        |                                       |              |               |            |                                       |                     |                     | NO          |
| Acenaphthylene                |                                       |          |                                        |                                       |              |               |            |                                       | 32                  |                     | YES         |
| Anthracene                    |                                       |          | <del></del> -                          |                                       |              |               |            |                                       |                     |                     | NO          |
| Benzo(a)anthracene            |                                       |          |                                        |                                       |              |               |            |                                       |                     |                     | NO          |
| Benzo(a)pyrene                |                                       |          |                                        |                                       |              |               |            |                                       | 140                 |                     | YES         |
| Benzo(b)fluoranthene          |                                       |          |                                        |                                       |              |               | <u>-</u> - | · · · · · · · · · · · · · · · · · · · | 59                  |                     | YES         |
| Benzo(g,h,i)perylene          |                                       |          |                                        |                                       |              |               |            |                                       | 360                 |                     | YES         |
|                               |                                       |          |                                        |                                       |              |               |            |                                       | 52                  |                     | YES         |
| Benzo(k)fluoranthene          |                                       |          |                                        |                                       |              |               |            | ·                                     | <u> </u>            |                     | NO          |
| bis(2-Chloroethoxy)methane    |                                       |          |                                        |                                       |              |               |            |                                       |                     |                     |             |
| bis(2-Chloroethyl)ether       |                                       |          |                                        |                                       |              | 97            | 170        | 230                                   |                     |                     | YES         |
| bis(2-Ethylhexyl)phthalate    | <del></del>                           |          |                                        |                                       |              |               | 170        |                                       |                     |                     |             |
| Butylbenzylphthalate          |                                       |          |                                        |                                       |              |               |            | <del></del>                           | <del></del>         | <del></del>         | NO NO       |
| Carbazole                     | 74                                    |          |                                        |                                       |              |               |            | · <del>-</del>                        |                     |                     | NO          |
| Chrysene                      | 74                                    | -        |                                        |                                       | 32           |               |            |                                       |                     |                     | YES         |
| Di-n-butylphthalate           |                                       |          |                                        |                                       | 32           |               |            |                                       |                     | <del></del>         | NO          |
| Di-n-octylphthalate           | <del></del>                           |          |                                        |                                       |              | <del></del> - |            | 48                                    | 76                  |                     | YES         |
| Dibenzo(a,h)anthracene        |                                       |          |                                        |                                       |              |               |            | 40                                    |                     |                     |             |

Table 5-4 Selection of COPCs for Ecological Risk Assessment Sauget Area I

| Compounds                     | Maximum<br>Detected<br>Sediment | Sediment<br>Screened<br>In | Maximum<br>Detected<br>in Surface<br>Water | Surface<br>Water<br>Screened in | Maximum<br>Detected<br>LMB<br>Site | Maximum<br>Detected<br>BB<br>Site | Maximum<br>Detected<br>Clam<br>Site | Maximum<br>Detected<br>Forage Fish<br>Site | Maximum<br>Detected<br>Plants<br>Site | Maximum<br>Detected<br>Shrimp<br>Site | Selected as |
|-------------------------------|---------------------------------|----------------------------|--------------------------------------------|---------------------------------|------------------------------------|-----------------------------------|-------------------------------------|--------------------------------------------|---------------------------------------|---------------------------------------|-------------|
| Dibenzofuran                  |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Diethylphthelate              | ······                          | *                          |                                            |                                 |                                    | 18                                | 120                                 | 37                                         |                                       | 44                                    | YES         |
| Dimethylphthalate             |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Fluoranthene                  | 130                             | IN                         | 0.7                                        |                                 |                                    |                                   |                                     |                                            |                                       |                                       | YES         |
| Fluorene                      | <del></del>                     | *****                      | ·                                          |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Hexachlorobenzene             |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Hexachlorobutadiene           |                                 | =                          |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Hexachlorocyclopentadiene     |                                 |                            |                                            |                                 |                                    | <del></del>                       |                                     |                                            |                                       |                                       | NO          |
| Hexachloroethane              |                                 |                            |                                            |                                 |                                    | <del></del>                       |                                     |                                            |                                       |                                       | NO          |
| Indeno(1,2,3-cd)pyrene        | <del></del>                     | ·                          |                                            |                                 |                                    |                                   |                                     | 54                                         | 300                                   |                                       | YES         |
| Isophorona                    |                                 |                            | -                                          |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| N-Nitroso-di-n-propylamine    |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| N-Nitrosodiphenylamine        |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Naphthalene                   |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Nitrobenzene                  |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            | · · · · · · · · · · · · · · · · · · · |                                       | NO          |
| Pentachiorophenol             |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Phenanthrene                  |                                 |                            | 0.7                                        |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NQ          |
| Phenol                        |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Pyrene                        |                                 | _                          |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NQ          |
| Total PAHs                    | 440                             |                            | 1.4                                        |                                 |                                    |                                   |                                     | 102                                        | 1019                                  |                                       | YES         |
| VOC                           |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       |             |
| 1,1,1-Trichloroethane         |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| 1,1,2,2-Tetrachloroethane     |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| 1,1,2-Trichloroethane         |                                 | _                          |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| 1,1-Dichloroethane            |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| 1,1-Dichloroethene            |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| 1,2-Dichloroethane            |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NQ          |
| 1,2-Dichloropropane           |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| 2-Butanone (MEK)              |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| 2-Hexanone                    |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| 4-Methyl-2-pentanone (MIBK)   |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Acetone                       |                                 |                            | 18                                         |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Benzene                       |                                 |                            | 1.7                                        |                                 | =                                  |                                   |                                     |                                            |                                       |                                       | NO          |
| Bromodichloromethane          |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Bromoform                     |                                 |                            |                                            | · ·                             |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Bromomethane (Methyl bromide) |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Carbon disulfide              |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Carbon tetrachloride          |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO_         |
| Chlorobenzene                 |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Chloroethane                  |                                 |                            |                                            |                                 |                                    | -                                 |                                     |                                            |                                       |                                       | NO<br>NO    |
| Chloroform                    |                                 |                            |                                            |                                 |                                    | ·                                 |                                     |                                            |                                       |                                       | NO          |
| Chloromethane                 |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO_         |
| cis-1,3-Dichloropropene       |                                 |                            |                                            |                                 | . =                                |                                   |                                     |                                            |                                       |                                       | NO NO       |
| Cis/Trans-1,2-Dichloroethene  |                                 |                            |                                            |                                 | -                                  |                                   |                                     |                                            |                                       |                                       | NO_         |
| Dibromochloromethane          |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |

Table 5-4
Selection of COPCs for Ecological Risk Assessment
Sauget Area I

| Compounds                            | Maximum<br>Detected<br>Sediment | Sediment<br>Screened<br>In | Maximum<br>Detected<br>in Surface<br>Water | Surface<br>Water<br>Screened In | Maximum<br>Detected<br>LMB<br>Site | Maximum<br>Detected<br>BB<br>Site | Maximum<br>Detected<br>Clam<br>Site | Maximum<br>Detected<br>Forage Fish<br>Site | Maximum<br>Detected<br>Plants<br>Site | Maximum<br>Detected<br>Shrimp<br>Site | Selected as |
|--------------------------------------|---------------------------------|----------------------------|--------------------------------------------|---------------------------------|------------------------------------|-----------------------------------|-------------------------------------|--------------------------------------------|---------------------------------------|---------------------------------------|-------------|
| Ethylbenzene                         | 11                              | IN                         | -                                          |                                 |                                    | •                                 |                                     |                                            |                                       | -                                     | NO          |
| Methylene chloride (Dichloromethane) |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Styrene                              |                                 |                            |                                            |                                 | ·                                  |                                   |                                     |                                            |                                       |                                       | NO          |
| Tetrachloroethene                    |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Toluene                              |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| trans-1,3-Dichloropropene            |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Trichloroethene                      |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Vinyl chloride                       |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Xylenes, Total                       |                                 |                            |                                            |                                 |                                    |                                   |                                     |                                            |                                       |                                       | NO          |
| Dioxin TEQ (mammal)                  | 0.333                           | IN                         | 1.01E-05                                   | IN                              | 0.0035                             | 0.0037                            | 0.00015                             | 0.0018                                     | 0.0002                                | 0.00022                               | YES         |

LMB = Largemouth Bass

BB = Brown Bullhead

2,4-Dimethylphenol was also detected in Site plants at 51 ug/kg

Sediment and tissue concentrations in ug/kg except metals which are in mg/kg; surface water concentrations are in ug/L except metals which are mg/L.

\*Indicates detected in "industry specific" sediment samples only.

Table 7-1
Comparison of Largemouth Bass Concentrations to Toxicity Benchmarks
Sauget Area I

|                                                      | 1                | Site            |              | Reference | Reference  |
|------------------------------------------------------|------------------|-----------------|--------------|-----------|------------|
| Compound                                             | Benchmark        | Maximum         | Site Average | Maximum   | Average    |
| Herbicides (ug/kg)                                   |                  | † - <del></del> |              |           |            |
| 2.4-D                                                | NA NA            | ND              | ND           | ND        | ND         |
| 2.4-D8                                               | NA NA            | ND              | ND           | ND        | ND         |
| Dicamba                                              | NA NA            | 1.9             | 5.6          | ND        | ND         |
| Dichloroprop                                         | NA               | ND              | ND           | ND        | ND         |
| MCPA                                                 | NA.              | 1800            | 1267         | ND        | ND         |
| MCPP                                                 | NA NA            | ND              | GN           | ND        | ND         |
| Pentachiorophenol                                    | 9600             | ND              | ND           | ND        | ND_        |
| Metals (mg/kg)                                       |                  |                 |              |           |            |
| Aluminum, Total                                      | NA NA            | 33              | 20           | 81        | 41         |
| Antimony                                             | NA NA            | ND              | ND           | ND        | ND         |
| Arsenic, Total                                       | 0.52             | ND              | ND           | ND        | ND         |
| Barium, Total                                        | NA<br>S          | ND              | ND           | ND        | ND         |
| Cadmium, Total                                       | 0.5              | ND              | ND I         | ND        | ND<br>0.00 |
| Chromium, Total                                      | NA<br>13.4       | 0.93            | 0.64         | 0.36      | 0.28       |
| Copper, Total<br>Iron                                | 12.1<br>NA       | 0.68<br>ND      | 0.54<br>ND   | 0.8<br>ND | 0.5<br>ND  |
| Iron<br>Lead, Total                                  | 26.2             | ND<br>ND        | ND ND        | ND<br>DN  | ND         |
| Manganese                                            | Z6.∠<br>NA       | ND<br>ND        | ND D         | טא<br>מא  | ND<br>ND   |
| Mercury                                              | 0.25             | 0.064           | 0.043        | 0.1       | 0.1        |
| Molybdenum                                           | NA NA            | ND              | ND ND        | ND        | ND         |
| Nickel. Total                                        | NA NA            | ND              | ND           | ND        | ND         |
| Selenum                                              | 1.6              | 0.63            | 0.49         | 0.86      | 0.60       |
| Silver                                               | NA NA            | ND              | ND           | ND        | ND         |
| Zinc. Total                                          | NA I             | 19              | 17           | 15        | 11         |
| Total PCBs (ug/kg)                                   | 950              | 320             | 237          | ND        | ND         |
| Pesticides (ug/kg)                                   |                  | -               |              |           |            |
| 4.4'-000                                             | 600              | ND              | ND           | ND        | ND         |
| 4.4'-DOE                                             | 29200            | 21              | 14           | 6.6       | 5.3        |
| 4,4'-DDT                                             | 3800             | ND .            | ND           | ND        | ND         |
| Aldrin                                               | 157              | ND              | ND           | ND        | ND         |
| Alpha Chlordane                                      | 16600 *          | ND              | ND           | ND        | ND         |
| delta-BHC                                            | NA               | ND              | ND           | ND        | ND         |
| Dieldnn                                              | 3700             | ND              | ND           | 5.6       | 5.0        |
| Endosulfan i                                         | 195 <sup>5</sup> | ND              | ND           | ND        | ND         |
| Endosulfan II                                        | 195 <sup>B</sup> | ND              | ND           | ND        | ND         |
| Endosulfan sulfate                                   | 195 <sup>t</sup> | ND              | ND           | ND        | ND         |
| Endnn aldehyde                                       | 150 °            | ND              | ND           | ND        | ND         |
| Endrin ketone                                        | 150 °            | ND              | ND           | ND        | ND         |
| Gamma Chlordane                                      | 16600 *          | 19              | 12           | ND        | ND         |
| gamma-BHC (Lindane)                                  | NA.              | ND              | ND           | ND        | ND         |
| Heptachlor                                           | 5700             | 1.5             | 2.8          | ND        | ND         |
| Heptachlor epoxide                                   | 3200             | ND              | ND           | ND        | ND         |
| Methoxychlor                                         | 128              | ND              | ND           | ND        | ND         |
| SVOC (ug/kg)                                         |                  |                 |              |           |            |
| bis(2-ethylhexyl)phthalate                           | NA NA            | ND              | ND           | ND        | ND         |
| Di-n-butylphthalate                                  | NA               | 32              | 67           | 20        | 52         |
| Diethylphthalate                                     | NA NA            | ND              | ND           | ND        | ND         |
| Acenaphthylene                                       | NA               | ND              | ND           | ND        | ND         |
| Fluoranthene                                         | NA               | ND              | ND           | ND        | ND         |
| Benzo(b)fluoranthene                                 | NA               | ND              | ND           | ND        | ND         |
| Benzo(k)fluoranthene                                 | NA .             | ND              | ND           | ND        | ND         |
| Benzo(a)pyrene                                       | 23.9             | ND              | ND           | ND        | ND         |
| Benzo(g,h.i)perylene                                 | NA               | ND              | ND           | ND        | ND         |
| Indeno(1,2,3-c-d)pyrene                              | NA .             | ND              | ND           | ND        | ND         |
| Dibenz(a,h)anthracene                                | NA NA            | ND              | ND           | ND        | ND         |
| 2.3.7.8-TCDO, TEQ. ug-kg **Ataximum and Average TEQs | 0.05             | 0.003           | 0.0021       | 0.00019*  | 0.00011*   |

<sup>\*</sup> Maximum and Average TEQs for fish were used for companson to benchmark.

a Benchmark value is for Chlordane

b Benchmark value for Endosulfan was used

c Benchmark values for Endrin were used

Table 7-2 Comparison of Brown Bullhead Concentrations to Toxicity Benchmarks Sauget Area I

|                            |                  | Site       | Site       | Reference      | Reference |
|----------------------------|------------------|------------|------------|----------------|-----------|
| Compound                   | Benchmark        | Maximum    | Average    | <u>Maximum</u> | Average   |
| Herbicides (ug/kg)         |                  |            |            |                | [         |
| 2,4-D                      | NA               | ND         | ND         | ND             | ND        |
| 2,4-DB                     | NA               | ND         | ND         | ND             | ND        |
| Dicamba                    | NA               | ND         | ND         | ND             | ND        |
| Dichloroprop               | NA               | 6.6        | 35.5       | ND             | ND        |
| MCPA                       | NA               | ND         | ND         | 8600           | 3533      |
| MCPP                       | NA               | ND         | ND         | ND             | ND        |
| Pentachlorophenol          | 9600             | ND         | ND         | ND             | ND        |
| Metals (mg/kg)             |                  | 4.0        |            |                |           |
| Aluminum, Total            | NA               | 18         | 13         | 66             | 34        |
| Antimony                   | NA<br>0.53       | ND         | ND         | ND             | ND        |
| Arsenic, Total             | 0.52             | ND         | ND         | ND             | ND        |
| Barium, Total              | NA<br>0.5        | ND         | ND         | ND             | ND        |
| Cadmium, Total             | 0.5              | ND         | ND         | ND             | ND        |
| Chromium, Total            | NA<br>40.4       | 0.7        | 0.4        | 0.5            | 0.4       |
| Copper, Total<br>Iron      | 12.1<br>NA       | 0.89<br>ND | 0.84<br>ND | 1<br>ND        | 1<br>ND   |
| Lead, Total                | 26.2             | 0.25       | 0.24       | 0.23           | 0.21      |
| Manganese                  | 26.2<br>  NA     | 0.25<br>ND | ND         | 0.23<br>ND     | ND        |
| Mercury                    | 0.25             | 0.3        | 0.1        | 0.1            | 0.08      |
| Molybdenum                 | NA I             | ND .       | ND         | ND .           | ND        |
| Nickel. Total              | NA I             | ND         | ND         | ND             | ND        |
| Selenium                   | 1.6              | ND         | ND         | 0.5            | 0.40      |
| Silver                     | NA               | ND ND      | ND         | ND             | ND        |
| Zinc, Total                | NA.              | 22         | 20         | 24             | 20        |
| Total PCBs (ug/kg)         | 950              | 102        | 63         | ND             | ND        |
| Pesticides (ug/kg)         |                  |            |            |                |           |
| 4,4'-DDD                   | 600              | ND         | ND         | 1.8            | 5.3       |
| 4,4'-DDE                   | 29200            | 29         | 18         | 12             | 8.8       |
| 4,4'-DDT                   | 3800             | ND         | ND         | ND             | ND        |
| Aldrin                     | 157              | ND         | ND         | ND             | ND        |
| Alpha Chlordane            | 16600 ª          | 12         | 7          | 2.5            | 1.6       |
| delta-BHC                  | NA .             | ND         | ND         | ND             | ND        |
| Dieldrin                   | 3700             | ND         | ND         | 3.8            | 2.8       |
| Endosulfan I               | 195 <sup>b</sup> | ND         | ND         | ND             | ND        |
| Endosulfan II              | 195 b            | ND I       | ND         | ND             | ND        |
| Endosulfan sulfate         | 165 b            | ND         | ND         | ND             | ND        |
| Endrin aldehyde            | 150 °            | ND         | ND         | ND             | ND        |
| Endrin ketone              | 150 °            | ND         | ND         | ND             | ND        |
| Gamma Chlordane            | 16600 °          | 11         | 7          | 6.2            | 6.4       |
| gamma-BHC (Lindane)        | NA               | ND         | ,<br>ND    | 1.2            | 3.0       |
| Heptachlor                 | 5700             | 2.8        | 3.2        | ND             | ND        |
| Heptachlor epoxide         | 3200             | ND ND      | ND         | ND             | ND        |
| Methoxychior               | 128              | ND         | ND         | ND             | ND        |
| SVOC (ug/kg)               |                  |            |            |                |           |
| bis(2-ethylhexyl)phthalate | NA               | 97         | 89         | 47             | 59        |
| Di-n-butylphthalate        | NA I             | ND         | ND         | ND ND          | ND        |
| Diethylphthalate           | NA (             | 18         | 63         | 25             | 65        |
| Acenaphthylene             | NA NA            | ND         | ND         | ND             | ND        |
| Fluoranthene               | NA NA            | ND         | ND         | ND             | ND        |
| Benzo(b)fluoranthene       | NA               | ND         | ND         | ND             | ND        |
| Benzo(k)fluoranthene       | NA               | ND         | ND         | ND             | ND        |
| Benzo(a)pyrene             | 23.9             | ND         | ND         | ND             | ND        |
| Benzo(g,h,i)perylene       | NA               | ND         | ND         | ND             | ND        |
| Indeno(1,2,3-c-d)pyrene    | NA               | ND         | ND         | ND             | ND        |
| Dibenz(a,h)anthracene      | NA               | ND         | ND         | ND             | ND        |
| 2,3,7,8-TCDD, TEQ, ug/kg   | 0.05             | 0.003      | 0.002 *    | 0.00069*       | 0.00045*  |

<sup>\*</sup>Maximum and Average TEQs for fish were used for comparison to benchmarks a Benchmark value is for Chlordane

b Benchmark value for Endosulfan was used

c Benchmark values for Endrin were used

Table 7-3

Comparison of Forage Fish Concentrations to Toxicity Benchmarks

Sauget Area I

| <u> </u>                                   | T.           | Site       | 1             | Reference    | Reference    |
|--------------------------------------------|--------------|------------|---------------|--------------|--------------|
| Compound                                   | Benchmark    | Maximum    | Site Average  | Maximum      | Average      |
| Herbicides (ug/kg)                         |              | 1          |               |              |              |
| 2.4-0                                      | NA.          | ND         | ND            | ND           | ND           |
| 2.4-DB                                     | NA NA        | 10         | 8.8           | 10           | 6.3          |
| Dicamba                                    | NA NA        | 2.6        | 11            | ND           | ND           |
| Dichloroprop                               | NA NA        | 6.7        | 52.2          | 5.1          | 39           |
| MCPA                                       | NA.          | 3300       | 2800          | 2400         | 1350         |
| MCPP                                       | NA NA        | ND         | ND            | ND           | NID          |
| Pentachiorophenol                          | 9600         | 2.2        | 7.7           | 2.2          | 4.3          |
| Metals (mg/kg)                             |              |            |               |              |              |
| Aluminum, Total                            | NA NA        | 52         | 40            | 100          | 50           |
| Antimony_                                  | NA NA        | ND         | ND            | ND           | ND           |
| Arsenic, Total                             | 0.52         | ND         | ND            | ND           | ND           |
| Banum, Total                               | NA .         | ND         | ND            | ND           | ND           |
| Cadmium, Total                             | 0.5          | ND         | ND            | ND           | ND           |
| Chromium, Total                            | NA .         | 0.3        | 0.3           | 1.7          | 0.71         |
| Copper, Total                              | 12.1         | 2          | 1             | 0.75         | 0.54         |
| iron                                       | NA<br>26.2   | ND<br>0.50 | ND<br>0.35    | ND<br>0.4    | ND<br>0.3    |
| Lead, Total                                | 26.2         | 0.59       | 0. <b>3</b> 6 | 0.4<br>MD    | 0.3          |
| Manganese                                  | NA<br>0.25   | ND<br>0.6  | ND<br>0.2     | ND<br>0.064  | ND<br>0.053  |
| Mercury<br>Molybdenum                      | 0.25<br>NA   | 0.6<br>ND  | U.Z<br>ND     | 0.064<br>NED | 0.053<br>NID |
| Nickel, Total                              | NA<br>NA     | ND ND      | ND ND         | ND<br>ND     | ND<br>ND     |
| Selenium                                   | 1.6          | 0.54       | 0.44          | 0.65         | 0.42         |
| Silver                                     | NA NA        | ND         | ND            | NID          | NID          |
| Zinc, Total                                | I NA         | 33         | 30            | 33           | 26           |
| Total PCBs (ug/kg)                         | 950          | 39         | 30            | ND ND        | ND ND        |
| Pesticides (ug/kg)                         | +            |            | - 30          |              | 140          |
| 4.4'-DDD                                   | 600          | ND         | ND            | ND           | NED          |
| 4.4'-DOE                                   | 29200        | 10         | 7.7           | 3.5          | 4.9          |
| 4.4'-ODT                                   | 3800         | ND         | ND ND         | ND ND        | ND           |
| Aldnn                                      | 157          | ND         | ND            | ND           | NED          |
| Alpha Chlordane                            | 16600        | ND         | ND .          | ND           | NED          |
| delta-BHC                                  | NA NA        | ND         | ND            | ND           | NED          |
| Dieldini                                   | 3700         | ND         | ND I          | 4.7          | 5.4          |
| Endosultan I                               | 195          | ND         | ND ND         | NED          | NED          |
| Endosulfan II                              | 195          | ND I       | ND            | ND I         | ND           |
| Endosulian sulfate                         | NA           | ND ND      | ND<br>ND      | ND ND        | ND           |
| Endrin aldehyde                            | 150          | ND         | ND            | ND           | ND ND        |
| - · ·                                      |              | _          | j             | ND ND        |              |
| Endrin ketone                              | 150          | ND<br>NO   | ND<br>ND      |              | ND           |
| Gamma Chiordane                            | 10000        | ND         | ND            | 1.2          | 3.2          |
| gamma-BHC (Lindane)                        | NA<br>5700   | ND<br>ND   | ND            | ND<br>NO     | ND           |
| Heptachlor<br>Heotachlor eooxide           | 5700<br>3200 | ND<br>ND   | ND<br>ND      | ND ND        | ND<br>ND     |
| Methoxychior                               | 128          | ND<br>ND   | ND ND         | ND DIN       | ND ND        |
| SVOC (ug/kg)                               | 120          | 140        | 140           |              |              |
| SVOC (ug/kg)<br>bis(2-ethylhexyl)phthalate | NA           | 230        | 183           | 280          | 172          |
| Di-n-butylohthalate                        | NA I         | ND ND      | ND ND         | ND ND        | ND           |
| Diethylphthalate                           | NA NA        | 37         | 31            | 37           | 61.3         |
| Acenaphthylene                             | NA NA        | ND         | ND            | ND           | ND           |
| Fluoranthene                               | NA NA        | ND         | ND            | ND           | ND           |
| Benzo(b)Muoranthene                        | NA NA        | ND         | ND            | ND ND        | NO           |
| Benzo(k)fluoranthene                       | NA           | ND         | ND            | ND ND        | NO           |
| Benzo(a)pyrene                             | 23.9         | ND         | ND            | ND           | ND I         |
| Benzo(g,h,i)perylene                       | NA NA        | ND         | ND            | ND           | ND           |
| indeno(1,2,3-c-d)pyrene                    | NA I         | 54         | 103           | ND           | NO           |
| Dibenz(a,h)anthracene                      | NA           | 48         | 101           | ND           | NED          |
| 2.3.7.8-TCDD. TEQ, ug/kg                   | 0.05         | 0.001      | 0.00085       | 0.0014       | 0.00096      |

<sup>\*</sup> Maximum and Average TEQs for fish was used for companson to benchmark

a Benchmark value is for Chlordane

b Benchmark value for Endosulfan was used

c Benchmark values for Endnin were used

### Table 7-4 Whole Body Toxicity Values for Fish Sauget Area 1

| Herbicides<br>Pentachlorophenol | Fathead minnow    |                                       | (mg/kg) | Reps        | Effect                                        | Endpoint | Route       | Body Part  | Stage        |
|---------------------------------|-------------------|---------------------------------------|---------|-------------|-----------------------------------------------|----------|-------------|------------|--------------|
| Pentachlorophenol               |                   |                                       |         |             |                                               |          |             |            |              |
|                                 | Cathand minarius  | PCP                                   | 22.1    | 1           | Growth                                        | LOED     | Combined    | Whole Body | Embryo       |
|                                 | Fathead minnow    | PCP                                   | 12.6    | 1           | Growth                                        | NOED     | Combined    | Whole Body | Embryo       |
|                                 | Largemouth Bass   | PCP                                   | 9.6     | 5           | Growth                                        | LOED     | Absorption  | Whole Body | Immature     |
|                                 | Trout - Rainbow   | PCP                                   | 13.8    | 4           | Mortality                                     | ED100    | Absorption  | Whole Body | Adult        |
| Metals                          |                   |                                       |         | <u>}</u>    |                                               |          | <del></del> |            | <del>}</del> |
| Arsenic                         | Bluegill          | Arsenic                               | 0.52    | 5           | Mortality                                     | NOED     | Absorption  | Whole Body | Immature     |
| Cadmium                         | Guppy             | Cadmium                               | 0.5     | 2           | Growth                                        | LOED     | Ingestion   | Whole Body | Immature     |
| Copper                          | Common carp       | Copper                                | 12.1    | 1           | Morphology;<br>Mortality                      | LOED     | Combined    | Whole Body | Egg          |
| Соррег                          | Common carp       | Copper                                | 12.1    | 1 1         | Reproduction                                  | NOED     | Combined    | Whole Body | Egg          |
|                                 |                   | · · · · · · · · · · · · · · · · · · · |         |             |                                               |          |             |            |              |
| Lead                            | Fathead minnow    | Lead                                  | 26.2    | <u>1</u>    | Behavior                                      | LOED     | Absorption  | Whole Body | Immature     |
|                                 | Fathead minnow    | Lead                                  | 26.2    | 1           | Behavior,<br>Physiological                    | NOED     | Absorption  | Whole Body | Immature     |
| 46                              | Walleye           | Mercury                               | 0.25    | 22          | Cellular,<br>Developmental<br>, Physiological | LOED     | Ingestion   | Whole Body | Immature     |
| Mercury                         | Walleye           | Mercury                               | 0.25    | 22          | Mortality                                     | NOED     | Ingestion   | Whole Body | Immature     |
|                                 | vvalleye          | INIGICUI y                            |         | <del></del> | Mortality                                     | INOLD    | IIIgosaon   | Whole body | Illindialo   |
| Selenium                        | Bluegill          | Selenium                              | 4.6     | 6           | Mortality                                     | LOED     | Combined    | Whole Body | Adult        |
| - Ocicinain                     | Fathead minnow    | Selenium                              | 12.2    | 3           | Growth                                        | LOED     | Ingestion   | Whole Body | Larval       |
|                                 | Fathead minnow    | Selenium                              | 10.3    | 3           | Growth                                        | NOED     | Ingestion   | Whole Body | Larval       |
|                                 | Bluegill          | Selenium                              | 1.6     | 5           | Cellular                                      | LOED     | Combined    | Whole Body | Immature     |
|                                 | Bluegill          | Selenium                              | 4.3     | 3           | Mortality                                     | NOED     | Absorption  | Whole Body | Immature     |
|                                 | Largemouth Bass   | Selenium                              | 3       | 3           | Mortality                                     | NOED     | Absorption  | Whole Body | immature     |
| PCBs and<br>Pesticides          |                   |                                       | -       | ·_ ·_ ·_    |                                               |          |             |            |              |
| PCBs                            |                   |                                       |         |             |                                               |          |             |            |              |
|                                 | Catfish-Channel   | PCBs                                  | 14.3    | 3           | Growth,<br>Morphology                         | LOED     | Ingestion   | Whole Body | Immature     |
|                                 | Pinfish           | PCBs                                  | 2.2     | 2           | Mortality                                     | LOED     | Absorption  | Whole Body | Immature     |
|                                 | Pinfish           | PCBs                                  | 0.98    | 10          | Mortality                                     | NOED     | Absorption  | Whole Body | Immature     |
|                                 | Pinfish           | PCBs                                  | 3.8     | 10          | Mortality                                     | NOED     | Absorption  | Whole Body | Immature     |
|                                 | Catfish-Channel   | PCBs                                  | 10.9    | 3           | Mortality                                     | NOED     | Ingestion   | Whole Body | Immature     |
|                                 | Catfish-Channel   | PCBs                                  | 14.3    | 3           | Mortality                                     | NOED     | Ingestion   | Whole Body | Immature     |
|                                 | Redbreast sunfish | PCBs                                  | 0.95    | field study | Reproduction;<br>Growth                       | NOED     | Field study | Whole Body | Adult        |
|                                 | Redbreast sunfish | PCBs                                  | 0.95    | field study | Reproduction;<br>Growth                       | NOED     | Field study | Whole Body | Adult        |
|                                 | Redbreast surfish | PCBs                                  | 0.95    | field study | Reproduction;<br>Growth                       | NOED     | Field study | Whole Body | Adult        |

Table 7-4
Whole Body Toxicity Values for Fish
Sauget Area 1

| Compound           | Species Common<br>Name | Chemical<br>Common Name | Concentration -Wet (mg/kg) | Reps  | Effect                                | Endpoint | Exposure<br>Route | Body Part  | Start Life<br>Stage |
|--------------------|------------------------|-------------------------|----------------------------|-------|---------------------------------------|----------|-------------------|------------|---------------------|
| DDD                | Fathead minnow         | 4,4'-ODD                | 0.6                        | 1     | Reproduction                          | LOED     | Combined          | Whole Body | Adult               |
| DDE                | Mosquito fish          | 4,4'-DDE                | 29 2                       | 1     | Mortality                             | NOED     | Combined          | Whole Body | NA                  |
| דממ                | Fathead minnow         | 4,4'-DDT                | 3 8                        | 1     | Reproduction                          | LOED     | Combined          | Whole Body | Adult               |
| Aldrin             | Mosquito fish          | Aldrin                  | 0.157                      | 1     | Mortality                             | NOED     | Combined          | Whole Body | NA NA               |
| Dieldrin           | Bluegill               | Dieldrin                | 3.7                        | 5     | Behavior                              | LOED     | Absorption        | Whole Body | Immature            |
| Endosult <b>an</b> | Pinfish                | Endosulfan              | 0 195                      | 1     | Mortality                             | NOED     | Combined          | Whole Body | Mature              |
| Endrin             | Golden Shiner          | Endrin                  | 0.15                       | 3     | Behavior                              | LOED     | Absorption        | Whole Body | l NA                |
|                    | Mosquito fish          | Endrin                  | 34                         | 1     | Mortality                             | LOED     | Combined          | Whole Body | NA                  |
|                    | Catfish-Channel        | Endrin                  | 0.41                       | 1     | Mortality                             | NOED     | Absorption        | Whole Body | Immature            |
| Chlordane          | Pinfish                | Chlordane               | 16.6                       | 2     | Mortality                             | LOED     | Combined          | Whole Body | Adult               |
| Hoptachlor         | Pinfish                | Heptachlor              | 5.7                        | 1     | Mortality                             | NOED     | Combined          | Whole Body | Mature              |
| deptachlor opexide | Pinfish                | Haptachlor apoxide      | 3 2                        | 1     | Mortality                             | NOED     | Combined          | Whole Body | Mature              |
| Methoxychlor       | Mosquito fish          | Methoxychlor            | 0 128                      | 1     | Mortality                             | NOED     | Combined          | Whole Body | NA                  |
| SVOCs              |                        | 1                       |                            |       |                                       | ł        |                   |            | 1                   |
| Benzo(a)pyrene     | Gizzard Shad           | Benzo[a]pyrene          | 0 0283                     | 2     | Physiological                         | LOED     | Absorption        | Whole Body | Adult               |
|                    | Gizzard Shad           | Benzo(a)pyrene          | 0.0239                     | 2     | Physiological                         | NOED     | Absorption        | Whole Body | Adult               |
|                    |                        |                         |                            |       | Behavior,<br>Cellular,<br>Morphology, |          |                   |            |                     |
| Dioxin             | Common carp            | 2,3,7,8-TCDD            | 0.0022                     | 1     | mortality<br>Growth,                  | LOED     | Absorption        | Whole Body | Adult               |
|                    | Yellow perch           | 2,3,7,8-TCDD            | 0.000143                   | 6     | Morphology,<br>Mortality              | NOED     | Ingestion         | Whole Body | Immature            |
|                    | Lake trout             | 2,3,7,8-TCDD            | 0.00005                    | NA NA | Mortality                             | NOED     | Absorption        | Whole Body | Based on eq         |

If multiple values are available, selected value is bold and in Italics.

### Table , -4 Whole Body Toxicity Values for Fish Sauget Area 1

| Compound           | Year     | Author                                                                                                                     | Journal                                                                                   |
|--------------------|----------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Herbicides         |          |                                                                                                                            |                                                                                           |
| ntachlorophenol    | 1985     |                                                                                                                            | Environmental Toxicology and Chemistry, Vol. 4, pp 389-397, 1985                          |
|                    | 1985     | Spehar, R.L., Nelson, H.P., Swanson, M.J., Renoos, J.W.                                                                    | Environmental Toxicology and Chemistry, Vol. 4, pp 389-397, 1985                          |
|                    |          |                                                                                                                            | Aquat. Toxicol. 6:157-164.                                                                |
|                    | 1991     | Mckim, J.M. and P.K. Schmieder                                                                                             | p. 161-188 in Nagel, R.et.al. Bioacc. in Aquatic Systems, Contrib. to Assmt. Proceedings  |
| Metals             |          |                                                                                                                            |                                                                                           |
| Arsenic            | 1980     | Barrows, M.E., S.R. Petrocelli, K.J. Macek and J.J. Carroll                                                                | p. 379-392 in Haque, R., ed. Dynamics, Exposure and Hazard Assessment of Toxic Chemicals  |
| Cadmium            | 1982     | Hatakeyama, S. and M. Yasuno                                                                                               | Bull. Environ. Contam. Toxicol. 29:159-166.                                               |
| Copper             | 1996     | Stouthart, J.H.X., Haans, J.L.M., Lock, R.A.C., Bonga, S.E.W.                                                              | Environmental Toxicology and Chemistry, Vol. 15, No. 3, pp. 376-383 (1996)                |
|                    | 1996     | Stouthart, J.H.X., Haans, J.L.M., Lock, R.A.C., Bonga, S.E.W.                                                              | Environmental Toxicology and Chemistry, Vol. 15, No. 3, pp. 376-383 (1996)                |
|                    | 4004     | Water D.M. Breeze A. Cooks D.B. C. L. D.E.                                                                                 |                                                                                           |
| Lead               | 1991     | Weber, D.N., Russo, A., Seale, D.B., Spieler, R.E.                                                                         | Aquatic Toxicol. 21: 71-80                                                                |
|                    | 1991     | Weber, D.N., Russo, A., Seale, D.B., Spieler, R.E.                                                                         | Aquatic Toxicol. 21: 71-80                                                                |
| Mercury            | 1996     | Friedmann, A.S., M.C. Watzin, T. Brinck-Johnsen and J.C. Leiter                                                            | Aquat. Toxicol. 35:265-278.                                                               |
| Mercury            | 1996     | Friedmann, A.S., M.C. Watzin, T. Brinck-Johnsen and J.C. Leiter                                                            | Aquat. Toxicol. 35:265-278.                                                               |
|                    |          |                                                                                                                            |                                                                                           |
| Selenium           | 1992     | Hermanutz, R.O., Allen, K.N., Roush, T.H., and S.F. Hedtke                                                                 | Environ. Tox. Chem. 11: 217-224                                                           |
|                    |          | Bennett, W.N., A.S. Brooks and M.E. Boraas                                                                                 | Arch. Environ. Contam. Toxicol. 15:513-517.                                               |
|                    | 1986     | Bennett, W.N., A.S. Brooks and M.E. Boraas                                                                                 | Arch. Environ. Contam. Toxicol. 15:513-517.                                               |
|                    |          | Lemly, A.D.                                                                                                                | Aquat. Toxicol. 27:133-158.                                                               |
|                    |          | Lemly, A.D.                                                                                                                | Aquat. Toxicol. 2:235-252.                                                                |
|                    | 1982     | Lemly, A.D.                                                                                                                | Aquat. Toxicol. 2:235-252.                                                                |
| PCBs and           |          |                                                                                                                            |                                                                                           |
| Pesticides<br>PCBs |          |                                                                                                                            |                                                                                           |
| 7 020              | <u> </u> |                                                                                                                            |                                                                                           |
|                    |          | Hansen, L.G., W.B. Wiekhorst and J. Simon                                                                                  | J. Fish. Res. Bd. Can. 33:1343-1352.                                                      |
|                    |          | Hansen, D.J., P.R. Parrish and J. Forester                                                                                 | Environ. Res. 7:363-373.                                                                  |
|                    |          | Duke, T.W., J.I. Lowe and A.J. Wilson, Jr.                                                                                 | Bull. Environ. Contam. Toxicol. 5:171-180.                                                |
|                    |          | Duke, T.W., J.I. Lowe and A.J. Wilson, Jr.                                                                                 | Bull. Environ. Contam. Toxicol. 5:171-180.                                                |
|                    |          | Hansen, L.G., W.B. Wiekhorst and J. Simon                                                                                  | J. Fish. Res. Bd. Can. 33:1343-1352.                                                      |
|                    | 1976     | Hansen, L.G., W.B. Wiekhorst and J. Simon                                                                                  | J. Fish. Res. Bd. Can. 33:1343-1352.                                                      |
|                    |          | Adams, S.M., K.L. Shepard, M.S. Greeley Jr., B.D. Jimenez, M.G. Ryon,                                                      | Marina Caulin mantal Dassanth 20, 450 464                                                 |
|                    | 1989     | L.R. Ghugart, and J.F. McCarthy;                                                                                           | Marine Environmental Research. 28: 459-464.                                               |
|                    | 1        | Adams OM LD Observed O.D. Coultsweeth and D.E. Lifety                                                                      | In J.F. McCarthy and L.R. Shugart, eds., Biomarkers of Environmental Contamination. Lewis |
|                    | 1990     | Adams, S.M., L.R. Shugart, G.R. Southworth and D.E. Hinton Adams, S.M., W.D. Crumby, M.S. Greeley, Jr., M.G. Ryon, and E.M | Publishers, Boca Raton, FL., pp. 333-353.                                                 |
|                    | 4000     |                                                                                                                            | Environmental Taxicalogy and Chemieta, 11: 1540 1557                                      |
|                    | 1992     | Schilling                                                                                                                  | Environmental Toxicology and Chemistry. 11: 1549-1557.                                    |

Table 7-4
Whole Body Toxicity Values for Fish
Sauget Area 1

| Compound                | Year | Author                                                                                                                                                        | Journal                                                                                                                |
|-------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| , ppp.                  | 1977 | Jarvinen, A.W., M.J. Hoffman, and T.W. Thorslund                                                                                                              | J Fish Res Board Can 34 2089-2103                                                                                      |
| DD€                     | 1974 | Metcaff, R L                                                                                                                                                  | р 17-38 in Hayes, W J, Essays in Toxicology, Volume 5 Academic Press                                                   |
| DDT                     | 1977 | Jarvinen, A.W., M.J. Hoffman, and T.W. Thorslund                                                                                                              | J Fish Res Board Can 34 2089-2103                                                                                      |
| Aldrın                  | 1974 | Metcalf, R L                                                                                                                                                  | p. 17-38 in Hayes, W.J., Essays in Toxicology, Volume 5. Academic Press                                                |
| Dieldrin                | 1967 | Gakstatter, J.H. and C.M. Weiss                                                                                                                               | Trans Amer Fish Soc 96 301-307                                                                                         |
| Endosullan              | 1977 | Schimmel, S.C., Patrick, J.M., Wilson, A.J.                                                                                                                   | Aquatic Toxicology and Hazard Evaluation, ASTM STP 634, American Society for Testing and Materials, pp. 241-252 (1977) |
| Endrin                  | 1973 | Ludke, J.L., D.E. Ferguson and W.D. Burke<br>Metcalf, R.L., I.P. Kapoor, P.Y. Lu, C.K. Schuth and P. Sherman<br>Argyle, R.L., Williams, G.C., and H.K. Dupree | Trans Amer Fish Soc 97 260-263 Environ Health Perspect 8 35-44 J Fish Res Board Can 30 1743-1744                       |
| Chlordane               | 1976 | Parrish, P.R., S.C. Schimmel, D.J. Hansen, J.M. Patrick, and J. Forester                                                                                      | Journal of Toxicology and Environmental Health, 1 485-494, 1976                                                        |
| Heptechlor              | 1976 | Schimmel, S.C., Patrick, J.M., Forester, J.                                                                                                                   | Journal of Toxicology and Environmental Health, 1.955-965, 1976                                                        |
| Heptachlor epoxide      | 1976 | Schimmel, S.C., Patrick, J.M., Forester, J.                                                                                                                   | Journal of Toxicology and Environmental Health, 1 955-985, 1976                                                        |
| Methoxychlor            | 1974 | Metcalf, R L.                                                                                                                                                 | p. 17-38 in Hayes, W.J., Essays in Toxicology, Volume 5 Academic Press                                                 |
| SVOCs<br>Benzo(a)pyrene |      | Levine, S.L., J.T. Oris and T.E. Wissing Levine, S.L., J.T. Oris and T.E. Wissing                                                                             | Aquat Toxicol 30 61-75.<br>Aquat Toxicol 30 61-75.                                                                     |
| Dioxin                  | 1991 | Cook, P.M., D.W. Kuehl, M.K. Walker and R.E. Peterson                                                                                                         | p. 143-167 in Gallow, M.A., et.al. Biol. Basis for Risk Assmt. of Dioxins and Related Compounds.                       |
|                         | 1986 | Kleeman, J.M., J.R. Olson, S.M. Chen and R.E. Peterson                                                                                                        | Toxicol. Appl. Pharmacol. 83:402-411.                                                                                  |
|                         | 1993 | USEPA                                                                                                                                                         | EPA/600/R-93/055                                                                                                       |

If multiple values are available, selected value is bold and in Italics.

Table 7-5
Comparison of Dead Creek Segment F Surface Water Concentrations to Criteria
Sauget Area I

| <del>-</del>                                           |                            |      |                            |          |                            |      | Wa       | ter Qualit | y Benchmark |          |
|--------------------------------------------------------|----------------------------|------|----------------------------|----------|----------------------------|------|----------|------------|-------------|----------|
| Sample ID:<br>Compounds <sup>6</sup>                   | SW-CSF-S1<br>Concentration | ER Q | SW-CSF-S2<br>Concentration | ER Q     | SW-CSF-S3<br>Concentration | ER Q | Acute    |            | Chronic     |          |
| Total Metals (mg/l) - non-filtered                     |                            |      |                            | $\vdash$ |                            |      | 7.104.15 |            | 011101110   |          |
| Aluminum                                               | 0.039                      | J    | 0.15                       | l t      | 0.55                       | [    | 0.75     | 2,c        | 0.087       | 2 c      |
| Arsenic                                                | 0.01                       | υ    | 0.0032                     | J        | 0.0049                     | J    | 0.36     | 1          | 0.19        | 1        |
| Barium                                                 | 0.13                       | i I  | 0.13                       | 1        | 0.12                       |      | 0.11     | 3          | 0.004       | 3        |
| Copper<br>Iron                                         | 0.0016<br>0.5              | J    | 0.002<br>0 55              | J        | 0.012<br>1                 | J    | 0.044    | 1,a        | 0 027<br>1  | 1,a<br>2 |
| Lead                                                   | 0.005                      | υ    | 0.0022                     | J        | 0.0037                     | J    | 0.33     | 1,a        | 0 069       | 1.a      |
| Manganese                                              | 0.082                      | J    | 0.1                        | J        | 0.14                       | J    | 2.3      | 3          | 0.12        | 3        |
| Molybdenum                                             | 0.01                       | l n  | 0.01                       | U        | 0.0028                     | J    | 16       | 3          | 0.37        | 3        |
| Nickel                                                 | 0.0069                     | J    | 0.013                      | J        | 0 021                      | J    | 1.1      | 2,ь        | 0.12        | 2.6      |
| Zinc                                                   | 0.0073                     | J    | 0.035                      |          | 0.075                      |      | 0.27     | 2,b        | 0.27        | 2.b      |
| SVOC (ug/l)                                            | 1                          |      |                            | 1        |                            |      |          |            |             |          |
| Fluoranthene                                           | 0.7                        | J    | 10                         | U        | 10                         | υ    |          |            | 15          | 4        |
| Dioxins (ug/l)<br>2,3,7,8-TCDD TEQ Mammal <sup>5</sup> | 9.01197E-06                |      | 1.5012E-06                 |          | 1.5583E-06                 |      |          |            |             |          |

<sup>1</sup> Illinois Water Quality Standards

bolded values indicate exceedance of chronic Water Quality Benchmarks shaded values indicate exceedance of acute Water Quality Benchmarks

Hardness dependent criteria calculated at an average hardness for Creek Section F of 263 mg/l as CaCO<sub>3</sub>.

<sup>&</sup>lt;sup>2</sup> US Environmental Protection Agency. 1999. National Recommended Water Quality Criteria—Correction. Office of Water, Washington, DC. April 1999. EPA 822-Z-99-001

<sup>&</sup>lt;sup>3</sup> Suter, GW, CL Tsao. 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision. Prepared for U.S Department of Energy. Oak Ridge National Laboratory. June 1996. ES/ER/TM-96/R2.

<sup>&</sup>lt;sup>4</sup> Suter, GW, CL Tsao. 1996 Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision. Prepared for U.S. Department of Energy. Oak Ridge National Laboratory. June 1996. ES/ER/TM-96/R2

<sup>&</sup>lt;sup>5</sup> Fish TEQ values were calculated for 2,3,7,8-TCDD

<sup>&</sup>lt;sup>6</sup> Other COPCs were not detected in Dead Creek Sector F surface water

<sup>&</sup>quot;a" Calculated values for Illinois criteria are based on average hardness

<sup>&</sup>quot;b" NAWQ Criteria for metals are calculated based on hardness

<sup>&</sup>quot;c" At pH 6.5 - 9.0, see G, I, and L under National recommended water quality criteria for non priority pollutants

Table 7-6
Comparison of Borrow Pit Surface Water Concentrations to Criteria
Sauget Area I

|                                                        |                         | T -  |                         |     |                         |       | Wa         | er Quali | ty Benchmark |     |
|--------------------------------------------------------|-------------------------|------|-------------------------|-----|-------------------------|-------|------------|----------|--------------|-----|
| Sample ID:                                             | SW-BPL-S1 Concentration | ER Q | SW-BPL-S2 Concentration | ERQ | SW-BPL-S3 Concentration | ER Q  | Acute      |          | Chronic      |     |
| Total Metals (mg/l) non-filtered                       | <del></del>             | +    | <del></del>             |     |                         |       | Acute      |          | Chronic      |     |
| Aluminum                                               | 3.4                     |      | 0.71                    |     | 0.65                    |       | 0.75       | 2,d      | 0.087        | 2.d |
| Arsenic                                                | 0.015                   |      | 0.0079                  | J   | 0.012                   |       | 0.75       | 1        | 0.087        | 1   |
| Barium                                                 | 0.32                    |      | 0.12                    | "   | 0.045                   |       | 0.11       | 3        | 0.19         | 3   |
| Chromium                                               | 0.0041                  | J    | 0.01                    | U   | 0.01                    | U     | 4.036/.016 | 1,8      | 0.481/.011   | 1,a |
| Copper                                                 | 0.0074                  | J    | 0.0036                  | J   | 0.0048                  | J     | 0.0468     | 1,8      | 0.0285       | 1,a |
| Iron                                                   | 8.7                     | J    | 1.6                     | J   | 1.3                     | j     | 0.5        |          | 1            | 2   |
| Lead                                                   | 0.02                    | }    | 0.002                   | J   | 0.0029                  | ا ر ا | 0.355      | 1,a      | 0.0744       | 1.a |
| Manganese                                              | 1.7                     |      | 0.13                    |     | 0.17                    |       | 2.3        | 3        | 0.12         | 3   |
| Molybdenum                                             | 0.0035                  | J    | 0.01                    | U   | 0.004                   | J     | 16         | 3        | 0 37         | 3   |
| Nickel                                                 | 0.015                   | J    | 0.012                   | J   | 0.0077                  | J     | 1.1        | 2,0      | 0 12         | 2.b |
| Zinc                                                   | 0.048                   |      | 0.027                   |     | 0.017                   | J     | 0.287      | 2.b      | 0.287        | 2.b |
| Pesticides (ug/l)                                      |                         |      |                         |     |                         |       |            |          |              |     |
| delta-BHC                                              | 0.00013                 | J    | 0.0022                  | J   | 0.012                   | U     | 39         | 3.g      | 2.2          | 3.g |
| Dieldrin                                               | 0.1                     | U    | 0.1                     | U   | 0.001                   | J     | 0.24       | 2        | 0.056        | 2   |
| Endosulfan I                                           | 0.0024                  | J    | 0.05                    | U   | 0.0015                  | J     | 0 22       | 2.e      | 0.056        | 2.e |
| Endosulfan sulfate                                     | 0.1                     | U    | 0.1                     | U   | 0.0032                  | J     | 0.22       | 2.e      | 0.056        | 2.€ |
| Endrin                                                 | 0.1                     | U    | 0.1                     | U   | 0.00095                 | J     | 0.086      | 2.c      | 0.036        | 2.c |
| Endrin aldehyde                                        | 0.0032                  | J    | 0.1                     | ļυ  | 0.0016                  | J     | 0.086      | 2,c      | 0.036        | 2 c |
| Endrin ketone                                          | 0.1                     | U    | 0.1                     | U   | 0.0027                  | J     | 0.086      | 2,c      | 0.036        | 2.c |
| gamma-BHC (Lindane)                                    | 0.019                   | U    | 0.0038                  | J   | 0.0024                  | J     | 0.95       | 2        | 0.036        | 2.c |
| Heptachlor                                             | 0.0026                  | J    | 0.0022                  | J   | 0.0029                  | J     | 0.52       | 2        | 0.0038       | 2   |
| Heptachlor epoxide                                     | 0.00096                 | J    | 0 0009                  | J   | 0.05                    | U     | 0.52       | 2        | 0.0038       | 2   |
| Dioxins (ug/l)<br>2,3,7,8-TCDD TEQ Mammal <sup>h</sup> | 8.5902E-07              |      | 7.453E-07               |     | 4.8413E-07              |       |            |          |              |     |

<sup>1</sup> Illinois Water Quality Standards

Only those COPCs detected in the Borrow Pit are shown

boided values indicate exceedance of chronic Water Quality Benchmarks shaded values indicate exceedance of acute Water Quality Benchmarks

Hardness dependent criteria calculated at an average hardness for the Borrow Pit Lake of 280 mg/l as CaCO<sub>3</sub>

<sup>&</sup>lt;sup>2</sup> US Environmental Protection Agency. 1999. National Recommended Water Quality Criteria—Correction. Office of Water, Washington, DC. April 1999. EPA 822-Z-99-001.

<sup>&</sup>lt;sup>3</sup> Suter, GW, CL Tsao. 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision. Prepared for U.S. Department of Energy. Oak Ridge National Laboratory. June 1996. ES/ER/TM-96/R2.

<sup>&</sup>quot;a" Calculated values for Illinois criteria are based on average hardness

<sup>&</sup>quot;b" NAWQ Criteria for metals are calculated based on hardness

<sup>&</sup>quot;c" there is some uncertainty since the detection limit is greater than the AWQC

<sup>&</sup>quot;d"At pH 6.5 - 9.0, see G, I, and L under National recommended water quality criteria for non priority pollutants

<sup>&</sup>quot;e" For alpha- and beta-Endosulfan

<sup>&</sup>quot;f" For PCBs

<sup>&</sup>quot;g" For BHC (other)

<sup>&</sup>quot;h" Mammal TEQ values were calculated for 2,3,7,8-TCDD

# Table 7-7a Comparison of Sediment Concentrations in Dead Creek Section F to Ecological Sediment Quality Guidelines Sauget Area!

|                                                         |                                       |       |                                    | _    | - Alcui              |          |                         |                                   |
|---------------------------------------------------------|---------------------------------------|-------|------------------------------------|------|----------------------|----------|-------------------------|-----------------------------------|
| Sample ID:                                              | SED-CSF-S1-<br>0 2FT                  |       | SED-CSF-S2-<br>0 2FT               |      | SED-CSF-S3-<br>0 2FT |          | Sediment                |                                   |
| sample ID.                                              |                                       |       |                                    | ·    |                      |          | Quality                 | Sediment Quality                  |
| Compounds                                               | Concentration                         | ER Q  | Concentration                      | ER Q | Concentration        | ER Q     | Guidelines <sup>1</sup> | Guidelines <sup>1</sup> Consensus |
|                                                         |                                       |       |                                    |      |                      | $\vdash$ | Consensus-based TEC     | based PEC                         |
| Herbicides (ug/kg)                                      | 110                                   | l l   | 040                                | l    |                      | 1        |                         |                                   |
| 2,4-D                                                   | 110                                   | UJ    | 210                                | UJ   | 23                   | J        | NΛ                      | NA.                               |
| Metals (mg/kg)<br>Aluminum                              | 7800                                  | 1.1   | 44000                              | ĺ. I |                      | 1.1      |                         |                                   |
| Arsenic                                                 | 8                                     | J     | 14000                              | J    | 17000                | J        | NA                      | , NA                              |
| Arsenic<br>Barium                                       | 150                                   | J     | 19<br>250                          | J    | 15                   | J        | 9 79                    | 33                                |
|                                                         | 0.53                                  | J     |                                    | J    | 270                  | J        | NA                      | NA NA                             |
| Beryllium<br>Cadmium                                    |                                       | ر پر  | 0.85                               | J    | 0.89                 | J        | NA                      | ļ NA                              |
| <del>-</del>                                            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | * J ∄ | 47 ()                              | J    | 14                   | J.       | 0.99                    | 4 98                              |
| Chromium                                                | 19                                    | J     | 38                                 | J    | 30                   | J.       | 43.4                    | 111                               |
| Copper                                                  | I.                                    | J     | 410                                | /3   | 240                  | j û      | 31.6                    | 149                               |
| ron                                                     | 14000                                 | J     | 22000                              | J    | 26000                | J        | 20000 <sup>2</sup>      | 40000 <sup>2</sup>                |
| .ead                                                    | 110                                   | J     | S 320                              | J    | 110                  | J        | 35.8                    | 128                               |
| Manganese                                               | 170                                   | J     | 230                                | J    | 510                  | [ J      | 460 <sup>2</sup>        | 1100 -                            |
| Mercury                                                 | 0.3                                   | J     | 7 - 77 <b>24 3</b> 1 1 1 1 1 1 1 1 | J    | 0.45                 | J        | 0.18                    | 1.06                              |
| Molybdenum                                              | 0.7                                   | J     | 3.7                                | J    | 0 76                 | J        | NA                      | i                                 |
| lickel                                                  | 90 700                                | : J : | 390                                | Ú    | 180                  | 1.20     | 22.7                    | 48 6                              |
| Zinc                                                    | 950                                   | J     | 3700                               | J    | 1600                 | ં પ્ર    | 121                     | 459                               |
| PCBs and Pesticides (ug/kg)                             |                                       | 1     |                                    |      |                      | 1        |                         |                                   |
| Total PCBs                                              | 83                                    | J     | 83                                 | J    | 120                  | UJ       | 59.8                    | 676                               |
| 1,4'-DDT                                                | 4.5                                   | J     | 35                                 | UJ   | 24                   | UJ       | 4.16 <sup>3</sup>       | 62 9 <sup>3</sup>                 |
| Total DDT                                               | 19                                    | J     | 43                                 | j    | 27                   | J        | 5.28                    | 572                               |
| Aldrin                                                  | 4.1                                   | J     | 18                                 | UJ   | 12                   | UJ       | 2 <sup>2</sup>          | 320, 1120, 488 <sup>2.5</sup>     |
| Alpha Chlordane                                         | 4.6                                   | J     | 5.3                                | J    | 0.84                 | J        | 3.24 4                  | 17.6 4                            |
| delta-BHC                                               | 0.34                                  | J     | 5.3                                | UJ   | 3.7                  | UJ       | NA                      | NA.                               |
| Dieldrin                                                | 9.3                                   | Ĵ     | 35                                 | ÜĴ   | 0 99                 | Ĵ        | 1 9                     | 61.8                              |
| Endosulfan I                                            | 5 7                                   | J     | 2                                  | J    | 12                   | Ĵ        | NA                      | NA.                               |
| Endosulfan II                                           | 8.1                                   | از ا  | 5.5                                | J    | 18                   | انا      | NA                      | NA NA                             |
| Endosulfan sulfate                                      | 28                                    | ĺĵ    | 35                                 | ŪJ   | 24                   | UJ       | NA                      | l NA                              |
| Endrin                                                  | 17                                    | l i   | 35                                 | UJ   | 1.7                  | J        | 2.22                    | 207                               |
| Endrin aldehyde                                         | 14                                    | l j   | 9                                  | J    | 3 6                  | J        | NA NA                   | l NA                              |
| Endrin ketone                                           | 10                                    | ľ     | 7.2                                | Ĵ    | 3.8                  | l j l    | NA                      | NA NA                             |
| Gamma Chlordane                                         | 17                                    | j     | 7.5                                | Ĵ    | 2.4                  | انا      | 3 24 4                  | 17.64                             |
| Heptachlor                                              | 7.8                                   | UJ    | 18                                 | UJ   | 0.93                 | ازا      | 0 3 NEL 2               | NA NA                             |
|                                                         | 5.4                                   | J     | 18                                 | UJ   | 0.93                 | J        | 2.47                    | 16                                |
| Heptachlor epoxide                                      | 24                                    | J     | 14                                 | J    | 73                   | j        | 2.47<br>NA              | NA NA                             |
| Methoxychlor                                            | 24                                    | 1     | 14                                 | 1    | '3                   | '        | NA.                     | l NA                              |
| SVOC (ug/kg)<br>Fluoranthene                            | 120                                   | J     | 890                                | UJ   | 130                  | J        | 423                     | 2230                              |
| Dioxins (ug/kg)<br>2,3,7,8-TCDD TEQ Mammal <sup>6</sup> | 0.144391                              |       | 0.3318165                          |      | 0.170232             |          | NA                      | NA                                |

NA indicates not available.

MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ.

shaded numbers exceed PEC value

Persaud, D., R. Jaagumagi, and A. Hayton. 1993 Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of Environment and Energ

Guidelines for sum DDT

<sup>&</sup>lt;sup>4</sup> Guidelines for Chlordane

<sup>5</sup> Ontario SEL value is site specific based on TOC value

Mammal TEQ values were calculated for 2,3,7,8-TCDD

bolded numbers exceed TEC value, or Ontario LEL or NEL value

Table 7-7b

Comparison of Industry Specific Sediment Concentrations in Dead Creek Sector F to Sediment Quality Guidelines
Sauget Area I

| SAMPLE ID:<br>Compounds                                    | Sediment Quality Guidelines <sup>1</sup> Consensus-based TEC | Guidelines <sup>1</sup> | FASED-CSF-<br>S1E-0-8IN<br>Concentration |   | FASED CSF S2<br>0-7IN<br>Concentration |             | FASED CSF-<br>S3E-0-6IN<br>Concentration |   | FASED-CSF-S4<br>0-7IN<br>Concentration |   | FASED-CSF-<br>S5W-0-10IN<br>Concentration | ER Q | FASEŪ-ŪSF-<br>S6E-0-10IN<br>Concentration | ER Q | FASED-CSF-<br>S7E-0-11IN<br>Concentration | ER Q |
|------------------------------------------------------------|--------------------------------------------------------------|-------------------------|------------------------------------------|---|----------------------------------------|-------------|------------------------------------------|---|----------------------------------------|---|-------------------------------------------|------|-------------------------------------------|------|-------------------------------------------|------|
| Copper (mg/kg dw)<br>Zinc (mg/kg dw)<br>Total PCBs (ug/kg) | 121                                                          | 149<br>459<br>676       | 17<br>88<br>25                           | U | 12<br>53                               | <i>p</i> 1. | 17<br>63<br>22                           | U | 10<br>50<br>22                         | U | 13<br>62<br>52 95                         |      | 17<br>85<br>24                            | U    | 21<br>84<br>23                            | U    |

MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000 Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. *Arch. Environ* Bolded numbers exceed TEC value or Ontario LEL value Shaded numbers exceed PEC value

Table 7-7b Comparison of Industry Specific Sediment Concentrations In Dead Creek Sector F to Sediment Quality Guidelines Sauget Area I

|                    | Sediment Quality        | Sediment Quality        |               |      |               |      |               |      |               |      |               |      |               |      |               |      |               |      | -             |      |
|--------------------|-------------------------|-------------------------|---------------|------|---------------|------|---------------|------|---------------|------|---------------|------|---------------|------|---------------|------|---------------|------|---------------|------|
| 1                  | Guidelinos <sup>1</sup> | Guidelines <sup>1</sup> | FASED CSF SB  |      | FASED CSF S9  |      | FASED CSF     |      | FASED CSF     |      | FASED CSF     |      | FASED CSF     | ]    | FASED-CSF-    | !    | FASED-CSF-    |      | FASED-CSF-    | !!   |
| SAMPLE ID:         | Consensus-based         | Consensus-based         |               |      | 0-11IN        | 1    | S13W-0-15IN   |      | S12-0-15INFD  |      | S11W-0-10IN   |      | S14W-0-15IN   |      | S10-0-9IN     |      | S15W-0-28IN   |      | S16-0-23IN    | 1 1  |
| Compounds          | TEC                     | PEC                     | Concentration | ER Q | Concentration | ER Q | Concentration | ER Q | Concentration | ER Q | Concentration | ER Q | Concentration | ER Q | Concentration | ER Q | Concentration | ER Q | Concentration | ER Q |
|                    |                         |                         |               |      | !             |      |               |      |               |      |               |      | ,             |      |               |      |               |      |               |      |
| Copper (ing/kg dw) | 31.6                    | 149                     | 34            |      | 78            |      | 370           |      | 76            |      | 88            |      | 460           | }    | 33            | 1    | 430 "         | 1    | 33            | 1 1  |
| Zinc (mg/kg dw)    | 121                     | 459                     | 160           |      | 400           |      | 2100          | 14.0 | 685           |      | 690           | , ,, | 3200          |      | 250           |      | 7700          |      | 3900          |      |
| Total PCBs (ug/kg) | 59 8                    | 676                     | 24            | U    | 29            | U    | 290           |      | 28            | U    | 29            | U    | 457.35        |      | 25            | U_   | 704.5         | J    | 75.95         | 1    |

<sup>&</sup>lt;sup>1</sup> MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. *Arch. Environ* Bolded numbers exceed TEC value or Ontano LEL value Shaded numbers exceed PEC value.

### Table 7-7b Comparison of Industry Specific Sediment Concentrations in Dead Creek Sector F to Sediment Quality Guidelines Sauget Area I

|                    | Sediment Quality        | Sediment Quality        |                                                 |      |               |       |               |       |               |      |               |        |                     |                  |               |       |               |      |               |       |
|--------------------|-------------------------|-------------------------|-------------------------------------------------|------|---------------|-------|---------------|-------|---------------|------|---------------|--------|---------------------|------------------|---------------|-------|---------------|------|---------------|-------|
| \ \ \              | Guidelines <sup>1</sup> | Guldelines <sup>1</sup> | FASED CSF                                       | }    | FASED-CSF-    | i     | FASED-CSF-    | i     | FASED-CSF-    |      | FASED-CSF-    |        | FASED-CSF-          |                  | FASED-CSF-    | ļ ·   | FASED-CSF-    | 1    | FASED-CSF-    | 1 1   |
| SAMPLE ID:         | Consensus-based         | Consensus-based         |                                                 | - 1  | S18E-0-14IN   |       | S19-0-13IN    | ì .   | S20-0-12IN    |      | S21-0-13INFD  |        | S22E-0-20IN         |                  | S23-0-15IN    |       | \$24W-0-13IN  |      | S25E-0-10IN   | 1 1   |
| Compounds          | TEC                     | PEC                     | Concentration                                   | ER Q | Concentration | ER Q  | Concentration | ER Q  | Concentration | ER Q | Concentration | ER Q   | Concentration       | ER Q             | Concentration | ER Q  | Concentration | ER Q | Concentration | ER Q  |
|                    |                         |                         | 1. 35 m. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 2    |               | . 500 |               |       | 73.3          |      | 4 days        |        | and he stage grades | Ψ <sup>2</sup> . |               | \$ 37 |               |      | 10            | [: "] |
| Copper (mg/kg dw)  | 316                     | 149                     | 1400                                            |      | - 1700 A      | 4.0   | 5400          | 100 C | 710           | .0   | 1060          | 1877 P | 17 420 W            | 1                | 1400          | 100   | 530           | 1.   | 2500          |       |
| Zinc (mg/kg dw)    | 121                     | 459                     | 11000                                           | 37 B | 9100          |       | 10000         | N 1   | 2300          | 8    | 4450          | 1. 6   | 4800                | 1.55             | 5400          | 3     | 3200          |      | 6200          | 1: 1  |
| Total PCBs (ug/kg) | 59 ଖ                    | 676                     | 484.05                                          |      | 289.6         |       | 1249,4        | 136   | 486.8         |      | 663,15        | l      | 1101.2              | 1                | 1403.5        | İ     | 244.75        | I    | 1049.6        |       |

<sup>&</sup>lt;sup>1</sup> MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment. Quality Guidelines for Freshwater Ecosystems. *Arch. Environ.* Bolded numbers exceed TEC value or Ontario LEL value. Shaded numbers exceed PEC value.

Table 7-7b

Comparison of Industry Specific Sediment Concentrations In Dead Creek Sector F to Sediment Quality Guidelines
Sauget Area I

|                    | Sediment Quality        | Sediment Quality        |               |       |               |       |                 |      |               |      |
|--------------------|-------------------------|-------------------------|---------------|-------|---------------|-------|-----------------|------|---------------|------|
|                    | Guidelines <sup>1</sup> | Guidelines <sup>1</sup> | FASED CSF     |       | FASED CSF     |       | FASED-CSF-      |      | FASED-CSF-    | . !  |
| SAMPLE ID:         | Consensus-based         | Consensus-based         | S26W-0-13IN   |       | S27E-0-16IN   |       | S28-0-10IN      |      | S29W-0-10IN   |      |
| Compounds          | TEC                     | PEC                     | Concentration | ER Q  | Concentration | ER Q  | Concentration   | ER Q | Concentration | ER Q |
|                    |                         |                         | 14.3 <b>%</b> | 2.782 |               | 4,23  | 1980 M. C. GOV. | 33.2 |               |      |
| Copper (mg/kg dw)  | 316                     | 149                     | 930           |       | 1900          |       | 1200            | 2013 | 26            |      |
| Zinc (mg/kg dw)    | 121                     | 459                     | 4700          | 134   | 39 8200       | 4233  | 3200            | 3.15 | 510           | Sec. |
| Total PCBs (ug/kg) | 59 8                    | 676                     | 581.2         |       | 1811          | . , . | 6470.5          |      | 24            | UJ   |

<sup>&</sup>lt;sup>1</sup> MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. *Arch. Environ* Bolded numbers exceed TEC value or Ontario LEL value Shaded numbers exceed PEC value.

Table 7-8a Comparison of Ecological Borrow Pit Lake Sediment Concentrations to Sediment Quality Guidelines Sauget Area I

| Sample ID                                               | BPL-ESED-S1-0 2FT<br>Average<br>Concentration | ER Q         | BPL-ESED-S2-0 2FT<br>Concentration | ER Q  | BPL-ESED-S3-0 2FT<br>Concentration | ER Q   | Sediment  Quality  Guidelines <sup>1</sup> Consensus-based TEC | Sediment Quality<br>Guidelines <sup>1</sup><br>Consensus-based<br>PEC |
|---------------------------------------------------------|-----------------------------------------------|--------------|------------------------------------|-------|------------------------------------|--------|----------------------------------------------------------------|-----------------------------------------------------------------------|
| Herbicides (ug/kg)<br>2.4-D                             | 88                                            | ١.           |                                    |       |                                    |        |                                                                |                                                                       |
| Metals (mg/kg)                                          | 88                                            | J            | 24                                 | กา    | 11                                 | J      | NA                                                             | NA                                                                    |
| Aluminum                                                | 14000                                         | J            | 16000                              | l j [ | 11000                              | 1.1    |                                                                |                                                                       |
| Arsenic                                                 | 17                                            | .1           | 17                                 |       | 11000                              | 1 1    | NA<br>NA                                                       | NA<br>aa                                                              |
| Banum                                                   | 390                                           | 1            | 420                                | J     | 240                                | !      | 9 79                                                           | 33                                                                    |
| Beryllium                                               | 0.74                                          | Ιĭ           | 0 82                               | ı l   | 0.58                               | J      | NA                                                             | NA NA                                                                 |
| Cadmium                                                 | 2                                             | 1 3          | 2.7                                | 1     | 1.6                                |        | NA<br>0.99                                                     | NA<br>100                                                             |
| Chromium                                                | 21                                            | Į j          | 26                                 | j     | 1.6                                | 1      | 0 99<br>43 4                                                   | 4 98                                                                  |
| Copper                                                  | 46                                            | ľů           | 64                                 | J     | 36                                 | J      | 43.4<br>31.6                                                   | 111<br>149                                                            |
| Iron                                                    | 36000                                         | Ιŭ           | 38000                              | J     | 28000                              | ',     | 20000 <sup>2</sup>                                             |                                                                       |
| Lead                                                    | 52                                            | ľű           | 58                                 | ایا   | 34                                 | J      | 20000 °<br>35 8                                                | 40000 ²                                                               |
| Manganese                                               | 1300                                          | J            | 1400                               | , -   | 940                                | J '    | 460 <sup>2</sup>                                               | 128                                                                   |
| Mercury                                                 | 0.1                                           | ا ا          | 0 16                               | J     | 0.11                               | J      |                                                                | 1100 ²                                                                |
| Molybdenum                                              | 0.5                                           | l ü          | 0.92                               | J     | 0 11                               | J .    | 0 18                                                           | 1 06                                                                  |
| Nicket                                                  | 53                                            | Ü            | 54                                 | J     | 35                                 | j      | 22 7                                                           | 40.0                                                                  |
| Silver                                                  | 2.8                                           | UJ           | 0.79                               | ایا   | 25                                 | ا رن ا | 22 /                                                           | 48 6                                                                  |
| Zinc                                                    | 310                                           | ] 03         | 370                                | J     | 250<br>250                         | J      | 121                                                            | 459                                                                   |
| Pesticides (ug/kg)                                      | 310                                           | 1            | 370                                | ,     | 250                                | 1 ,    | 121                                                            | 459                                                                   |
| 4.4'-DDE                                                | 1.1                                           | ر ا          | 3.2                                | ا ر ا | 1.6                                | l . i  | 3 16 b                                                         | 313 <sup>b</sup>                                                      |
|                                                         | 1.1                                           |              |                                    | l 1   |                                    | J      | 4.16 <sup>3</sup>                                              | 6293                                                                  |
| 4,4'-DDT                                                | 11 22                                         | \ \rac{1}{1} | 19                                 | Oi    | 1,4<br>3                           | 1 1    |                                                                |                                                                       |
| Total DDT                                               |                                               | J            | 22                                 | J     |                                    | J      | 5 28                                                           | 572                                                                   |
| Alpha Chlordane                                         | 0 48                                          | J            | 3 2                                | J     | 12                                 | J.     | 3 24 4                                                         | 176                                                                   |
| Dieldnn                                                 | 0.26                                          | J            | 0.5                                | J     | 18                                 | UJ     | 19                                                             | 618                                                                   |
| Endosulfan I                                            | 4.9                                           | J            | 2.8                                | J     | 1                                  | J      |                                                                |                                                                       |
| Endosulfan sulfate                                      | 9.5                                           | l i          | 1.4                                | 1     | 18                                 | - nh   |                                                                | Į.                                                                    |
| Endrin aldehyde                                         | 1 4                                           | J            | 2 2                                | J     | 12                                 | J      |                                                                |                                                                       |
| Endnn ketone                                            | 0.72                                          | J            | 19                                 | UJ    | 18                                 | UJ     |                                                                |                                                                       |
| Gamma Chlordane                                         | 0 74                                          | J            | 3                                  | J     | 9 4                                | UJ     | 3 24 4                                                         | 17 6 ⁴                                                                |
| gamma-BHC (Lindane)                                     | 4.8                                           | J            | 99                                 | ŲĴ    | 9.4                                | UJ     | 2 37                                                           | 4 99                                                                  |
| Heptachlor epoxide                                      | 4.8                                           | J            | 99                                 | UJ    | 9 4                                | UJ     | 2 47                                                           | 16                                                                    |
| Dioxins (ug/kg)<br>2,3,7,8-TCDD TEQ Mammal <sup>5</sup> | 0.0134195                                     |              |                                    |       | 0 0194186                          |        |                                                                |                                                                       |

MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2009. Development and Evaluation of Consensus Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch Environ Contamin Toxicol 39 20-31

Persaud, D., R. Jaagumagi, and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontano. Ontano Ministry of Environment and Energy August, 1993

3 Guidelines for sum DDT

Guidelines for Chlordane

Mammal TEQ values were calculated for 2,3,7.8-TCDD

bolded numbers exceed TEC value or Ontario LEL value shaded numbers exceed PEC value

Table 7-8b Comparison of Industry Specific Borrow Pit Lake Sediment Concentrations to Sediment Quality Guidelines Sauget Area I

| Sample ID:<br>Compounds              | Sediment Quality Guidelines <sup>1</sup> Consensus-based TEC | Sediment Quality Guidelines <sup>1</sup> Consensus-based PEC | FASED-BPL-S1-<br>0-10IN |  | FASED-BPL-S2<br>0-10IN<br>Concentration | l | FASED-BPL-S3<br>0-8IN<br>Concentration | Ì ' | FASED-BPL-S4<br>0-10IN<br>Concentration |  | FASED-BPL-S5-<br>0-9IN<br>Concentration | FASED-BPL-S6-<br>0-11IN DUP<br>avgd.<br>Concentration |  |
|--------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------|--|-----------------------------------------|---|----------------------------------------|-----|-----------------------------------------|--|-----------------------------------------|-------------------------------------------------------|--|
| Copper (mg/kg dw)<br>Zinc (mg/kg dw) | 31.6<br>121                                                  | 149<br>459                                                   | 9.9<br><b>380</b>       |  | 15<br><b>230</b>                        |   | 14<br>300                              |     | 13<br><b>360</b>                        |  | 13<br><b>280</b>                        | 17<br><b>335</b>                                      |  |

<sup>&</sup>lt;sup>1</sup> MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Bolded numbers exceed TEC value or Ontario LEL value Shaded numbers exceed PEC value

Only compounds detected at least once in this medium in this area are shown on this table.

Table 7-8b

Comparison of Industry Specific Borrow Pit Lake Sediment Concentrations to Sediment Quality Guidelines
Sauget Area I

| Sample ID:        | Sediment Quality Guidelines <sup>1</sup> Consensus-based | Sediment Quality Guidelines 1 Consensus-based | FASED-BPL-S7-<br>0-9IN |      | FASED-BPL-S8-<br>0-9IN |      |
|-------------------|----------------------------------------------------------|-----------------------------------------------|------------------------|------|------------------------|------|
| Compounds         | TEC                                                      | PEC                                           | Concentration          | ER Q | Concentration          | ER Q |
| Copper (mg/kg dw) | 31 6                                                     | 149                                           | 18                     |      | 21                     |      |
| Zinc (mg/kg dw)   | 121                                                      | 459                                           | 410                    | ļ    | 490                    | 1.57 |

<sup>&</sup>lt;sup>1</sup> MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Bolded numbers exceed TEC value or Ontario LEL value Shaded numbers exceed PEC value Only compounds detected at least once in this medium in this area

Table 7-9
Number of Taxa, Number of Organisms, and Three Dominant Taxa in Dead Creek Section F and Borrow Pit Lake Samples
Sauget Area I

| Location 2            | Station Station | Number of Organisms | Number of Taxa | Dominant Taxon* | 2nd Dominant Taxon | 3rd Dominant Taxon | Total Organic Carbon, percent |
|-----------------------|-----------------|---------------------|----------------|-----------------|--------------------|--------------------|-------------------------------|
|                       | F-1             | 156                 | 16             | Chironomidae    | Sphaeriidae        | Chironomidae       | 4.0                           |
| Dead Creek Section F  | F-2             | 154                 | 11             | Ceratopogonidae | Oligochaeta        | Ceratopopogonidae  | 14                            |
|                       | F-3             | 358                 | 17             | Oligochaeta     | Oligochaeta        | Chironomidae       | 6.1                           |
|                       | BP-1            | 126                 | 18             | Oligochaeta     | Odonata            | Oligochaeta        | 6.7                           |
| Borrow Pit Lake       | BP-2            | 262                 | 17             | Oligochaeta     | Oligochaeta        | Ceratopogonidae    | 4.5                           |
|                       | BP-3            | 151                 | 14             | Oligochaeta     | Oligochaeta        | Oligochaeta        | 3.3                           |
| Prairie du Pond Creek | PDC-1           | 92                  | 8              | Oligochaeta     | Ceratopogonidae    | Oligochaeta        | 1.2                           |
| (Reference Area 1)    | PDC-2           | 148                 | 9              | Oligochaeta     | Chaoboridae        | Oligochaeta        | 2.3                           |
| Reference Area 2      | REF2-1          | 4420                | 16             | Oligochaeta     | Ceratopogonidae    | Chironomidae       | 1.3                           |
| Reference Area 2      | REF2-2          | 87                  | 13             | Oligochaeta     | Ceratopogonidae    | Chironomidae       | 2.0                           |

<sup>\*</sup>Dominant taxa were calculated at the genus or species level but expressed as higher taxa.

Table 7-10

Diversity Indices for Dead Creek Section F, the Borrow Pit Lake, and Reference Areas

Sauget Area I

| Summation of Replicates | H' (Shannon-Weaver)<br>Index (natural log)) <sup>a</sup> | Relative H'<br>(H'/H'max) <sup>b</sup> | λ (Simpson's Index) <sup>c</sup> |
|-------------------------|----------------------------------------------------------|----------------------------------------|----------------------------------|
| F-1                     | 2.28                                                     | 0.82                                   | 0.14                             |
| F-2                     | 1.66                                                     | 0.69                                   | 0.25                             |
| F-3                     | 1.60                                                     | 0.56                                   | 0.31                             |
| BP-1                    | 2.53                                                     | 0.87                                   | 0.11                             |
| BP-2                    | 2.09                                                     | 0.74                                   | 0.23                             |
| BP-3                    | 1.56                                                     | 0.59                                   | 0.35                             |
| PDC-1                   | 0.66                                                     | 0.32                                   | 0.74                             |
| PDC-2                   | 0.58                                                     | 0.26                                   | 0.79                             |
| REF2-1                  | 1.09                                                     | 0.39                                   | 0.53                             |
| REF2-2                  | 1.24                                                     | 0.48                                   | 0.49                             |

#### Notes:

- a: Shannon-Weaver is an index which measures species diversity. The higher the number, the greater the species diversity.
- b: Relative H' shows how close the sample is to maximum diversity, even distribution of organisms among the taxa is represented by "1".
- c: Simpson's is an index which measures the probability of two randomly selected organisms from a sample belonging to the same taxon. It is indirectly proportional to heterogeneity (the higher the value, the more homogeneous the sample.

Table 7-11 Community Composition of Six Major Taxonomic Groups Sauget Area I

| Station | Taxa Group (6 Total)   | Number of Organisms                   | Relative Abundance (%) |
|---------|------------------------|---------------------------------------|------------------------|
|         |                        | _                                     |                        |
| F-1     | Chironomidae           | 74                                    | 47.44                  |
| F-1     | Mollusca               | 34                                    | 21.79                  |
| F-1     | Non-Chironomid Insects | 26                                    | 16.67                  |
| F-1     | Oligochaeta            | 22                                    | 14.10                  |
|         |                        |                                       |                        |
| F-2     | Non-Chironomid Insects | 96                                    | 62.34                  |
| F-2     | Oligochaeta            | 44                                    | 28.57                  |
| F-2     | Chironomidae           | 14                                    | 9.09                   |
|         |                        |                                       | <del>-</del>           |
| F-3     | Oligochaeta            | 286                                   | 81.25                  |
| F-3     | Chironomidae           | 36                                    | 10.23                  |
| F-3     | Non-Chironomid Insects | 24                                    | 6.82                   |
| F-3     | Mollusca               | 6                                     | 1.70                   |
|         |                        |                                       |                        |
| BP-1    | Non-Chironomid Insects | 56                                    | 44.44                  |
| BP-1    | Oligochaeta            | 48                                    | 38.10                  |
| BP-1    | Chironomidae           | 12                                    | 9.52                   |
| BP-1    | Other*                 | 10                                    | 7.94                   |
|         |                        |                                       |                        |
| BP-2    | Oligochaeta            | 178                                   | 67.94                  |
| BP-2    | Chironomidae           | 54                                    | 20.61                  |
| BP-2    | Non-Chironomid Insects | 30                                    | 11.45                  |
|         | Oliver I               | 400                                   | 00.70                  |
| BP-3    | Oligochaeta            | 122                                   | 80.79                  |
| BP-3    | Non-Chironomid Insects | 17                                    | 11.26                  |
| BP-3    | Chironomidae           | 12                                    | 7.95                   |
| PDC-1   | Oligochaeta            | 85                                    | 92.39                  |
| PDC-1   | Non-Chironomid Insects | 6                                     | 6.52                   |
| PDC-1   | Chironomidae           | 1                                     | 1.09                   |
|         | erii orierinade        | <u>'</u>                              | 1.00                   |
| PDC-2   | Oligochaeta            | 138                                   | 93.24                  |
| PDC-2   | Chironomidae           | 4                                     | 2.70                   |
| PDC-2   | Non-Chironomid Insects | 4                                     | 2.70                   |
| PDC-2   | Crustacea              | 1                                     | 0.68                   |
| PDC-2   | Mollusca               | 1                                     | 0.68                   |
|         |                        | · · · · · · · · · · · · · · · · · · · |                        |
| REF2-1  | Oligochaeta            | 3210                                  | 72.62                  |
| REF2-1  | Non-Chironomid Insects | 820                                   | 18.55                  |
| REF2-1  | Chironomidae           | 320                                   | 7.24                   |
| REF2-1  | Mollusca               | 50                                    | 1.13                   |
| REF2-1  | Crustacea              | 20                                    | 0.45                   |
|         |                        |                                       |                        |
| REF2-2  | Oligochaeta            | 62                                    | 71.26                  |
| REF2-2  | Chironomidae           | 14                                    | 16.09                  |
| REF2-2  | Non-Chironomid Insects | 11                                    | 12.64                  |

<sup>\*</sup>Hirudinea and Nematoda

# Table 7-12 Hilsenhoff's Biotic Index of Organic Stream Pollution Sauget Area I

|                         | Hilsenhoff's Biotic Index |
|-------------------------|---------------------------|
|                         | (Expanded to Include      |
|                         | Non-Arthropod             |
| Summation of Replicates | Invertebrates)            |
| BP-1                    | 7.88                      |
| BP-2                    | 8.86                      |
| BP-3                    | 9.18                      |
| F-1                     | 7.63                      |
| F-2                     | 6.71                      |
| F-3                     | 8.65                      |
| PDC-1                   | 9.55                      |
| PDC-2                   | 9.69                      |
| REF2-1                  | 9.42                      |
| REF2-2                  | 9.04                      |
|                         |                           |
| Value of Biotic Index   | Degree of Impairment      |
| 0 - 3.5                 | None                      |
| 3.51 - 4.5              | Possible/Slight           |
| 4.51 - 5.5              | Some                      |
| 5.51 - 6.5              | Fairly Significant        |
| 6.51 - 7.5              | Significant               |
| 7.51 - 8.5              | Very Significant          |
| 8.51 - 10.0             | Severe                    |

<sup>\*</sup>Adapted from Hilsenhoff, 1987.

# Table 7-13 Hyalella azteca Acute Toxicity Results Sauget Area I

### Results of 10 day Hyalella azteca Acute Toxicity Tests

| Survival significantly lower than lab              | control *P<0.      | <u>05</u>   |  |  |  |  |  |  |  |
|----------------------------------------------------|--------------------|-------------|--|--|--|--|--|--|--|
| [ ID                                               | Survival (%)       | Growth (mg) |  |  |  |  |  |  |  |
| Lab Control                                        | 86                 | 0.223       |  |  |  |  |  |  |  |
| None from Section F or Borrow                      | Pit Lake           | _           |  |  |  |  |  |  |  |
|                                                    |                    |             |  |  |  |  |  |  |  |
| Growth Significantly lower than lab control P<0.05 |                    |             |  |  |  |  |  |  |  |
| ID                                                 | Survival (%)       | Growth (mg) |  |  |  |  |  |  |  |
| Lab Control                                        | 86                 | 0.202       |  |  |  |  |  |  |  |
| Borrow Pit 1                                       | 89                 | 0.156       |  |  |  |  |  |  |  |
| Borrow Pit 1 Dup.                                  | 94                 | 0.154       |  |  |  |  |  |  |  |
| Borrow Pit 3                                       | 91                 | 0.154       |  |  |  |  |  |  |  |
|                                                    |                    |             |  |  |  |  |  |  |  |
| Survival and Growth NOT significan                 | itty lower than la | ab control  |  |  |  |  |  |  |  |
| ID                                                 | Survival (%)       | Growth (mg) |  |  |  |  |  |  |  |
| Lab Control                                        | 86                 | 0.202       |  |  |  |  |  |  |  |
| Creek Section F-1                                  | 91                 | 0.221       |  |  |  |  |  |  |  |
| Creek Section F-2                                  | 86                 | 0.219       |  |  |  |  |  |  |  |
| Creek Section F-3                                  | 83                 | 0.183       |  |  |  |  |  |  |  |
| Borrow Pit 2                                       | 96                 | 0.172       |  |  |  |  |  |  |  |
|                                                    |                    |             |  |  |  |  |  |  |  |
| Lab Control                                        | 98                 | 0.268       |  |  |  |  |  |  |  |
| PDC-1 (reference)                                  | 98                 | 0.254       |  |  |  |  |  |  |  |
| PDC-2 (reference)                                  | 98                 | 0.404       |  |  |  |  |  |  |  |
| Reference 2-1                                      | 98                 | 0.393       |  |  |  |  |  |  |  |
| Reference 2-2                                      | 98                 | 0.335       |  |  |  |  |  |  |  |

Table 7-14

Hyallela azteca 42 Day Chronic Survival, Growth, And Reproduction Results

Sauget Area I

|                      | ID                                   | Day 28<br>Mean<br>Survival<br>(%) | Day 28<br>Mean Dry<br>Weight<br>(mg) | Day 35<br>Mean<br>Survival<br>(%) | Day 42<br>Mean<br>Survival<br>(%) | Day 42<br>Mean Dry<br>Weight<br>(mg) | Day 42 Mean<br>Number of<br>Neonates/Female |
|----------------------|--------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------|---------------------------------------------|
| Lotic, creek habitat | PDC-1 (reference)                    | 90                                | 0.443                                | 83                                | 79                                | 0.346                                | 2.6                                         |
| •                    | PDC-2 (reference)                    | 89                                | 0.648                                | 85                                | 80                                | 0.498                                | 6.2                                         |
|                      | Creek Section F-1                    | 91                                | 0.639                                | 89                                | 84                                | 0.397                                | 4.8                                         |
|                      | Creek Section F-2                    | 90                                | 0.554                                | 74                                | 70                                | 0.447                                | 3.8                                         |
|                      | Creek Section F-3                    | 89                                | 0.661                                | 85                                | 76                                | 0.406                                | 4.8                                         |
|                      | Ref-2-1 (creek portion)              | 70*                               |                                      | 64                                | 65                                | 0.459                                | 2.3                                         |
| Lands and habited    | Ref-2-2                              | 87                                | 0.458                                | 85                                | 83                                | 0.351                                | 3.4                                         |
| Lentic, pond habitat | Rer-2-2<br>Borrow Pit 1              | 93                                | 0. <b>458</b><br>0.594               | 88                                | 83                                | 0.351                                | 3. <del>4</del><br>4.1                      |
|                      | Borrow Pit 1 Dup.                    | 89                                | 0.636                                | 80                                | 75                                | 0.423                                | 4.1                                         |
|                      | Borrow Pit 2                         | 82                                | 0.563                                | 74                                | 73                                | 0.390                                | 4.3                                         |
|                      | DOMOWINE                             |                                   | 0.000                                | • •                               |                                   |                                      | 7.0                                         |
|                      | Borrow Pit 3                         | 95                                | 0.470                                | 86                                | 84                                | 0.322                                | 5.3                                         |
|                      | Borrow Pit 3<br>No lentic samples of | 95<br>exhibited statis            | 0.470<br>tically significant         | 86<br>reductions in               | 84<br>response com                | 0.322<br>pared to PDC-1              | 5.3<br>, PDC-2, or Ref-2-2.                 |
| Laboratory Controls  |                                      |                                   |                                      |                                   |                                   |                                      |                                             |
| Laboratory Controls  | No lentic samples                    | exhibited statis                  | tically significant                  | reductions in                     | response com                      | pared to PDC-1                       | , PDC-2, or Ref-2-2.                        |
| Laboratory Controls  | No lentic samples of                 | exhibited statis                  | tically significant                  | reductions in                     | response com<br>46                | 0.231                                | , PDC-2, or Ref-2-2.                        |

Note: Reference area samples were used for comparison because survival in the laboratory control samples was low.

## Table 7-15 Acute Sediment Toxicity Testing Results with Chironomus tentans Sauget Area I

### Chironomus tentans Acute Toxicity Results (Day 10)

| Survival significantly lower than | lab control F | P<0.05      |                |
|-----------------------------------|---------------|-------------|----------------|
| ID                                | Survival (%)  | Growth (mg) | Interpretation |
| Lab Control                       | 94            | 1.761       |                |
| Borrow Pit 1                      | 64            | 2.643       |                |
| Borrow Pit 1 Dup.                 | 40            | 4.071       |                |
| Borrow Pit 2                      | 14            | 0.956       | Acute toxicity |
| Borrow Pit 3                      | 53            | 2.996       | _              |
| Creek Section F-1                 | 31            | 2.686       | Acute toxicity |
| Creek Section F-2                 | 16            | 0.053*      | Acute toxicity |
| Creek Section F-3                 | 10            | 0.969       | Acute toxicity |
| Lab Control                       | 100           | 2.065       |                |
| PDC-1 (reference)                 | 16            | 1.052*      | Acute toxicity |
| PDC-2 (reference)                 | 55            | 2.699       | _              |
| Reference 2-1                     | 13            | 0.346*      | Acute toxicity |
| Reference 2-2                     | 11            | 1.409       | Acute toxicity |

<sup>\*</sup> Significant difference in growth.

Table 7-16

Results of Chironomus tentans Chronic Survival, Growth, Emergence, and Reproduction Toxicity Tests

Sauget Area I

|             | ID                | Day 20 Mean<br>Survival (%) | Day 20 Mean<br>Ash Weight<br>(mg) | Emergence<br>Proportion<br>(%) | Mean<br>Eggs<br>Hatched/<br>Female | Mean Days<br>Survived,<br>Female | Mean Days<br>Survived, Male |
|-------------|-------------------|-----------------------------|-----------------------------------|--------------------------------|------------------------------------|----------------------------------|-----------------------------|
| Lab Control | 12622             | 46                          | 2.959                             | 45                             | 554                                | 3.1                              | 4.9                         |
|             | Borrow Pit 1      | 0*                          |                                   | 5*                             | 0*                                 | 0*                               | 0.7*                        |
|             | Borrow Pit 1 Dup. | 0*                          |                                   | 8*                             | 127*                               | 0.3*                             | 0.8*                        |
|             | Borrow Pit 3      | 6*                          |                                   | 14*                            | 106*                               | 0.8*                             | 1,2*                        |
| Lab Control | 12668             | 65                          | 2.923                             | 69                             | 354                                | 3.6                              | 4.3                         |
|             | PDC-2 (reference) | 69                          | 3.074                             | 13*                            | 249                                | 1.1*                             | 1.4*                        |
|             |                   | *Significantly of           | different from corre              | sponding laborat               | ory control; P                     | <0.05                            |                             |

Note: Samples exhibiting acute toxicity were not tested for chronic toxicity.

Table 7-17 Sediment Triad Evaluation Dead Creek Section F and Borrow Pit Lake Sauget Area I

|                                         | Dead              | Dead Creek Section F                                                                                          |               |                  | Borrow Pit Lake |              | Prairie du Po | nt Ref. Area 1 | Long Slash Creek Ref Area 2 | Ref Area 2 | Average        |
|-----------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------|---------------|------------------|-----------------|--------------|---------------|----------------|-----------------------------|------------|----------------|
| Measure                                 | SED-CSF-S1        | SED-CSF-                                                                                                      | 32 SED-CSF-33 | BPL-ESED-S1      | BP-ESED-S-2     | BPL-ESED-S3  |               | SEU-KA1-SZ     | SEU-RA2-S1                  | SED-RA2-S2 | Reference Area |
| Chemistry                               |                   |                                                                                                               |               |                  |                 |              |               |                |                             |            |                |
| Number of COPCs above TEC or LEL        | \$10 3 (14 £23) S | بر الأراد الأراد الأراد الأراد الأراد الأراد الأراد الأراد الأراد الأراد الأراد الأراد الأراد الأراد الأراد ا | 4             | 6                | 10              | 7            | 3             | 1              | 1                           | 3          | 2              |
| Number of COPCs above PEC or SEL        | 4.                | 6                                                                                                             | 4             | 1                | 2 .             | 0            | 0             | 0              | 0                           | 0          | 0              |
| Benthic Community                       |                   |                                                                                                               |               |                  |                 | <del> </del> |               | ·-             |                             |            |                |
| Number of Organisms                     | 156               | 154                                                                                                           | 358           | 126              | 262             | 151          | 92            | 148            | 4420                        | 87         | 109*           |
| Number of Taxa                          | 16                | 11                                                                                                            | 17            | 18               | 17              | 14           | 8             | 9              | 16                          | 13         | 10°            |
| TOC, %                                  | 4                 | 14                                                                                                            | 6 1           | 6.7              | 4.5             | 3 3          | 1.2           | 2.3            | 1.3                         | 2          | 1.7            |
| Shannon Weaver Index                    | 2.28              | 1.66                                                                                                          | 16            | 2.53             | 2.09            | 1 56         | 0.66          | 0.58           | 1 09                        | 1.24       | 0.89           |
| Relative H <sup>2</sup>                 | 0.82              | 0 69                                                                                                          | 0.56          | 0.87             | 0.74            | 0.59         | 0.32          | 0.26           | 0.39                        | 0 48       | 0 36           |
| Simpsons Index <sup>3</sup>             | 0 14              | 0 25                                                                                                          | 0 31          | 0.11             | 0.23            | 0.35         | 0.74          | 0.79           | 0.53                        | 0.49       | 0.64           |
| Modified Hilsenhoff Biotic Index        | 7.88              | 8.86                                                                                                          | 9.18          | 7.63             | 6.71            | 8.65         | 9.55          | 9 69           | 9.42                        | 9.04       | 9.43           |
| Hilsenhoff Degree of Impairment         | Very Significant  | Severe                                                                                                        | Severe        | Very Significant | Significant     | Severe       | Severe        | Severe         | Severe                      | Severe     | Severe         |
| Sediment Toxicity <sup>2</sup>          |                   |                                                                                                               |               |                  | <u>-</u>        |              |               |                |                             |            |                |
| Amphipod Acute Survival                 | NE                | NE                                                                                                            | NE            | NE               | NE              | NE           | NE            | NE             | NE                          | NE         | NA             |
| Amphipod Acute Growth Effects           | NE                | NE                                                                                                            | NE            | X                | NE              | X            | NE            | NE             | NE                          | NE         | NA             |
| Amphipod Chronic Survival               | NE                | NE                                                                                                            | NE.           | NE               | NE              | NE           | NE            | NE             | NE                          | NE         | NA             |
| Amphipod Chronic Growth Effects         | NE                | NE                                                                                                            | NE            | NE               | NÉ              | NE           | NE            | NE             | NE                          | NE         | NA             |
| Amphipod Chronic Reproduction Effects   | NE                | NE                                                                                                            | NE            | NE               | NE              | NE           | NE            | NE             | NE                          | NE         | NA             |
| Chironomid Acute Survival               | X                 | X                                                                                                             | X             | X                | X               | X            | X             | X              | ×                           | X          | NA             |
| Chironomid Acute Growth Effects         | NE                | ×                                                                                                             | NE            | NE               | NE              | NE           | X             | NE             | ×                           | NE         | NA             |
| Chironomid Chronic Survival             | NT                | NT                                                                                                            | NT            | X                |                 | X            | NT            | NE             | NT                          | NT         | NA             |
| Chironomid Chronic Growth Effects       | NT                | NT                                                                                                            | NT            | NT               | NT              | NT           | NT            | NE             | NT                          | NT         | NA             |
| Chironomid Chronic Effects on Emergence |                   | NT                                                                                                            | NT            | X                | NT              | X            | NT            | X              | NT                          | NT         | NA             |
| Chironomid Chronic Reproductive Effects | NT                | NT                                                                                                            | NT            | X                | NT              | X            | NT            | X              | NT _                        | NT         | NA             |

<sup>&</sup>lt;sup>1</sup> The Shannon-Weaver index is a measure of species diversity; the higher the index, the more diverse the sample.

Shading indicates a possible measurement of effect relative to the reference areas

Relative H' is a measure of the eveness of distribution of organisms among taxa. The most even distribution is theoretically has a H' value of 1.

<sup>&</sup>lt;sup>3</sup>Simpson's Index is indirectly related to sample heterogeneity; the lower the value, the more heterogeneous the sample.

<sup>&</sup>lt;sup>4</sup>X indicates an effect was measured in that sample. NT indicates the sample was not tested for that effect. Samples for which acute toxicity was high were not carried through chronic toxicity testing. NA = not applicable

NE = no statistically significant effect measured in sample.

<sup>\*</sup> indicates that sample SED-RA2-S1 was not included in average

Table -18
List of Fish and Wildlife Species Observed On and Near Dead Creek and the Borrow Pit Lake
Sauget Area I

|                        | i                      | Dead ( | reek Floo | dplain   | Dead Creek and Borrow Pit Lake |                |                                            |                                       |
|------------------------|------------------------|--------|-----------|----------|--------------------------------|----------------|--------------------------------------------|---------------------------------------|
|                        | !                      | Wet/   |           |          |                                | Dead & Prairie |                                            | '. <del></del>                        |
|                        |                        | Upland | Wet/Dry   | Riparian | Terrestrial                    | du Pont        | Borrow Pit                                 | Aquatic Mississippi                   |
| Common Name            | Scientific Name        | Shrubs | Field     | Woods    | Wetland System <sup>1</sup>    | Creeks         | Lake                                       | System <sup>1</sup> River             |
|                        | 1                      | •      |           |          |                                |                |                                            |                                       |
| AMPHIBIANS             |                        | 4.2    |           | !        |                                |                |                                            |                                       |
| Northana anistrat fran | Acris crepitans        |        |           |          |                                | :              |                                            |                                       |
| Northern cricket frog  | • •                    | 1      | :         | :        | 0                              |                | !                                          |                                       |
| Bullfrog               | Rana catesbeiana       |        |           | :        | ,i. O                          | 1 2            |                                            |                                       |
| American Toad          | Bufo americanus        | 0      | <b>X</b>  | , X      | i                              | . <b>X</b>     | <b>X</b>                                   |                                       |
| Gray Treefrog          | Hyla versicolor        | X      |           | 0        |                                | X              | X                                          |                                       |
| Pickerel Frog          | Rana palustris         | X      | 0         | X        | 1                              | X              | X                                          |                                       |
|                        |                        | i i    |           |          |                                |                |                                            |                                       |
| REPTILES               |                        | :      |           |          | :                              |                |                                            |                                       |
| REFILES                |                        | •      |           | !        | 1                              | :              |                                            |                                       |
| Red-eared Slider       | Pseudemys scripta      |        |           |          |                                | 0              |                                            | X                                     |
| Painted Turtle         | Chrysemys picta        | } -    | •         |          |                                | o ·            | 0                                          |                                       |
| ·                      | ,,-                    | ,      | :         |          |                                |                |                                            | · · · · · · · · · · · · · · · · · · · |
| -                      |                        |        |           |          |                                |                |                                            | to the state of the                   |
|                        | •                      | 1      | •         |          | i                              |                |                                            |                                       |
| BIRDS                  |                        |        |           | 1        | 1                              |                | ere en en en en en en en en en en en en en |                                       |
|                        |                        | i      | į.        |          | T                              |                |                                            |                                       |
| Yellow-rumped warbler  | Dendroica coronata     | i .    | į         |          | 0                              |                | . ·                                        |                                       |
| White-crowned sparrow  | Zonotrichia leucophrys | •      |           | !        | 0                              |                |                                            |                                       |
| White-throated sparrow | Zonotrichia albicolis  | *      |           | –        | 0                              |                |                                            |                                       |
| Vesper sparrow         | Pooecetes gramineus    |        | T.        | 1        | 0                              |                | :                                          | , ,                                   |
| Swamp sparrow          | Melospiza geogiana     | 1      |           |          | 0                              |                |                                            |                                       |
| Red-billed gull        | Larus delawarensis     |        |           |          |                                |                | ·                                          | 0                                     |
| Red-bellied woodpecker | Melanerpes carolinus   | :      |           |          | 0                              |                | 1                                          |                                       |
| Orange-crowned warbler | Vermivora celata       |        |           |          | 0                              |                |                                            |                                       |
| Norhern flicker        | Colaptes auratus       |        |           |          | 0                              |                | . :                                        |                                       |
| Nashville warbler      | Vermivora ruficapilla  |        |           | :        | 0                              |                |                                            |                                       |
| House finch            | Carpodacus mexicanus   | 1      | 1         | :        | 0                              |                |                                            |                                       |
| Hooded merganser       | Lophodytes cucullatus  |        |           |          | 0                              |                |                                            | 0                                     |
| Herring gull           | Larus argentatus       | 1      |           | ·<br>i   | .1                             |                |                                            | 0                                     |
| Great horned owl       | Bubo virginianus       |        |           | 1        | 0                              |                | !                                          |                                       |
| Golden-crowned kinglet | Regulus satrapa        | •      |           | !        | 0                              |                |                                            |                                       |
| Gadwall                | Anas                   |        | •         |          | 0                              |                |                                            | 0                                     |
| Fox sparrow            | Passerella ilica       |        | 1         |          | 0                              |                |                                            |                                       |
| Field sparrow          | Spizella pusilla       |        | 1         | •        | 0                              |                |                                            |                                       |
| Eurasian tree sparrow  | Passer montanus        |        |           | i        | О                              |                |                                            |                                       |

Table 7-18
List of Fish and Wildlife Species Observed On and Near Dead Creek and the Borrow Pit Lake
Sauget Area 1

|                           | <del></del>                |        | Dead ( | Creek Floo | dplain                      | Dead Creek and Borrow Pit Lake |                   |                     |             |  |
|---------------------------|----------------------------|--------|--------|------------|-----------------------------|--------------------------------|-------------------|---------------------|-------------|--|
|                           |                            | WeV    |        |            | •                           | Dead & Prairie                 |                   |                     |             |  |
|                           |                            | Upland | WeUDry | Riparian   | Terrestrial                 | du Pont                        | <b>Borrow Pit</b> | Aquatic             | Mississippi |  |
| Common Name               | Scientific Name            | Shrubs | Field  | Woods      | Wetland System <sup>1</sup> | Creeks                         | Lake              | System <sup>1</sup> | River       |  |
| Eastern towhee            | Pipilo erythrophthalmus    |        |        |            | o                           |                                |                   |                     |             |  |
| Eastern meadowlark        | Sturnella magna            |        |        |            | 0                           |                                |                   |                     |             |  |
| Eastern bluebird          | Sialia siaks               |        |        |            |                             |                                |                   |                     |             |  |
| Dark-eyed Junco           | Junco hyemalis             |        |        |            | 0                           |                                |                   |                     |             |  |
| Canada Goose              | Branta canadensia          |        |        |            | 0                           |                                |                   | O                   |             |  |
| Black-capped Chickadee    | Poecile atricapillus       |        |        |            | 0                           |                                |                   |                     |             |  |
| Brown Thrasher            | Toxontoma ruhim            |        |        |            | O                           |                                |                   |                     |             |  |
| American Black Duck       | Arias rubitpos             |        |        |            | O                           |                                |                   | O                   |             |  |
| American Coot             | l ulica americana          |        |        |            |                             |                                |                   | O                   |             |  |
| Great Blue Heron          | Ardea herodias             |        | ×      | 0          | 0                           | O                              | x                 | O                   | O           |  |
| Great Egret               | Casmerodius albus          |        | 0      |            |                             | O                              | O                 |                     | O           |  |
| Snowy Egrat               | Egretta caerulea           |        |        |            |                             | O                              | O                 |                     | О           |  |
| Little Blue Heron         | Egretta thula              |        |        |            |                             | 0                              | Ω                 |                     | O           |  |
| Cattle Egret              | Rubulcus ibis              |        | O      |            |                             |                                |                   |                     |             |  |
| Green-backed Heron        | Butorides striatus         | 0      |        | ×          |                             | 0                              | 0                 |                     | 0           |  |
| Black-crowned Night-Heron | Nyatiaorex nyatiaorex      |        |        | ×          | 0                           | 0                              | ×                 | O                   | O           |  |
| Wood Duck                 | Aix spon <b>ss</b>         | ×      |        | ×          | O                           | 0                              | X                 | O                   | ×           |  |
| Mallard                   | Anns platythynchos         | ×      | ×      | ×          | O                           | O                              | x                 | O                   | ×           |  |
| Turkey Vullure            | Colliartes aura            | ×      | 0      | X          |                             |                                | x                 |                     |             |  |
| Brild Engle <sup>7</sup>  | Halineetus leucocephalus   |        |        |            |                             | ×                              |                   |                     | ×           |  |
| Red-tailed Hawk           | Buleo jamaicensis          | ×      | O      | 0          | O                           |                                |                   |                     |             |  |
| American Kestrel          | Falco sparverius           | 0      | 0      |            | O                           |                                |                   |                     |             |  |
| Northern Bobwhite         | Colinus virginianus        | O      | ×      |            | O                           |                                |                   |                     |             |  |
| Killdeer                  | Charadrius vociferus       |        | 0      |            | O                           |                                |                   |                     |             |  |
| Rock Dove                 | Columba livia              |        | ×      |            | 0                           |                                |                   |                     |             |  |
| Mourning Dove             | Zenalda macroura           | 0      | 0      | 0          | 0                           |                                |                   |                     |             |  |
| Yellow-billed Cuckoo      | Coccyzus americanus        | 0      |        | 0          |                             |                                |                   |                     |             |  |
| Chimney Swift             | Chaeture pelagica          | 0      | ×      | ×          |                             | 0                              | 0                 |                     | ×           |  |
| Belted Kingfisher         | Ceryle alcyon              |        |        |            | 0                           | 0                              | 0                 | 0                   | 0           |  |
| Red-headed Woodpecker     | Melanerpes erythrocephalus |        |        | 0          |                             |                                |                   |                     |             |  |
| Downy Woodpacker          | Picoides pubescens         | 0      |        | 0          | 0                           |                                |                   |                     |             |  |
| Eastern Phoebe            | Sayornia phoebe            | X      |        | 0          | 0                           | 0                              | ×                 |                     | ×           |  |
| Eastern Kingbird          | Tyrannus tyrannus          | 0      | 0      |            |                             | ×                              | ×                 |                     | ×           |  |
| Tree Swallow              | Tachycineta bicolor        | X      | 0      | X          | 0                           | 0                              | ×                 |                     | ×           |  |
| Bank Swallow              | Riparia riparia            | x      | 0      | ×          |                             | ×                              | ×                 |                     | ×           |  |
| Cliff Swallow             | Hirundo pyrrhonota         | ×      | 0      | X          |                             | X                              | x                 |                     | ×           |  |
| Barn Swallow              | Hirundo rustica            | ×      | 0      | x          |                             | 0                              | 0                 |                     | ×           |  |

### Table 7-18 List of Fish and Wildlife Species Observed On and Near Dead Creek and the Borrow Pit Lake Sauget Area I

|                                         | į                        |            | Dead (     | Creek Floo | dplain                      | Dead           | Pit Lake   |                     |            |
|-----------------------------------------|--------------------------|------------|------------|------------|-----------------------------|----------------|------------|---------------------|------------|
|                                         |                          | Wet/       |            | 1          |                             | Dead & Prairie |            |                     |            |
|                                         | !                        | Upland     | Wet/Dry    | Riparian   | Terrestrial                 | du Pont        | Borrow Pit | Aquatic             | Misslssipp |
| Common Name                             | Scientific Name          | Shrubs     | Field      | Woods      | Wetland System <sup>1</sup> | Creeks         | Lake       | System <sup>1</sup> | River      |
| Blue Jay                                | Cyanocitta cristata      | ×          | ;<br>!     | 0          | O                           |                | 1          |                     | !          |
| American Crow                           | Corvus brachyrhynchos    | ×          | . 0        | . 0        | 0                           |                | •          |                     |            |
| Carolina Chickadee                      | Parus carolinensis       | ×          | ;          | : О        | 0                           |                |            |                     | I.         |
| Tufted Titmouse                         | Parus bicolor            |            |            | 0          | 0                           |                |            |                     | 4          |
| White-breasted Nuthatch                 | Sitta carolinensis       | •          |            | 0          | 0                           |                |            |                     |            |
| Brown Creeper                           | Certhia americana        | 1          |            | Ο          | o o                         |                | i          |                     |            |
| Carolina Wren                           | Thryothorus Iudovicianus | 0          |            | x          | 0                           |                |            |                     |            |
| House Wren                              | Troglodytes aedon        | . 0        |            | 0          |                             |                |            |                     |            |
| American Robin                          | Turdus migratorius       | О          | . 0        | 0          | 0                           |                | 1          |                     | 1          |
| Gray Catbird                            | Dumetella carolinensis   | 0          | i          | 0          | 0                           |                |            |                     |            |
| Nothern Mockingbird                     | Mimus polyglottos        | ×          | . <b>x</b> |            | 0                           | •              |            | •                   |            |
| Cedar Waxwing                           | Bombycilla cedrorum      | 0          |            | 0          | 0                           |                | •          |                     | 1.1.1      |
| European Starling                       | Sturnus vulgaris         | . <b>X</b> | 0          | 0          | 0                           |                | •          |                     |            |
| Common Yellowthroat                     | Geothylpis trichas       | 0          |            | ×          |                             | •              |            |                     |            |
| Northern Cardinal                       | Cardinalis cardinalis    | 0          | :          | о о        | 0                           | 9              | •          | 1                   |            |
| Indigo Bunting                          | Passerina cyanea         | . 0        | :          | 0          |                             |                | •          | • • •               | *          |
| Song Sparrow                            | Melospiza melodia        | 0          | . 0        | x          | 0                           |                | 1          | •                   |            |
| Red-winged Blackbird                    | Agelaius phoeniceus      | 0          | . 0        | 0          | 0                           | 0              | <br>O      | •                   |            |
| Common Grackle                          | Quiscalus quiscula       | . 0        | x          | 0          | 0                           |                |            |                     |            |
| Northern Oriole                         | icterus galbula          |            | 1.         | . 0        |                             | •              |            | •                   |            |
| American Goldfinch                      | Carduelis tristis        | 0          | . 0        | . 0        | · O                         |                |            | •                   |            |
| House Sparrow                           | Passer domesticus        |            | x          | •          | 0                           |                | :          |                     |            |
|                                         |                          |            |            |            | :                           |                |            |                     |            |
| -                                       |                          | 1          |            |            |                             |                |            |                     |            |
| MAMMALS                                 |                          | 1          |            |            |                             | •              | •          | •                   | -          |
| iiiAiiiiAE0                             |                          | •          |            |            |                             |                |            |                     | •          |
| Eastern gray squirrel                   | Sciurus carolinensis     |            |            |            | 0                           |                |            | •                   | •          |
| Eastern cottontail                      | Sylvilagus floridanus    |            |            |            | 0                           |                |            |                     |            |
| Eastern chipmunk                        | Tamias striatus          |            |            |            | 0                           | •              | •          | :                   |            |
| Common muskrat                          | Ondatra zibethicus       |            |            |            | . 0                         |                |            |                     |            |
| Gray Squirrel                           | Sciurus carolinensis     | 0          |            | 0          |                             |                |            |                     |            |
| Fox Squirrel                            | Sciurus niger            |            |            | . 0        |                             |                |            |                     |            |
| Beaver                                  | Castor canadensis        | 1          |            | 0          | 0                           | 0              | 0          |                     | 0          |
| Raccoon                                 | Procyon lotor            | o          | X          | . 0        | ••                          | 0              | 0          |                     | Ö          |
| White-tailed Deer                       | Odocoileus virginianus   | 0          | 0          | 0          |                             | 0              |            |                     |            |
| - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | • •                      |            | •          |            |                             |                |            |                     |            |

Table 7-18
List of Fish and Wildlife Species Observed On and Near Dead Creek and the Borrow Pit Lake
Sauget Area I

|                       |                         |        | Dead ( | Creek Floo | dplain          | Dead Co        |            |                     |             |
|-----------------------|-------------------------|--------|--------|------------|-----------------|----------------|------------|---------------------|-------------|
|                       |                         | WeU    |        |            |                 | Dead & Prairie |            |                     |             |
|                       |                         | Upland | WeVDry | Riparian   | Terrestrial     | du Pont        | Borrow Pit | Aquatic             | Mississippi |
| Common Name           | Scientific Name         | Shrube | Field  | Woods      | Wetland System' | Creeks         | Lake       | System <sup>1</sup> | River       |
| FISH•                 |                         |        |        |            |                 |                |            |                     |             |
| Blackstripe topminnow | Fundulus notatus        |        |        |            |                 |                |            | 0                   |             |
| Bowfin                | Anva calva              |        |        |            |                 | SO             | 0          |                     |             |
| Gizzard Shad          | Dorosoma capadianum     |        |        |            |                 | SO             |            |                     |             |
| Grass Pickeral        | f sox americanus        |        |        |            |                 | SO             |            |                     |             |
| Common Stoneroller    | Campostoma anomalum     |        |        |            |                 | SO             |            |                     |             |
| Goldfinh              | Carassius aurstus       |        |        |            |                 | SO             |            |                     |             |
| Carp                  | Сургіния свірю          |        |        |            |                 | so             | O          |                     |             |
| Golden Shiner         | Notemigonus crysoleucas |        |        |            |                 | SO             |            |                     |             |
| Bigmouth Shiner       | Notropia doraalia       |        |        |            |                 | SO             |            |                     |             |
| Red Shiner            | Notropia lutranaia      |        |        |            |                 | so             |            |                     |             |
| Sand Shiner           | Notropia atraminava     |        |        |            |                 | so             |            |                     |             |
| Fathead Minnow        | Pimophalos prometas     |        |        |            |                 | so             |            |                     |             |
| Creek Chub            | Semotilus atromaculatus |        |        |            |                 | so             |            |                     |             |
| White Sucker          | Catastomus commersoni   |        |        |            |                 | so             |            |                     |             |
| Bigmouth Buffalo      | letiobus cyprinellus    |        |        |            |                 | so             |            |                     |             |
| Black Bullhead        | ictalurus meias         |        |        |            |                 | SO             |            | 0                   |             |
| Yallow Bullhead       | ictalurus natalis       |        |        |            |                 | so             |            |                     |             |
| Channel Catfish       | Ictalurus punctatus     |        |        |            |                 | O & SO         |            |                     |             |
| Mosquitofish          | Gambusia affinis        |        |        |            |                 | so             |            |                     |             |
| Green Sunfish         | l epomia cyanellus      |        |        |            |                 | so             |            |                     |             |
| Warmouth              | l epomis gulosus        |        |        |            |                 | so             |            |                     |             |
| Orangespotted Sunfish | Lepomis humilis         |        |        |            |                 | so             |            |                     |             |
| Bluegill              | Lepomis macrochirus     |        |        |            |                 | SO             | O          |                     |             |
| Largemouth Bass       | Micropterus salmoides   |        |        |            |                 | so             | O          |                     |             |
| Black Crappie         | Pomoxia nigromaculatus  |        |        |            |                 | SO             | 0          |                     |             |
| Freshwater Drum       | Aplodinotus grunniens   |        |        |            |                 | SO             | O          |                     |             |
| White Bass            | Morone chrysops         |        |        |            |                 |                | 0          |                     |             |
| Crappie               | Ротоків врр             |        |        |            |                 |                | 0          |                     |             |
| White Crappie         | Pomoxia annularia       |        |        |            |                 |                | 0          |                     |             |
| Brown Bullhead        | Amelurus nebulosus      |        |        |            |                 |                | 0          |                     |             |
| Black Bullhead        | Ameiurus melas          |        |        |            |                 |                | 0          |                     |             |
| Gar                   | Lepisosteus app.        |        |        |            |                 |                | 0          |                     |             |
| Spotted Gar           | Lepisoateus oculatus    |        |        |            |                 |                | 0          |                     |             |
| Johnny Darter         | Etheostoma nigrum       |        |        |            |                 |                | 0          |                     |             |

### Table 1-18 List of Fish and Wildlife Species Observed On and Near Dead Creek and the Borrow Pit Lake Sauget Area I

|                             | I                                 |                      | Dead (         | Creek Floor            | dplain                       | Dea            | d Cre | ek and Borro | w Pit La | ake                 | ı           |
|-----------------------------|-----------------------------------|----------------------|----------------|------------------------|------------------------------|----------------|-------|--------------|----------|---------------------|-------------|
|                             |                                   | Wet/                 |                | I.                     |                              | Dead & Prairie |       |              | į        |                     |             |
| •                           |                                   | Upland               | Wet/Dry        | Riparlan               | Terrestrial                  | du Pont        |       | Borrow Pit   | ,        | Aquatic             | Mississippi |
| Common Name                 | Scientific Name                   | Shrubs               | Field          | Woods                  | Wetland System <sup>1</sup>  | Creeks         | i     | Lake         | ;        | System <sup>1</sup> | River       |
| Silver Carp                 | Hypophthalmichthys molitrix       | •                    |                |                        |                              |                |       | O            |          |                     | . (         |
| Quillback                   | Carpiodes cyprinus                |                      |                |                        | :                            |                |       | 0            |          |                     |             |
| Moon eye                    | Hiodon tergisus                   |                      |                |                        | 1                            |                |       | - ·          | :        |                     | 1           |
| Gold eye                    | Hiodon alosoides                  |                      |                | 1                      |                              |                |       | 0            |          |                     |             |
| Walleye                     | Stizostedion vitreum              | 1                    |                |                        |                              |                | 1.    | 0            |          |                     |             |
| Small unidentified fish     |                                   |                      |                |                        | :<br>!                       | 0              |       | 0            |          |                     | 0           |
|                             | X - Species Probably Utilize      | es Habitat           |                | O - Species C          | ·<br>Observed in the Habitat | •              | !     |              |          |                     | i           |
|                             | SO - Species Observed in t        |                      | ainage during  |                        |                              |                |       |              |          |                     |             |
|                             |                                   |                      |                |                        | ···,                         |                |       |              |          |                     |             |
| * From Atwood, E.R., 1992.  | Assessment of Fisheries Quality   | of Streams in the An | nerican Botton | <u>ns Basin,</u> IL De | pt. of Conservation, 48      | pp.            |       |              |          |                     |             |
| Except where noted, observa | tions were made during wildlife s | survey in 1996.      |                |                        |                              |                |       |              |          |                     |             |
| Observations made in Nover  | mber 2000.                        |                      |                |                        |                              |                |       |              | -        |                     |             |
| 2                           |                                   |                      |                |                        |                              |                | 1     |              |          |                     |             |
|                             |                                   |                      |                | · · · ·                | ,                            |                |       |              |          |                     |             |

Table 7-19
Plant Concentrations in Dead Creek Section F and both Reference Areas
Sauget Area I

|                               | Site     | 1            | Reference | Reference |
|-------------------------------|----------|--------------|-----------|-----------|
| Commonand                     | Maximum  | Site Average |           |           |
| Compound Herbicides (ug/kg)   | maximum) | OILE AVERAGE | Maximum   | Average   |
| 2,4-D                         |          | ND           | NO        | ND .      |
|                               | ND       |              | ND        |           |
| 2,4-08                        | ND       | ND<br>110    | ND        | ND<br>50  |
| Dicamba                       | ND       | ND           | 1.8       | 5.9       |
| Dichloroprop                  | 7        | 28.5         | ND        | ND        |
| MCPA                          | ND       | ND           | ND        | ND        |
| MCPP                          | ND       | ND           | 1300      | 1150      |
| Pentachlorophenol             | ND       | ND           | 2         | 6         |
| Metals (mg/kg)                |          |              |           |           |
| Aluminum, Total               | 44       | 37           | 360       | 260       |
| Antimony                      | 0.13     | 0.115        | ND        | ND        |
| Arsenic, Total                | 0.56     | 0.49         | 1.1       | 0.78      |
| Barium, Total                 | ND       | ND           | ND        | NID       |
| Cadmium, Total                | 0.097    | 0.1735       | ND        | ND        |
| Chromium, Total               | ND       | ND           | 0.53      | 0.39      |
| Copper, Total                 | 2.1      | 2            | 1.3       | 1.13      |
| Iron                          | ND       | ND           | ND        | ND        |
| Leed. Total                   | 1.2      | 0.82         | 0.64      | 0.47      |
| Manganese                     | ND       | ND           | ND        | ND        |
| Mercury                       | ND I     | ND           | ND        | ND        |
| Molybdenum                    | ND       | ND I         | ND        | ND        |
| Nickel, Total                 | 2.6      | 1.9          | ND        | ND ND     |
| Selenium                      | ND ND    | ND I         | ND        | ND<br>ND  |
| Silver                        | ND       | ND           | ND ND     | NO<br>NO  |
| Zinc, Total                   | 26       | 23           | 8.3       | 7.55      |
| Total PCBs (ug/kg)            | ND ND    | ND ND        | ND        | ND ND     |
|                               | NU       | NU           | שא        |           |
| Pesticides (ug/kg)            |          |              |           |           |
| 4,4'-000                      | ND       | ND           | ND        | ND<br>S   |
| 4,4'-DDE                      | ND       | ND           | ND        | ND        |
| 4,4'-00T                      | ND       | ND           | ND        | ND        |
| Aldrin                        | 0.81     | 3.905        | 1_        | 4         |
| Alpha Chlordane               | ND       | ND           | ND        | ND        |
| delta-BHC                     | NO       | ND           | ND        | ND        |
| Dieldrin                      | ND       | ND           | ND        | ND        |
| Endosulfan I                  | ND       | ND           | ND        | ND        |
| Endosulfan II                 | ND       | ND           | ND        | ND        |
| Endosulfan sulfate            | NO       | ND           | ND        | ND        |
| Endrin aldehyde               | NO       | ND           | ND        | ND        |
| Endrin ketone                 | NO       | ND           | NED       | ND        |
| Gamma Chlordane               | 3.1      | 5.05         | ND        | ND        |
| gamma-BHC (Lindane)           | NO       | ND           | ND        | ND        |
| Heptachior                    | 1.9      | 1.85         | 3.8       | 5.4       |
| Heptachlor epoxide            | NO       | ND           | ND        | ND        |
| Methoxychlor                  | NO       | ND           | ND        | ND        |
| SVOC (ug/kg)                  |          |              |           |           |
| bis(2-ethylhexyl)phthalate    | ND       | ND           | ND        | ND        |
| Di-n-butylphthalate           | ND ND    | ND           | ND        | ND I      |
| Diethylphthalate              | ND ND    | ND           | ND        | ND I      |
| Acenephthylene                | 32       | 58.5         | ND        | ND        |
| Acompriumyrene<br>Puoranthene | ND ND    |              |           | ND<br>ND  |
|                               | - 1      | ND           | ND        | - 1       |
| Benzo(b)fluoranthene          | 59       | 72<br>50 5   | 16<br>~   | 51        |
| Benzo(k)fluoranthene          | 52       | 68.5         | 21        | 53        |
| Benzo(a)pyrene                | 140      | 113          | 37        | 26        |
| Benzo(g.h.i)perylene          | 360      | 223          | 390       | 315       |
| indeno(1,2,3-c-d)pyrene       | 300      | 192.5        | 440       | 330       |
| Dibenz(a,h)anthracene         | 76       | 80.5         | 400       | 290       |
| 2,3,7,8-TCDD TEQ Mammal       | 0.000202 | 0.00017      | 8.46E-05  | 5.75E-05  |
| 2,3,7,8-TCDD TEQ Bird         | 9.73E-05 | 8.48E-05     | 2.97E-05  | 2.06E-05  |

#### Table 7-20a Results of Food Chain Modeling Sauget Area I Creek Sector F

|                                                 | <b>T</b>         | SCENARIO <sup>1</sup> |                  |                 |                  |                 |                  |                 |  |  |  |
|-------------------------------------------------|------------------|-----------------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|--|--|--|
|                                                 | Mallard          | Duck-                 | Mallard          |                 | Mallard D        | uck-Creek       | Mallard D        | uckCreek        |  |  |  |
| 1                                               | Creek Sec        |                       | ,                | Sector F        |                  | F Plant         |                  | F Plant         |  |  |  |
|                                                 | Ingestion-       | - Average             | Plant Ing        | gestion         | Ingestion        | Average         | Inges            | stion           |  |  |  |
| 1                                               | shallow s        | ediment               | Maximun          | n shallow       | combine          | d shallow       | Maximum combine  |                 |  |  |  |
|                                                 |                  |                       | sedi             | nent            | and deep         | sediment        | shallow          | and deep        |  |  |  |
| ]                                               | <u>L</u>         |                       | l                |                 |                  |                 | sedi             | ment            |  |  |  |
|                                                 |                  | I                     | T                |                 |                  | T               |                  |                 |  |  |  |
|                                                 | NOAEL            | LOAEL                 | NOAEL            | LOAEL           | NOAEL            | LOAEL           | NOAEL            | LOAEL           |  |  |  |
| Compound                                        | Hazard<br>Index  | Hazard<br>Index       | Hazard<br>Index  | Hazard<br>Index | Hazard<br>Index  | Hazard<br>Index | Hazard<br>Index  | Hazard<br>Index |  |  |  |
| 2,4-D                                           | NB               | NB                    | NB               | NB              | NB               | NB              | NB               | NB              |  |  |  |
| 2.4-DB                                          | 0.E+00           | NB                    | 0.E+00           | NB              | 0.E+00           | NB              | 0.E+00           | NB              |  |  |  |
| Dicamba                                         | NB               | NB                    | NB               | NB              | NB               | NB              | NB               | NB              |  |  |  |
| Dichloroprop                                    | NB               | NB                    | NB               | NB              | NB               | NB              | NB               | NB              |  |  |  |
| МСРА                                            | NB               | NB                    | NB               | NB              | NB               | NB              | NB               | NB              |  |  |  |
| МСРР                                            | NB               | NB                    | NB               | NB              | NB               | NB              | NB               | NB              |  |  |  |
| Pentachlorophenol                               | NB               | NB                    | NB               | NB              | NB               | NB              | NB               | NB              |  |  |  |
| Aluminum, Total                                 | 1.E-04           | NB                    | 4.E-01           | NB              | 1.E-04           | NB              | 4.E-01           | NB              |  |  |  |
| Antimony                                        | NB               | NB                    | NB               | NB              | NB               | NB              | NB               | NB              |  |  |  |
| Arsenic, Total                                  | 2.E-05           | 7.E-06                | 4.E-02           | 2.E-02          | 2.E-05           | 7.E-06          | 4.E-02           | 2.E-02          |  |  |  |
| Barium, Total                                   | 9.E-06           | 4.E-06                | 2.E-02           | 1.E-02          | 9.E-06           | 4.E-06          | 2.E-02           | 1.E-02          |  |  |  |
| Beryllium, Total                                | NB               | NB                    | NB               | NB              | NB               | NB              | NB               | NB              |  |  |  |
| Cadmium, Total                                  | 2.E-05           | 2.E-06                | 7.E-02           | 5.E-03          | 2.E-05           | 2.E-06          | 7.E-02           | 5.E-03          |  |  |  |
| Chromium, Total                                 | 2.E-05           | 5.E-06                | 6.E-02           | 1.E-02          | 2.E-05           | 5.E-06          | 6.E-02           | 1.E-02          |  |  |  |
| Copper, Total                                   | 1.E-05           | 8.E-06                | 3.E-02           | 2.E-02          | 3.E-05           | 2.E-05          | 2.E-01           | 2.E-01          |  |  |  |
| Iron<br>Lead, Total                             | NB<br>2.E-04     | NB<br>2.E-05          | NB<br>8.E-01     | NB              | NB<br>2 E 04     | NB<br>2.E-05    | NB<br>8.E-01     | NB<br>8.E-02    |  |  |  |
| Manganese                                       | 3.E-04           | NB                    | 8.E-04           | 8.E-02<br>NB    | 2.E-04<br>3.E-07 | NB              | 8.E-01           | NB              |  |  |  |
| Mercury                                         | 8.E-05           | 8.E-06                | 3.E-01           | 3.E-02          | 8.E-05           | 8.E-06          | 3.E-04<br>3.E-01 | 3.E-02          |  |  |  |
| Molybdenum                                      | 4.E-07           | 4.E-08                | 2.E-03           | 2.E-04          | 4.E-07           | 4.E-08          | 2.E-03           | 2.E-04          |  |  |  |
| Nickel, Total                                   | 6.E-06           | 4.E-06                | 2.E-02           | 1.E-02          | 6.E-06           | 4.E-06          | 2.E-02           | 1.E-02          |  |  |  |
| Selenium                                        | 0.E+00           | 0.E+00                | 0.E+00           | 0.E+00          | 0.E+00           | 0.E+00          | 0.E+00           | 0.E+00          |  |  |  |
| Silver                                          | NB               | NB                    | NB               | NB              | NB               | NB              | NB               | NB              |  |  |  |
| Vanadium, Total                                 | 3.00E-06         | NB                    | 7.00E-03         | NB              | 3E-06            | NB              | 7E-03            | NB              |  |  |  |
| Zinc, Total                                     | 4.E-04           | 4.E-05                | 9.E-01           | 1.E-01          | 5.E-04           | 6.E-05          | 2.E+00           | 2.E-01          |  |  |  |
| Total PCBs                                      | 3.E-07           | 3.E-08                | 1.E-03           | 1.E-04          | 4.E-06           | 4.E-07          | 6.E-02           | 6.E-03          |  |  |  |
| Total DDT                                       | 9.E-06           | 9.E-07                | 2.E-02           | 2.E-03          | 9.E-06           | 9.0.E-07        | 2.E-02           | 2.E-03          |  |  |  |
| Aldrin                                          | NB               | NB                    | NB               | NB              | NB               | NB              | NB               | NB              |  |  |  |
| Alpha Chlordane                                 | 1.E-09           | 3.E-10                | 4.E-06           | 8.E-07          | 1.E-09           | 3.E-10          | 4.E-06           | 8.E-07          |  |  |  |
| delta-BHC                                       | 5.E-10           | 1.E-10                | 1.E-06           | 2.E-07          | 5.E-10           | 1.E-10          | 1.E-06           | 2.E-07          |  |  |  |
| Dieldrin<br>Endoculfon I                        | 1.E-07           | NB                    | 2.E-04           | NB              | 1.E-07           | NB              | 2.E-04           | NB              |  |  |  |
| Endosulfan I<br>Endosulfan II                   | 2.E-10<br>4.E-10 | NB                    | 9.E-07           | NB              | 2.E-10<br>4.E-10 | NB<br>NB        | 9.E-07           | NB<br>NB        |  |  |  |
| Endosulfan sulfate                              | 4.E-10<br>2.E-10 | NB<br>NB              | 1.E-06<br>4.E-07 | NB<br>NB        | 4.E-10<br>2.E-10 | NB NB           | 1.E-06<br>4.E-07 | NB<br>NB        |  |  |  |
| Endrin aldehyde                                 | 7.E-07           | 7.E-08                | 4.E-07<br>2.E-03 | 2.E-04          | 7.E-07           | 7.E-08          | 4.E-07<br>2.E-03 | 2.E-04          |  |  |  |
| Endrin ketone                                   | 6.E-07           | 6.E-08                | 2.E-03           | 2.E-04          | 6.E-07           | 6.E-08          | 2.E-03           | 2.E-04          |  |  |  |
| Gamma Chlordane                                 | 2.E-07           | 4.E-08                | 4.E-04           | 9.E-05          | 2.E-07           | 4.E-08          | 4.E-04           | 9.E-05          |  |  |  |
| gamma-BHC (Lindane)                             | 0.E+00           | 0.E+00                | 0.E+00           | 0.E+00          | 0.E+00           | 0.E+00          | 0.E+00           | 0.E+00          |  |  |  |
| Heptachlor                                      | NB               | NB                    | NB               | NB              | NB               | NB              | NB               | NB              |  |  |  |
| Heptachlor epoxide                              | NB               | NB                    | NB               | NB              | NB               | NB              | NB               | NB              |  |  |  |
| Methoxychlor                                    | NB               | NB                    | NB               | NB              | NB               | NB              | NB               | NB              |  |  |  |
| Total PAHs                                      | 2.E-06           | 2.E-07                | 8.00E-03         | 8.E-04          | 2.E-06           | 2.E-07          | 8.E-03           | 8.E-04          |  |  |  |
| bis(2-ethylhexyl)phthalate                      | 0.E+00           | NB                    | 0.E+00           | NB              | 0.E+00           | NB              | 0.E+00           | NB              |  |  |  |
| Di-n-butylphthalate                             | 0.E+00           | 0.E+00                | 0.E+00           | 0.E+00          | 0.E+00           | 0.E+00          | 0                | 0               |  |  |  |
| Diethylphthalate                                | NB               | NB                    | NB               | NB              | NB               | NB              | NB               | NB              |  |  |  |
| Acenaphthylene                                  |                  | [ ]                   | •                |                 | - :              |                 | *                | : I             |  |  |  |
| Fluoranthene                                    |                  | : [                   | •                |                 |                  | . 1             |                  | : 1             |  |  |  |
| Benzo(b)fluoranthene                            |                  | . i                   |                  |                 |                  | .               |                  | . i             |  |  |  |
| Benzo(k)fluoranthene                            |                  | .                     |                  | 1               | •                | .               | •                | .               |  |  |  |
| Benzo(a)pyrene<br>Benzo(a h i)perviene          |                  | .                     |                  |                 |                  |                 |                  |                 |  |  |  |
| Benzo(g,h,i)perylene<br>Indeno(1,2,3-c-d)pyrene |                  | .                     |                  |                 |                  |                 |                  | .               |  |  |  |
| Dibenz(a,h)anthracene                           | . [              | . [                   | •                | . [             |                  |                 | . !              | .               |  |  |  |
| Dioxin - TEQ                                    | 1.E-05           | 1.E-06                | 3.E-02           | 3.E-03          | 1.E-05           | 1.E-06          | 3.E-02           | 3.E-03          |  |  |  |
|                                                 |                  |                       | V V_             | V 00            |                  |                 |                  | 00              |  |  |  |

<sup>&</sup>lt;sup>1</sup>In this scenario, the mallard is assumed to ingest plants, sediment, and surface water.

#### Table 7-20a Results of Food Chain Modeling Sauget Area I Creek Sector F

| Tree Seation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | <u> </u>  | SCENARIO <sup>2</sup> |           |           |           |          |           |          |               |           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|-----------------------|-----------|-----------|-----------|----------|-----------|----------|---------------|-----------|--|
| Creek Sector F   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Presents   Insect Pres   |                            | Tree S    | waton-                | Tree S    | wallow    |           |          | Great Ba  | e Heron- | Bald Eac      | te-Creek  |  |
| Average station   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sectio   |                            |           |                       |           |           |           |          |           |          | Sector F Fish |           |  |
| MOAE    LOAE    MOAE    MOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    LOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE    MOAE   |                            | Insect is | ngeston-              | insect in | ngestion- | ingestion | Based on | Ingestion | based on | Ingestion     | -based on |  |
| NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAE   |                            |           |                       | , -       |           | 4         | _        | 1         | _        |               | _         |  |
| NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   NOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAEL   LOAE   |                            | sed       | iment                 | 1         |           | shallow   | sediment | shallow   | sediment | shallow       | sediment  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ĭ                          | <u> </u>  |                       | 560       | ment      |           |          |           |          |               |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |           |                       |           | l         |           |          |           |          |               |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                          |           |                       | 1         |           | 1         |          |           |          |               |           |  |
| 2.4-OB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | k                          |           |                       |           |           |           |          |           |          |               |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |           |                       |           |           |           |          |           |          |               |           |  |
| Deciniparioproper   M8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |           |                       |           |           |           | _        | _         | _        | _             |           |  |
| MGCPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |           | _                     | 1         | _         | _         |          |           |          |               |           |  |
| Mail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dichloroprop               | NB        | NB                    | NB        | NB        | NB        | NB       | NB        | NB       | NB            | NB        |  |
| Personation content   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.   N.B.     |                            | N6        | NB.                   |           | NB        |           | _        |           | _        | _             |           |  |
| Automotion, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I -                        | _         | _                     |           |           |           |          |           |          |               | _         |  |
| Artsmoory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                          |           | _                     | _         | 1 -       |           |          | _         |          |               | -         |  |
| Semular   Total   1E-03   5E-04   1E-03   5E-04   1E-03   5E-04   1E-03   5E-04   1E-03   5E-04   1E-03   5E-04   1E-03   5E-04   1E-03   5E-04   1E-03   5E-04   1E-03   5E-04   1E-03   5E-04   1E-03   5E-04   1E-03   5E-04   1E-03   5E-04   1E-03   5E-04   1E-03   5E-04   1E-04   5E-05   5E-03   1E-03   6E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E-06   1E   |                            | _         |                       |           | _         |           |          |           |          |               | _         |  |
| Barum, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , , ,                      |           |                       | _         |           |           |          |           |          | _             |           |  |
| Cadmisum, Total   Called   AE-01   AE-00   AE-01   2E-04   5E-05   5E-03   1E-03   6E-06   6E-06   Chromisum, Total   Called   AE-01   ZE-00   AE-01   ZE-00   SE-05   5E-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   TE-03   |                            | 1         |                       |           | 1         | , ,       |          |           |          |               |           |  |
| Chrommum. Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |           | ,                     |           |           |           |          |           |          |               |           |  |
| Copper   Total   SE-01   SE-01   SE-01   SE-04   SE-04   NB   NB   NB   NB   NB   NB   NB   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cadmium, Total             |           |                       |           |           |           |          |           |          |               | 0.E+00    |  |
| Read, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |           |                       |           |           |           |          |           |          |               |           |  |
| Lead, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |           |                       | _         |           |           |          | . –       | _        | _             |           |  |
| Marcury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |           | _                     | _         |           | _         |          |           | _        |               |           |  |
| Mercury   2,E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | _         | _                     |           | :         |           |          |           |          |               |           |  |
| Motolycolerum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |           | _                     |           |           |           | - 1      |           | _        |               |           |  |
| Selentum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /                          | _         |                       |           |           |           |          |           |          |               |           |  |
| Shight   NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nichel Total               | 6 E-02    | 5 E-02                | 6 E-02    | 5.E-02    | 2 E-05    | 2.E-05   | 4.E-07    | 3.E-07   | 5.E-10        | 4.E-10    |  |
| Variadium, Total         4 E-05         NB         4 E-05         NB         3 E-06         NB         5 E-07         NB         8 E-10         NB           Zinc, Total         4 E-05         NB         4 E-06         5 E-01         2 E-02         2 E-02         2 E-02         2 E-02         2 E-04         3 E-05           Total POEs         1 E+01         1 E+01         1 E+01         1 E+01         1 E+01         1 E+01         3 E-03         3 E-03         3 E-04         4 E-04         4 E-05         4 E-07         3 E-01         3 E-03         3 E-04         4 E-06         4 E-07         3 E-01         3 E-03         3 E-03         3 E-04         4 E-06         4 E-07         4 E-06         4 E-07         3 E-01         3 E-00         3 E-01         3 E-00         3 E-00         3 E-00         3 E-00         0 E+00         "><th></th><th></th><th>_</th><th></th><th>. –</th><th></th><th></th><th>_</th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |           | _                     |           | . –       |           |          | _         |          |               |           |  |
| Zmc, Total   4.E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |           | _                     | _         |           | _         |          | _         |          | _             |           |  |
| Total PCBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |           |                       |           | -         |           | -        |           |          |               | _         |  |
| Total DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |           | -                     |           |           |           |          |           |          |               |           |  |
| Aldrin         NB         0.E+00         NB         0.E+00         0.E+00         0.E+00         0.E+00         0.E+00         0.E+00         0.E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |           |                       |           |           |           | _        |           |          |               |           |  |
| Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Deficial color   Defi   | Aldrin                     | NB        | NB                    | NB        | NB        | NB        | NB       | NB.       | NB       | NB            |           |  |
| Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |           |                       |           |           |           |          |           |          |               | 0.E+00    |  |
| Endosulfan I 0 E+00 NB 0 E+00 NB 2 E-10 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB 0 E+00 NB NB NB NB NB NB NB NB NB NB NB NB NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | _         | _                     |           |           | _         |          |           |          |               |           |  |
| Endosulfan II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |           |                       |           |           |           | _        |           | _        |               | _         |  |
| Endosulfan sulfate 5 E-04 NB 7 E-04 NB 2 E-10 NB 0 E+00 NB 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 |                            |           | _                     |           | _         |           | - 1      | _         |          |               |           |  |
| Endrin aldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |           | -                     |           | _         |           |          |           |          |               |           |  |
| Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   Serior   S   |                            | -         |                       |           | _         |           |          |           |          |               |           |  |
| GE   GE   GE   GE   GE   GE   GE   GE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Endran ketone              | 2 E-01    | 2.E-02                | 3 E-01    | 3 E-02    | 6 E-07    | 6 E-08   | 0.E+00    | 0.E+00   | 0.E+00        | 0.E+00    |  |
| Heptachtor   NB   NB   NB   NB   NB   NB   NB   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |           |                       |           |           |           | I        |           |          |               |           |  |
| Heptacritor eposide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - ·                        |           |                       |           | _         | 1         | /        |           |          |               |           |  |
| Mainoxychtor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | _         | _                     | _         |           |           | - 1      |           | - 1      |               |           |  |
| Total PAHs 6 E-03 6 E-04 7 E-03 7 E-04 5 E-08 5 E-09 4 E-08 4 E-09 5 E-11 5 E-12 bis(2-ethythexyl)phthatete 0 E+00 NB 0 E+00 NB NE NB NB NB NB NB NB NB NB NB NB NB NB NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | _         | _                     |           |           | - 1       |          | _         |          | -             |           |  |
| District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District   District    | T                          |           | _                     |           | 35.4.     |           |          | 4 5 44    | 4 5 00   |               |           |  |
| Distription state NS NS NS NS NS NS NS NS NS NS NS NS NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bis(2-ethylhexyl)phthalate | 0 E+00    |                       |           |           |           |          |           |          | _             |           |  |
| Acenaphthylene Fluoranthene Bertzo(b)fluoranthene Bertzo(a)pyrene Bertzo(a)pyrene Bertzo(a)pyrene Indeno(1,2,3-c-d)pyrene Olbertz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Di-n-bury/phthalate        | 0 E+00    | 0 E+00                | 0 E+00    | 0 E+00    | NÉ        | NE       | NE        | NE       | NE            | NE        |  |
| Fluoranthene Benzo(b)fluoranthene Benzo(a)fluoranthene Benzo(a)Li)penytene Indeno(1,2,3-c-d)pyrene Olberz(a,b)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chathylphthalate           | NB        | NB                    | NB        | NB        | NB .      | NB       | NB        | NB       | NB            | NB        |  |
| Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(g,hu)perytene Indeno(1,2,3-c-d)pyrene Oibenz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acenaphthylene             | •         | •                     | •         | •         | :         | •        | :         | <u> </u> | •             | •         |  |
| Benzo(k)fluoranthene Benzo(a)pyrene Benzo(a,hu)perytene Indeno(1,2,3-c-d)pyrene Oberzo(a,h)perthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | •         |                       | •         | •         |           | .        |           | :        |               |           |  |
| Benzo(a)pyrene Benzo(g,hu)perylene Indeno(1,2,3-c-d)pyrene Dibenz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | •         |                       | •         | •         |           | .        |           |          | . !           |           |  |
| Benzo(g.h./)perylene Indeno(1.2,3-c-d)pyrene Ciberz(a,h)anthracene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2,3-c-d)pyrene Indeno(1.2, |                            |           | •                     | •         | •         |           | .        | • [       | • [      | •             | .         |  |
| Indeno(1,2,3-c-d)pyrene Diberz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                          | •         | •                     | •         | •         | •         | •        |           | •        | •             | •         |  |
| Olbers(a,h)enthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Indeno(1,2,3-c-d)pyrene    | •         | •                     | •         | •         | .         | •        | •         | •        | •             | •         |  |
| Diction - TEQ 4.6-60 4.6-60 4.6-60 6.6-01 6.6-05 6.6-06 1.6-02 1.6-03 1.6-05 1.6-06 1.6-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Olbertz(a,h)anthracene     | •         | •                     | •         | •         | •         | •        | -         | •        | •             | •         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diction - TEQ              | 4.E+00    | 4 E-01                | 6.E+00    | 6 E-01    | 6 E-05    | 6 E-06   | 1.E-02    | 1.E-03   | 1.E-05        | 1.E-06    |  |

<sup>2</sup>The biota concentrations in these scenarios was modeled using site-specific BAFs. The maltard was assumed to ingest snails, sediment, and surface water. The great blue heron was assumed to ingest fish and surface water. The eagle was assumed to ingest fish and surface water. The tree swallow was assumed to ingest insects and surface water. In addition to site-specific BAFs, the insect concentrations for the tree swallow scenario were modeled using literature BSAFs and literature regression equations (for some metals and PCBs).

#### Table 7-20a Results of Food Chain Modeling Sauget Area I Creek Sector F

|                             |         |                  |                  |              |                         |                  | ARIO <sup>3</sup> |                  |                  |                  |                  |                  |
|-----------------------------|---------|------------------|------------------|--------------|-------------------------|------------------|-------------------|------------------|------------------|------------------|------------------|------------------|
|                             | 1       | Muskrat          |                  | Muskrat-     |                         | Muskrat-         | Female            | Muskrat          |                  | Muskrat-         | River OtterDead  |                  |
| [                           |         | ctor F Plant     | 1                | ctor F Plant |                         | tor F Plant      |                   | tor F Plant      |                  | ctor F Snail     |                  | ctor F Fish      |
|                             | 1 -     | Average          |                  | –Maximum     |                         | Average          |                   | -Maximum         |                  | -based on        |                  | -based on        |
|                             | shallow | sediment         | shallow          | sediment     |                         | d shallow        | 1                 | d shallow        |                  | l average        |                  | average          |
|                             |         |                  |                  |              | and deep                | sediment         | and deep          | sediment         | sedi             | ment             | shallow          | sediment         |
|                             | NOAEL   | LOAEL            | NOAEL            | LOAEL        | NOAEL                   | LOAEL            | NOAEL             | LOAEL            | NOAEL            | LOAEL            | NOAEL            | LOAEL            |
|                             | Hazard  | Hazard           | Hazard           | Hazard       | Hazard                  | Hazard           | Hazard            | Hazard           | Hazard           | Hazard           | Hazard           | Hazard           |
| Compound                    | Index   | Index            | Index            | Index        | Index                   | Index            | Index             | Index            | Index            | Index            | Index            | Index            |
| 2,4-D                       | 6.E-05  | 1.E-05           | 6.E-05           | 1.E-05       | 6.E-05                  | 1.E-05           | 6.E-05            | 1.E-05           | 6.E-05           | 1.E-05           | 1.E-08           | 3.E-09           |
| 2,4-DB                      | 0.E+00  | 0.E+00           | 0.E+00           | 0.E+00       | 0.E+00                  | 0.E+00           | 0.E+00            | 0.E+00           | NE               | NE I             | NE               | NE               |
| Dicamba                     | 0.E+00  | 0.E+00           | 0.E+00           | 0.E+00<br>NB | 0.E+00                  | 0.E+00           | 0.E+00            | 0.E+00<br>NB     | NE               | NE               | NE               | NE<br>NE         |
| Dichloroprop                | 0.E+00  | NB<br>0 E+00     | NB<br>0,E+00     | 0.E+00       | NB                      | NB               | NB                |                  | NB               | NB I             | NB               | NB               |
| MCPA<br>MCPP                | 0.E+00  | 0.E+00<br>0.E+00 |                  | 0.E+00       | 0.E+00                  | 0.E+00           | 0.E+00            | 0.E+00           | NE               | NE               | NE               | NE               |
| 3                           | 0.E+00  | 0.E+00           | 0.E+00<br>0.E+00 | 0.E+00       | 0.E+00                  | 0.E+00           | 0.E+00            | 0.E+00           | NE               | NE               | NE               | NE               |
| Pentachlorophenol           | 5.E+01  | 5.E+00           |                  | 7.E+00       | 0.E+00                  | 0.E+00           | 0.E+00            | 0.E+00           | NE<br>2 E+02     | NE NE            | NE<br>1 E OO     | NE               |
| Aluminum, Total<br>Antimony | 9.E-01  | 9.E-02           | 7,E+01<br>1,E+00 | 1.E-01       | <b>5.E+01</b><br>9.E-01 | 5.E+00<br>9.E-02 | 7.E+01<br>1.E+00  | 7.E+00<br>1.E-01 | 3.E+02<br>2.E+00 | 3.E+01<br>2.E-01 | 1.E-02<br>3.E-05 | 1.E-03<br>3.E-06 |
| Arsenic, Total              | 1.E-01  | 9.E-02<br>NB     | 1.E-01           | 1.E-01<br>NB | 9.E-01<br>1.E-01        | 9.E-02<br>NB     | 1.E+00<br>1.E-01  | NB               | 4.E-01           | 2.E-01           | 3.E-05<br>4.E-06 | 3.E-06<br>NB     |
| Barium, Total               | 5.E-02  | 4.E-02           | 6.E-01           | 4.E-02       | 5.E-02                  | 4.E-02           | 6.E-02            | 4.E-02           | 5.E-02           | 4.E-02           | 4.E-06<br>1.E-05 | 8.E-06           |
| Bervilium, Total            | 2.E-03  | 2.E-04           | 3.E-02           | 2.E-04       | 2.E-03                  | 2.E-04           | 3.E-02            | 2.E-04           | 2.E-02           | 4.E-02<br>2.E-04 | 6.E-07           | 5.E-08           |
| Cadmium, Total              | 1.E-01  | 1.E-02           | 3.E-03<br>2.E-01 | 2.E-02       | 1.E-01                  | 1.E-02           | 3.E-03<br>2.E-01  | 2.E-04<br>2.E-02 | 6.E-01           | 6.E-02           | 1.E-05           | 1.E-06           |
| Chromium, Total             | 3.E-05  | NB               | 4.E-05           | NB NB        | 3.E-05                  | NB               | 4.E-05            | NB               | 3.E-04           | NB               | 4.E-08           | NB               |
| Copper, Total               | 1.E-01  | 9.E-02           | 1.E-01           | 1.E-01       | 3.E-03                  | 2.E-01           | 1.E+00            | 8.E-01           | 2.E+00           | 2.E+00           | 7.E-05           | 5.E-05           |
| Iron                        | NB      | NB               | NB               | NB           | NB                      | NB               | NB                | NB               | NB               | NB               | NB               | NB               |
| Lead, Total                 | 1.E-01  | 1.E-02           | 2.E-01           | 2.E-02       | 1.E-01                  | 1.E-02           | 2.E-01            | 2.E-02           | 7.E-01           | 7.E-02           | 4.E-05           | 4.E-06           |
| Manganese                   | 1.E-02  | 3.E-03           | 2.E-02           | 6.E-03       | 1.E-02                  | 3.E-03           | 2.E-02            | 6.E-03           | 1.E-02           | 3.E-03           | 2.E-06           | 7.E-07           |
| Mercury                     | 5.E-02  | 1.E-02           | 1.E-01           | 2.E-02       | 5.E-02                  | 1.E-02           | 1.E-01            | 2.E-02           | 5.E-02           | 1.E-02           | 5.E-03           | 9.E-04           |
| Molybdenum                  | 6.E-02  | 6.E-03           | 1.E-01           | 1.E-02       | 6.E-02                  | 6.E-03           | 1.E-01            | 1.E-02           | 6.E-02           | 6.E-03           | 1.E-05           | 1.E-06           |
| Nickel, Total               | 4.E-02  | 2.E-02           | 6.E-02           | 3.E-02       | 4.E-02                  | 2.E-02           | 6.E-02            | 3.E-02           | 1.E-01           | 7.E-02           | 3.E-06           | 2.E-06           |
| Selenium                    | 0.E+00  | 0.E+00           | 0.E+00           | 0.E+00       | 0.E+00                  | 0.E+00           | 0.E+00            | 0.E+00           | NE               | NE NE            | NE               | NE NE            |
| Silver                      | 0.E+00  | 0.E+00           | 0.E+00           | 0.E+00       | 0.E+00                  | 0.E+00           | 0.E+00            | 0.E+00           | NE '             | NE               | NE               | NE               |
| Vanadium, Total             | 5.E-01  | 5.E-02           | 7.E-01           | 7.E-02       | 5.E-01                  | 5.E-02           | 7.E-01            | 7.E-02           | 5.E-01           | 5.E-02           | 1.E-04           | 1.E-05           |
| Zinc, Total                 | 1.E-01  | 5.E-02           | 1.E-01           | 7.E-02       | 2.E-01                  | 8.E-02           | 3.E-01            | 1.E-01           | 4.E-01           | 2.E-01           | 4.E-04           | 2.E-04           |
| Total PCBs                  | 1.E-03  | 6.E-04           | 2.E-03           | 9.E-04       | 1.E-02                  | 7.E-03           | 1.E-01            | 5.E-02           | 2.E-02           | 1.E-02           | 6.E-05           | 3.E-05           |
| Total DDT                   | 1.E-04  | 2.E-05           | 1.E-04           | 3.E-05       | 1.E-04                  | 2.E-05           | 1.E-04            | 3.E-05           | 1.E-04           | 2.E-05           | 2.E-05           | 3.E-06           |
| Aldrin                      | 2.E-03  | 4.E-04           | 2.E-03           | 4.E-04       | 2.E-03                  | 4.E-04           | 2.E-03            | 4.E-04           | 6.E-05           | 1.E-05           | 1.E-08           | 3.E-09           |
| Alpha Chlordane             | 4.E-06  | 2.E-06           | 6.E-06           | 3.E-06       | 4.E-06                  | 2.E-06           | 6.E-06            | 3.E-06           | 4.E-06           | 2.E-06           | 9.E-10           | 5.E-10           |
| delta-BHC                   | 5.E-05  | 5.E-06           | 5.E-05           | 5.E-06       | 5.E-05                  | 5.E-06           | 5.E-05            | 5.E-06           | 5.E-05           | 5.E-06           | 1.E-08           | 1.E-09           |
| Dieldrin                    | 1.E-03  | 1.E-04           | 1.E-03           | 1.E-04       | 1.E-03                  | 1.E-04           | 1.E-03            | 1.E-04           | 1.E-03           | 1.E-04           | 3.E-07           | 3.E-08           |
| Endosulfan I                | 5.E-05  | NB               | 1.E-04           | NB           | 5.E-05                  | NB               | 1.E-04            | NB               | 5.E-05           | NB               | 1.E-08           | NB               |
| Endosulfan II               | 9.E-05  | NB               | 1.E-04           | NB           | 9.E-05                  | NB               | 1.E-04            | NB               | 9.E-05           | NB               | 2.E-08           | NB               |
| Endosulfan sulfate          | 5.E-05  | NB               | 5.E-05           | NB           | 5.E-05                  | NB               | 5.E-05            | NB               | 5.E-05           | NB               | 1.E-08           | NB               |
| Endrin aldehyde             | 5.E-04  | 5.E-05           | 8.E-04           | 8.E-05       | 5.E-04                  | 5.E-05           | 8.E-04            | 8.E-05           | 5.E-04           | 5.E-05           | 1.E-07           | 1.E-08           |
| Endrin ketone               | 4.E-04  | 4.E-05           | 6.E-04           | 6.E-05       | 4.E-04                  | 4.E-05           | 6.E-04            | 6.E-05           | 4.E-04           | 4.E-05           | 9.E-08           | 9.E-09           |
| Gamma Chlordane             | 6.E-04  | 3.E-04           | 6.E-04           | 3.E-04       | 6.E-04                  | 3.E-04           | 6.E-04            | 3.E-04           | 4.E-04           | 2.E-04           | 2.E-09           | 1.E-09           |
| gamma-BHC (Lindane)         | 0.E+00  | 0.E+00           | 0.E+00           | 0.E+00       | 0.E+00                  | 0.E+00           | 0.E+00            | 0.E+00           | NE               | NE               | NE               | NE               |
| Heptachlor                  | 7.E-03  | 7.E-04           | 7.E-03           | 7.E-04       | 7.E-03                  | 7.E-04           | 7.E-03            | 7.E-04           | 2.E-05           | 2.E-06           | 5.E-09           | 5.E-10           |
| Heptachlor epoxide          | 1.E-04  | 1.E-05           | 1.E-04           | 1.E-05       | 1.E-04                  | 1.E-05           | 1.E-04            | 1.E-05           | 1.E-04           | 1.E-05           | 2.E-08           | 2.E-09           |
| Methoxychlor                | 1.E-05  | 5.E-06           | 2.E-05           | 8.E-06       | 1.E-05                  | 5.E-06           | 2.E-05            | 8.E-06           | 1.E-05           | 5.E-06           | 2.E-09           | 1.E-09           |
| Total PAHs                  | , , ,   | •                | •                | *            | •                       | •                | •                 | •                | *                |                  | •                | •                |
| bis(2-ethylhexyl)phthalate  | 0.E+00  | 0.E+00           | 0.E+00           | 0.E+00       | 0.E+00                  | 0.E+00           | 0.E+00            | 0.E+00           | NE               | NE               | NE               | NE               |
| Di-n-butylphthalate         | 0.E+00  | 0.E+00           | 0.E+00           | 0.E+00       | 0.E+00                  | 0.E+00           | 0.E+00            | 0.E+00           | NE               | NE               | NE               | NE               |
| Diethylphthalate            | 0.E+00  | NB               | 0.E+00           | NB           | 0.E+00                  | NB               | 0.E+00            | NB               | NE               | NB               | NÉ               | NB               |
| Acenaphthylene              | NB      | NB               | NB               | NB           | NB                      | NB               | NB                | NB               | NB               | NB               | NB               | NB               |
| Fluoranthene                | 5.E-06  | NB               | 5.E-06           | NB           | 5.E-06                  | NB               | 5.E-06            | NB               | 5.E-06           | NB               | NE               | NB               |
| Benzo(b)fluoranthene        | NB      | NB               | NB               | NB           | NB                      | NB               | NB                | NB               | NB               | NB               | NB               | NB               |
| Benzo(k)fluoranthene        | NB      | NB               | NB               | NB           | NB                      | NB               | NB                | NB               | NB               | NB               | NB               | NB               |
| Benzo(a)pyrene              | 1.E-01  | 1.E-02           | 1.E-01           | 1.E-02       | 1.E-01                  | 1.E-02           | 1.E-01            | 1.E-02           | NE               | NE               | NE               | NE               |
| Benzo(g,h,i)perylene        | NB      | NB               | NB               | NB           | NB                      | NB               | NB                | NB               | NB               | NB               | NB               | NB               |
| Indeno(1,2,3-c-d)pyrene     | NB ]    | NB               | NB               | NB           | NB                      | NB               | NB                | NB               | NB               | NB               | NB               | NB               |
| Dibenz(a,h)anthracene       | ( NB    | NB               | NB               | NB           | NB                      | NB               | NB                | NB               | NB               | NB (             | NB               | NB               |
| Dioxin - TEQ                | 7.E-01  | 7.E-02           | 1.E+00           | 1.E-01       | 7.E-01                  | 7.E-02           | 1.E+00            | 1.E-01           | 3.E+00           | 3.E-01           | 2.E-03           | 2.E-04           |

<sup>3</sup>In this scenario, the muskrat was assumed to ingest blota (plants or snails), sediment, and surface water. The snail scenario is based on modeled snail concentrations using site-specific BAFs. The river otter is assumed to ingest fish, sediment, and surface water; the fish concentrations are modeled based on site specific BAFs.

Notes:

NE = Not evaluated (not detected in biota and, therefore, no BAF could be calculated)
NB = Benchmark not available

Average scenario uses area use factors and migration factors where appropriate

Maximum scenario assumes receptor is restricted to site

<sup>\*</sup> PAHs were evaluated as total PAHs for birds, but for individual compounds for mammals

Table 7-29b Results of Food Chain Modeling Sauget Area I Borrow Pit Lake

|                                       | SCENARIO <sup>1</sup> |                  |                  |                  |                  |                    |                  |                  |  |  |
|---------------------------------------|-----------------------|------------------|------------------|------------------|------------------|--------------------|------------------|------------------|--|--|
|                                       | River                 | Other-           | River Ots        | er-Borrow        |                  | Otter-             | River Oth        | г-Волож          |  |  |
|                                       |                       | Pt Fish          |                  | ngestion-        | Волтом           | Pit Fish           | Pit Fish k       |                  |  |  |
|                                       | inges                 | ton-             | Maximur          | n shallow        | Ingestion        | - Average          |                  | mum              |  |  |
| ř :                                   | Average               | shallow          | sedi             | ment             | combine          | d shallow          | combine          | i shallow        |  |  |
|                                       | sedir                 | ment             |                  |                  | and deep         | sediment           | and deep         | sediment         |  |  |
|                                       |                       | _                |                  |                  |                  |                    |                  |                  |  |  |
|                                       | NOAEL                 | LOAEL            | NOAEL            | LOAEL            | NOAEL            | LOVET              | NOAEL            | LOAEL            |  |  |
|                                       | Hazard                | Hazard           | Hazard           | Hazard           | Hazard           | Hazard             | Hazard           | Hazard           |  |  |
| Compound                              | index                 | index            | Index            | Index            | index            | Index              | Index            | index            |  |  |
| 2.4-0                                 | 9 E-06                | 2 E-08           | 9 E-06           | 2 E-06           | 9 E-08           | 2.E-08             | 9 E-06           | 2.E-06           |  |  |
| 2.4-08                                | 3 E-06                | 9 E-07           | 3 E-04           | 1 E-04           | 3 E-06           | 9.E-07             | 3.E-04           | 1.E-04           |  |  |
| Dicamba                               | 1 E-05                | 3 E-06           | 1 E-03           | 3.E-04           | 1.E-05           | 3.E-06             | 1.E-03           | 3.E-04           |  |  |
| Dichloroprop                          | NB<br>5 E-04          | NB I             | NB<br>EE CO      | N/B              | NB I             | NB<br>2.E-04       | NB<br>6500       | NB<br>2 E-02     |  |  |
| MCPA                                  |                       | 2.E-04           | 6 E-02<br>0.E+00 | 2 E-02<br>0 E+00 | 5 E-04           | 0.E+00             | 6.E-02           | 0.E+00           |  |  |
| MCPP<br>Destachtementanei             | 0 E+00<br>6 E-06      | 0 E+00<br>6 E-07 | 6 E-04           | 6 E-05           | 0.E+00<br>6.E-06 | 6.E-07             | 0.E+00<br>6.E-04 | 6.E-05           |  |  |
| Pentachlorophenol<br>Aluminum, Total  | 2 E-01                | 2 E-02           | 2.E+01           | 2.E+00           | 2.E-01           | 2 E-02             | 2.E+01           | 2.E+00           |  |  |
| Antimony                              | 3 E-04                | 3 E-05           | 3 E-02           | 3 E-03           | 3.E-04           | 3.E-05             | 3E-02            | 3.E-03           |  |  |
| Arsenic, Total                        | 6 E-05                | NB NB            | 7 E-03           | NB               | 6.E-05           | NB                 | 7.E-03           | NB NB            |  |  |
| Barrum, Total                         | 2.E-04                | 2 E-04           | 3 E-02           | 2.E-02           | 2.E-04           | 2.E-04             | 3.E-02           | 2E-02            |  |  |
| Beryllium, Total                      | 7 E-06                | 6 E-07           | 8 E-04           | 7 E-05           | 7.E-06           | 6.E-07             | 8.E-04           | 7.E-05           |  |  |
| Cadmum, Total                         | 2 E-05                | 2 E-06           | 2 E-03           | 2 E-04           | 2 E-05           | 2.E-06             | 2 E-03           | 2E-04            |  |  |
| Chromium, Total                       | 4 E-07                | N/B              | 7 E-05           | NB               | 4 E-07           | NB                 | 7.E-05           | NB               |  |  |
| Copper, Total                         | 1 E-04                | 1 E-04           | 2 E-02           | 2 E-02           | 1.E-04           | 1.E-04             | 4.E-02           | 3.E-02           |  |  |
| liron:                                | NB                    | NB               | NB               | NB               | NB               | NB                 | NB               | NB               |  |  |
| Lead, Total                           | 1 E-04                | 1 E-05           | 2 E-02           | 2 E-03           | 1.E-04           | 1.E-05             | 2 E-02           | 2.E-03           |  |  |
| Manganese                             | 1.E-04                | 4 E-05           | 2.E-02           | 5.E-03           | 1.E-64           | 4 E-05             | 2.E-02           | 5.E-03           |  |  |
| Mercury                               | 9 E-03                | 2 E-03           | 2.E+00           | 5 E-01           | 9.E-03           | 2.E-03             | 2.E+00           | 5.E-01           |  |  |
| Molybdenum                            | 8 E-05                | 8 E-06           | 1 E-02           | 1 E-03           | 8.E-05           | 8.E-06             | 1 E-02           | 1.E-03           |  |  |
| Nickel, Total                         |                       | 5 E-06           | 1.E-03           | 6 E-04           | 1.E-05           | 5.E-06             | 1 E-03           | 6.E-04           |  |  |
| Salanum                               | 4.E-03                | 3 E-03           | 7 E-01           | 4.E-01           | 4 E-03           | 3.E-03             | 7.E-01           | 4.E-01           |  |  |
| Silver                                | 3 E-07                | 3 E-06           | 3 E-05           | 3 E-06           | 3 E-07           | 3.E-08             | 3.E-05           | 3.E-06           |  |  |
| Vanadium, Total                       | 1 E-03                | 1 E-04           | 2 E-01           | 2 E-02           | 1 E-03           | 1.E-04             | 2.E-01           | 2.E-02           |  |  |
| Zinc, Total<br>Total DCDs             | 3 E-04                | 2 E-04           | 4 E-02           | 2 E-02           | 3.E-04           | 2.E-04             | 4.E-02           | 2E-02            |  |  |
| Total PCBs<br>Total DOT               | 1 E-03                | 7 E-04           | 3 E-01           | 1.E-01           | 1.E-03           | 7.E-04             | 3.E-01           | 1.E-01           |  |  |
| Aidnin                                | 4 E-05<br>0 E+00      | 7 E-06<br>0 E+00 | 6.E-03<br>0.E+00 | 1 E-03<br>0.E+00 | 4.E-05<br>0.E+00 | 7.E-06<br>0.0.E+00 | 6.E-03<br>0.E+00 | 1.E-03<br>0.E+00 |  |  |
| Alphe Chlordane                       | 3 E-06                | 2.E-06           | 7.E-04           | 4 E-04           | 3.E-06           | 2.E-06             | 7.E-04           | 4.E-04           |  |  |
| delta-BHC                             | 2 E-07                | 8 E-08           | 2 E-05           | 2 E-06           | 2 E-07           | 2E-06              | 2.E-05           | 2.E-06           |  |  |
| Diektrin                              | 3 E-07                | 2 E-07           | 3 E-05           | 3 E-06           | 3 E-07           | 3.E-06             | 3.E-05           | 3.E-06           |  |  |
| Endosulfan I                          | 2 E-07                | NB.              | 3 E-05           | NB               | 2 E-07           | NB                 | 3.E-05           | NB               |  |  |
| Endosullan II                         | 0 E+00                | NB               | 0 E+00           | NB               | 0 E+00           | NB                 | 0.E+00           | NB               |  |  |
| Endosulfan sulfate                    | 4 E-07                | NB               | 6 E-05           | NB               | 4.E-07           | NB                 | 6.E-05           | NB               |  |  |
| Endrin aldehyde                       | 4 E-07                | 4 E-06           | 5.E-05           | 5 E-06           | 4.E-07           | 4.E-08             | 5.E-05           | 5.E-06           |  |  |
| Endrin katone                         | 2 E-07                | 2.E-06           | 2.E-05           | 2.E-06           | 2 E-07           | 2.E-08             | 2.E-05           | 2.E-06           |  |  |
| Gamma Chlordane                       | 6 E-06                | 3 E-06           | 1 E-03           | 6.E-04           | 6.E-06           | 3.E-06             | 1.E-03           | 6.E-04           |  |  |
| gamme-BHC (Lindane)                   | 6 E-09                | 6.E-10           | 6 E-07           | 6 E-06           | 6 E-09           | 6.E-10             | 6.E-07           | 6.E-08           |  |  |
| Heptachior                            | 3 E-06                | 3 E-06           | 3 E-03           | 3 E-04           | 3 E-05           | 3.E-06             | 3.E-03           | 3.E-04           |  |  |
| Heptachlor epoxide                    | 3 E-07                | 3 E-06           | 3 E-05           | 3 E-06           | 3.E-07           | 3.E-08             | 3.E-05           | 3.E-06           |  |  |
| Methoxychior                          | 0 E+00                | 0 E+00           | 0 E+00           | 0 E+00           | 0 E+00           | 0.E+00             | 0.E+00           | 0.E+00           |  |  |
| Total PAHs                            | 35.00                 |                  |                  |                  |                  |                    |                  |                  |  |  |
| bis(2-ethylhexyl)phthalate            | 3 E-05                | 3 E-06           | 3 E-03           | 3.E-04           | 3.E-05           | 3.E-06             | 3.E-03           | 3.E-04           |  |  |
| Di-n-butylphthalate<br>Custostobholos | 2 E-07                | 5 E-06           | 2.E-05           | 5 E-06           | 2.E-07           | 5.E-08             | 2.E-05           | 5.E-06           |  |  |
| Diethylphthalate<br>Acenachthylene    | 2.E-08<br>NB          | NB<br>NB         | 2.E-06           | NB               | 2.E-06           | NB<br>S            | 2.E-06           | NB NB            |  |  |
| Aceregianyene<br>Ruoranthene          | 0 E+00                | NB<br>NB         | NB<br>0 E+00     | NB<br>NB         | NB<br>CE+00      | NB<br>NB           | NB<br>0 Exco     | NB NB            |  |  |
| Perzo(b)fluoranthene                  | NB                    | NB<br>NB         | NB               | NB<br>NB         | 0 E+00           | NB<br>NB           | 0.E+00           | NB NB            |  |  |
| oerzo(k)iluoranihene                  | NB                    | NB<br>NB         | NB<br>NB         | NB<br>NB         | NB<br>NB         | NB NB              | NB<br>NB         | NB<br>NB         |  |  |
| geusp(s)blueus<br>pensp(r)mmenene     |                       | 0 E+00           | 0.E+00           | 0 E+00           | 0 E+00           | 0 E+00             | 0.E+00           | 0.E+00           |  |  |
| Benzo(g.h.)parylane                   | NB                    | NB               | NB               | NB               | NB               | NB                 | NB               | NB               |  |  |
| Indeno(1,2,3-c-d)pyrene               | NB                    | NB               | NB               | NB<br>NB         | NB               | NB                 | NB               | NB NB            |  |  |
| Obenz(a,h)anthracene                  | NB                    | NB               | NB               | NB               | NB               | NB                 | NB               | NB NB            |  |  |
| Digitin - TEQ                         | 5 E-03                | 5 E-04           | 8 E-01           | 8 E-02           | 5.E-03           | 5 E-04             | 8.E-01           | 8.E-02           |  |  |
| <u></u> _                             |                       | 3 2 4            |                  | 7 2 702          | J                |                    | JV.              |                  |  |  |

In this scanano, the river otter is assumed to ingest fish, sediment, and surface

|                                    | SCENARIO <sup>2</sup> |              |                  |              |                  |                  |  |  |  |  |
|------------------------------------|-----------------------|--------------|------------------|--------------|------------------|------------------|--|--|--|--|
|                                    | Great Blu             | e Heron-     |                  | ue Heron-    | Great Blu        | e Heron          |  |  |  |  |
| ľ                                  | Вогтом                | Pit Fish     | Borrow           | Pit Fish     | Borrow           | Pit Fish         |  |  |  |  |
|                                    | Ingestion             | -Average     | Aver             | age**        | Ingestion-       | -Maximum         |  |  |  |  |
|                                    |                       |              |                  |              |                  |                  |  |  |  |  |
|                                    | NOAEL                 | LOAEL        | NOAEL            | LOAEL        | NOAEL            | LOAEL            |  |  |  |  |
| l                                  | Hazard                | Hazard       | Hazard           | Hazard       | Hazard           | Hazard           |  |  |  |  |
| Compound                           | Index                 | Index        | Index            | Index        | Index            | Index            |  |  |  |  |
| 2,4-D                              | NB                    | NB           | NB               | NB           | NB               | NB               |  |  |  |  |
| 2,4-DB                             | 2.E-05                | NB           | 1.E-08           | NB           | 3.E-05           | NB               |  |  |  |  |
| Dicamba                            | NB                    | NB           | NB               | NB           | NB               | NB               |  |  |  |  |
| Dichloroprop                       | NB                    | NB           | NB               | NB           | NB               | NB ,             |  |  |  |  |
| MCPA                               | NB                    | NB           | NB               | NB           | NB               | NB               |  |  |  |  |
| MCPP                               | NB                    | NB           | NB               | NB           | NB               | NB               |  |  |  |  |
| Pentachlorophenol                  | NB                    | NB           | NB               | NB           | NB               | NB               |  |  |  |  |
| Aluminum, Total                    | 4.E-02                | NB           | 3.E-05           | NB           | 8.E-02           | NB               |  |  |  |  |
| Antimony                           | NB                    | NB           | NB NB            | NB           | NB               | NB               |  |  |  |  |
| Arsenic, Total                     | 8.E-05                | 3.E-05       | 5.E-08           | 2.E-08       | 1.E-04           | 5.E-05           |  |  |  |  |
| Barium, Total                      | 3.E-04<br>NB          | 1.E-04<br>NB | 2.E-07           | 9.E-08<br>NB | 7.E-04           | 3.E-04<br>NB     |  |  |  |  |
| Beryllium, Total<br>Cadmium, Total | 0.E+00                | 0.E+00       | NB<br>0.E+00     | 0.E+00       | NB<br>0.E+00     | 0.E+00           |  |  |  |  |
| Chromium, Total                    | 5.E-02                | 1.E-02       | 3.E-05           | 7.E-06       | 9.E-02           | 0.E+00<br>2.E-02 |  |  |  |  |
| Copper, Total                      | 3.E-02                | 2.E-03       | 2.E-06           | 1.E-06       | 6.E-03           | 4.E-03           |  |  |  |  |
| Iron                               | NB                    | NB           | NB               | NB           | NB               | NB               |  |  |  |  |
| Lead, Total                        | 4.E-02                | 4.E-03       | 3.E-05           | 3.E-06       | 8.E-02           | 8.E-03           |  |  |  |  |
| Manganese                          | 2.E-05                | NB           | 2.E-08           | NB           | 8.E-05           | NB               |  |  |  |  |
| Mercury                            | 4.E+00                | 4.E-01       | 3.E-03           | 3.E-04       | 1.E+01           | 1.E+00           |  |  |  |  |
| Molybdenum                         | 4.E-05                | 4.E-06       | 3.E-08           | 3.E-09       | 5.E-05           | 5.E-06           |  |  |  |  |
| Nickel, Total                      | 5.E-06                | 4.E-06       | 3.E-09           | 2.E-09       | 9.E-06           | 6.E-06           |  |  |  |  |
| Selenium                           | 1.E-01                | 6.E-02       | 8.E-05           | 4.E-05       | 2.E-01           | 1.E-01           |  |  |  |  |
| Silver                             | NB                    | NB           | NB               | NB           | NB               | NB               |  |  |  |  |
| Vanadium, Total                    | 3.E-05                | NB           | 2.E-08           | NB           | 6.E-05           | NB               |  |  |  |  |
| Zinc, Total                        | 2.E-01                | 3.E-02       | 2.E-04           | 2.E-05       | 4.E-01           | 4.E-02           |  |  |  |  |
| Total PCBs                         | 5.E-02                | 5.E-03       | 3.E-05           | 3.E-06       | 1.E-01           | 1.E-02           |  |  |  |  |
| Total DDT<br>Aldrin                | 5.E-01<br>NB          | 5.E-02       | 3.E-04           | 3.E-05       | 1.E+00           | 1.E-01           |  |  |  |  |
| Alpha Chlordane                    | 9.E-05                | NB<br>2.E-05 | NB<br>6.E-08     | NB<br>1.E-08 | NB<br>3.E-04     | NB<br>5.E-05     |  |  |  |  |
| delta-BHC                          | 1.E-07                | 3.E-08       | 9.E-11           | 2.E-11       | 2.E-07           | 4.E-08           |  |  |  |  |
| Dieldrin                           | 4.E-07                | NB           | 3.E-10           | NB           | 6.E-07           | NB               |  |  |  |  |
| Endosulfan I                       | 8.E-09                | NB           | 5.E-12           | NB           | 1.E-08           | NB               |  |  |  |  |
| Endosulfan li                      | 0.E+00                | NB           | 0.E+00           | NB           | 0.E+00           | NB I             |  |  |  |  |
| Endosulfan sulfate                 | 1.E-08                | NB           | 7.E-12           | NB           | 1.E-08           | NB               |  |  |  |  |
| Endrin aldehyde                    | 1.E-05                | 1.E-06       | 7.E-09           | 7.E-10       | 1.E-05           | 1.E-06           |  |  |  |  |
| Endrin ketone                      | 9.E-06                | 9.E-07       | 6.E-09           | 6.E-10       | 1.E-05           | 1.E-06           |  |  |  |  |
| Gamma Chlordane                    | 2.E-04                | 3.E-05       | 1.E-07           | 2.E-08       | 4.E-04           | 9.E-05           |  |  |  |  |
| gamma-BHC (Lindane)                | 6.E-08                | 6.E-09       | 4.E-11           | 4.E-12       | 9.E-08           | 9.E-09           |  |  |  |  |
| Heptachlor                         | NB                    | NB           | NB               | NB           | NB               | NB I             |  |  |  |  |
| Heptachlor epoxide                 | NB                    | NB           | NB               | NB           | NB               | NB I             |  |  |  |  |
| Methoxychlor                       | NB<br>3 E 04          | NB           | NB               | NB           | NB<br>2 F 04     | NB<br>3 E OE     |  |  |  |  |
| bis(2-ethylhexyl)phthalate         | 3.E-04<br>2.E-02      | 3.E-05<br>NB | 2.E-07<br>1.E-05 | 2.E-08<br>NB | 3.E-04<br>3.E-02 | 3.E-05<br>NB     |  |  |  |  |
| Di-n-butylphthalate                | 1.E-02                | 1.E-03       | 7.E-05           | 7.E-07       | 1.E-02           | 1.E-03           |  |  |  |  |
| Diethylphthalate                   | NB                    | NB           | NB               | NB           | NB               | NB               |  |  |  |  |
| Acenaphthylene                     |                       | *            |                  |              |                  |                  |  |  |  |  |
| Fluoranthene                       | •                     | •            | •                | · • 1        | •                | •                |  |  |  |  |
| Benzo(b)fluoranthene               | •                     | *            | •                | •            | •                | •                |  |  |  |  |
| Benzo(k)fluoranthene               | •                     | •            | •                | *            | •                | •                |  |  |  |  |
| Benzo(a)pyrene                     | •                     | *            |                  |              | •                | •                |  |  |  |  |
| Benzo(g,h,i)perylene               |                       | •            | *                | •            | •                | •                |  |  |  |  |
| Indeno(1,2,3-c-d)pyrene            | *                     | •            | •                | *            | •                | •                |  |  |  |  |
| Dibenz(a,h)anthracene              |                       | •            |                  | *            |                  | *                |  |  |  |  |
| Dioxin - TEQ                       | 6.E-02                | 6.E-03       | 4.E-05           | 4.E-06       | 1.E-01           | 1.E-02           |  |  |  |  |

<sup>&</sup>lt;sup>2</sup>The great blue heron is assumed to ingest fish and surface water.

\*\*Indicates sensitivity analysis using larger foraging area (3 mile radius)

Table 7-20b Results of Food Chain Modeling Sauget Area I Borrow Pit Lake

|                                  | 1                |                  |                  | SCEN             | VRIO <sup>3</sup>   |                  |                     |                    |
|----------------------------------|------------------|------------------|------------------|------------------|---------------------|------------------|---------------------|--------------------|
| ĺ                                | Female           | Muskrat-         | Female           | Muskra!-         | Female I            | Muskrat-         | Female              | Muskrat-           |
|                                  |                  | Pt Clam          |                  | Prt Clam         |                     | Pit Clam         |                     | Pit Clam           |
|                                  | ingestion        | -Average         | Ingestion        | Maximum          | Incestion           | -Average         | Ingestion           | Maximum            |
|                                  |                  | sediment         | . •              | sediment         | combined shallow    |                  | combined shallow ar |                    |
|                                  |                  |                  | _                |                  | and                 | deep             | deep s              | ediment            |
|                                  |                  | T                |                  |                  |                     |                  |                     |                    |
|                                  | NOAEL            | LOAEL            | NOAEL            | LOAEL            | NOAEL               | LOAEL            | NOAEL               | LOAEL              |
| Į.                               | Hazard           | Hazard           | Hazard           | Hazard           | Hazard              | Hazard           | Hazard              | Hazard             |
| Compound                         | Index            | Index            | Index            | Index            | Index               | index            | index               | Index              |
| 2.4-0                            | 3 E-05           | 6 E-06           | 3 E-05           | 6 E-06           | 3.E-05              | 6 E-06           | 3.E-05              | 6.E-06             |
| 2.4-08                           | 0 E+00              | 0.E+00           | 0.E+00              | 0.E+00             |
| Dicambe                          | 0 E+00           | 0 E+00           | 0.E+00           | 0.E+00           | 0.E+00              | 0.E+00           | 0.E+00              | 0.E+00             |
| Dichloroprop                     | NB<br>05.00      | NB<br>0 E i co   | NB<br>05.00      | NB<br>or.co      | 0 F+00              | NB<br>0 E t CC   | NB<br>05:00         | NB<br>05.00        |
| MCPA                             | 0 E+00           | 0 E+00           | 0 E+00           | 0 E+00           | 0.2                 | 0.E+00           | 0.E+00              | 0.E+00             |
| MCPP                             | 6 E-01           | 2.E-01           | 6 E-01           | 2.E-01           | 6.E-01              | 2.E-01           | 6.E-01              | 2.E-01             |
| Pentachlorophenol                | 0 E+00<br>4.E+01 | 0 E+00           | 0 E+00           | 0.E+00<br>5.E+00 | 0.E+00              | 0.E+00           | 0.E+00<br>5.E+01    | 0.E+00  <br>5.E+00 |
| Alumnum, Total                   | 9 E-02           | 4.E+00<br>9 E-03 | 5.E+01<br>9 E-02 | 9 E-03           | 9 E-02              | 9.E-03           | 9.E-02              | 9.E-03             |
| Antimony<br>Arsenic, Total       | 2 E-01           | NB NB            | 2 E-01           | NB NB            | 2 E-01              | NB               | 9.E-02<br>2.E-01    | NB NB              |
| Banum, Total                     | 8 E-02           | 6.E-02           | 1.E-01           | 8.E-02           | 8 E-02              | 6.E-02           | 1.E-01              | 8.E-02             |
| Beryllium, Total                 | 2 E-03           | 2 E-04           | 3 E-03           | 2 E-04           | 2.E-03              | 2.E-04           | 3.E-03              | 2.E-04             |
| Cadmum, Total                    | 6 E-02           | 6 E-03           | 7 E-02           | 7 E-03           | 6 E-02              | 6.E-03           | 7.E-02              | 7.E-03             |
| Chromum, Total                   | 1 E-04           | NB               | 2 E-04           | NB               | 1.E-04              | NB               | 2E-04               | NB NB              |
| Copper, Total                    | 4 E-02           | 3 E-02           | 4 E-02           | 3 E-02           | 3 E-02              | 3.E-02           | 1.E-01              | 8.E-02             |
| Bran                             | NB               | NB               | NB               | NB               | N/B                 | NB               | NB                  | NB                 |
| Lead. Total                      | 3 E-02           | 3 E-03           | 4 E-02           | 4 E-03           | 3 E-02              | 3 E-03           | 4 E-02              | 4.E-03             |
| Manganese                        | 5 E-02           | 1 E-02           | 7 E-02           | 2 E-02           | 5 E-02              | 1.E-02           | 7.E-02              | 2.E-02             |
| Mercury                          | 1 E-02           | 2.E-03           | 1 E-02           | 3 E-03           | 1.E-02              | 2.E-03           | 1.E-02              | 3.E-03             |
| Molybdenum                       | 5 E-02           | 5 E-03           | 6 E-02           | 6 E-03           | 5 E-02              | 5.E-03           | 6.E-02              | 6.E-03             |
| Nicket, Total                    | 4 E-03           | 2.E-03           | 4 E-03           | 2 E-03           | 4.E-03              | 2.E-03           | 4.E-03              | 2.E-03             |
| Selienium                        | 0 E+00           | 0 E+00           | 0 E+00           | 0.E+00           | 0. <del>E+0</del> 0 | 0.E+00           | 0.E+00              | 0.E+00             |
| Silver                           | 4 E-04           | 4 E-05           | 4 E-04           | 4 E-05           | 4.E-04              | 4.E-05           | 4.E-04              | 4.E-05             |
| ∀anadium, Total                  | 5 E-01           | 5 E-02           | 6 E-01           | 6 E-02           | 5 E-01              | 5 E-02           | 6.E-01              | 6.E-02             |
| Zinc, Total                      | 5 E-02           | 2.E-02           | 7 E-02           | 4 E-02           | 5 E-02              | 3.E-02           | 1.E-01              | 5.E-02             |
| Total PCBs                       | 0 E+00           | 0 E+00           | 0 E+00           | 0 E+00           | 8 E-04              | 4.E-04           | 1.E-02              | 5.E-03             |
| Total DOT                        | 2 E-05           | 4 E-06           | 4 E-05           | 9 E-06           | 2 E-05              | 4.E-06           | 4.E-05              | 9.E-06             |
| Aidnn                            | 0 E+00              | 0.E+00           | 0.E+00              | 0.E+00             |
| Alpha Chlordane                  | 2.E-06           | 9 E-07           | 4 E-06           | 2 E-06           | 2 E-06              | 9.E-07           | 4.E-06              | 2.E-06             |
| delta-BHC                        | 2 E-04           | 2.E-05           | 2 E-04           | 2.E-05           | 2 E-04              | 2.E-05           | 2.E-04              | 2.E-05             |
| Dieldrin                         | 1 E-04           | 1 E-05           | 1 E-04           | 1 E-05           | 1 E-04              | 1.E-05           | 1.E-04              | 1.E-05             |
| Endosulian i                     | 7 E-05           | NB               | 1.E-04           | NB               | 7 E-05              | NB NB            | 1.E-04              | NB                 |
| Endosulian II                    | 0 E+00           | NB               | 0 E+00           | NB<br>NB         | 0.E+00              | NB I             | 0.E+00              | NB                 |
| Endosulfan sulfate               | 1 E-04           | NB 35.05         | 2 E-04           | NB<br>a c oc     | 1 E-04              | NB 1             | 2E-04               | NB<br>3505         |
| Endrin aldehyde<br>Endrin ketone | 2 E-04           | 2.E-05<br>1.E-05 | 2 E-04           | 2 E-05<br>1 E-05 | 2.E-04              | 2.E-05<br>1.E-05 | 2.E-04<br>1.E-04    | 2.E-05<br>1.E-05   |
| Gamma Chlordane                  | 3 E-06           | 2.E-06           | 1 E-04<br>3 E-06 | 1.E-05<br>2.E-06 | 1.E-04<br>3.E-06    | 2.E-06           | 1.E-04<br>3.E-06    | 1.E-05<br>2.E-06   |
| gamme-8HC (Lindane)              | 2 E-06           | 2 E-07           | 2 E-06           | 2 E-06           | 2 E-06              | 2.E-07           | 3.E-06              | 2.E-07             |
| Historior                        | 8 E-03           | 8 E-04           | 8 E-03           | 8 E-04           | 8 E-03              | 8.E-04           | 8.E-03              | 8.E-04             |
| Heptachior econde                | 1 E-04           | 1 E-05           | 1 E-04           | 1.E-05           | 1 E-04              | 1.E-05           | 1.E-04              | 1.E-05             |
| Methoxychlor                     | 6 E-04           | 3 E-04           | 6 E-04           | 3 E-04           | 6 E-04              | 3.E-04           | 6.E-04              | 3.E-04             |
| Total PAHs                       | •                |                  |                  | •                |                     | •                | •                   |                    |
| bis(2-ethylhexyl)phthalate       | 5 E-03           | 5 E-04           | 8 E-03           | 8.E-04           | 5 E-03              | 5.E-04           | 8.E-03              | 8.E-04             |
| Di-n-butylphthalate              | 0 E+00           | 0 E+00           | 0 E+00           | 0 E+00           | 0.E+00              | 0.E+00           | 0.E+00              | 0.E+00             |
| Distrytonthalate                 | 1 E-05           | NB               | 2 E-05           | NB               | 1 E-05              | NB               | 2 E-05              | NB                 |
| Acenaphinylene                   | NB               | NB               | NB               | NB               | NB                  | NB               | NB                  | NB                 |
| Fluoranthene                     | 0 E+00           | NB               | 0 E+00           | NB               | 0.E+00              | NB               | 0.E+00              | NB                 |
| Benzo(b)fluoranthene             | NB               | NB               | NB               | NB               | NB                  | NB               | NB                  | NB                 |
| Benzo(k)fluoranthene             | NB               | NB               | NB               | NB               | NB                  | NB               | NB                  | NB                 |
| Benzo(a)pyrene                   | 0 E+00           | 0 E+00           | 0 E+00           | 0 E+00           | 0.E+00              | 0.E+00           | 0.E+00              | 0.E+00             |
| Benzo(g.hu)perylene              | NB               | NB               | NB               | NB               | NB                  | NB               | NB                  | NB                 |
| Indeno(1,2,3-c-d)pyrene          | NB               | NB               | NB               | NB               | NB                  | NB               | NB                  | NB                 |
| Dibenz(a,h)enthracene            | NB               | NB               | NB               | NB               | NB                  | NB               | NB                  | NB                 |
| Diaxan - TEQ                     | 1 E-01           | 1 E-02           | 2 E-01           | 2.E-02           | 1.E-01              | 1.E-02           | 2.E-01              | 2.E-02             |

<sup>&</sup>lt;sup>3</sup>The mustirat is assumed to ingest clams, sediment, and surface water.

| Hazard   Hazard   Hazard   Hazard   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index      | gestion-<br>ombined<br>nd deep                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Borrow Pit Clam Ingestion—Average shallow sediment   Sediment   Pit Clam Ingestion—Average shallow sediment   Sediment   Average combined shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Shallow and deep sediment   Sh   | gestion-ombined and deep ent LOAEL Hazard Index 2.E-06 0.E+00 NB 0.E+00 1.E-01 0.E+00 2.E+00 3.E-03            |
| NOAEL   LOAEL   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Haz   | LOAEL<br>Hazard<br>Index<br>2.E-06<br>0.E+00<br>0.E+00<br>1.E-01<br>0.E+00<br>2.E+00<br>3.E-03                 |
| NOAEL   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   H    | LOAEL<br>Hazard<br>Index<br>2.E-06<br>0.E+00<br>0.E+00<br>NB<br>0.E+00<br>1.E-01<br>0.E+00<br>2.E+00<br>3.E-03 |
| NOAEL   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Hazard   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index      | LOAEL<br>Hazard<br>Index<br>2.E-06<br>0.E+00<br>0.E+00<br>NB<br>0.E+00<br>1.E-01<br>0.E+00<br>2.E+00<br>3.E-03 |
| Hazard   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Ind   | Hazard<br>Index<br>2.E-06<br>0.E+00<br>0.E+00<br>NB<br>0.E+00<br>1.E-01<br>0.E+00<br>2.E+00<br>3.E-03          |
| Hazard   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Index   Ind   | Hazard<br>Index<br>2.E-06<br>0.E+00<br>0.E+00<br>NB<br>0.E+00<br>1.E-01<br>0.E+00<br>2.E+00<br>3.E-03          |
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.E-06<br>0.E+00<br>0.E+00<br>NB<br>0.E+00<br>1.E-01<br>0.E+00<br>2.E+00<br>3.E-03                             |
| 2,4-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.E+00<br>0.E+00<br>NB<br>0.E+00<br>1.E-01<br>0.E+00<br>2.E+00<br>3.E-03                                       |
| Dicamba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.E+00<br>NB<br>0.E+00<br>1.E-01<br>0.E+00<br>2.E+00<br>3.E-03                                                 |
| Dichloroprop   NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NB<br>0.E+00<br>1.E-01<br>0.E+00<br>2.E+00<br>3.E-03                                                           |
| MCPA   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E   | 0.E+00<br>1.E-01<br>0.E+00<br>2.E+00<br>3.E-03                                                                 |
| MCPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.E-01<br>0.E+00<br><b>2.E+00</b><br>3.E-03                                                                    |
| Pentachlorophenol   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00   O.E+00     | 0.E+00<br>2.E+00<br>3.E-03                                                                                     |
| Aluminum, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.E+00<br>3.E-03                                                                                               |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.E-03                                                                                                         |
| Arsenic, Total   9.E-04   NB   9.E-02   NB   9.E-04   NB   9.E-02   2.E-04   2.E-04   3.E-02   2.E-04   2.E-04   3.E-02   2.E-04   2.E-04   3.E-02   3.E-02   3.E-02   3.E-03   3.E-04   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-0   |                                                                                                                |
| Barium, Total   2.E-04   2.E-04   3.E-02   2.E-02   2.E-04   2.E-04   3.E-02   3.E-02   3.E-04   3.E-04   3.E-04   3.E-05   3.E-05   3.E-03   3.E-04   3.E-05   3.E-02   3.E-03   3.E-04   3.E-05   3.E-05   3.E-02   3.E-03   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E   |                                                                                                                |
| Beryllium, Total   7.E-06   6.E-07   8.E-04   7.E-05   7.E-06   6.E-07   8.E-04   3.E-04   3.E-05   3.E-02   3.E-03   3.E-04   3.E-05   3.E-02   3.E-03   3.E-04   3.E-05   3.E-02   3.E-05   3.E-05   3.E-02   3.E-05   3.E-05   3.E-02   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05      | 2.E-02                                                                                                         |
| Cadmium, Total   Cadmium, Total   Cadmium, Total   Cadmium, Total   Cadmium, Total   Cadmium, Total   Cadmium, Total   Cadmium, Total   Cadmium, Total   Cadmium, Total   Cadmium, Total   Cadmium, Total   Cadmium, Total   Cadmium, Total   Cadmium, Total   Cadmium, Total   Cadmium, Total   Cadmium, Total   Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, Cadmium, C   | 7.E-05                                                                                                         |
| Copper, Total   1.E-04   1.E-04   1.E-04   1.E-02   1.E-02   1.E-04   1.E-04   1.E-04   1.E-05   1.E-02   1.E-03   1.E-04   1.E-05   1.E-02   1.E-03   1.E-04   1.E-05   1.E-02   1.E-03   1.E-04   1.E-05   1.E-02   1.E-03   1.E-04   1.E-05   1.E-02   1.E-03   1.E-04   4.E-05   2.E-02   1.E-03   1.E-04   4.E-05   2.E-02   1.E-03   1.E-04   4.E-05   2.E-02   1.E-03   1.E-04   4.E-05   2.E-02   1.E-03   1.E-04   4.E-03   1.E-04   4.E-03   1.E-04   4.E-03   1.E-04   4.E-03   1.E-04   4.E-03   1.E-04   1.E-03   1.E-04   1.E-03   1.E-04   1.E-03   1.E-04   1.E-03   1.E-04   1.E-03   1.E-03   1.E-04   1.E-03   1.E-03   1.E-04   1.E-03   1.E-03   1.E-04   1.E-03   1.E-04   1.E-03   1.E-04   1.E-03   1.E-04   1.E-03   1.E-04   1.E-03   1.E-04   1.E-03   1.E-04   1.E-03   1.E-04   1.E-04   1.E-04   1.E-04   1.E-04   1.E-04   1.E-04   1.E-04   1.E-04   1.E-04   1.E-04   1.E-04   1.E-04   1.E-04   1.E-04   1.E-04   1.E-04   1.E-05   1.E-04   1.E-04   1.E-04   1.E-05   1.E-04   1.E-05   1.E-04   1.E-05   1.E-04   1.E-05   1.E-04   1.E-05   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E   | 3.E-03                                                                                                         |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NB                                                                                                             |
| Lead, Total   1.E-04   1.E-05   1.E-02   1.E-03   1.E-04   1.E-05   1.E-02   1.E-02   1.E-04   4.E-05   2.E-02   5.E-03   1.E-04   4.E-05   2.E-02   1.E-03   1.E-04   4.E-05   2.E-02   1.E-03   1.E-04   4.E-05   2.E-02   1.E-03   1.E-04   4.E-05   2.E-02   1.E-03   1.E-04   4.E-05   2.E-02   1.E-03   1.E-04   4.E-03   1.E-04   4.E-03   1.E-03   1.E-04   1.E-03   1.E-03   1.E-04   1.E-03   1.E-03   1.E-04   1.E-05   5.E-06   1.E-03   1.E-05   1.E-03   1.E-05   1.E-03   1.E-05   1.E-03   1.E-05   1.E-03   1.E-05   1.E-03   1.E-04   1.E-05   1.E-03   1.E-04   1.E-05   1.E-03   1.E-04   1.E-05   1.E-03   1.E-04   1.E-05   1.E-03   1.E-04   1.E-05   1.E-03   1.E-04   1.E-05   1.E-03   1.E-04   1.E-05   1.E-03   1.E-04   1.E-05   1.E-03   1.E-04   1.E-05   1.E-03   1.E-04   1.E-05   1.E-05   1.E-04   1.E-04   1.E-05   1.E-05   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-06   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-05   1.E-0   | 3.E-02                                                                                                         |
| Manganese         1.E-04         4.E-05         2.E-02         5.E-03         1.E-04         4.E-05         2.E-02           Mercury         3.E-05         7.E-06         4.E-03         9.E-04         3.E-05         7.E-06         4.E-03           Molybdenum         8.E-05         8.E-06         1.E-02         1.E-03         8.E-05         8.E-06         1.E-02           Nickel, Total         1.E-05         5.E-06         1.E-03         6.E-04         1.E-05         5.E-06         1.E-03           Selenium         0.E+00         1.E-04         2.E-01         2.E-04         1.E-04         2.E-01         td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NB                                                                                                             |
| Mercury         3.E-05         7.E-06         4.E-03         9.E-04         3.E-05         7.E-06         4.E-03           Molybdenum         8.E-05         8.E-06         1.E-02         1.E-03         8.E-05         8.E-06         1.E-02           Nickel, Total         1.E-05         5.E-06         1.E-03         6.E-04         1.E-05         5.E-06         1.E-03           Selenium         0.E+00         2.E-04         >1.E-03</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.E-03                                                                                                         |
| Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.E-03                                                                                                         |
| Nickel, Total         1.E-05         5.E-06         1.E-03         6.E-04         1.E-05         5.E-06         1.E-03           Selenium         0.E+00         2.E-04         2.E-04         2.E-04         2.E-04         2.E-04         2.E-01         2.E-02         2.E-04         1.E-04         2.E-02         2.E-04         1.E-04         2.E-02         2.E-04         1.E-04         2.E-02         2.E-04         1.E-08         2.E-02         2.E-04         1.E-08         3.E-03         3.E-08         3.E-00         3.E-08         3.E-00         3.E-08         3.E-08         3.E-08         3.E-05         3.E-06         6.E-08         1.E-08         1.E-05         0.E+00         0.E+00         0.E+00         0.E+00         0.E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.E-04<br>1.E-03                                                                                               |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.E-04                                                                                                         |
| Silver   2.E-06   2.E-07   2.E-04   2.E-05   2.E-06   2.E-07   2.E-04   2.E-07   2.E-04   2.E-07   2.E-04   2.E-01   2.E-02   1.E-03   1.E-04   2.E-01   2.E-02   1.E-03   1.E-04   2.E-01   2.E-01   2.E-02   2.E-04   1.E-04   4.E-02   2.E-02   2.E-04   1.E-04   4.E-02   2.E-01   2.E-01   2.E-01   2.E-01   2.E-01   2.E-01   2.E-01   2.E-01   2.E-01   2.E-01   2.E-01   2.E-01   2.E-01   2.E-02   2.E-04   1.E-04   4.E-02   2.E-02   2.E-04   1.E-04   4.E-02   2.E-01   2.E-01   2.E-03   3.E-06   3.E-06   3.E-03   3.E-03   3.E-05   3.E-06   3.E-08   3.E-05   3.E-06   3.E-07   3.E-08   3.E-05   3.E-06   3.E-07   3.E-08   3.E-05   3.E-06   3.E-07   3.E-08   3.E-05   3.E-05   3.E-07   3.E-08   3.E-05   3.E-05   3.E-07   3.E-08   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3.E-05   3   | 0.E+00                                                                                                         |
| Zinc, Total   2.E-04   1.E-04   3.E-02   2.E-02   2.E-04   1.E-04   4.E-02   1.E-04   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   3.E-06   1.E-08   1.E-05   3.E-06   1.E-08   1.E-05   3.E-06   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   3.E-05   3.E-06   3.E-07   3.E-08   3.E-05   0.E+00   3.E-05   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+00   0.E+0   | 2.E-05                                                                                                         |
| Total PCBs         0.E+00         0.E+00         0.E+00         0.E+00         3.E-06         1.E-06         3.E-03           Total DDT         6.E-08         1.E-08         1.E-05         3.E-06         6.E-08         1.E-08         1.E-05           Aldrin         0.E+00         0.E+00         0.E+00         0.E+00         0.E+00         0.E+00         0.E+00           Alpha Chlordane         5.E-09         3.E-09         1.E-06         6.E-07         5.E-09         3.E-09         1.E-06           delta-BHC         2.E-07         2.E-08         2.E-05         2.E-06         2.E-07         2.E-08         2.E-05           Dieldrin         3.E-08         3.E-08         3.E-08         3.E-08         3.E-05           Endosulfan I         2.E-07         NB         3.E-05         NB         2.E-07         NB         3.E-05           Endosulfan II         0.E+00         NB         0.E+00         NB         0.E+00         NB         0.E+00           Endosulfan sulfate         4.E-07         NB         6.E-05         NB         4.E-07         NB         6.E-05           Endrin aldehyde         4.E-07         4.E-08         5.E-06         5.E-06         4.E-07         4.E-08 <td>2.E-02</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.E-02                                                                                                         |
| Total DDT         6.E-08         1.E-08         1.E-05         3.E-06         6.E-08         1.E-08         1.E-05           Aldrin         0.E+00         1.E-08         1.E-08         1.E-08         1.E-08         0.E+00         0.E+00         0.E+00         0.E+00         1.E-08         1.E-08         1.E-08         1.E-08         1.E-08         0.E+00         0.E+00         0.E+00         0.E+00         1.E-08         02</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.E-02                                                                                                         |
| Aldrin         0.E+00         1.E-06         d.E-05         2.E-07         2.E-08         2.E-05         2.E-05         2.E-06         2.E-07         2.E-08         2.E-05         3.E-05         3.E-06         3.E-07         3.E-08         3.E-05         NB         3.E-07         NB         3.E-05         NB         3.E-07         NB         3.E-05         NB         0.E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.E-03                                                                                                         |
| Alpha Chlordane         5.E-09         3.E-09         1.E-06         6.E-07         5.E-09         3.E-09         1.E-06           delta-BHC         2.E-07         2.E-08         2.E-05         2.E-06         2.E-07         2.E-08         2.E-05           Dieldrin         3.E-07         3.E-08         3.E-05         3.E-06         3.E-07         3.E-08         3.E-05           Endosulfan I         2.E-07         NB         3.E-05         NB         2.E-07         NB         3.E-05           Endosulfan II         0.E+00         NB         0.E+00         NB         0.E+00         NB         0.E+00           Endosulfan sulfate         4.E-07         NB         6.E-05         NB         4.E-07         NB         6.E-05           Endrin aldehyde         4.E-07         4.E-08         5.E-05         5.E-06         4.E-07         4.E-08         5.E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.E-06                                                                                                         |
| delta-BHC         2.E-07         2.E-08         2.E-05         2.E-06         2.E-07         2.E-08         2.E-05           Dieldrin         3.E-07         3.E-08         3.E-05         3.E-06         3.E-07         3.E-08         3.E-05           Endosulfan I         2.E-07         NB         3.E-05         NB         2.E-07         NB         3.E-05           Endosulfan II         0.E+00         NB         0.E+00         NB         0.E+00         NB         0.E+00           Endosulfan sulfate         4.E-07         NB         6.E-05         NB         4.E-07         NB         6.E-05           Endrin aldehyde         4.E-07         4.E-08         5.E-06         5.E-06         4.E-07         4.E-08         5.E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.E+00                                                                                                         |
| Dieldrin   3.E-07   3.E-08   3.E-05   3.E-06   3.E-07   3.E-08   3.E-05   Endosulfan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.E-07<br>2.E-06                                                                                               |
| Endosulfan I 2.E-07 NB 3.E-05 NB 2.E-07 NB 3.E-05 Endosulfan II 0.E+00 NB 0.E+00 NB 0.E+00 NB 0.E+00 Endosulfan sulfate 4.E-07 NB 6.E-05 NB 4.E-07 NB 6.E-05 Endrin aldehyde 4.E-07 4.E-08 5.E-05 5.E-06 4.E-07 4.E-08 5.E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.E-06                                                                                                         |
| Endosulfan II 0.E+00 NB 0.E+00 NB 0.E+00 NB 0.E+00 Endosulfan sulfate 4.E-07 NB 6.E-05 NB 4.E-07 NB 6.E-05 Endrin aldehyde 4.E-07 4.E-08 5.E-05 5.E-06 4.E-07 4.E-08 5.E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NB                                                                                                             |
| Endosulfan sulfate 4.E-07 NB 6.E-05 NB 4.E-07 NB 6.E-05 Endrin aldehyde 4.E-07 4.E-08 5.E-05 5.E-06 4.E-07 4.E-08 5.E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NB                                                                                                             |
| · · · · · ·   · · ·   · · · · ·   · · · · · ·   · · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NB                                                                                                             |
| Endrin ketone   2.E-07   2.E-08   2.E-05   2.E-08   2.E-07   2.E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.E-06                                                                                                         |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.E-06                                                                                                         |
| Gamma Chlordane   9.E-09   5.E-09   1.E-06   5.E-07   9.E-09   5.E-09   1.E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.E-07                                                                                                         |
| gamma-BHC (Lindane) 6.E-09 6.E-10 6.E-07 6.E-08 6.E-09 6.E-10 6.E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.E-08                                                                                                         |
| Heptachlor   4.E-05   4.E-06   4.E-03   4.E-04   4.E-05   4.E-06   4.E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.E-04                                                                                                         |
| Heptachlor epoxide 3.E-07 3.E-08 3.E-05 3.E-06 3.E-07 3.E-08 3.E-05 3.E-05 3.E-06 3.E-07 3.E-08 3.E-05 3.E-06 3.E-07 3.E-08 3.E-08 3.E-05 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E-08 3.E- | 3.E-06                                                                                                         |
| Methoxychlor 3.E-06 1.E-06 3.E-04 1.E-04 3.E-06 1.E-06 3.E-04 Total PAHs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.E-04                                                                                                         |
| bis(2-ethylhexyl)phthalate 2.E-05 2.E-06 4.E-03 4.E-04 2.E-05 2.E-06 4.E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.E-04                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.E+00                                                                                                         |
| Diethylphthalate 7.E-08 NB 1.E-05 NB 7.E-08 NB 1.E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NB                                                                                                             |
| Acenaphthylene NB NB NB NB NB NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NB                                                                                                             |
| Fluoranthene 0.E+00 NB 0.E+00 NB 0.E+00 NB 0.E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NB                                                                                                             |
| Benzo(b)fluoranthene NB NB NB NB NB NB NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NB                                                                                                             |
| Benzo(k)fluoranthene NB NB NB NB NB NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N.C                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NB                                                                                                             |
| Benzo(g,h,i)perylene NB NB NB NB NB NB NB NB NB NB NB NB NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.E+00                                                                                                         |
| Indeno(1,2,3-c-d)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.E+00<br>NB                                                                                                   |
| Dioxin - TEQ 4.E-04 4.E-05 6.E-02 6.E-03 4.E-04 4.E-05 6.E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.E+00                                                                                                         |

<sup>&</sup>lt;sup>4</sup>In this scenario, the river otter is assumed to ingest clams, sediment, and surface water.

|                                              | SCENARIO <sup>5</sup> |                  |                  |                  |                  |                     |                  |                  |  |
|----------------------------------------------|-----------------------|------------------|------------------|------------------|------------------|---------------------|------------------|------------------|--|
|                                              | Mallar                | d Duck-          | Malla            | d Duck-          |                  | Duck-               | Mallad Du        | ck-Borrow        |  |
|                                              |                       | Pit Shrimo       |                  | Pit Shining      |                  | Hi Shrimp           |                  | Ingestion-       |  |
| l .                                          | Ingestion             | n-Average        | Ingestion        | n-Maximum        | Ingestion        | -Average            | Maximum          | combined         |  |
|                                              | shallow               | sediment         | shallow          | sediment         | combine          | d shallow           | shallow          | and deep         |  |
|                                              |                       |                  |                  |                  | and deep         | sediment            | sedi             | ment             |  |
|                                              | NOAEL                 | LOAEL            | NOAEL            | LOAEL            | NOAEL            | LOAEL               | NOAEL.           | LOAEL            |  |
| J                                            | Hazard                | Hazard           | Hazard           | Hazard           | Hazard           | Hazard              | Hazard           | Hazard           |  |
| Compound                                     | Index                 | Index            | Index            | index            | Index            | Index               | index            | index            |  |
| 2.4-0                                        | NB                    | NB.              | NB               | NB               | NB               | NB                  | NB               | NB               |  |
| 2.4-08                                       | 0 E+00                | NB               | 0 E+00           | NB               | 0 E+00           | NB                  | 0.E+00           | NB               |  |
| Осатов                                       | NB                    | NB               | NB               | NB               | NB               | NB                  | NB NB            | NB               |  |
| Dichloroprop<br>MCPA                         | NB<br>NB              | NB<br>NB         | NB<br>NB         | NB<br>NB         | NB<br>NB         | NB<br>NB            | NB<br>NB         | NB<br>NB         |  |
| MCPP                                         | NB                    | NB               | NB               | NB NB            | NB<br>NB         | NB                  | NB               | NB               |  |
| Pentachlorophenol                            | NB                    | NB               | NB               | NB               | NB               | NB                  | NB               | NB               |  |
| Aluminum, Total                              | 2 E-03                | NB               | 3.E-01           | NB               | 2.E-03           | NB                  | 3.E-01           | NB               |  |
| Antimony                                     | NB                    | NB               | NB               | NB I             | NB               | NB                  | NB               | NB               |  |
| Arsenic, Total                               | 4 E-05                | 2.E-05           | 5.E-03           | 2 E-03           | 4 E-05           | 2 E-05              | 5.E-03           | 2 E-03           |  |
| Barium, Total                                | 2 E-04                | 1.E-04           | 3.E-02           | 2 E-02           | 2.E-04           | 1.E-04              | 3.E-02           | 2.E-02           |  |
| Beryllium, Total                             | NB                    | NB               | NB               | NB               | NB               | NB                  | NB               | NB               |  |
| Cadmium, Total                               | 2 E-05                | 1 E-06           | 3 E-03           | 2 E-04           | 2.E-05           | 1 E-06              | 3.E-03           | 2.E-04           |  |
| Chromium, Total                              | 1 E-03                | 2.E-04           | 1.E-01           | 3 E-02           | 1 E-03           | 2.E-04              | 1.E-01           | 3.E-02           |  |
| Copper, Total                                | 6 E-04                | 4 E-04           | 7.E-02           | 6 E-02           | 6 E-04           | 4.E-04              | 8.E-02           | 6.E-02           |  |
| tron                                         | NB                    | NB               | NB               | NB               | NB               | NB                  | NB               | NB               |  |
| Lend, Total                                  | 2 E-03                | 2 E-04           | 2.E-01           | 2 E-02           | 2 E-03           | 2E-04               | 2E-01            | 2.E-02           |  |
| Mangenese                                    | 2 E-05                | NB .             | 2 E-03           | NB               | 2.E-05           | NB                  | 2.E-03           | NB               |  |
| Mercury                                      | 2E-04                 | 2 E-05           | 4.E-02           | 4 E-03           | 2.E-04           | 2.E-05              | 4.E-02           | 4.E-03           |  |
| Molybdenum<br>Nickel, Total                  | 3 E-06                | 3 E-07<br>6 E-06 | 5.E-04           | 5 E-05           | 3 E-06<br>8 E-06 | 3.E-07              | 5.E-04<br>1.E-03 | 5.E-05<br>8.E-04 |  |
| Selectum                                     | 8 E-06<br>0 E+00      | 0 E+00           | 1 E-03<br>0 E+00 | 8 E-04<br>0 E+00 | 0.E+00           | 6.E-06<br>0 E+00    | 0.E+00           | 0.E+00           |  |
| Sher                                         | NB                    | NB               | NB               | NB               | NB               | NB                  | NB               | NB               |  |
| Vanadium, Total                              | 4 E-05                | NB               | 6 E 03           | NB               | 4.E-05           | NB                  | 6.E-03           | NB               |  |
| Zinc. Total                                  | 4 E-03                | 4 E-04           | 5 E-01           | 5 E-02           | 4.E-03           | 4.E-04              | 7.E-01           | 7.E-02           |  |
| Total PCBs                                   | 0 E+00                | 0 E+00           | 0 E+00           | 0 E+00           | 4.E-06           | 4 E-07              | 6.E-03           | 6.E-04           |  |
| Total DDT                                    | 3 E-05                | 3 E-06           | 7 E-03           | 7 E-04           | 3 E-05           | 3 E-06              | 7.E-03           | 7.E-04           |  |
| Aldrin                                       | NB                    | NB.              | NB               | NB               | NB               | NB                  | NB               | NB               |  |
| Alphe Chlordane                              | 1 E-08                | 2 E-09           | 2 E-06           | 5 E-07           | 1.E-08           | 2.E-09              | 2.E-06           | 5.E-07           |  |
| deta-BHC                                     | 2.E-09                | 4 E-10           | 2.E-07           | 6 E-06           | 2.E-09           | 4.E-10              | 2.E-07           | 6.E-06           |  |
| Detdrin                                      | 9 E-06                | NB               | 1.E-05           | NB               | 9 E-08           | NB                  | 1.E-05           | NB               |  |
| Endosullan I                                 | 4 E-09                | NB               | 8 E-07           | NB               | 4 E-09           | NB                  | 8.E-07           | NB I             |  |
| Endosullan II                                | 0 E+00                | NB NB            | 0 E+00           | NB NB            | 0 E+00           | NB NB               | 0.E+00           | NB NB            |  |
| Endosullan sulfate<br>Endon aldehyde         | 9 E-09<br>2 E-06      | NB 2.E-07        | 2.E-06<br>4.E-04 | NB<br>4 E-05     | 9.E-09<br>2.E-06 | NB<br>2 E-07        | 2.E-06<br>4.E-04 | NB<br>4.E-05     |  |
| Endon kelone                                 | 1 E-06                | 1 E-07           | 1.E-04           | 1 E-05           | 1.E-06           | 1.E-07              | 1.E-04           | 1.E-05           |  |
| Gamma Chlordane                              | 2 E-08                | 3 E-09           | 2.E-06           | 4 E-07           | 2.E-06           | 3.E-09              | 2.E-06           | 4.E-07           |  |
| gemme-BHC (Lindane)                          | 3 E-08                | 3 E-09           | 4 E-06           | 4 E-07           | 3 E-08           | 3.E-09              | 4.E-06           | 4.E-07           |  |
| Heptachlor                                   | NB                    | NB               | NB               | NB               | NB               | NB                  | NB               | NB               |  |
| Heptachtor epoxide                           | NB                    | NB               | NB               | NB               | NB               | NB                  | NB               | NB               |  |
| Methacychlor                                 | NB                    | NB               | NB               | NB               | NB               | NB                  | NB               | NB               |  |
| Total PAHs                                   | 0 E+00                | 0 E+00           | 0.E+00           | 0 E+00           | 0 E+00           | 0.E+00              | 0.E+00           | 0.E+00           |  |
| bis(2-ethylhexyl)phthalate                   | 0 E+00                | NB               | 0 E+00           | NB               | 0 E+00           | NB                  | 0.E+00           | NB               |  |
|                                              | 0 E+00                | 0 E+00           | 0.E+00           | 0 E+00           | 0.E+00           | 0. <del>E+0</del> 0 | 0.E+00           | 0.E+00           |  |
| Dietrytphthalate                             | NB                    | NB               | NB               | NB               | NB               | NB                  | NB               | NB               |  |
| Acunaphthylene                               |                       |                  | : 1              | :                |                  |                     | :                |                  |  |
| Fluoranthene<br>Barrach Marraethana          |                       |                  | : 1              |                  |                  | •                   |                  | :                |  |
| Benzo(b)fluoranthene<br>Benzo(k)fluoranthene |                       |                  | .                |                  |                  | ,                   |                  | :                |  |
| Benzo(x)nucranenere<br>Benzo(a)pyrene        |                       |                  | .                | .                |                  | •                   | •                |                  |  |
| Benzo(a.h.)perylene                          | . 1                   |                  | .                | .                | •                | •                   | •                | •                |  |
| Indeno(1,2,3-c-d)pyrene                      |                       | .                | . 1              |                  | •                | •                   | •                |                  |  |
| Diberz(a,h)entracene                         |                       | .                | .                |                  | •                | •                   | •                |                  |  |
| Diguin - TEQ                                 | 4 E-04                | 4 E-05           | 5 E-02           | 5 E-03           | 4 E-04           | 4 E-05              | 5.E-02           | 5.E-03           |  |
|                                              |                       |                  | 32-02            | 32-00            |                  |                     | V.L-V4           | - Jac 400        |  |

 $<sup>^{5}</sup>$ in this scenario, the mallard is assumed to ingest strimp, sediment, and surface water

|                                  | T                | SCENARIO <sup>6,7</sup> |                  |                  |                  |                  |                  |                  |  |  |
|----------------------------------|------------------|-------------------------|------------------|------------------|------------------|------------------|------------------|------------------|--|--|
|                                  | Tree S           | wallow-                 | Tree Swa         | llow-Insect      |                  | le-Borrow        | Baid Eagle       | -Borrow Pit      |  |  |
| ļ                                | Borrow           | Pit Insect              |                  | n-Average        |                  | ngestion-        |                  | gestion          |  |  |
|                                  | Ingestion        | n-Average               | combined         | shallow and      | Ave              | rage             | Max              | imum             |  |  |
| i                                | shallow          | sediment                |                  | ediment          |                  | •                |                  |                  |  |  |
|                                  | <u> </u>         | Γ                       |                  |                  |                  | Г. <del></del>   |                  |                  |  |  |
|                                  | NOAEL            | LOAEL                   | NOAEL            | LOAEL            | NOAEL            | LOAEL            | NOAEL            | LOAEL            |  |  |
|                                  | Hazard           | Hazard                  | Hazard           | Hazard           | Hazard           | Hazard           | Hazard           | Hazard           |  |  |
| Compound                         | Index            | Index                   | Index            | Index            | Index            | Index            | Index            | Index            |  |  |
| 2,4-D                            | NB               | NB                      | NB               | NB               | NB               | NB               | NB               | NB               |  |  |
| 2,4-DB                           | 0.E+00           | NB                      | 0.E+00           | NB I             | 0.E+00           | NB               | 0.E+00           | NB               |  |  |
| Dicamba                          | NB               | NB                      | NB               | NB               | NB               | NB               | NB               | NB               |  |  |
| Dichloroprop                     | NB               | NB                      | NB               | NB               | NB               | NB               | NB               | NB               |  |  |
| MCPA                             | NB               | NB                      | NB               | NB               | NB               | NB               | NB               | NB               |  |  |
| MCPP                             | NB               | NB                      | NB               | NB I             | NB               | NB               | NB               | NB               |  |  |
| Pentachlorophenol                | NB               | NB                      | NB               | NB               | NB               | NB               | NB               | NB               |  |  |
| Aluminum, Total                  | 3.E+00           | NB                      | 3.E+00           | NB               | 3.E-05           | NB               | 4.E-02           | NB               |  |  |
| Antimony                         | NB               | NB                      | NB<br>5 E O2     | NB               | NB<br>1 E 07     | NB               | NB<br>1 E O4     | NB<br>4 E OE     |  |  |
| Arsenic, Total                   | 5.E-02           | 2.E-02                  | 5.E-02           | 2.E-02           | 1.E-07           | 5.E-08           | 1.E-04           | 4.E-05           |  |  |
| Barium, Total                    | 1.E-03           | 6.E-04                  | 1.E-03           | 6.E-04           | 4.E-07           | 2.E-07           | 6.E-04           | 3.E-04           |  |  |
| Beryllium, Total                 | NB<br>5.E-01     | NB<br>4.E-02            | NB<br>EE04       | NB<br>4500       | NB<br>0.E+00     | NB<br>0.E+00     | NB<br>0.E+00     | NB<br>0.E+00     |  |  |
| Cadmium, Total                   | ,                | ,                       | 5.E-01           | 4.E-02           | 1.E-04           | ,                |                  |                  |  |  |
| Chromium, Total<br>Copper, Total | 2.E+00<br>3.E-01 | 4.E-01<br>2.E-01        | 2.E+00<br>3.E-01 | 4.E-01<br>2.E-01 | 1.E-04<br>3.E-06 | 2.E-05<br>2.E-06 | 1.E-01<br>2.E-03 | 2.E-02<br>2.E-03 |  |  |
| • •                              | NB               | NB                      |                  | 1                | 3.E-06<br>NB     |                  |                  |                  |  |  |
| Iron<br>Lead, Total              | 3.E-01           | 3.E-02                  | NB<br>3.E-01     | NB<br>3.E-02     | 4.E-05           | NB<br>4.E-06     | NB<br>3.E-02     | NB<br>3.E-03     |  |  |
|                                  | 1.E-04           | NB                      | 1.E-04           | NB               | 4.E-03           | NB               | 6.E-05           | NB               |  |  |
| Manganese<br>Mercury             | 4.E+00           | 4.E-01                  | 4.E+00           | 4.E-01           | 2.E-03           | 2.E-04           | 5.E+00           | 5.E-01           |  |  |
| Molybdenum                       | 2.E-04           | 2.E-05                  | 2.E-04           | 2.E-05           | 6.E-08           | 6.E-09           | 4.E-05           | 4.E-06           |  |  |
| Nickel, Total                    | 2.E-02           | 2.E-03                  | 2.E-04<br>2.E-02 | 2.E-03<br>2.E-02 | 8.E-09           | 6.E-09           | 7.E-06           | 5.E-06           |  |  |
| Selenium                         | 0.E+00           | 0.E+00                  | 0.E+00           | 0.E+00           | 1.E-04           | 6.E-05           | 2.E-01           | 8.E-02           |  |  |
| Silver                           | NB               | NB                      | NB               | NB               | NB               | NB               | NB               | NB               |  |  |
| Vanadium, Total                  | 1.E-04           | NB                      | 1.E-04           | NB               | 5.E-08           | NB               | 5.E-05           | NB               |  |  |
| Zinc, Total                      | 3.E+00           | 3.E-01                  | 3.E+00           | 3.E-01           | 2.E-04           | 3.E-05           | 2.E-01           | 2.E-02           |  |  |
| Total PCBs                       | 0.E+00           | 0.E+00                  | 3.E+01           | 3.E+00           | 1.E-04           | 1.E-05           | 2.E-01           | 2.E-02           |  |  |
| Total DDT                        | 3.E+00           | 3.E-01                  | 6.E+00           | 6.E-01           | 1.E-03           | 1.E-04           | 1.E+00           | 1.E-01           |  |  |
| Aldrin                           | NB               | NB                      | NB               | NB               | NB               | NB               | NB               | NB               |  |  |
| Alpha Chiordane                  | 0.E+00           | 0.E+00                  | 0.E+00           | 0.E+00           | 5.E-07           | 9.E-08           | 7.E-04           | 1.E-04           |  |  |
| delta-BHC                        | 6.E-07           | 2.E-07                  | 6.E-07           | 2.E-07           | 2.E-10           | 5.E-11           | 1.E-07           | 4.E-08           |  |  |
| Dieldrin                         | 2.E-06           | NB                      | 2.E-06           | NB               | 7.E-10           | NB               | 5.E-07           | NB               |  |  |
| Endosulfan I                     | 4.E-08           | NB                      | 4.E-08           | NB               | 1.E-11           | NB               | 9.E-09           | NB               |  |  |
| Endosulfan II                    | 0.E+00           | NB                      | 0.E+00           | NB               | 0.E+00           | NB               | 0.E+00           | NB               |  |  |
| Endosulfan sulfate               | 2.E-03           | NB                      | 4.E-03           | NB               | 2.E-11           | NB               | 1.E-08           | NB               |  |  |
| Endrin aldehyde                  | 5.E-05           | 5.E-06                  | 5.E-05           | 5.E-06           | 2.E-08           | 2.E-09           | 1.E-05           | 1.E-06           |  |  |
| Endrin ketone                    | 4.E-02           | 4.E-03                  | 8.E-02           | 8.E-03           | 1.E-08           | 1.E-09           | 1.E-05           | 1.E-06           |  |  |
| Gamma Chlordane                  | 4.E-03           | 8.E-04                  | 1.E-02           | 2.E-03           | 8.E-07           | 2.E-07           | 1.E-03           | 2.E-04           |  |  |
| gamma-BHC (Lindane)              | 3.E-07           | 3.E-08                  | 3.E-07           | 3.E-08           | 1.E-10           | 1.E-11           | 7.E-08           | 7.E-09           |  |  |
| Heptachlor                       | NB               | NB                      | NB               | NB               | NB               | NB               | NB               | NB               |  |  |
| Heptachlor epoxide               | NB               | NB                      | NB               | NB               | NB               | NB               | NB               | NB               |  |  |
| Methoxychlor                     | NB               | NB                      | NB               | NB               | NB               | NB               | NB               | NB               |  |  |
| Total PAHs                       | 0.E+00           | 0.E+00                  | 0.E+00           | 0.E+00           | 0.E+00           | 0.E+00           | 0.E+00           | 0.E+00           |  |  |
| ois(2-ethylhexyl)phthalate       | 0.E+00           | NB                      | 0.E+00           | NB               | 1.E-05           | NB               | 1.E-02           | NB               |  |  |
| Di-n-butylphthalate              | 0.E+00           | 0.E+00                  | 0.E+00           | 0.E+00           | 5.E-05           | 5.E-06           | 3.E-02           | 3.E-03           |  |  |
| Diethylphthalate                 | NB               | NB                      | NB               | NB               | NB               | NB               | NB               | NB               |  |  |
| Acenaphthylene                   |                  |                         | *                | • •              | •                |                  |                  | *                |  |  |
| Fluoranthene                     | ;                | •                       | •                |                  | •                | •                | •                |                  |  |  |
| Benzo(b)fluoranthene             | 1 : 1            | •                       | •                | *                | •                |                  |                  | •                |  |  |
| Benzo(k)fluoranthene             |                  | •                       |                  | *                | •                | ٠. ا             | •                |                  |  |  |
| Benzo(a)pyrene                   |                  | •                       | •                |                  | •                | l :              | •                | •                |  |  |
| Benzo(g,h,i)perylene             |                  | •                       |                  |                  | •                | •                | :                | •                |  |  |
| ndeno(1,2,3-c-d)pyrene           | :                | •                       |                  | *                | •                |                  | ! :              | •                |  |  |
| Dibenz(a,h)anthracene            |                  | 4 5 4                   | 0 E-00           | 3.504            | 4 5 04           | 4505             | 45.4             | 4500             |  |  |
| Dioxin - TEQ                     | 1.E+00           | 1.E-01                  | 3.E+00           | 3.E <u>-01</u>   | 1.E-04           | 1.E-05           | 1.E-01           | 1.E-02           |  |  |

<sup>&</sup>lt;sup>6</sup>The tree swallow is assumed to ingest insects and surface water. Insect concentrations were modeled using site-specific BAFs, literature BSAFs, and literature regression equations.

#### Notes

NB = Benchmark not available

Average scenario uses area use factors and migration factors where appropriate

Maximum scenario assumes receptor is restricted to site

Bolded values indicate a Hazard Index greater than 1

<sup>&</sup>lt;sup>7</sup>The bald eagle is assumed to ingest fish and surface water.

<sup>\*</sup>PAHs were evaluated as total PAHs for birds, but as individual compounds for mammals

Table 7-21

Comparison of Surface Water Concentrations in Dead Creek Section F to Wildlife Benchmarks

Sauget Area I

|                                                                           |                                                                  |          |                                                          |      |                                                                  |             | NOAEL-                                                     | Based Benchmarks 1                                                                                                               |
|---------------------------------------------------------------------------|------------------------------------------------------------------|----------|----------------------------------------------------------|------|------------------------------------------------------------------|-------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Sample ID:<br>Compounds                                                   | SW-CSF-S1<br>Concentration                                       | ER Q     | SW-CSF-S2<br>Concentration                               | ER Q | SW-CSF-S3<br>Concentration                                       | ER Q        | Water                                                      | Endpoint Species                                                                                                                 |
| Metals (mg/l)                                                             | <del> </del>                                                     | ┢        |                                                          | ┝    |                                                                  | -           | water                                                      | Enupoliti Species                                                                                                                |
| Aluminum Arsenic Barium Copper Iron Lead Manganese Molybdenum             | 0.039<br>0.01<br>0.13<br>0.0016<br>0.5<br>0.005<br>0.082<br>0.01 | חנה ניחנ | 0.15<br>0.0032<br>0.13<br>0.002<br>0.55<br>0.0022<br>0.1 |      | 0.55<br>0.0049<br>0.12<br>0.012<br>1<br>0.0037<br>0.14<br>0.0028 | )<br>)<br>) | 4.474<br>0.292<br>23.1<br>65.2<br>NA<br>4.86<br>377<br>0.6 | Whitetail deer<br>Whitetail deer<br>Whitetail deer<br>Whitetail deer<br>Rough-winged Swallow<br>Whitetail deer<br>Whitetail deer |
| Nickel<br>Zinc<br>SVOC (ug/l)                                             | 0.0069<br>0.0073                                                 | J        | 0.013<br>0.035                                           | J    | 0.021<br>0.075                                                   | J           | 171.36<br>62.3                                             | Whitetail deer<br>Rough-winged Swallow                                                                                           |
| Fluoranthene Dioxins (ug/l) 2,3,7,8-TCDD TEQ Mammal 2,3,7,8-TCDD TEQ Bird | 0.7<br>9.01197E-06<br>8.92962E-06                                | J        | 10<br>1.5012E-06<br>8.784E-07                            | U    | 10<br>1.5583E-06<br>9.922E-07                                    | U           | NA<br>0.0007<br>0.0602                                     | Little Brown Bat<br>Rough-winged swallow                                                                                         |

Only COPCs detected in surface water in Dead Creek Sector F were included in this table.

NA = Benchmark not available

<sup>&</sup>lt;sup>1</sup> Sample, BE, DM Opresko, GW Suter. 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. Prepared for U.S. Department of Energy. Oak Ridge National Laboratory. June 1996. ES/ER/TM-86/R3.

### Table 7-22 Comparison of Surface Water Concentrations in the Borrow Pit Lake to Wildlife Benchmarks Sauget Area I

|                                      |               |      |               |          |               |       | NOAEL-           | Based Benchmarks 1   |
|--------------------------------------|---------------|------|---------------|----------|---------------|-------|------------------|----------------------|
| Sample ID:                           | SW-BPL-S1     |      | SW-BPL-\$2    |          | SW-BPL-\$3    | 1     |                  | 1                    |
|                                      | Concentration | ER Q | Concentration | ER Q     | Concentration | ER Q  | 1                | ì                    |
| Compounds                            |               |      |               | <u> </u> |               |       | Water            | Endpoint Species     |
| Metals (mg/l)                        |               |      |               |          |               |       |                  |                      |
| Alumenum                             | 3.4           |      | 0 71          | ł        | 0 65          | 1     | 4.474            | Whitetail deer       |
| Arsenic                              | 0.015         | 1    | 0 0079        | J        | 0 012         |       | 0.292            | Whitetail deer       |
| Banum                                | 0 32          |      | 0 12          |          | 0.045         |       | 23.1             | Whitetail deer       |
| Chromum                              | 0 0041        | J    | 0 01          | U        | 0.01          | U     | 4.3              | Rough-winged Swallow |
| Copper                               | 0 0074        | J    | 0 0036        | J        | 0 0048        | J     | 65.2             | Whitetail deer       |
| tron                                 | 8 7           | J    | 1.6           | J        | 1 3           | J     | NA               |                      |
| Lead                                 | 0 02          |      | 0 002         | ) :      | 0 0029        | J     | 4.86             | Rough-winged Swallow |
| Manganese                            | 17            |      | 0.13          |          | 0.17          | J I   | 377              | Whitetail deer       |
| Molybdenum                           | 0 0035        | J    | 0 01          | U        | 0.004         | J     | 0.6              | Whitetail deer       |
| Nickel                               | 0 015         | J    | 0 012         | J        | 0.0077        | J     | 171.36           | Whitetail deer       |
| Zinc                                 | 0 048         |      | 0.027         |          | 0.017         | J     | 62.3             | Rough-winged Swallow |
| Pesticides (ug/l)                    |               |      |               |          |               | ii    |                  |                      |
| delta-BHC                            | 0 00013       | J    | 0 0022        | J        | 0 012         | lυl   | 100 <sup>2</sup> | River Otter          |
| Dieldrin                             | 0 1           | U    | 0.1           | U        | 0 001         | IJ    | 86               | Whitetail deer       |
| Endosulfan i                         | 0 0024        | J    | 0 05          | υ        | 0 0015        | ا ز ا | 640 <sup>a</sup> | Whitetail deer       |
| Endosulfan sulfate                   | 0 1           | U    | 0.1           | υ        | 0.0032        | J     | 640 °            | Whitetail deer       |
| Endon                                | 0 1           | Ų    | 0 1           | υ        | 0.00095       | ı     | 43 °             | Rough-winged Swallow |
| Endrin aldehyde                      | 0 0032        | J    | 0.1           | ן ט      | 0 0016        | J     | 43 <sup>2</sup>  | Rough-winged Swallow |
| Endnn ketone                         | 0.1           | υ    | 0.1           | υl       | 0.0027        | J     | 43 3             | Rough-winged Swallow |
| gamma-BHC (Lindane)                  | 0 019         | υl   | 0 0038        | J        | 0.0024        | J     | 8590             | Rough-winged Swallow |
| Heptachior                           | 0 0026        | J    | 0 0022        | j        | 0 0029        | J     | 557              | Whitetail deer       |
| Heptachlor epoxide                   | 0 00096       | ı    | 0 0009        | J        | 0.05          | U     | 557 °            | Whitetail deer       |
| SVOC (ug/l)                          |               |      |               |          |               |       |                  | ĺ                    |
| Diaxins (ugfl)                       |               | 1    |               |          |               |       |                  |                      |
| 2,3,7,8-TCDD TEQ Mammal <sup>2</sup> | 8 5902E-07    |      | 7 453E-07     |          | 4 8413E-07    |       | 0.0007           | Little Brown Bat     |
| 2,3,7,8-TCDO TEQ Bird 3              | 3 4692E-07    | J    | 3 475E-07     |          | 2 8163E-07    | 1 }   | 0.0602           | Rough-winged swallow |

Only COPCs detected in surface water in the Borrow Pit are included in this table.

NA = Benchmark not available

<sup>&</sup>lt;sup>1</sup> Sample, BE, DM Opresko, GW Suter 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. Prepared for U.S. Department of Energy. Oak Ridge National Laboratory. June 1996. ES:ER/TM-86/R3.

<sup>&</sup>lt;sup>2</sup> Value represents BHC-mixed isomers

<sup>&</sup>lt;sup>3</sup> Mammal and bird TEQ values were calculated for 2,3,7,8-TCDD

Value for Endosulfan was used

<sup>&</sup>lt;sup>3</sup> Value for Endrin was used

<sup>&</sup>lt;sup>1</sup> Value for Heptachlor was used

Table 7-23 Shrimp Concentrations in the Borrow Pit Lake and both Reference Areas Sauget Area I

|                                | Site          | Reference | Reference |
|--------------------------------|---------------|-----------|-----------|
| Compound                       | Concentration | Maximum   | Average   |
| Herbicides (ug/kg)             |               |           |           |
| 2,4-D                          | ND            | ND        | ND        |
| 2,4-DB                         | ND            | ND        | ND        |
| Dicamba                        | ND            | ND        | ND        |
| Dichloroprop                   | ND            | ND        | ND        |
| MCPA                           | ND            | ND        | ND        |
| MCPP                           | ND            | 4400      | 2700      |
| Pentachlorophenol              | 1.8           | 3.9       | 2.7       |
| Metals (mg/kg)                 |               |           |           |
| Aluminum, Total                | 28            | 100       | 80        |
| Antimony                       | 0.16          | ND        | ND        |
| Arsenic, Total                 | ND            | 1.2       | 1.1       |
| Barium, Total                  | ND            | ND        | ND        |
| Cadmium, Total                 | ND            | ND        | ND        |
| Chromium, Total                | 0.23          | 0.28      | 0.27      |
| Copper, Total                  | 8.3           | 16        | 12        |
| iron                           | ND            | ND        | ND        |
| Lead, Total                    | 0.39          | 0.61      | 0.50      |
| Manganese                      | ND            | ND        | ND        |
| Mercury                        | ND            | ND        | ND        |
| Molybdenum                     | ND            | ND        | ND        |
| Nickel, Total                  | ND            | ND        | ND        |
| Selenium                       | ND            | 0.61      | 0.54      |
| Silver                         | 0.090         | 0.062     | 0.06      |
| Zinc, Total                    | 16            | 17<br>ND  | 16        |
| Total PCBs (ug/kg)             | ND            | ND        | ND        |
| Pesticides (ug/kg)<br>4,4'-DDD | ND            | ND        | ND        |
|                                | ND<br>ND      | ND<br>ND  | ND<br>ND  |
| 4,4'-DDE<br>4,4'-DDT           | ND ND         | ND ND     | ND<br>ND  |
| Aldrin                         | ND<br>ND      | ND ND     | ND<br>ND  |
| Alpha Chlordane                | ND ND         | ND        | ND        |
| delta-BHC                      | ND ND         | ND        | ND        |
| Dieldrin                       | ND<br>ND      | ND        | ND ND     |
| Endosulfan I                   | ND ND         | ND        | ND        |
| Endosulfan II                  | ND            | ND        | ND        |
| Endosulfan sulfate             | ND ND         | ND        | ND        |
| Endrin aldehyde                | ND            | ND        | ND        |
| Endrin ketone                  | ND ND         | ND        | ND        |
| Gamma Chlordane                | ND            | ND        | ND        |
| gamma-BHC (Lindane)            | ND            | ND        | ND        |
| Heptachlor                     | ND            | ND        | ND        |
| Heptachlor epoxide             | ND            | ND        | ND        |
| Methoxychlor                   | ND            | ND        | ND        |
| SVOC (ug/kg)                   |               |           |           |
| bis(2-ethylhexyl)phthalate     | ND            | 98        | 95        |
| Di-n-butylphthalate            | ND            | ND        | ND        |
| Diethylphthalate               | 44            | 59        | 58        |
| Acenaphthylene                 | ND            | ND        | ND        |
| Fluoranthene                   | ND            | ND        | ND        |
| Benzo(b)fluoranthene           | ND            | ND        | ND        |
| Benzo(k)fluoranthene           | ND            | ND        | ND        |
| Benzo(a)pyrene                 | ND            | ND        | ND        |
| Benzo(g,h,i)perylene           | ND            | ND        | ND        |
| Indeno(1,2,3-c-d)pyrene        | ND            | ND        | ND        |
| Dibenz(a,h)anthracene          | ND            | ND        | ND        |
| 2,3,7,8-TCDD TEQ Mammal        | 0.000218      | 9.61E-05  | 6.44E-05  |
| 2,3,7,8-TCDD TEQ Bird          | 0.00172       | 7.45E-05  | 4.86E-05  |

Table 7-24
Clam Concentrations in the Borrow Pit Lake and both Reference Areas
Sauget Area I

|                            | Site        | Site                                  | Reference | Reference  |
|----------------------------|-------------|---------------------------------------|-----------|------------|
| Compound                   | Maximum     | Average                               | Maximum   | Average    |
| Herbicides (ug/kg)         |             | - CARLETTE                            |           |            |
| 2.4-D                      | ND          | ND                                    | ND        | ND         |
| 2.4-08                     | NED         | ND                                    | ND I      | ND         |
| Dicamba                    | ND          | ND                                    | ND        | ND         |
| Dichloroprop               | 32          | 18                                    | 87        | 35         |
| MCPA                       | ND          | ND                                    | 1400      | 7467       |
| MCPP                       | 4000        | 5000                                  | ND        | ND         |
| Pentachlorophenol          | ND          | ND                                    | ND        | ND         |
| Metals (mg/kg)             |             | · · · · · · · · · · · · · · · · · · · |           |            |
| Aluminum, Total            | 13          | 10.5                                  | 26        | 18.33      |
| Antimony                   | ND          | ND                                    | ND        | ND         |
| Arsenic, Total             | 0.96        | 1.8                                   | 0.65      | 1.75       |
| Barium, Total              | ND          | ND                                    | ND        | ND         |
| Cadmium, Total             | 0.12        | 0.14                                  | 0.61      | 0.43       |
| Chromium, Total            | 1.1         | 0.68                                  | 2.2       | 1.50       |
| Copper, Total              | 0.99        | 0.86                                  | 2.4       | 2.13       |
| Iron                       | ND          | ND                                    | ND        | ND         |
| Lead, Total                | 0.25        | 0.23                                  | 0.59      | 0.42       |
| Manganese                  | ND          | ND                                    | ND        | ND         |
| Mercury                    | ND          | ND                                    | ND        | ND         |
| Molybdenum                 | ND          | ND                                    | ND        | ND         |
| Nickel, Total              | ND :        | ND                                    | ND        | ND         |
| Selenium                   | ND          | ND                                    | 0.48      | 0.31       |
| Silver                     | 0.015       | 0.035                                 | ND        | ND<br>00   |
| Zinc, Total                | 22          | 15.0                                  | 52        | 36         |
| Total PCBs (ug/kg)         | ND          | ND                                    | ND        | ND         |
| Pesticides (ug/kg)         |             |                                       |           | I          |
| [4,4'-000<br>              | ND I        | ND                                    | ND        | ND         |
| 4,4'-DDE                   | ND 1        | ND                                    | ND        | ND         |
| 4,4'-00T                   | ND<br>S     | ND                                    | ND 15     | ND         |
| Aldrin<br>Alaba Chlastana  | NO 24       | ND<br>ND                              | ND<br>ND  | ND<br>ND   |
| Alpha Chlordane            | ND<br>S     | ND<br>ND                              | ND<br>ND  | ND<br>ND   |
| delta-BHC<br>Dieldrin      | ND<br>ND    | ND<br>ND                              | ND<br>ND  | ND<br>ND   |
| Uleionin<br>Endosulfan i   | NO NO       | ND I                                  | ND ND     | <b>100</b> |
| Endosulian II              | <b>20</b>   | ND<br>ND                              | ND ND     | ND ND      |
| Endosulfan sulfate         | ND<br>ND    | ND<br>ND                              | ND<br>ND  | ND I       |
| Endrin aldehyde            | ND ND       | ND                                    | ND ND     | ND ND      |
| Endrin kelone              | ND ND       | ND                                    | ND        | ND         |
| Gamma Chlordane            | NO I        | ND                                    | ND        | ND ND      |
| gamma-BHC (Lindane)        | ND ND       | ND                                    | ND ND     | ND         |
| Heotachlor                 | 2.3         | 3.55                                  | ND        | NED        |
| Heptachlor epoxide         | ND ND       | ND ND                                 | ND        | ND         |
| Afethoxychlor              | 5.4         | 30                                    | ND        | ND         |
| SVOC (ug/kg)               | <del></del> |                                       |           |            |
| bis(2-ethylhexyl)phthalate | 170         | 99                                    | ND        | ND         |
| Di-n-butylphthalate        | ND          | ND                                    | ND        | NO         |
| Diethylphthalate           | 120         | 75                                    | ND        | ND         |
| Acenaphthylene             | ND I        | ND                                    | ND        | ND         |
| Fluoranthene               | ND          | ND                                    | ND        | ND         |
| Benzo(b)fluoranthene       | ND          | ND                                    | ND        | ND         |
| Benzo(k)fluoranthene       | ND          | ND                                    | ND        | ND         |
| Benzo(a)pyrene             | ND          | ND                                    | ND        | ND         |
| Benzo(g,h,i)perylene       | ND          | ND                                    | ND        | ND         |
| Indeno(1,2,3-c-d)pyrene    | ND          | ND                                    | ND        | ND         |
| Dibenz(a,h)anthracene      | ND          | ND                                    | ND        | ND         |
| 2,3,7,8-TCDD TEQ Marmmal   | 0.000146    | 8.3E-05                               | 3.64E-05  | 2.44E-05   |
| 2,3,7,8-TCDD TEQ Bird      | 0.001303    | 0.000761                              | 0.00025   | 0.00017    |
|                            |             |                                       |           |            |

Table 7-25

Comparison of Floodplain Surface Soil Concentrations to Ecological Benchmarks

Sauget Area I

| Constituent                             | Frequency of<br>Detection in<br>Soil | Maximum site concentration | 95% UCL                                 | 95% UCL<br>Represents Site<br>Concentration | Twice Average<br>Background Soil<br>Concentration | Soil Benchmark <sup>1</sup> | Comment                          |
|-----------------------------------------|--------------------------------------|----------------------------|-----------------------------------------|---------------------------------------------|---------------------------------------------------|-----------------------------|----------------------------------|
| Dioxins, ug/kg                          |                                      |                            |                                         |                                             |                                                   |                             |                                  |
| 2,3,7,8-TCDD TEQ (mammals) <sup>2</sup> | 100%                                 | 0.052                      | 0.011                                   | yes                                         | 0.124                                             | 0.00315                     | Maximum exceeds benchmark        |
| Herbicides, ug/kg                       |                                      |                            |                                         |                                             |                                                   |                             |                                  |
| 2,4-D                                   | 2%                                   | 9.60                       | NC                                      | no                                          | ND                                                |                             | Frequency less than 5%           |
| 2,4-DB                                  | 6%                                   | 41.00                      | 6.62                                    | yes                                         | ND                                                |                             | No benchmark; ND in background   |
| Dicamba                                 | 23%                                  | 23.00                      | 4.90                                    | yes                                         | ND                                                |                             | No benchmark; ND in background   |
| MCPA                                    | 20%                                  | 7400                       | 1784                                    | yes                                         | 14500                                             |                             | No benchmark; within background  |
| MCPP                                    | 15%                                  | 7700                       | 1859                                    | yes                                         | 9967                                              |                             | No benchmark; within background  |
| Metals, mg/kg                           |                                      |                            |                                         |                                             |                                                   |                             |                                  |
| Aluminum                                | 100%                                 | 18000                      | 10122                                   | yes                                         | 25400                                             |                             | No benchmark; within background  |
| Antimony                                | 42%                                  | 2.60                       | 1.24                                    | yes                                         | 3.80                                              | 5                           | Maximum less than benchmark      |
| Arsenic                                 | 100%                                 | 34.00                      | 7.88                                    | yes                                         | 19.13                                             | 9.9                         | Maximum exceeds benchmark        |
| Barium                                  | 100%                                 | 1200                       | 198                                     | yes                                         | 363                                               | 283                         | Maximum exceeds benchmark        |
| Beryllium                               | 85%                                  | 1.10                       | 0.62                                    | yes                                         | 1,51                                              | 10                          | Maximum less than benchmark      |
| Cadmium                                 | 100%                                 | 8.40                       | 2.77                                    | yes                                         | 8.65                                              | 4                           | Maximum exceeds benchmark        |
| Calcium                                 | 100%                                 | 250000                     | 30365                                   | yes                                         | 33533                                             |                             | Low toxicity                     |
| Chromium                                | 100%                                 | 49.00                      | 17.93                                   | yes                                         | 39                                                |                             | No benchmark; within background  |
| Cobalt                                  | 100%                                 | 11.00                      | 7.01                                    | yes                                         | 16                                                | 20                          | Maximum less than benchmark      |
| Copper                                  | 100%                                 | 230                        | 80.94                                   | yes                                         | 209                                               | 60                          | Maximum exceeds benchmark        |
| Iron                                    | 100%                                 | 25000                      | 16348                                   | yes                                         | 38000                                             | 00                          | No benchmark; within background  |
| Lead                                    | 100%                                 | 260                        | 78.92                                   | yes                                         | 185                                               | 40.5                        | Maximum exceeds benchmark        |
| Magnesium                               | 100%                                 | 21000                      | 6448                                    | yes                                         | 17233                                             | 40.5                        | Low toxicity                     |
| Manganese                               | 100%                                 | 1200                       | 429                                     | yes                                         | 883                                               |                             | No benchmark; within background  |
| Mercury                                 | 100%                                 | 0.57                       | 0.08                                    |                                             | 0.18                                              |                             | No benchmark; within background  |
|                                         | 98%                                  | 3.20                       | 0.81                                    | yes                                         | 2.02                                              | 2                           | Maximum exceeds benchmark        |
| Molybdenum<br>Nickel                    | 100%                                 | 55                         | 20.02                                   | yes                                         | 42.67                                             | 30                          | Maximum exceeds benchmark        |
| Potassium                               | 100%                                 | 3800                       | 2135                                    | yes                                         | 4733                                              | 30                          | Low toxicity                     |
| Selenium                                | 25%                                  | 3.20                       | 0.66                                    | yes                                         | 4733<br>ND                                        | 0.21                        | Maximum exceeds benchmark        |
| Silver                                  | 49%                                  | 0.60                       | 0.49                                    | yes                                         | 1.35                                              | 2                           | Maximum less than benchmark      |
|                                         | 26%                                  |                            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | yes                                         |                                                   | 1                           |                                  |
| Thallium                                | 100%                                 | 1.40                       | 0.68                                    | yes                                         | ND                                                | 2                           | Maximum exceeds benchmark        |
| Vanadium                                |                                      | 120                        | 29.91                                   | yes                                         | 69                                                | 8.5                         | Maximum exceeds benchmark        |
| Zinc                                    | 100%                                 | 1400                       | 332                                     | yes                                         | 808                                               | 8.5                         | Maximum exceeds benchmark        |
| PCBs, ug/kg                             | 000/                                 | 005                        | 00.40                                   |                                             | 1000                                              | 074                         | Mandanana anna ada bara bara ada |
| Total PCBs                              | 82%                                  | 385                        | 90.43                                   | yes                                         | 1200                                              | 371                         | Maximum exceeds benchmark        |
| Pesticides, ug/kg                       | 00/                                  | 20                         | 2.04                                    | SACRESCO, MERCHANISTS                       | ND                                                |                             | No because and ND in become      |
| 4,4'-DDD                                | 8%                                   | 36                         | 3.01                                    | yes                                         | ND                                                |                             | No benchmark; ND in background   |
| 4,4'-DDE                                | 54%                                  | 54                         | 404                                     | yes                                         | 16.12                                             |                             | No benchmark; within background  |
| 4,4'-DDT                                | 48%                                  | 140                        | 7.95                                    | yes                                         | 14.12                                             |                             | No benchmark; within background  |
| Aldrin                                  | 2%                                   | 23                         | 1.68                                    | yes                                         | ND                                                |                             | Frequency less than 5%           |
| Alpha Chlordane                         | 20%                                  | 54                         | 2.55                                    | yes                                         | ND                                                |                             | No benchmark; ND in background   |
| alpha-BHC                               | 2%                                   | 0.22                       | NC                                      | no                                          | ND                                                |                             | Frequency less than 5%           |
| peta-BHC                                | 11%                                  | 3.80                       | 0.54                                    | yes                                         | ND                                                |                             | No benchmark; ND in background   |
| delta-BHC                               | 8%                                   | 0.24                       | 0.22                                    | yes                                         | ND                                                |                             | No benchmark; ND in background   |
| Dieldrin                                | 29%                                  | 120                        | 3.86                                    | yes                                         | ND                                                |                             | No benchmark; ND in background   |
| Endosulfan II                           | 2%                                   | 1.00                       | NC                                      | no                                          | ND                                                |                             | Frequency less than 5%           |
| Endosulfan sulfate                      | 18%                                  | 1.90                       | 1.60                                    | yes                                         | ND                                                |                             | No benchmark; ND in background   |
| Endrin                                  | 6%                                   | 6.10                       | 2.31                                    | yes                                         | ND                                                |                             | No benchmark; ND in background   |
| Endrin aldehyde                         | 5%                                   | 5.06                       | 2.16                                    | yes                                         | ND                                                |                             | No benchmark; ND in background   |
| Endrin ketone                           | 37%                                  | 4.9450                     | 2.56                                    | yes                                         | ND                                                |                             | No benchmark; ND in background   |

Table 7-25
Comparison of Floodplain Surface Soil Concentrations to Ecological Benchmarks
Sauget Area I

| Constituent                          | Frequency of Detection in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maximum site concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95% UCL                        | 95% UCL<br>Represents Site<br>Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Twice Average<br>Background Soil<br>Concentration | Soil Benchmark <sup>1</sup>             | Comment                              |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|--------------------------------------|
| Gamma Chlordane                      | 22%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.26                           | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                |                                         | No benchmark; ND in background       |
| gamma-BHC (Lindane)                  | 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NC                             | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                |                                         | Frequency less than 5%               |
| Heptachlor                           | 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.98                           | ves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                |                                         | No benchmark; ND in background       |
| Heptachlor epoxide                   | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.04                           | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                |                                         | No benchmark; ND in background       |
| Methoxychlor                         | 37%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.61                          | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                |                                         | No benchmark; ND in background       |
| SVOCs, ug/kg                         | 0,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.01                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   | CONTRACTOR SCOUNTS                      | To bolletiman, 115 ili baoligicana   |
| 2-Methylnaphthalene                  | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NC                             | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                | STRUCK COSTS                            | No benchmark; ND in background       |
| Acenaphthene                         | 14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 124                            | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                | 20000                                   | Maximum less than benchmark          |
| Acenaphthylene                       | 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 174                            | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                | 20000                                   | No benchmark; ND in background       |
| Anthracene                           | 23%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 152                            | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 160                                               |                                         | No benchmark; within background      |
| Benzo(a)anthracene                   | 57%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 266                            | ves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 240                                               | OUT THE REAL PROPERTY.                  | No benchmark; higher than background |
|                                      | 40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 226                            | THE RESERVE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE | 187                                               |                                         |                                      |
| Benzo(a)pyrene                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE REAL PROPERTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY  | The second second second       | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                         | No benchmark; higher than background |
| Benzo(b)fluoranthene                 | 55%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 282                            | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 179                                               |                                         | No benchmark, higher than background |
| Benzo(g,h,i)perylene                 | 37%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 201                            | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 127                                               |                                         | No benchmark; higher than background |
| Benzo(k)fluoranthene                 | 40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 249                            | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 208                                               |                                         | No benchmark; higher than background |
| bis(2-Ethylhexyl)phthalate           | 29%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111                            | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 322                                               | Michael Control Control Control Control | No benchmark; within background      |
| Butylbenzylphthalate                 | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 103                            | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                |                                         | No benchmark; ND in background       |
| Carbazole                            | 17%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 127                            | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64                                                |                                         | No benchmark; higher than background |
| Chrysene                             | 63%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 319                            | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 273                                               |                                         | No benchmark; higher than background |
| Dibenzo(a,h)anthracene               | 18%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90                             | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                |                                         | No benchmark; ND in background       |
| Dibenzofuran                         | 8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 112                            | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                |                                         | No benchmark; ND in background       |
| Diethylphthalate                     | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NC                             | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 187                                               | 100000                                  | Frequency less than 5%               |
| Di-n-butylphthalate                  | 15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                            | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 312                                               | 200000                                  | Maximum less than benchmark          |
| Fluoranthene                         | 60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 558                            | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 502                                               |                                         | No benchmark; higher than background |
| Fluorene                             | 11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 126                            | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                |                                         | No benchmark; ND in background       |
| Indeno(1,2,3-cd)pyrene               | 28%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 195                            | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                |                                         | No benchmark; ND in background       |
| Naphthalene                          | 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180                            | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                |                                         | Frequency less than 5%               |
| Pentachlorophenol                    | 55%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 278                            | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 742                                               | 3000                                    | Maximum less than benchmark          |
| Phenanthrene                         | 52%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 366                            | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 335                                               |                                         | No benchmark; higher than background |
| Pyrene                               | 49%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 443                            | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 435                                               |                                         | No benchmark; higher than background |
| VOCs, ug/kg                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | THE RESERVE AND ADDRESS OF THE PARTY OF |                                      |
| 2-Butanone (MEK)                     | 35%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.85                          | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                |                                         | No benchmark; ND in background       |
| 2-Hexanone                           | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.01                           | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33.00                                             | BEAUTY ENGINEERING TO THE               | No benchmark; within background      |
| Acetone                              | 49%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 283                            | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                |                                         | No benchmark; ND in background       |
| Benzene                              | 8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.97                           | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                |                                         | No benchmark; ND in background       |
| Carbon disulfide                     | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.98                           | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                |                                         | No benchmark; ND in background       |
| Chlorobenzene                        | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.95                           | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                | 40000                                   | Frequency less than 5%               |
| Ethylbenzene                         | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.78                           | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                | 40000                                   | Frequency less than 5%               |
| Methylene chloride (Dichloromethane) | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.76                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.4                                              |                                         | No benchmark; within background      |
| Toluene                              | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.34                           | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                | 200000                                  |                                      |
|                                      | STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY | Charles and the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charles of the Charl | Control Company of the Control | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   | 200000                                  | Maximum less than benchmark          |
| Trichloroethene                      | 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.07                           | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                |                                         | No benchmark; ND in background       |
| Xylenes, Total                       | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.99                           | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                |                                         | Frequency less than 5%               |

<sup>&</sup>lt;sup>1</sup>Efroymson et al., 1997. Preliminary Remediation Goals for Ecological Endpoints

Yellow shading indicates maximum site concentration exceeds benchmark.

Green shading indicates upper 95% UCL concentration (or maximum if 95% UCL not available) exceeds twice average background concentration (or constituent was not detected in background soil).

<sup>&</sup>lt;sup>2</sup>Calculated according to 1998 World Health Organization guidelines for mammals; Estimated Maximum Potential Concentration treated as non-detects.

#### Table 7-26 Floodplain Surface Soil Locations that Exceed Ecological Benchmarks Sauget Area I

| Constituent    | Sample ID                                    | Concentration      | ER Q |
|----------------|----------------------------------------------|--------------------|------|
| Arsenic, mg/kg | Benchmark <sup>1</sup>                       | 9.9                |      |
|                | Background <sup>2</sup>                      | 19                 |      |
|                | DAS-T4-S2-0-0.5FT                            | 10                 | 1    |
|                | UAS-T1-S1-0-0.5FT                            | 10                 |      |
|                | UAS-T2-S3-0-0.5FT                            | 10                 |      |
| D i            | UAS-T7-S1-0-0.5FT Benchmark <sup>1</sup>     | 34                 |      |
| Barium, mg/kg  |                                              | 283                |      |
|                | Background <sup>2</sup><br>UAS-T4-S2-0-0.5FT | 360<br><b>1200</b> |      |
| Cadmium, mg/kg | Benchmark <sup>1</sup>                       | 4                  |      |
|                | Background <sup>2</sup>                      | 8.6                |      |
|                | DAS-T5-S3-0-0.5FT                            | 5.7                |      |
|                | DAS-T6-S1-0-0.5FT                            | 4                  | ĺ    |
|                | UAS-T1-S1-0-0.5FT                            | 4.8                |      |
|                | UAS-T5-S6-0-0.5FT                            | 8.4                |      |
|                | UAS-T7-S1-0-0.5FT<br>UAS-T7-S7-0-0.5FT       | 5.4<br>6.1         |      |
| Copper, mg/kg  | Benchmark <sup>1</sup>                       | 60                 |      |
| ,, , , , ,     | Background <sup>2</sup>                      | 190                |      |
|                | DAS-T1-S1-0-0.5FT                            | 98                 | J    |
|                | DAS-T1-S2-0-0.5FT                            | 85                 | J    |
|                | DAS-T1-S3-0-0.5FT                            | 73                 | J    |
|                | DAS-T2-S1-0-0.5FT                            | 110                | J    |
|                | DAS-T2-S3-0-0.5FT                            | 94<br>70           | J    |
|                | DAS-T3-S1-0-0.5FT  <br>DAS-T3-S2-0-0.5FT     | 70<br>72           |      |
|                | DAS-T3-S3-0-0.5FT                            | 63                 |      |
|                | DAS-T4-S2-0-0.5FT                            | 79                 |      |
|                | DAS-T4-S3-0-0.5FT                            | 64                 |      |
|                | DAS-T5-S1-0-0.5FT                            | 75                 |      |
|                | DAS-T5-S3-0-0.5FT                            | 70                 |      |
|                | UAS-T1-S1-0-0.5FT  <br>UAS-T1-S2-0-0.5FT     | 150<br><b>230</b>  |      |
|                | UAS-T1-S3-0-0.5FT                            | 230                |      |
|                | UAS-T1-S4-0-0.5FT                            | 160                |      |
|                | UAS-T1-S5-0-0.5FT                            | 130                |      |
|                | UAS-T1-S6-0-0.5FT                            | 86                 |      |
|                | UAS-T1-S7-0-0.5FT                            | 77                 |      |
|                | UAS-T2-S1-0-0.5FT                            | 140                | .    |
|                | UAS-T2-S2-0-0.5FT  <br>UAS-T2-S3-0-0.5FT     | 77<br>87           |      |
|                | UAS-T2-S4-0-0.5FT                            | 95                 |      |
|                | UAS-T2-S5-0-0.5FT                            | 69                 | 1    |
|                | UAS-T2-S6-0-0.5FT                            | 87                 |      |
|                | UAS-T3-S2-0-0.5FT                            | 65                 |      |
|                | UAS-T3-S3-0-0.5FT                            | 52                 | J    |
|                | UAS-T3-S4-0-0.5FT<br>UAS-T3-S5-0-0.5FT       | 77<br>79           |      |
|                | UAS-T3-S5-0-0.5FT                            | 79<br>75           |      |
|                | UAS-T4-S1-0-0.5FT                            | 69                 |      |
|                | UAS-T4-S2-0-0.5FT                            | 180                |      |
|                | UAS-T4-S7-0-0.5FT                            | 60                 |      |
|                | UAS-T5-S6-0-0.5FT                            | 85                 |      |
|                | UAS-T7-S1-0-0.5FT                            | 130                |      |

Table 7-26 Floodplain Surface Soil Locations that Exceed Ecological Benchmarks Sauget Area I

| Constituent       | Sample ID                                | Concentration            | ER Q         |
|-------------------|------------------------------------------|--------------------------|--------------|
| Lead, mg/kg       | Benchmark <sup>1</sup>                   | 40.5                     |              |
| 1                 | Background <sup>2</sup>                  | 180                      |              |
|                   | DAS-T1-S1-0-0.5FT                        | 96                       | J            |
| 1                 | DAS-T1-S2-0-0.5FT                        | 50                       | J            |
|                   | DAS-T1-S3-0-0.5FT                        | 50                       | J            |
| ļ                 | DAS-T2-S1-0-0.5FT                        | 88                       | J            |
|                   | DAS-T2-S3-0-0.5FT                        | 76<br>53                 | J            |
|                   | DAS-T3-S1-0-0.5FT<br>DAS-T3-S2-0-0.5FT   | 90                       | J            |
|                   | DAS-T3-S3-0-0.5FT                        | 53                       | Ĵ            |
| ĺ                 | DAS-T4-S1-0-0.5FT                        | 75                       | J            |
|                   | DAS-T4-S2-0-0.5FT                        | 96                       | J            |
|                   | DAS-T4-S3-0-0.5FT                        | 50                       | J            |
|                   | DAS-T5-S1-0-0.5FT                        | 130                      | J            |
|                   | DAS-T5-S3-0-0.5FT                        | 130                      | J            |
|                   | DAS-T6-S1-0-0.5FT<br>DAS-T6-S3-0-0.5FT   | 110<br>87                | J            |
|                   | DAS-T0-53-0-0.5FT                        | 67                       | J            |
|                   | UAS-T1-S1-0-0.5FT                        | 93                       |              |
|                   | UAS-T1-S2-0-0.5FT                        | 92                       | 1            |
|                   | UAS-T1-S3-0-0.5FT                        | 120                      |              |
|                   | UAS-T1-S4-0-0.5FT                        | 73                       |              |
| 1                 | UAS-T1-S5-0-0.5FT                        | 69                       |              |
|                   | UAS-T1-S7-0-0.5FT                        | 46                       |              |
|                   | UAS-T2-S1-0-0.5FT                        | 79<br>50                 |              |
|                   | UAS-T2-S2-0-0.5FT  <br>UAS-T2-S3-0-0.5FT | 50<br>66                 |              |
|                   | UAS-T2-S4-0-0.5FT                        | 72                       | <del> </del> |
|                   | UAS-T2-S5-0-0.5FT                        | 48                       |              |
|                   | UAS-T2-S6-0-0.5FT                        | 79                       |              |
|                   | UAS-T3-S2-0-0.5FT                        | 63                       |              |
|                   | UAS-T3-S4-0-0.5FT                        | 64                       |              |
|                   | UAS-T3-S5-0-0.5FT                        | 56                       |              |
|                   | UAS-T3-S7-0-0.5FT                        | 51<br>62                 | J            |
|                   | UAS-T4-S1-0-0.5FT<br>UAS-T4-S2-0-0.5FT   | 190                      |              |
|                   | UAS-T4-S5-0-0.5FT                        | 83                       |              |
|                   | UAS-T4-S6-0-0.5FT                        | 130                      |              |
|                   | UAS-T4-S7-0-0.5FT                        | 260                      |              |
|                   | UAS-T5-S1-0-0.5FT                        | 59                       |              |
|                   | UAS-T5-S2-0-0.5FT                        | 50                       |              |
|                   | UAS-T5-S3-0-0.5FT                        | 54<br>50                 |              |
|                   | UAS-T5-S4-0-0.5FT<br>UAS-T5-S5-0-0.5FT   | 50<br><b>4</b> 5         |              |
|                   | UAS-T5-S6-0-0.5FT                        | 170                      |              |
|                   | UAS-T6-S5-0-0.5FT                        | 78                       | J            |
|                   | UAS-T7-S1-0-0.5FT                        | 71                       | J            |
|                   | UAS-T7-S2-0-0.5FT                        | 41                       | [J           |
|                   | UAS-T7-S3-0-0.5FT                        | 64                       | J            |
|                   | UAS-T7-S5-0-0.5FT                        | 42                       | Į,           |
|                   | UAS-T7-S6-0-0.5FT<br>UAS-T7-S7-0-0.5FT   | <b>72</b><br><b>1</b> 50 | J            |
| Molybdenum, mg/kg | Benchmark <sup>1</sup>                   | 2                        |              |
| ,,                | Background <sup>2</sup>                  | 2                        |              |
|                   | UAS-T4-S5-0-0.5FT                        | 2.3                      |              |
|                   | UAS-T6-S5-0-0.5FT                        | 3.2                      |              |
| Nickel, mg/kg     | Benchmark <sup>1</sup>                   | 30                       |              |
|                   | Background <sup>2</sup>                  | 43                       |              |
|                   | UAS-T7-S1-0-0.5FT                        | 55                       | <u> </u>     |

Table 7-26 Floodplain Surface Soil Locations that Exceed Ecological Benchmarks Sauget Area I

| Constituent     | Sample ID               | Concentration | ER Q |
|-----------------|-------------------------|---------------|------|
| Selenium, mg/kg | Benchmark <sup>1</sup>  | 0.21          |      |
|                 | Background <sup>2</sup> | ND            | 1    |
|                 | DAS-T2-S3-0-0.5FT       | 0.55          | J    |
|                 | DAS-T4-S2-0-0.5FT       | 0.88          | J    |
|                 | UAS-T1-S1-0-0.5FT       | 0.81          | J    |
|                 | UAS-T1-S5-0-0.5FT       | 0.72          | J    |
|                 | UAS-T2-S4-0-0,5FT       | 0.61          | J    |
|                 | UAS-T2-S6-0-0.5FT       | 1             | J    |
|                 | UAS-T3-S5-0-0.5FT       | 0.6           | J    |
|                 | UAS-T3-S7-0-0.5FT       | 3.2           |      |
|                 | UAS-T5-S4-0-0.5FT       | 0.48          | J    |
|                 | UAS-T6-S5-0-0.5FT       | 0.68          | J    |
|                 | UAS-T7-S1-0-0.5FT       | 1.1           |      |
|                 | UAS-T7-S2-0-0.5FT       | 0.49          | J    |
|                 | UAS-T7-S3-0-0.5FT       | 0.89          | J    |
|                 | UAS-T7-S4-0-0.5FT       | 0.55          | J    |
|                 | UAS-T7-S6-0-0.5FT       | 1.1           |      |
|                 | UAS-T7-S7-0-0.5FT       | 0.53          | J    |
| Thallium, mg/kg | Benchmark <sup>1</sup>  | 1             |      |
|                 | Background <sup>2</sup> | ND            |      |
|                 | DAS-T2-S2-0-0.5FT       | 1.3           |      |
|                 | DAS-T3-S2-0-0.5FT       | 1.4           |      |
|                 | DAS-T4-S2-0-0.5FT       | . 1.1         | J    |
|                 | DAS-T4-S3-0-0.5FT       | 1.1           | J _  |

| Constituent     | Sample ID                              | Concentration | ER (     |
|-----------------|----------------------------------------|---------------|----------|
| /anadium, mg/kg | Benchmark <sup>1</sup>                 | 2             |          |
|                 | Background <sup>2</sup>                | 69            |          |
|                 | DAS-T1-S1-0-0.5FT                      | 19            | }        |
|                 | DAS-T1-S2-0-0.5FT                      | 25            |          |
|                 | DAS-T1-S3-0-0.5FT                      | 18            |          |
|                 | DAS-T2-S1-0-0.5FT                      | 24            |          |
|                 | DAS-T2-S2-0-0.5FT                      | 120           |          |
|                 | DAS-T2-S3-0-0.5FT<br>DAS-T3-S1-0-0.5FT | 34<br>23      |          |
|                 | DAS-T3-S1-0-0.5FT                      | 25<br>25      | }        |
|                 | DAS-T3-S2-0-0.5FT                      | 20            |          |
|                 | DAS-T4-S1-0-0.5FT                      | 21            |          |
|                 | DAS-T4-S2-0-0.5FT                      | 35            |          |
|                 | DAS-T4-S3-0-0.5FT                      | 34            | J        |
|                 | DAS-T5-S1-0-0.5FT                      | 19            |          |
|                 | DAS-T5-S2-0-0.5FT                      | 19            |          |
|                 | DAS-T5-S3-0-0.5FT                      | 17            | ļ        |
|                 | DAS-T6-S1-0-0.5FT                      | 22            | IJ       |
|                 | DAS-T6-S2-0-0.5FT<br>DAS-T6-S3-0-0.5FT | 22<br>17      | )J<br> J |
|                 | DAS-T6-S3-U-0.5FT                      | 17<br>25      | ٦        |
|                 | DAS-T7-S2-0-0.5FT                      | 22            |          |
|                 | UAS-T1-S1-0-0.5FT                      | 32            |          |
|                 | UAS-T1-S2-0-0.5FT                      | 35            |          |
|                 | UAS-T1-S3-0-0.5FT                      | 41            |          |
|                 | UAS-T1-S4-0-0.5FT                      | 36            |          |
|                 | UAS-T1-S5-0-0.5FT                      | 35            |          |
|                 | UAS-T1-S6-0-0.5FT                      | 22            |          |
|                 | UAS-T1-S7-0-0.5FT                      | 21            | -        |
|                 | UAS-T2-S1-0-0.5FT<br>UAS-T2-S2-0-0.5FT | 30<br>28      | }        |
|                 | UAS-T2-S3-0-0.5FT                      | 40            | J        |
|                 | UAS-T2-S4-0-0.5FT                      | 46            |          |
|                 | UAS-T2-S5-0-0.5FT                      | 30            | J        |
|                 | UAS-T2-S6-0-0.5FT                      | 28            | J        |
|                 | UAS-T3-S1-0-0.5FT                      | 30            |          |
|                 | UAS-T3-S2-0-0.5FT                      | 39            | J        |
|                 | UAS-T3-S3-0-0.5FT                      | 26            | J        |
|                 | UAS-T3-S4-0-0.5FT                      | 42            | J        |
|                 | UAS-T3-S5-0-0.5FT                      | 27            | J        |
|                 | UAS-T3-S6-0-0.5FT<br>UAS-T3-S7-0-0.5FT | 23<br>13      | J        |
|                 | UAS-T4-S1-0-0.5FT                      | 13<br>23      |          |
|                 | UAS-T4-S2-0-0.5FT                      | 22            | İ        |
|                 | UAS-T4-S3-0-0.5FT                      | 27            | İ        |
|                 | UAS-T4-S4-0-0.5FT                      | 15            |          |
|                 | UAS-T4-S5-0-0.5FT                      | 26            |          |
|                 | UAS-T4-S6-0-0.5FT                      | 29            | į        |
|                 | UAS-T4-S7-0-0.5FT                      | 26            |          |
|                 | UAS-T5-S1-0-0.5FT                      | 29            |          |
|                 | UAS-T5-S2-0-0.5FT                      | 29            | -        |
|                 | UAS-T5-S3-0-0.5FT<br>UAS-T5-S4-0-0.5FT | 25<br>26      | -        |
|                 | UAS-T5-S5-0-0.5FT                      | 28            |          |
|                 | UAS-T5-S6-0-0.5FT                      | 27            | 1        |
|                 | UAS-T6-S1-0-0.5FT                      | 25            |          |
|                 | UAS-T6-S2-0-0.5FT                      | 24            |          |
|                 | UAS-T6-S3-0-0.5FT                      | 30            |          |
|                 | UAS-T6-S4-0-0.5FT                      | 33            |          |
|                 | UAS-T6-S5-0-0.5FT                      | 30            |          |
|                 | UAS-T7-S1-0-0.5FT                      | 27            |          |
|                 | UAS-T7-S2-0-0.5FT                      | 25            |          |
|                 | UAS-T7-S3-0-0.5FT                      | 33            |          |
|                 | UAS-T7-S4-0-0.5FT                      | 22            | 1        |
|                 | UAS-T7-S5-0-0.5FT<br>UAS-T7-S6-0-0.5FT | 26<br>22      |          |
|                 | UAS-T7-S7-0-0.5FT                      | 21            |          |

| Constituent | Sample ID                               | Concentration | ER Q     |
|-------------|-----------------------------------------|---------------|----------|
| Zinc, mg/kg | Benchmark <sup>1</sup>                  | 8.5           |          |
|             | Background <sup>2</sup>                 | 810           |          |
|             | DAS-T1-S1-0-0.5FT                       | 300           | J        |
|             | DAS-T1-S2-0-0.5FT                       | 230           | J        |
|             | DAS-T1-S3-0-0.5FT                       | 250           | J        |
|             | DAS-T2-S1-0-0.5FT                       | 290           | J        |
|             | DAS-T2-S2-0-0.5FT<br>DAS-T2-S3-0-0.5FT  | 140<br>260    | J        |
|             | DAS-T3-S1-0-0.5FT                       | 220           | Ĵ        |
|             | DAS-T3-S2-0-0.5FT                       | 240           | Ĵ        |
|             | DAS-T3-S3-0-0.5FT                       | 260           | J        |
|             | DAS-T4-S1-0-0.5FT                       | 240           | J        |
|             | DAS-T4-S2-0-0.5FT                       | 310           |          |
|             | DAS-T4-S3-0-0.5FT                       | 180           | ١.       |
|             | DAS-T5-S1-0-0.5FT                       | 330           | J        |
|             | DAS-T5-S2-0-0.5FT<br>DAS-T5-S3-0-0.5FT  | 140<br>750    | J        |
|             | DAS-T6-S1-0-0.5FT                       | 350           | J        |
|             | DAS-T6-S2-0-0.5FT                       | 110           | 1        |
|             | DAS-T6-S3-0-0.5FT                       | 240           | }        |
|             | DAS-T7-S1-0-0.5FT                       | 870           |          |
|             | DAS-T7-S2-0-0.5FT                       | 260           |          |
|             | UAS-T1-S1-0-0.5FT                       | 1400          | IJ       |
|             | UAS-T1-S2-0-0.5FT                       | 340           | . J      |
|             | UAS-T1-S3-0-0.5FT                       | 390           | J        |
|             | UAS-T1-S4-0-0.5FT<br> UAS-T1-S5-0-0.5FT | 280<br>270    | J        |
|             | UAS-T1-S6-0-0.5FT                       | 180           | J        |
|             | UAS-T1-S7-0-0.5FT                       | 250           | J        |
|             | UAS-T2-S1-0-0.5FT                       | 310           | J        |
|             | UAS-T2-S2-0-0.5FT                       | 190           | J        |
|             | UAS-T2-S3-0-0.5FT                       | 250           | J        |
|             | UAS-T2-S4-0-0.5FT                       | 270           | J        |
|             | UAS-T2-S5-0-0.5FT                       | 210           | ال       |
|             | UAS-T2-S6-0-0.5FT                       | 290<br>160    | J        |
|             | UAS-T3-S1-0-0.5FT<br>UAS-T3-S2-0-0.5FT  | 160<br>240    |          |
|             | UAS-T3-S3-0-0.5FT                       | 160           | J        |
|             | UAS-T3-S4-0-0.5FT                       | 300           |          |
|             | UAS-T3-S5-0-0.5FT                       | 410           |          |
|             | UAS-T3-S6-0-0.5FT                       | 250           |          |
|             | UAS-T3-S7-0-0.5FT                       | 460           |          |
|             | UAS-T4-S1-0-0.5FT                       | 240           |          |
|             | UAS-T4-S2-0-0.5FT                       | 290           |          |
|             | UAS-T4-S3-0-0.5FT                       | 76            |          |
|             | UAS-T4-S4-0-0.5FT                       | 82<br>120     |          |
|             | UAS-T4-S5-0-0.5FT<br>UAS-T4-S6-0-0.5FT  | 120<br>140    | 1        |
|             | UAS-T4-S7-0-0.5FT                       | 550           |          |
|             | UAS-T5-S1-0-0.5FT                       | 230           |          |
|             | UAS-T5-S2-0-0.5FT                       | 230           |          |
|             | UAS-T5-S3-0-0.5FT                       | 240           |          |
|             | UAS-T5-S4-0-0.5FT                       | 230           |          |
|             | UAS-T5-S5-0-0.5FT                       | 240           |          |
|             | UAS-T5-S6-0-0.5FT                       | 980           |          |
|             | UAS-T6-S1-0-0.5FT                       | 160           | 14       |
|             | UAS-T6-S2-0-0.5FT<br>UAS-T6-S3-0-0.5FT  | 82<br>90      | J        |
|             | UAS-T6-S4-0-0.5FT                       | 99            | J        |
|             | UAS-T6-S5-0-0.5FT                       | 120           | IJ       |
|             | UAS-T7-S1-0-0.5FT                       | 610           | Ĭ        |
|             | UAS-T7-S2-0-0.5FT                       | 190           |          |
|             | UAS-T7-S3-0-0.5FT                       | 270           |          |
|             | UAS-T7-S4-0-0.5FT                       | 150           |          |
|             | UAS-T7-S5-0-0.5FT                       | 160           |          |
|             | UAS-T7-S6-0-0.5FT                       | 310           |          |
|             | UAS-T7-S7-0-0.5FT                       | 640           | <u> </u> |

### Table 7-26 Floodplain Surface Soil Locations that Exceed Ecological Benchmarks Sauget Area I

| Constituent                | Sample ID               | Concentration | ER Q |
|----------------------------|-------------------------|---------------|------|
| Total PCBs, ug/kg          | Benchmark <sup>1</sup>  | 371           |      |
|                            | Background <sup>2</sup> | 1200          |      |
|                            | UAS-T6-S2-0-0.5FT       | 385           |      |
| 2,3,7,8-TCDD TEQ (mammals) | Benchmark <sup>1</sup>  | 0.00315       |      |
| in ug/kg                   | Background <sup>2</sup> | 0.124         |      |
|                            | DAS-T1-S1-0-0.5FT       | 0.0235855     |      |
|                            | DAS-T1-S2-0-0.5FT       | 0.016399      |      |
|                            | DAS-T1-S3-0-0.5FT       | 0.014051      | 1    |
|                            | DAS-T2-S1-0-0.5FT       | 0.02144       |      |
|                            | DAS-T2-S2-0-0.5FT       | 0.012195      |      |
|                            | DAS-T2-S3-0-0.5FT       | 0.017101      |      |
|                            | DAS-T3-S1-0-0.5FT       | 0.007658      |      |
|                            | DAS-T3-S2-0-0.5FT       | 0.008586      |      |
|                            | DAS-T3-S3-0-0.5FT       | 0.00766       |      |
|                            | DAS-T4-S1-0-0.5FT       | 0.016645      | J    |
|                            | DAS-T4-S2-0-0.5FT       | 0.006258      |      |
|                            | DAS-T4-S3-0-0.5FT       | 0.006696      |      |
|                            | DAS-T5-S1-0-0.5FT       | 0.005006      |      |
|                            | DAS-T5-S2-0-0.5FT       | 0.005483      |      |
|                            | DAS-T5-S3-0-0.5FT       | 0.02432       |      |
|                            | DAS-T6-S1-0-0.5FT       | 0.009106      |      |
|                            | DAS-T6-S2-0-0.5FT       | 0.004063      |      |
|                            | DAS-T6-S3-0-0.5FT       | 0.006762      |      |
|                            | DAS-T7-S1-0-0.5FT       | 0.0034335     |      |
|                            | DAS-T7-S2-0-0.5FT       | 0.008225      |      |
|                            | UAS-T1-S1-0-0.5FT       | 0.01856       |      |
|                            | UAS-T1-S6-0-0.5FT       | 0.015206      |      |
|                            | UAS-T2-S4-0-0.5FT       | 0.01974       |      |
|                            | UAS-T3-S3-0-0.5FT       | 0.005056      |      |
|                            | UAS-T4-S1-0-0.5FT       | 0.008645      |      |
|                            | UAS-T4-S6-0-0.5FT       | 0.187423      |      |
|                            | UAS-T5-S4-0-0.5FT       | 0.00562       |      |
|                            | UAS-T6-S3-0-0.5FT       | 0.01658       |      |
|                            | UAS-T7-S3-0-0.5FT       | 0.0087385     |      |
|                            |                         |               |      |

<sup>&</sup>lt;sup>1</sup>Efroymson et al., 1997. Preliminary Remediation Goals for Ecological Endpoints.

<sup>&</sup>lt;sup>2</sup>Background concentration is twice average concentration for three background soil samples.

Shading indicates concentrations exceeds benchmark and background.

Table 7-27a

Comparison of Site G Surface Soil Concentrations to Ecological Benchmarks
Sauget Area I

| Constituent                             | Frequency of<br>Detection in<br>Soil | Number of<br>Samples for<br>Statistics  | Maximum site concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95% UCL | 95% UCL<br>Represents Site<br>Concentration | Twice Average<br>Background Soil<br>Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Soil Benchmark <sup>1</sup> | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dioxins, ug/kg                          |                                      |                                         | MELT STATE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,3,7,8-TCDD TEQ (mammals) <sup>2</sup> | 100%                                 | 4                                       | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.323   | no                                          | 0.124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00315                     | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Herbicides, ug/kg                       |                                      |                                         | DESCRIPTION OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE |         | 10-4.57                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Metals, mg/kg                           |                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.5                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Aluminum                                | 100%                                 | 4                                       | 15000,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15906   | no                                          | 25400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | No benchmark; within background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Antimony                                | 50%                                  | 2                                       | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.91    | no                                          | 3.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                           | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Arsenic                                 | 100%                                 | 4                                       | 8.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.14    | no                                          | 19.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.9                         | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Barium                                  | 100%                                 | 4                                       | 140.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 149     | no                                          | 363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 283                         | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Beryllium                               | 100%                                 | 4                                       | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.66    | no                                          | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                          | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cadmium                                 | 100%                                 | 4                                       | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.50    | no                                          | 8.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                           | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Calcium                                 | 100%                                 | 4                                       | 14000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14008   | no                                          | 33533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | No benchmark; within background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chromium                                | 100%                                 | 4                                       | 22.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.76   | no                                          | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | No benchmark; within background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cobalt                                  | 100%                                 | 4                                       | 8.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.69    | no                                          | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                          | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Copper                                  | 100%                                 | 4                                       | 290.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 600.28  | no                                          | 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                          | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ron                                     | 100%                                 | 4                                       | 20000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20489   | no                                          | 38000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | No benchmark; within background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ead                                     | 100%                                 | 4                                       | 16.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.28   | no                                          | 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.5                        | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Magnesium                               | 100%                                 | 4                                       | 4950.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5517    | no                                          | 17233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.0                        | Low toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Manganese                               | 100%                                 | 4                                       | 740.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 786     |                                             | 883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | No benchmark; within background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 100%                                 | 4                                       | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03    | no                                          | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mercury                                 |                                      | 4                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03    | no                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | No benchmark; within background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Molybdenum                              | 100%                                 | 4                                       | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | no                                          | 2.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 30                        | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Nickel                                  | 100%                                 | 4                                       | 21.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.71   | no                                          | 42.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                          | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Potassium                               | 100%                                 | 4                                       | 1700.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1870    | no                                          | 4733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | Low toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| /anadium                                | 100%                                 | 4                                       | 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.87   | no                                          | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                           | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Zinc                                    | 100%                                 | 4                                       | 69.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NC      | no                                          | 808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.5                         | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PCBs, ug/kg                             |                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total PCBs                              | 50%                                  | 4                                       | 46.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 778.56  | no                                          | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 371                         | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pesticides, ug/kg                       |                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LATER THE                   | NO STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE ST |
| 1,4'-DDT                                | 75%                                  | 3                                       | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.33    | no                                          | 14.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | No benchmark; within background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Alpha Chlordane                         | 50%                                  | 2                                       | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.63    | no                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| lelta-BHC                               | 75%                                  | 3                                       | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.40    | no                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dieldrin                                | 25%                                  | 1                                       | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC      | no                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Endosulfan I                            | 25%                                  | 1                                       | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC      | no                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Endosulfan II                           | 25%                                  | 1                                       | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC      | no                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Endosulfan sulfate                      | 50%                                  | 2                                       | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.34    | no                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Endrin                                  | 50%                                  | 2                                       | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.19    | no                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ndrin aldehyde                          | 50%                                  | 2                                       | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC      | no                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ndrin ketone                            | 50%                                  | 2                                       | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.67    | no                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Samma Chlordane                         | 75%                                  | 3                                       | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.40    | no                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| leptachlor epoxide                      | 25%                                  | 1                                       | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC      |                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Methoxychlor                            | 25%                                  | 1                                       | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC      |                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SVOCs, ug/kg                            |                                      | 100100000000000000000000000000000000000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                             | HALLE THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF |                             | I mount of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| OCs, ug/kg                              |                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

ND = Not detected

only compounds detected at least once are listed in this table

Yellow shading indicates maximum site concentration exceeds benchmark.

Green shading indicates upper 95% UCL concentration (or maximum if 95% UCL not available) exceeds twice average background concentration (or constituent was not detected in background soil).

<sup>&</sup>lt;sup>1</sup>Efroymson et al., 1997. Preliminary Remediation Goals for Ecological Endpoints

<sup>&</sup>lt;sup>2</sup>Calculated according to 1998 World Health Organization guidelines for mammals; Estimated Maximum Potential Concentration treated as non-detects.

Table 7-27b

Comparison of Site H Surface Soil Concentrations to Ecological Benchmarks
Sauget Area I

| Constituent                             | Frequency of<br>Detection in<br>Soil | Number of<br>Samples for<br>Statistics | Maximum site concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95% UCL          | 95% UCL<br>Represents Site<br>Concentration | Twice Average<br>Background Soil<br>Concentration | Soil Benchmark <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comment                                                |
|-----------------------------------------|--------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Dioxins, ug/kg                          |                                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comment                                                |
| 2,3,7,8-TCDD TEQ (mammals) <sup>2</sup> | 100%                                 | 4                                      | 1.291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 177220.313       | no                                          | 0.124                                             | 0.00315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maximum exceeds benchmark                              |
| Herbicides, ug/kg                       | 10070                                | -                                      | 1.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 117220.010       |                                             | 0.124                                             | 0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Manifian exceeds benefitary                            |
| 2,4-DB                                  | 50%                                  | 4                                      | 9.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.94             | no                                          | ND                                                | MATERIAL PROPERTY AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY O | No benchmark; ND in background                         |
| Metals, mg/kg                           | 0070                                 | DATE OF THE PARTY OF                   | 5.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.34             |                                             | NU                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140 benefitian, 145 in baoigiouna                      |
| Aluminum                                | 100%                                 | 4                                      | 14000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39230            | no                                          | 25400                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background                        |
| Antimony                                | 100%                                 | 4                                      | 2.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.37             |                                             | 3.80                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |
| Arsenic                                 | 100%                                 | 4                                      | 64.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7216.39          | no                                          | 19.13                                             | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum less than benchmark  Maximum exceeds benchmark |
| Barium                                  | 100%                                 | 4                                      | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 124              | no                                          |                                                   | 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum less than benchmark                            |
| Beryllium                               | 100%                                 | 4                                      | 3.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | no                                          | 363<br>1.51                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
| •                                       | 100000                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.91            | no                                          |                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum less than benchmark                            |
| Cadmium                                 | 100%                                 | 4                                      | 22.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2166.24          | no                                          | 8.65                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark                              |
| Calcium                                 | 100%                                 | 4                                      | 42000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1071222          | no                                          | 33533                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low toxicity                                           |
| Chromium                                | 100%                                 | 4                                      | 23.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.40            | no                                          | 39                                                | The state of the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No benchmark; within background                        |
| Cobalt                                  | 100%                                 | 4                                      | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 86.11            | no                                          | 16                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum equal to benchmark                             |
| Copper                                  | 100%                                 | 4                                      | 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 532.72           | ho                                          | 209                                               | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark                              |
| ron                                     | 100%                                 | 4                                      | 18000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18260            | no                                          | 38000                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background                        |
| .ead                                    | 100%                                 | 4                                      | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 243.58           | no                                          | 185                                               | 40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum exceeds benchmark                              |
| Magnesium                               | 100%                                 | 4                                      | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3069             | no                                          | 17233                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background                        |
| Manganese                               | 100%                                 | 4                                      | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 739              | no                                          | 883                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background                        |
| Mercury                                 | 100%                                 | 4                                      | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 142.37           | no                                          | 0.18                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background                       |
| Molybdenum                              | 100%                                 | 4                                      | 11.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 981.99           | no                                          | 2.02                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark                              |
| Vickel                                  | 100%                                 | 4                                      | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 215,29           | no                                          | 42.67                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark                              |
| Potassium                               | 100%                                 | 4                                      | 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1890             | no                                          | 4733                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low toxicity                                           |
| Selenium                                | 75%                                  | 4                                      | 4.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 941.90           | no                                          | ND                                                | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum exceeds benchmark                              |
| Sodium                                  | 100%                                 | 4                                      | 390.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 395.84           | no                                          | ND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low toxicity                                           |
| Silver                                  | 75%                                  | 4                                      | 2.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.64             | yes                                         | 1.35                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark                              |
| 'hallium                                | 25%                                  | 4                                      | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29.97            | no                                          | ND                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark                              |
| /anadium                                | 100%                                 | 4                                      | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69.01            | no                                          | 69                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark                              |
| linc                                    | 100%                                 | 4                                      | 3600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 628746           | no                                          | 808                                               | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark                              |
| PCBs, ug/kg                             | 10070                                |                                        | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 020140           | 110                                         | 000                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | With an exceed benefit and                             |
| Total PCBs                              | 75%                                  | 4                                      | 1519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1563.37          | no                                          | 1200                                              | 371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark                              |
| Pesticides, ug/kg                       | 1070                                 |                                        | 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000,07          | 110                                         | 1200                                              | 071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Washingth exceeds benefitialk                          |
| I,4'-DDE                                | 75%                                  | 4                                      | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 800339929.23     | no                                          | 16.12                                             | MINISTREMENTAL PRINTERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No benchmark; exceeds background                       |
| I,4'-DDT                                | 75%                                  | 4                                      | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11675720159.04   | no                                          | 14.12                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background                       |
| Aldrin                                  | 50%                                  | 4                                      | CONTRACTOR DESCRIPTION OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE |                  |                                             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|                                         | 25%                                  | 3                                      | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.44            | yes                                         | ND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                         |
| Indosulfan II                           |                                      |                                        | 7.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1853.29          | no                                          | ND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                         |
| Endrin ketone                           | 75%                                  | 4                                      | 82.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10230171916.44   | no                                          | ND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                         |
| Samma Chlordane                         | 50%                                  | 4                                      | 30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33.50            | no                                          | ND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                         |
| leptachlor                              | 25%                                  | 3                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.26             | no                                          | ND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                         |
| leptachlor epoxide                      | 75%                                  | 4                                      | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1108116322805.02 | no                                          | ND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                         |
| lethoxychlor                            | 50%                                  | 4                                      | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 199687.00        | no                                          | ND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                         |
| VOCs, ug/kg                             |                                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
| enzo(a)anthracene                       | 75%                                  | 4                                      | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 133              | no                                          | 240                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background                        |
| enzo(a)pyrene                           | 75%                                  | 4                                      | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 145              | no                                          | 187                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background                        |
| enzo(b)fluoranthene                     | 75%                                  | 4                                      | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 154              | no                                          | 179                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background                        |
| enzo(g,h,i)perylene                     | 25%                                  | 4                                      | 370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2168             | no                                          | 127                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than backgrour                    |
| enzo(k)fluoranthene                     | 75%                                  | 4                                      | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 137              | no                                          | 208                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background                        |
| s(2-Ethylhexyl)phthalate                | 50%                                  | 4                                      | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 126              | no                                          | 322                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background                        |
| hrysene                                 | 75%                                  | 4                                      | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 734              | no                                          | 273                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than backgroun                    |
| luoranthene                             | 75%                                  | 4                                      | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250              | no                                          | 502                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background                        |
| ideno(1,2,3-cd)pyrene                   | 50%                                  | 4                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC               | no                                          | ND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                         |
| entachlorophenol                        | 25%                                  | 4                                      | 241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 241              | no                                          | 742                                               | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum less than benchmark                            |
| Phenanthrene                            | 25%                                  | 4                                      | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC               | no                                          | 335                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background                        |
| yrene                                   | 75%                                  | 4                                      | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 213              | no                                          | 435                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background                        |
| OCs, ug/kg                              | 7570                                 | 7                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 210              | 110                                         | 400                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Saloimain, walli background                            |

# Table 7-27b Comparison of Site H Surface Soil Concentrations to Ecological Benchmarks Sauget Area I

| Constituent      | Frequency of<br>Detection in<br>Soil | Number of<br>Samples for<br>Statistics | Maximum site concentration | 95% UCL | 95% UCL<br>Represents Site<br>Concentration | Twice Average<br>Background Soil<br>Concentration | Soil Benchmark <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comment                         |
|------------------|--------------------------------------|----------------------------------------|----------------------------|---------|---------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 2-Hexanone       | 25%                                  | 1                                      | 5.70                       | NC      | no                                          | 33.00                                             | HI TO STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE | No benchmark; within background |
| Carbon disulfide | 25%                                  | 3                                      | 4.30                       | 4.89    | no                                          | ND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background  |
| etrachloroethene | 25%                                  | 4                                      | 17.00                      | 297.55  | no                                          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background  |

#### ND = Not detected

only compounds detected at least once are listed in this table

Yellow shading indicates maximum site concentration exceeds benchmark.

Green shading indicates upper 95% UCL concentration (or maximum if 95% UCL not available) exceeds twice average background concentration (or constituent was not detected in background soil).

<sup>&</sup>lt;sup>1</sup>Efroymson et al., 1997. Preliminary Remediation Goals for Ecological Endpoints

<sup>&</sup>lt;sup>2</sup>Calculated according to 1998 World Health Organization guidelines for mammals; Estimated Maximum Potential Concentration treated as non-detects.

#### Table 7-27c Comparison of Site I Surface Soil Concentrations to Ecological Benchmarks Sauget Area I

| Constituent                                               | Frequency of<br>Detection in Soil | Number of<br>Samples for<br>Statistics | Maximum site concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95% UCL                    | 95% UCL<br>Represents Site<br>Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Twice Average<br>Background Soil<br>Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Soil Benchmark <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comment                                                                 |
|-----------------------------------------------------------|-----------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Dioxins, ug/kg<br>2,3,7,8-TCDD TEQ (mammals) <sup>2</sup> | 4000/                             |                                        | 40.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 000755.40                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |
|                                                           | 100%                              | 4                                      | 12.682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.82975E+13                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maximum exceeds benchmark                                               |
| Herbicides, ug/kg<br>2,4-DB                               | 25%                               | 3                                      | 29.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 837327.9674                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STATE OF THE PARTY OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No benchmark; ND in background                                          |
| letals, mg/kg                                             | 23%                               | 3                                      | 29.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03/32/,90/4                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STATE OF STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No bencimark, ND in background                                          |
| Numinum                                                   | 100%                              | 4                                      | 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10373.04485                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background                                         |
| ntimony                                                   | 100%                              | 4                                      | 8.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.06307144                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark                                               |
| rsenic                                                    | 100%                              | 4                                      | 12.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.09603333                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark                                               |
| arium                                                     | 100%                              | 4                                      | 740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40737.84503                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark                                               |
| eryllium                                                  | 100%                              | 4                                      | 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.645394701                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum less than benchmark                                             |
| admium                                                    | 100%                              | 4                                      | 31.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45692.89244                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark                                               |
| alcium                                                    | 100%                              | 4                                      | 235000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 480323.5391                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Low toxicity                                                            |
| hromium                                                   | 100%                              | 4                                      | 65.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 557.0784649                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MERCAL PROPERTY AND ADDRESS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No benchmark; exceeds background                                        |
| obalt                                                     | 100%                              | 4                                      | 33.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18037.66354                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark                                               |
| opper                                                     | 100%                              | 4                                      | 13000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13393.5185                 | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark                                               |
| on                                                        | 100%                              | 4                                      | 16000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16047.63857                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No benchmark; within background                                         |
| ead                                                       | 100%                              | 4                                      | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1410.13458                 | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum exceeds benchmark                                               |
| lagnesium                                                 | 100%                              | 4                                      | 19000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28676.00543                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Low toxicity                                                            |
| anganese                                                  | 100%                              | 4                                      | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 355.9479591                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background                                         |
| lercury                                                   | 100%                              | 4                                      | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5713355.711                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COLUMN TO SERVICE STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE  | No benchmark; within background  No benchmark; exceeds background       |
| olybdenum                                                 | 100%                              | 4                                      | 8.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.966566712                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark                                               |
| ckel                                                      | 100%                              | 4                                      | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 446.1117448                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark                                               |
| otassium                                                  | 100%                              | 4                                      | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1588.502918                | no<br>no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Low toxicity                                                            |
| elerium                                                   | 75%                               | 4                                      | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.886829613                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |
|                                                           |                                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum exceeds benchmark                                               |
| lver<br>odium                                             | 100%                              | 4                                      | 19.00<br>870.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5711.850233                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark                                               |
|                                                           |                                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 885.626716                 | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Low toxicity                                                            |
| anadium                                                   | 100%                              | 4                                      | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.2846367                 | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum exceeds benchmark                                               |
| nc                                                        | 100%                              | 4                                      | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43298.37599                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark                                               |
| CBs, ug/kg                                                | 75%                               |                                        | 121280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.77045.00                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marian as assessed hamphurada                                           |
| otal PCBs                                                 | /2%                               | 4                                      | 121280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.7794E+28                 | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark                                               |
| esticides, ug/kg<br>4'-DDD                                | 100%                              | 3                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.407005.50                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AND DESCRIPTION OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF | No book of ND laborated                                                 |
| 4-DDE                                                     | 100%                              | 3                                      | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.18723E+56<br>1.35573E+32 | no<br>no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND<br>16.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background<br>No benchmark; exceeds background      |
| 4'-DDT                                                    | 67%                               | 3                                      | 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.97531E+32                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |
| drin                                                      | 100%                              | 3                                      | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.36762E+38                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.12<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background                                        |
| onn<br>pha Chlordane                                      | 33%                               | 3                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | BURNESS AND RESIDENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                          |
| eldrin                                                    | 100%                              | 3                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NC<br>CCCTATION            | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                          |
| ndosulfan I                                               | 100%                              | 3                                      | 200<br>260.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.66751E+25<br>6.20887E+38 | no<br>no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background<br>No benchmark; ND in background        |
| ndosulfan II                                              | 100%                              | 3                                      | 600.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.86916E+35                | CONTRACTOR AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |
| ndosulfan sulfate                                         | 33%                               | 2                                      | 8.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.59706229                 | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                          |
| ndrin                                                     | 100%                              | 3                                      | 240.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.43789E+35                | no<br>no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                          |
| ndrin aldehyde                                            | 100%                              | 3                                      | 1500.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.89694E+37                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background<br>No benchmark; ND in background        |
| ndrin ketone                                              | 100%                              | 3                                      | 700.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.29277E+33                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background  No benchmark; ND in background          |
| amma Chlordane                                            | 100%                              | 3                                      | 380.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.17964E+24                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background  No benchmark; ND in background          |
| eptachlor                                                 | 67%                               | 3                                      | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.90883E+21                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                          |
| eptachlor epoxide                                         | 100%                              | 3                                      | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.51219E+28                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark, ND in background                                          |
| ethoxychior                                               | 100%                              | 3                                      | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.36839E+33                | CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                          |
| /OCs, ug/kg                                               | 100%                              | -                                      | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.300392+33                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COLUMN TO STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INO DELIGINARY, IND IT DECKY OUT                                        |
|                                                           | 25%                               | 1                                      | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NO                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximum loss than banchmad                                              |
| I-Dichlorobenzene<br>2.4-Trichlorobenzene                 | 25%                               | 4                                      | 46.00<br>180.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NC<br>238.3835621          | no<br>no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20000<br>20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maximum less than benchmark Maximum less than benchmark                 |
|                                                           | 25%                               | SECURITY STREET                        | the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 238.3835621<br>NC          | NAME AND ADDRESS OF THE OWNER, WHEN PERSONS ASSESSED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |
| -Dichlorophenol                                           | 25%                               |                                        | 82.00<br>160.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NC<br>NC                   | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                          |
| atroantine<br>Chloroaniline                               | 50%                               | 1                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CONTRACTOR OF THE PROPERTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                          |
|                                                           |                                   | 4                                      | 18000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.34508E+15                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                          |
| thracene                                                  | 50%                               |                                        | 730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3367658.288                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                    |
| nzo(a)anthracene                                          | 75%                               | 4                                      | 2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 136193831.4                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                    |
| nzo(a)pyrene                                              | 75%                               | 4                                      | 2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2965105917                 | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                    |
| nzo(b)fluoranthene                                        | 75%                               | 4                                      | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 406310864.3                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                    |
| nzo(g,h,i)perylene                                        | 75%                               | 4                                      | 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5618456.655                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                    |
| nzo(k)fluoranthene                                        | 75%                               | 4                                      | 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1054145.623                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                    |
| (2-Ethylhexyl)phthalate<br>rbazole                        | 25%<br>25%                        | 1                                      | 88<br>320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC<br>1299.336446          | no<br>no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 322<br>64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ADMITT AND THE PERSON NAMED IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No benchmark; within background<br>No benchmark; higher than background |

#### Table 7-27c Comparison of Site I Surface Soil Concentrations to Ecological Benchmarks Sauget Area I

| Constituent                      | Frequency of Detection in Soil | Number of<br>Samples for<br>Statistics | Maximum site concentration | 95% UCL     | 95% UCL<br>Represents Site<br>Concentration | Twice Average<br>Background Soil<br>Concentration | Soil Benchmark <sup>1</sup> | Comment                              |
|----------------------------------|--------------------------------|----------------------------------------|----------------------------|-------------|---------------------------------------------|---------------------------------------------------|-----------------------------|--------------------------------------|
| Chrysene                         | 75%                            | 4                                      | 2200                       | 55268524.04 | no                                          | 273                                               |                             | No benchmark; higher than background |
| Dibenzo(a,h)anthracene           | 50%                            | 4                                      | 360                        | 44378.40136 | no                                          | ND                                                |                             | No benchmark; ND in background       |
| Dibenzofuran                     | 25%                            | 4                                      | 100                        | 100.0954465 | no                                          | ND                                                |                             | No benchmark; ND in background       |
| Di-n-butylphthalate              | 25%                            | 1                                      | 52                         | NC          | no                                          | 312                                               | 200000                      | Maximum less than benchmark          |
| Fluoranthene                     | 100%                           | 4                                      | 6000                       | 23187272884 | no                                          | 502                                               |                             | No benchmark; higher than background |
| Fluorene                         | 25%                            | 4                                      | 230                        | 433.0037693 | no                                          | ND                                                |                             | No benchmark; ND in background       |
| Hexachlorobenzene                | 25%                            | 4                                      | 110.00                     | 291.9069705 | no                                          | ND                                                |                             | No benchmark; ND in background       |
| Indeno(1,2,3-cd)pyrene           | 50%                            | 4                                      | 1600                       | 7840824.52  | no                                          | ND                                                |                             | No benchmark; ND in background       |
| Naphthalene<br>Pentachlorophenol | 100%                           | 4                                      | 1650                       | 63284.90405 | no                                          | ND<br>742                                         | 3000                        | Maximum less than benchmark          |
| Phenanthrene                     | 100%                           | 4                                      | 3300                       | 3.2062E+11  | no                                          | 335                                               |                             | No benchmark; higher than background |
| Pyrene                           | 100%                           | 4                                      | 4700                       | 1138027755  | no                                          | 435                                               |                             | No benchmark; higher than background |
| VOCs, ug/kg<br>Toluene           | 25%                            | 4                                      | 3.3                        | 3,389891562 | no                                          | ND                                                | 200000                      | Maximum less than benchmark          |

Yellow shading indicates maximum site concentration exceeds benchmark.

Green shading indicates upper 95% UCL concentration (or maximum if 95% UCL not available) exceeds twice average background concentration (or constituent was not detected in background soil).

<sup>&</sup>lt;sup>1</sup>Efroymson et al., 1997. Preliminary Remediation Goals for Ecological Endpoints

<sup>&</sup>lt;sup>2</sup>Calculated according to 1998 World Health Organization guidelines for mammals; Estimated Maximum Potential Concentration treated as non-detects.



|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number of                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 95% UCL         | Twice Average                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Constituent                             | Frequency of<br>Detection in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Samples for<br>Statistics | Maximum site concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95% UCL     | Represents Site | Background Soil<br>Concentration | Soil Benchmark <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comment                          |
| Dioxins, ug/kg                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| 2,3,7,8-TCDD TEQ (mammals) <sup>2</sup> | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 0.821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 124.7416336 | no              | 0.124                            | 0.00315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maximum exceeds benchmark        |
| lerbicides, ug/kg                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                 |                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
| /letals, mg/kg                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 1 426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| Numinum                                 | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 7600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7979.493203 | no              | 25400                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background  |
| Intimony                                | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 5.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.850128    | no              | 3.80                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark        |
| rseric                                  | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 37.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NC          | no              | 19.13                            | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark        |
| Barium                                  | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 268.6028182 | no              | 363                              | 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum less than benchmark      |
| Beryllium                               | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC          | no              | 1.51                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum less than benchmark      |
| cadmium                                 | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.23619922 | no              | 8.65                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark        |
| Calcium                                 | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 29000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34213.75505 | no              | 33533                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low toxicity                     |
| hromium                                 | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 79.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 448.9603833 | no              | 39                               | THE RESIDENCE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T | No benchmark; exceeds background |
| obalt                                   | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 17.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.97604255 | no              | 16                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum less than benchmark      |
| opper                                   | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 4700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74139227.8  | no              | 209                              | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark        |
| yaride, Total                           | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36.64438482 | no              |                                  | CANADA SERVICE SERVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No benchmark; ND in background   |
| on                                      | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 32000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36106.95214 | no              | 38000                            | Man and Description of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of the London Control of | No benchmark; within background  |
| ead                                     | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 253773.3978 | no              | 185                              | 40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum exceeds benchmark        |
| Magnesium                               | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 4200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4448.648413 | no              | 17233                            | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Low toxicity                     |
| Manganese                               | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 675.584256  | no              | 883                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background  |
| lercury                                 | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.57447441  | no              | 0.18                             | SOURCE STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH | No benchmark; exceeds background |
| Molybdenum                              | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 23.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.61943575 | no              | 2.02                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark        |
| ickel                                   | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                 |                                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55.78187695 | no              | 42.67                            | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark        |
| otassium                                | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1676.575721 | yes             | 4733                             | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Low toxicity                     |
| elenium                                 | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 4.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8,99621133  | no              | ND                               | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum exceeds benchmark        |
| Iver                                    | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.572152807 | no              | 1.35                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum less than benchmark      |
| odium                                   | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 540.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1093.938624 | no              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low toxicity                     |
| nallium                                 | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.094945789 | yes             | ND                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark        |
| anadium                                 | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.02223759 | no              | 69                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark        |
| nc                                      | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                         | 870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 860.7747902 | yes             | 808                              | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark        |
| CBs, ug/kg                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Control of the last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| otal PCBs                               | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 1171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1065.507332 | yes             | 1200                             | 371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark        |
| esticides, ug/kg                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| 4'-DDE                                  | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.74577626 | yes             | 16.12                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background |
| 4'-DDT                                  | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.77170892 | yes             | 14.12                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background |
| drin                                    | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.194243663 | no              | ND                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background   |
| eta-BHC                                 | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1356.706081 | no              | ND                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background   |
| eldrin                                  | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.88917529 | no              | ND                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background   |
| ndrin ketone                            | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 28.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12283.87693 | no              | ND                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background   |
| amma Chlordane                          | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 21.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.34574954 | no              | ND                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background   |
| eptachlor epoxide                       | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.51387628 | no              | ND                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background   |
| ethoxychlor                             | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                         | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57.70715929 | no              | ND                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background   |
| VOCs, ug/kg                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| Methylnaphthalene                       | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 147.440499  | no              | ND                               | SALES TO SELECT A SOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No benchmark; ND in background   |
| cenaphthene                             | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8491211.257 | no              | ND                               | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximum less than benchmark      |
| nthracene                               | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 3600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 994773566.6 | no              | 160                              | AND REPORTS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE | No benchmark; exceeds background |
| enzo(a)anthracene                       | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 7800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.26082E+11 | no              | 240                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background |
| enzo(a)pyrene                           | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.48435E+13 | no              | 187                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background |
| enzo(b)fluoranthene                     | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 6600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70233148182 | no              | 179                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background |
| enzo(g,h,i)perylene                     | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 3800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1144351859  | no              | 127                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background |
| enzo(k)fluoranthene                     | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 6800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.1238E+11  | no              | 208                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background |
| s(2-Ethylhexyl)phthalate                | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 797.5198398 | no              | 322                              | STANSON PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No benchmark; within background  |
| rbazole                                 | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1616221.149 | no              | 64                               | THE STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P | No benchmark; exceeds background |
| rysene                                  | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 7800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.66513E+11 | no              | 273                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background |
| rysene<br>benzo(a,h)anthracene          | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 584071173.7 |                 | ND ND                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark, exceeds background |
|                                         | CONTROL SHEET STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STAT | 4                         | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | no              | ND<br>ND                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| benzofuran                              | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charles and Charle | 82381.06931 | no              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background   |
| uoranthene                              | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 18000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.57152E+15 | no              | 502                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background |
| Jorene                                  | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5221331.358 | no              | ND                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background   |
| deno(1,2,3-cd)pyrene                    | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 4800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7509937085  | no              | ND                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background   |
| aphthalene                              | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1222.742364 | no              | ND                               | NAME OF THE OWNER, WHEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No benchmark; ND in background   |
| entachlorophenol                        | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                         | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 243.3192197 | no              | 742                              | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum less than benchmark      |
| nenanthrene                             | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                         | 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.19159E+12 | no              | 335                              | CHEST PROPERTY OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No benchmark; exceeds background |

#### Table 7-27d Comparison of Site L Surface Soil Concentrations to Ecological Benchmarks Sauget Area I

| Constituent            | Frequency of<br>Detection in Soil | Number of<br>Samples for<br>Statistics | Maximum site concentration | 95% UCL     | 95% UCL<br>Represents Site<br>Concentration | Twice Average<br>Background Soil<br>Concentration | Soil Benchmark <sup>1</sup> | Comment                          |
|------------------------|-----------------------------------|----------------------------------------|----------------------------|-------------|---------------------------------------------|---------------------------------------------------|-----------------------------|----------------------------------|
| Pyrene                 | 75%                               | 4                                      | 13000                      | 4.88372E+13 | no                                          | 435                                               |                             | No benchmark; exceeds background |
| VOCs, ug/kg<br>Toluene | 25%                               |                                        | 13.0                       | 62.31309822 | no                                          | ND                                                | 200000                      | Maximum less than benchmark      |

#### ND = Not detected

<sup>1</sup> Efroymson et al., 1997. Preliminary Remediation Goals for Ecological Endpoints

Yellow shading indicates maximum site concentration exceeds benchmark.

Green shading indicates upper 95% UCL concentration (or maximum if 95% UCL not available) exceeds twice average background concentration (or constituent was not detected in background soil).

<sup>&</sup>lt;sup>2</sup>Calculated according to 1998 World Health Organization guidelines for mammals; Estimated Maximum Potential Concentration treated as non-detects.



| Constituent                                               | Frequency of<br>Detection in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number of<br>Samples for<br>Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Maximum site concentration | 95% UCL     | 95% UCL<br>Represents Site<br>Concentration | Twice Average<br>Background Soil<br>Concentration | Soil Benchmark <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comment                               |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|---------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Dioxins, ug/kg<br>2,3,7,8-TCDD TEQ (mammals) <sup>2</sup> | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.345                      | 29108960.28 |                                             | 0.124                                             | 0.00315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maximum exceeds benchmark             |
| Herbicides, ug/kg                                         | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.345                      | 29100900.20 | no                                          | 0.124                                             | 0.00315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Waxiiluii exceeds beliciiliaik        |
| Metals, mg/kg                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |             |                                             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Aluminum                                                  | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11000                      | 11367,87884 | no                                          | 25400                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background       |
| Antimony                                                  | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.71                       | NC NC       | no                                          | 3.80                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum less than benchmark           |
| Arsenic                                                   | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.30                       | 7.465249928 | no                                          | 19.13                                             | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum less than benchmark           |
| Barium                                                    | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1200                       | 1209.136124 | no                                          | 363                                               | 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark             |
| Cadmium                                                   | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.50                       | 11.80319879 | no                                          | 8.65                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum less than benchmark           |
| Calcium                                                   | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109000                     | 1985134.1   |                                             | 33533                                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| Chromium                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |             | no                                          |                                                   | a la la la la la la la la la la la la la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Low toxicity                          |
|                                                           | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.00                      | 22.93479523 | no                                          | 39                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No benchmark; within background       |
| Cobalt                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.15                       | NC          | no                                          | 16                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum less than benchmark           |
| Copper                                                    | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110                        | 2284.996321 | no                                          | 209                                               | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark             |
| ron                                                       | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15000                      | 15376.58677 | no                                          | 38000                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background       |
| Lead                                                      | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 410                        | 5632358.094 | no                                          | 185                                               | 40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum exceeds benchmark             |
| Magnesium                                                 | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11500                      | 15898.24309 | no                                          | 17233                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low toxicity                          |
| Manganese                                                 | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 410                        | 447.4493181 | no                                          | 883                                               | The State of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No benchmark; within background       |
| Mercury                                                   | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.10                       | 0.351694441 | no                                          | 0.18                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background       |
| Molybdenum                                                | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.45                       | 1.816470731 | no                                          | 2.02                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum less than benchmark           |
| Nickel                                                    | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                         | 17.12978312 | no                                          | 42.67                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum less than benchmark           |
| Potassium                                                 | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1600                       | 1614.831668 | no                                          | 4733                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low toxicity                          |
| Selenium                                                  | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.68                       | 0.691327842 | no                                          | ND                                                | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum exceeds benchmark             |
| Vanadium                                                  | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29                         | 29.3885723  | no                                          | 69                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark             |
| Zinc                                                      | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 250                        | 260.8110532 | no                                          | 808                                               | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark             |
| PCBs, ug/kg<br>Fotal PCBs                                 | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 178                        | 5078256.548 | no                                          | 1200                                              | 371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum less than benchmark           |
| Pesticides, ug/kg<br>4,4'-DDT                             | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                          | 2 020000427 |                                             | 4440                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No handwards within hadron and        |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th | 3                          | 2.820036127 | no                                          | 14.12                                             | AND DESCRIPTION OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF | No benchmark; within background       |
| Aldrin                                                    | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | 1.389998414 | no                                          | ND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background        |
| Alpha Chlordane                                           | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                          | 1.161332487 | no                                          | ND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background        |
| peta-BHC                                                  | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.34                       | 0.382196942 | no                                          | ND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background        |
| Dieldrin                                                  | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                          | 2.328499227 | no                                          | ND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background        |
| Gamma Chlordane                                           | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.85                       | 3.731761647 | no                                          | ND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background        |
| Methoxychlor                                              | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55                         | 1402.087203 | no                                          | ND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background        |
| SVOCs, ug/kg                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |             |                                             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Anthracene                                                | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58                         | 65.54441005 | no                                          | 160                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background       |
| Benzo(a)anthracene                                        | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 270                        | 277.2454654 | no                                          | 240                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background      |
| Benzo(a)pyrene                                            | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 330                        | 2741.750887 | no                                          | 187                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background      |
| Benzo(b)fluoranthene                                      | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 320                        | 3553.567584 | no                                          | 179                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background      |
| Benzo(g,h,i)perylene                                      | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300                        | 965.7584844 | no                                          | 127                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background      |
| Benzo(k)fluoranthene                                      | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 360                        | 370.1287912 | no                                          | 208                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background      |
| is(2-Ethylhexyl)phthalate                                 | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130                        | 133.305617  | no                                          | 322                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background       |
| Chrysene                                                  | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 310                        | 1427.615009 | no                                          | 273                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background      |
| Dibenzo(a,h)anthracene                                    | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110                        | 106.7183083 | yes                                         | ND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background        |
| luoranthene                                               | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 610                        | 626.730565  | no                                          | 502                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; exceeds background      |
| ndeno(1,2,3-cd)pyrene                                     | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 250                        | 569.6321335 | no                                          | ND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background        |
| Pentachlorophenol                                         | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 474                        | 613.1716845 | no                                          | 742                                               | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum less than benchmark           |
| Phenanthrene                                              | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 260                        | 263.4323597 | no                                          | 335                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; less than background    |
| Pyrene                                                    | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 550                        | 551.3228038 | no                                          | 435                                               | SPENISTER OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P | No benchmark; exceeds background      |
| OCs, ug/kg                                                | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa | THE RESIDENCE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T | PERSONAL PROPERTY.         |             | The second second                           | CONTRACTOR OF STREET                              | Budy - Birth Cole and Cole and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The section and advances being out to |

#### ND = Not detected

<sup>&</sup>lt;sup>1</sup>Efroymson et al., 1997. Preliminary Remediation Goals for Ecological Endpoints

<sup>&</sup>lt;sup>2</sup>Calculated according to 1998 World Health Organization guidelines for mammals; Estimated Maximum Potential Concentration treated as non-detects.

Yellow shading indicates maximum site concentration exceeds benchmark.

Green shading indicates upper 95% UCL concentration (or maximum if 95% UCL not available) exceeds twice average background concentration (or constituent was not detected in background soil).

#### Table 7-28 Surface Soil Locations from Sites G, H, I, L, and N that Exceed Ecological Benchmarks Sauget Area I

| Constituent | Sample ID                                | Concentration | ER Q                                             |
|-------------|------------------------------------------|---------------|--------------------------------------------------|
| Antimony    | Benchmark                                | 5             |                                                  |
| mg/kg       | Background <sup>2</sup>                  | 3.8           |                                                  |
|             | WASTE-I-B2-0-0 5FT                       | 8.4           | J                                                |
|             | WASTE-I-B3-0-0 5FT                       | 8.4           | J                                                |
|             | WASTE-I-B4-0-0 5FTFD                     | 5.3           | J                                                |
|             | WASTE-L-B1-0-0 5FT                       | 5.4           | J                                                |
| Arsenic     | Benchmark                                | 9 9           |                                                  |
| mg.'kg      | Background <sup>2</sup>                  | 19            | i                                                |
|             | WASTE-H-B3-0-0.5FT                       | 64            | [                                                |
|             | WASTE-H-B4-0-0.5FT                       | 13            |                                                  |
|             | WASTE-I-B3-0-0.5FT                       | 12            | J                                                |
|             | WASTE-L-B1-0-0.5FT                       | 35            |                                                  |
|             | WASTE-L-B2-0-0.5FT                       | 37            |                                                  |
|             | WASTE-L-B3-0-0.5FT                       | 30            | 1                                                |
| 2           | WASTE-L-B4-0-0.5FT                       | 31            |                                                  |
| Barium      | Benchmark <sup>1</sup>                   | 283           |                                                  |
| mg/kg       | Background <sup>2</sup>                  | 363           |                                                  |
|             | WASTE-I-B2-0-0.5FT                       | 740           | l .                                              |
|             | WASTE-N-B1-0-0 5FT                       | 860           | J                                                |
| Cadmium     | WASTE-N-B2-0-0 5FT                       | 1200          | <del>                                     </del> |
|             | Benchmark                                |               |                                                  |
| mg/kg       | Background                               | 8 6<br>8.7    | ,                                                |
|             | WASTE-H-B1-0-0 5FT<br>WASTE-H-B4-0-0 5FT | 22            | J<br>J                                           |
|             | WASTE-I-B2-0-0.5FT                       | 31            | J                                                |
|             | WASTE-I-B3-0-0.5FT                       | 9.2           | j                                                |
|             | WASTE-L-B1-0-0 5FT                       | 10            | j                                                |
|             | WASTE-L-B2-0-0.5FT                       | 4.6           | Ĵ                                                |
|             | WASTE-L-B4-0-0 5FT                       | 7.1           | J                                                |
| Cobalt      | Benchmark                                | 20            |                                                  |
| mg/kg       | Background <sup>2</sup>                  | 16            |                                                  |
|             | WASTE-I-B2-0-0.5FT                       | 33            |                                                  |
| Copper      | Benchmark 1                              | 60            |                                                  |
| mg/kg       | Background <sup>2</sup>                  | 209           |                                                  |
|             | WASTE-G-B1-0-0.5FT                       | 190           | J                                                |
|             | WASTE-G-B1-0-0.5FTFD                     | 390           | J                                                |
|             | WASTE-G-B2-0-0.5FT                       | 200           | J                                                |
|             | WASTE-G-B3-0-0.5FT                       | 140           | J                                                |
|             | WASTE-G-B4-0-0.5FT                       | 100           | J                                                |
|             | WASTE-H-B1-0-0.5FT                       | 480           |                                                  |
|             | WASTE-H-B2-0-0.5FT                       | 200           |                                                  |
|             | WASTE-H-B3-0-0 5FT                       | 340<br>480    |                                                  |
|             | WASTE-H-B4-0-0 5FT<br>WASTE-I-B1-0-0.5FT | 2000          | J                                                |
|             | WASTE-I-B1-0-0.5F1                       | 10000         | J                                                |
|             | WASTE-I-B2-0-0 5FT                       | 13000         | J                                                |
|             | WASTE-I-B4-0-0 5FT                       | 1200          | J                                                |
|             | WASTE-I-B4-0-0 5FTFD                     | 2100          | J                                                |
|             | WASTE-L-B1-0-0.5FT                       | 1700          | _                                                |
|             | WASTE-L-B2-0-0.5FT                       | 4700          |                                                  |
|             | WASTE-L-B3-0-0.5FT                       | 190           |                                                  |
|             | WASTE-L-B4-0-0.5FT                       | 460           |                                                  |
|             | WASTE-N-B2-0-0 5FT                       | 110           | J                                                |

| Constituent | Sample ID                                | Concentration    | ER Q     |
|-------------|------------------------------------------|------------------|----------|
| Lead        | Benchmark <sup>1</sup>                   | 41               |          |
| mg/kg       | Background <sup>2</sup>                  | 185              |          |
|             | WASTE-H-B1-0-0.5FT                       | 200              | J        |
| 1           | WASTE-H-B2-0-0.5FT                       | 53               | J        |
| ĺ           | WASTE-H-B3-0-0.5FT                       | 100              | J        |
|             | WASTE-H-B4-0-0 5FT<br>WASTE-I-B1-0-0.5FT | 230<br>220       | J        |
|             | WASTE-I-B1-0-0.5FT                       | 1500             | J        |
|             | WASTE-I-B3-0-0.5FT                       | 830              | J        |
|             | WASTE-I-B4-0-0 5FT                       | 190              | J        |
|             | WASTE-I-B4-0-0 5FTFD                     | 270              | J        |
|             | WASTE-L-B1-0-0.5FT                       | 940              | J        |
| 1           | WASTE-L-B2-0-0.5FT<br>WASTE-L-B3-0-0.5FT | <b>190</b><br>64 | J        |
| ļ           | WASTE-L-B4-0-0.5FT                       | 280              | J        |
|             | WASTE-N-B1-0-0.5FT                       | 410              | Ĵ        |
|             | WASTE-N-B2-0-0.5FT                       | 99               | J        |
| Molybdenum  | Benchmark 1                              | 2                |          |
| mg/kg       | Background <sup>2</sup>                  | 2.0              |          |
|             | WASTE-H-B1-0-0 5FT                       | 3.6              | J        |
|             | WASTE-H-B3-0-0.5FT<br>WASTE-H-B4-0-0 5FT | 11<br>4.2        | J<br>J   |
| }           | WASTE-I-B1-0-0.5FT                       | 4.2<br>2.7       | J        |
|             | WASTE-I-B2-0-0 5FT                       | 7.5              | Ĵ        |
|             | WASTE-I-B3-0-0.5FT                       | 8.5              | Ĵ        |
|             | WASTE-I-84-0-0.5FT                       | 3.4              | J        |
|             | WASTE-I-84-0-0.5FTFD                     | 6.1              | J        |
|             | WASTE-L-B1-0-0 5FT                       | 16               | J        |
|             | WASTE-L-B2-0-0.5FT<br>WASTE-L-B3-0-0.5FT | 23<br>9.3        | J        |
|             | WASTE-L-B4-0-0 5FT                       | 9.6              | J        |
| Nickel      | Benchmark                                | 30               |          |
| mg/kg       | Background*                              | 43               |          |
|             | WASTE-H-B3-0-0 5FT                       | - 70             |          |
|             | WASTE-I-B2-0-0.5FT                       | 42               | J        |
|             | WASTE-I-B3-0-0.5FT                       | 65               | J        |
|             | WASTE-L-B1-0-0 5FT                       | 51               |          |
|             | WASTE-L-B2-0-0.5FT<br>WASTE-L-B3-0-0.5FT | <b>43</b><br>38  |          |
|             | WASTE-L-B4-0-0.5FT                       | 55               |          |
| Selenium    | Benchmark 1                              | 0.21             |          |
| mg/kg       | Background <sup>2</sup>                  | ND               |          |
| _           | WASTE-G-B1-0-0.5FT                       | 1.2              | U        |
|             | WASTE-G-B1-0-0.5FTFD                     | 1,2              | U        |
|             | WASTE-G-B2-0-0 5FT                       | 1.2              | U        |
|             | WASTE-G-B3-0-0.5FT<br>WASTE-G-B4-0-0 5FT | 1.1<br>1.1       | U        |
|             | WASTE-G-B4-0-0 5FT<br>WASTE-H-B1-0-0.5FT | 0.64             | J        |
|             | WASTE-H-B2-0-0.5FT                       | 1.1              | Ü        |
|             | WASTE-H-B3-0-0.5FT                       | 4.7              |          |
|             | WASTE-H-B4-0-0 5FT                       | 0.42             | J        |
|             | WASTE-I-B1-0-0.5FT                       | 1.1              | U        |
|             | WASTE-I-B2-0-0.5FT<br>WASTE-I-B3-0-0.5FT | 1.6              |          |
|             | WASTE-I-83-0-0.5FT                       | 1.6<br>0.44      | J        |
|             | WASTE-I-B4-0-0.5FTFD                     | 0.83             | J        |
|             | WASTE-L-B1-0-0.5FT                       | 4.3              |          |
|             | WASTE-L-B2-0-0.5FT                       | 4                |          |
|             | WASTE-L-B3-0-0.5FT                       | 1.8              |          |
|             | WASTE-L-B4-0-0.5FT                       | 2.2              |          |
|             | WASTE-N-B1-0-0.5FT<br>WASTE-N-B2-0-0.5FT | 1.1              | U        |
|             | WASTE-N-B2-0-0 5FT<br>WASTE-N-B3-0-0 5FT | 0.99<br>1.1      | U        |
|             | WASTE-N-B3-0-0 5FT                       | 0.61             | J        |
|             | WASTE-N-B4-0-0 5FTFD                     | 0.75             | Ĵ        |
|             | =                                        |                  | <u>_</u> |

| Constituent | Sample ID                                  | Concentration    | ER Q   |
|-------------|--------------------------------------------|------------------|--------|
| Silver      | Benchmark <sup>1</sup>                     | 2                | Ì      |
| mg/kg       | Background <sup>2</sup>                    | 1.4              | i      |
|             | WASTE-H-B4-0-0 5FT                         | 2.7              | J      |
|             | WASTE-I-B1-0-0.5FT                         | 3.1              | J      |
|             | WASTE-I-B2-0-0.5FT<br>WASTE-I-B3-0-0.5FT   | 11               | J      |
|             | WASTE-1-83-0-0.5FT<br>WASTE-1-84-0-0 5FTFD | 19<br>2.2        | J      |
| Thallium    | Benchmark                                  | 1                |        |
| mg/kg       | Background <sup>2</sup>                    | ND               | 1      |
|             | WASTE-G-B1-0-0.5FT                         | 1.2              | υ      |
|             | WASTE-G-B1-0-0.5FTFD                       | 1.2              | U      |
|             | WASTE-G-B2-0-0 5FT<br>WASTE-G-B3-0-0.5FT   | 1.2              | U      |
|             | WASTE-G-B3-0-0.57                          | 1.1              | U      |
|             | WASTE-H-B2-0-0 5FT                         | 1.1              | Ŭ      |
|             | WASTE-H-B3-0-0.5FT                         | 2.5              |        |
|             | WASTE-I-B1-0-0 5FT                         | 1.1              | U      |
|             | WASTE-L-B1-0-0.5FT                         | 2.1              |        |
|             | WASTE-L-B2-0-0.5FT                         | 1.9              |        |
|             | WASTE-L-B3-0-0.5FT                         | 1.6              |        |
|             | WASTE-L-B4-0-0.5FT<br>WASTE-N-B1-0-0.5FT   | 1.8<br>1.1       | U      |
|             | WASTE-N-B1-0-0.5FT                         | 1.1              | U      |
| Vanadium    | Benchmark <sup>1</sup>                     | 2                |        |
| mg/kg       | Background <sup>2</sup>                    | 69               |        |
| · ·         | WASTE-G-B1-0-0.5FT                         | 39               | J      |
|             | WASTE-G-B1-0-0.5FTFD                       | 39               | J      |
|             | WASTE-G-B2-0-0.5FT                         | 40               | J      |
|             | WASTE-G-B3-0-0.5FT                         | 32               | J      |
|             | WASTE-G-B4-0-0 5FT<br>WASTE-H-B1-0-0 5FT   | 32<br>20         | J      |
|             | WASTE-H-B2-0-0.5FT                         | 33               |        |
|             | WASTE-H-B3-0-0.5FT                         | 45               |        |
|             | WASTE-H-B4-0-0.5FT                         | 22               |        |
|             | WASTE-I-B1-0-0 5FT                         | 17               | J      |
|             | WASTE-I-B2-0-0.5FT                         | 21               | J      |
|             | WASTE-I-B3-0-0 5FT                         | 26               | J      |
|             | WASTE-I-B4-0-0.5FT<br>WASTE-I-B4-0-0.5FTFD | 9 <b>4</b><br>12 | J<br>J |
|             | WASTE-L-B1-0-0.5FT                         | 49               | J      |
|             | WASTE-L-B2-0-0.5FT                         | 40               |        |
|             | WASTE-L-B3-0-0.5FT                         | 39               |        |
|             | WASTE-L-B4-0-0.5FT                         | 49               |        |
|             | WASTE-N-B1-0-0 5FT                         | 21               |        |
|             | WASTE-N-B2-0-0.5FT                         | 23               |        |
|             | WASTE-N-B3-0-0.5FT                         | 22               |        |
|             | WASTE-N-B4-0-0 5FT                         | 27               |        |
| inc         | WASTE-N-B4-0-0.5FTFD  Benchmark            | 8.5              |        |
| ng/kg       | Background <sup>2</sup>                    | 8.5<br>808       |        |
| aa          | WASTE-G-B1-0-0.5FT                         | 64               | J      |
|             | WASTE-G-B1-0-0 5FTFD                       | 75               | Ĵ      |
|             | WASTE-G-B2-0-0 5FT                         | 56               | J      |
|             | WASTE-G-B3-0-0.5FT                         | 60               | J      |
|             | WASTE-G-B4-0-0.5FT                         | 58               | J      |
|             | WASTE-H-B1-0-0.5FT                         | 800              | J      |
|             | WASTE-H-B2-0-0 5FT<br>WASTE-H-B3-0-0 5FT   | 350<br>370       | J      |
|             | WASTE-H-B3-0-0 5FT                         | 3600             | J      |
|             | WASTE-I-B1-0-0 5FT                         | 1200             | J      |
|             | WASTE-1-B2-0-0.5FT                         | 2800             | Ĵ      |
|             | WASTE-I-B3-0-0.5FT                         | 1300             | J      |
|             | WASTE-I-B4-0-0 5FT                         | 310              | J      |
|             | WASTE-1-B4-0-0.5FTFD                       | 500              | J      |
|             | WASTE-L-B1-0-0.5FT                         | 870              | J      |
|             | WASTEL B2-0-0.5FT                          | 420              | J      |
|             | WASTE-L-B3-0-0.5FT<br>WASTE-L-B4-0-0.5FT   | 160<br>590       | J      |
|             | WASTE-L-B4-0-0 5F1<br>WASTE-N-B1-0-0.5FT   | 210              | J      |
|             | WASTE-N-B2-0-0 5FT                         | 250              | Ĵ      |
|             | WASTE-N-B3-0-0 5FT                         | 62               | Ĵ      |
|             | WASTE-N-B4-0-0.5FT                         | 71               | J      |
|             | WASTE-N-B4-0-0 5FTFD                       | 79               | J      |

# Table 7-28 Surface Soil Locations from Sites G, H, I, L, and N that Exceed Ecological Benchmarks Sauget Area I

| Constituent                   | Sample ID               | Concentration | ER Q |
|-------------------------------|-------------------------|---------------|------|
| 1998 Total TEQ w/ EMPC as ND2 | Benchmark <sup>1</sup>  | 0 0032        |      |
| ug/kg                         | Background <sup>2</sup> | 0 12          |      |
|                               | WASTE-G-B1-0-0.5FT      | 0.071312      |      |
|                               | WASTE-G-B1-0-0.5FTFD    | 0 063519      |      |
|                               | WASTE-G-B2-0-0.5FT      | 0.07705       |      |
|                               | WASTE-G-B3-0-0.5FT      | 0 075513      |      |
|                               | WASTE-G-B4-0-0.5FT      | 0.0821635     |      |
|                               | WASTE-H-B1-0-0 5FT      | 0.51835       |      |
|                               | WASTE-H-B2-0-0.5FT      | 0.28994       |      |
|                               | WASTE-H-B3-0-0 5FT      | 0 035028      |      |
|                               | WASTE-H-B4-0-0 5FT      | 1.29117       |      |
|                               | WASTE-I-B1-0-0.5FT      | 0.0952        |      |
|                               | WASTE-I-B2-0-0 5FT      | 12.842        |      |
|                               | WASTE-I-B3-0-0 5FT      | 0.53721       |      |
|                               | WASTE-I-B4-0-0 5FT      | 0.05881       |      |
|                               | WASTE-I-B4-0-0 5FTFD    | 0 11224       |      |
|                               | WASTE-L-B1-0-0.5FT      | 0.83681       |      |
|                               | WASTE-L-B2-0-0.5FT      | 0.42085       |      |
|                               | WASTE-L-B3-0-0.5FT      | 0 098685      |      |
|                               | WASTE-L-B4-0-0.5FT      | 0.11702       |      |
|                               | WASTE-N-B1-0-0,5FT      | 0.39551       |      |
|                               | WASTE-N-B2-0-0 5FT      | 0.08499       |      |
|                               | WASTE-N-B3-0-0.5FT      | 0.029154      |      |
|                               | WASTE-N-B4-0-0 5FT      | 0.068762      |      |
|                               | WASTE-N-B4-0-0,5FTFD    | 0.047294      |      |
| Total PCBs                    | Benchmark 1             | 371           |      |
| ug/kg                         | Background <sup>2</sup> | 1200          |      |
|                               | WASTE-H-B1-0-0.5FT      | 1519          |      |
|                               | WASTE-H-B4-0-0.5FT      | 1097          |      |
|                               | WASTE-I-B2-0-0 5FT      | 121280        |      |
|                               | WASTE-I-B3-0-0.5FT      | 3418          |      |
|                               | WASTE-L-B2-0-0 5FT      | 1171          |      |

<sup>&</sup>lt;sup>1</sup>Efroymson et al., 1997. Preliminary Remediation Goals for Ecological Endpoints
<sup>2</sup>Twice average background soit concentration

<sup>3</sup>Calculated according to 1998 World Health Organization guidelines for mammals, Estimated Maximum Potential Concentration treated as non-detects.

Shading indicates concentration exceeds benchmark and background

# Table 7-29a Comparison of Site G Subsurface Soil Concentrations to Ecological Benchmarks Sauget Area I

| Constituent (mg/kg)       | Number of<br>Samples for<br>Statistics | Maximum<br>(mg/kg) | 95% UCL  | 95% UCL<br>Represents Site<br>Concentration | Twice Average<br>Background Soil<br>Concentration<br>(mg/kg) | Soil Benchmark<br>(mg/kg) <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Comment                              |
|---------------------------|----------------------------------------|--------------------|----------|---------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 1,1,2,2-Tetrachloroethane | 1                                      | 5.81E-01           | NC       | no                                          | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible               |
| 1,2,4-Trichlorobenzene    | 4                                      | 1.20E+02           | 2.19E+05 | no                                          | NA                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark            |
| 1,2-Dichloroethane        | 1                                      | 4.35E-01           | NC       | no                                          | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible               |
| 1,4-Dichlorobenzene       | 2                                      | 3.56E+00           | NC       | no                                          | NA                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum less than benchmark          |
| 2,4,6-Trichlorophenol     | 1                                      | 4.95E+01           | NC       | no                                          | NA                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark            |
| 2,4-Dichlorophenol        | 3                                      | 1.41E+02           | 5.17E+07 | no                                          | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible               |
| 2,4-Dinitrophenol         | 1                                      | 1.40E+01           | NC       | no                                          | NA                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum less than benchmark          |
| 2-Butanone (MEK)          | 11                                     | 1.78E+01           | 1.08E+01 | yes                                         | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background       |
| 2-Chlorophenol            | 1                                      | 8.76E+00           | NC       | no                                          | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible               |
| 2-Methylnapthalene        | 4                                      | 3.71E+01           | 1.04E+02 | no                                          | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background       |
| 2-Methylphenol(o-cresol)  | 1                                      | 3.56E+00           | NC       | no                                          | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible               |
| 4,4'-DDE                  | 4                                      | 1.35E+02           | 1.85E+08 | no                                          | 1.61E-02                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background |
| 4-Chloroaniline           | 3                                      | 2.31E+02           | 4.20E+22 | no                                          | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible               |
| 4-Methyl-2-pentanone      | 4                                      | 6.00E+00           | 5.54E+02 | no                                          | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible               |
| Acenaphthene              | 1                                      | 2.67E+00           | NC       | no                                          | ND                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum less than benchmark          |
| Acetone                   | 11                                     | 1.54E+01           | 8.44E+00 | yes                                         | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background       |
| Aluminum                  | 13                                     | 1.87E+04           | 1.08E+04 | yes                                         | 2.54E+04                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background      |
| Anthracene                | 1                                      | 8.49E+00           | NC       | no                                          | 1.60E-01                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background |
| Arsenic                   | 5                                      | 1.11E+01           | 1.37E+01 | no                                          | 1.91E+01                                                     | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark            |
| Barium                    | 13                                     | 4.59E+04           | 4.18E+04 | yes                                         | 3.63E+02                                                     | 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark            |
| Benzene                   | 6                                      | 4.53E+01           | 2.88E+01 | no                                          | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background       |
| Benzyl alcohol            | 1                                      | 6.10E+00           | NC       | no                                          | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible               |
| Butyl benzyl phthalate    | 1                                      | 2.33E+01           | NC       | no                                          | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark, ND in background       |
| Pentachlorophenol(PCP)    | 5                                      | 4.77E+03           | 3.34E+07 | no                                          | 7.42E-01                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark            |
| Cadmium                   | 3                                      | 1.40E+01           | 6.65E+04 | no                                          | 8.65E+00                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark            |
| Calcium                   | 2                                      | 1.85E+04           | NC       | no                                          | 3.35E+04                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low toxicity                         |
| Chlorobenzene             | 8                                      | 5.38E+02           | 1.18E+06 | no                                          | ND                                                           | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark            |
| Chloroform                | 1                                      | 1.16E+01           | NC       | no                                          | NA                                                           | THE RESERVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No comparison possible               |
| Chromium                  | 13                                     | 9.85E+02           | 2.28E+02 | yes                                         | 3.93E+01                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background |
| Chrysene                  | 1                                      | 2.29E+01           | NC       | no                                          | 2.73E-01                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background |
| Cobalt                    | 6                                      | 5.60E+01           | 5.25E+01 | no                                          | 1.55E+01                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark            |
| Copper                    | 20                                     | 2.22E+03           | 3.24E+02 | yes                                         | 2.09E+02                                                     | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark            |
| Di-N-butylphthalate       | 4                                      | 1.76E+01           | 2.10E+11 | no                                          | 3.12E-01                                                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum less than benchmark          |
| Dibenzofuran              | 2                                      | 3.38E+01           | 1.12E+02 | no                                          | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background       |
| Diethylphthalate          | 1                                      | 2.29E+01           | NC       | no                                          | 1.87E-01                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum less than benchmark          |
| Ethylbenzene              | 6                                      | 1.69E+01           | 7.35E+03 | no                                          | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark, ND in background       |
| Fluoranthene              | 1                                      | 6.59E+00           | NC       | no                                          | 5.02E-01                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark, higher than background |
| Fluorene                  | 1                                      | 1.13E+01           | NC       | no                                          | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background       |
| Hexachlorobenzene         | 2                                      | 4.06E+01           | NC       | no                                          | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible               |
| ron                       | 22                                     | 5.37E+04           | 1.73E+04 | yes                                         | 3.80E+04                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background      |
| Lead                      | 18                                     | 3.12E+03           | 7.30E+02 | yes                                         | 1.85E+02                                                     | 40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum exceeds benchmark            |
| Magnesium                 | 2                                      | 7.46E+03           | NC       | no                                          | 1.72E+04                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low toxicity                         |
| Manganese                 | 11                                     | 4.61E+02           | 2.75E+02 | yes                                         | 8.83E+02                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background      |
| Mercury                   | 4                                      | 3.43E+01           | 3.78E+21 | no                                          | 1.77E-01                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background |
| Methylene chloride        | 11                                     | 7.11E+00           | 4.29E+03 | no                                          | 1.14E-02                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background |
| N-Nitrosodiphenylamine    | 1                                      | 1.78E+02           | NC       | no                                          | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible               |
| Naphthalene               | 7                                      | 5.43E+03           | 9.78E+06 | no                                          | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background       |
| Nickel                    | 19                                     | 3.99E+02           | 7.98E+01 | yes                                         | 4.27E+01                                                     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark            |
| Phenanthrene              | 4                                      | 5.14E+01           | 1.18E+02 | no                                          | 3.35E-01                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background |
| Phenol                    | 1                                      | 1.78E+02           | NC       | no                                          | NA                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark            |
| Phosphorus                | 9                                      | 1.34E+03           | 8.98E+02 | yes                                         | NA                                                           | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Low toxicity                         |
| Potassium                 | 2                                      | 1.70E+03           | 2.31E+03 | no                                          | 4.73E+03                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low toxicity                         |
| Ругепе                    | 2                                      | 1.91E+01           | NC       | no                                          | 4.35E-01                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background |
| Silver                    | 1                                      | 1.20E+01           | NC       | no                                          | 1.35E+00                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark            |
| Total PCBs                | 7                                      | 4.43E+03           | 6.93E+16 | no                                          | 1,20E+00                                                     | 0.371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximum exceeds benchmark            |
| Tetrachloroethene         | 8                                      | 5.86E+01           | 3.30E+01 | yes                                         | NA                                                           | FOR SHAPE OF SHAPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No comparison possible               |
| Tin                       | 2                                      | 8.00E+01           | NC       | · no                                        | NA                                                           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark            |
| Toluene                   | 6                                      | 1.18E+02           | 8.71E+01 | no                                          | ND                                                           | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum less than benchmark          |
| Total Xylenes             | 6                                      | 4.15E+01           | 1.36E+06 | no                                          | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background       |
| Trichloroethene           | 4                                      | 3.85E+00           | 1.85E+01 | no                                          | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background       |
| /anadium                  | 11                                     | 1.32E+03           | 4.44E+02 | yes                                         | 6.90E+01                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark            |
| Zinc                      | 19                                     | 4.26E+03           | 1.02E+03 | yes                                         | 8.08E+02                                                     | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark            |
| rans-1,2-Dichloroethene   | 1                                      | 7.00E-01           | NC       | no                                          | NA                                                           | THE RESERVE THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PA | No comparison possible               |

<sup>&</sup>lt;sup>1</sup>Efroymson et al., 1997. Preliminary Remediation Goals for Ecological Endpoints

Yellow shading indicates maximum site concentration exceeds benchmark.

Green shading indicates upper 95% UCL concentration (or maximum if 95% UCL not available) exceeds twice average background concentration (or constituent was not detected in background soil) and no benchmark is available.

NC= value was not calculated
NA= background soil concentrations were not available for these constituents

#### Table 7-29b Comparison of Site H Subsurface Soil Concentrations to Ecological Benchmarks Sauget Area I

| Constituent (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Number of<br>Samples for<br>Statistics | Maximum<br>(mg/kg) | 95% UCL         | 95% UCL<br>Represents Site<br>Concentration | Twice Average<br>Background Soil<br>Concentration<br>(mg/kg) | Soil Benchmark<br>(mg/kg) <sup>1</sup> | Comment                              |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------|-----------------|---------------------------------------------|--------------------------------------------------------------|----------------------------------------|--------------------------------------|--|--|
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                      | 7.58E+03           | 4.42E+22        | no                                          | NA                                                           | 20                                     | Maximum exceeds benchmark            |  |  |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                      | 1.94E+04           | 1.38E+134       | no                                          | NA                                                           |                                        | No comparison possible               |  |  |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                      | 1.20E-02           | NC              | no                                          | NA                                                           |                                        | No comparison possible               |  |  |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                      | 2.42E+02           | 1.28E+17        | no                                          | NA                                                           |                                        | No comparison possible               |  |  |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                      | 3.06E+04           | 8.14E+38        | no                                          | NA                                                           | 20                                     | Maximum exceeds benchmark            |  |  |
| 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                      | 6.13E+02           | NC              | no                                          | NA                                                           | 4                                      | Maximum exceeds benchmark            |  |  |
| 2,4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                      | 7.42E+02           | 2.30E+17        | no                                          | NA                                                           |                                        | No comparison possible               |  |  |
| 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                      | 9.20E-02           | NC              | no                                          | NA                                                           |                                        | No comparison possible               |  |  |
| 2-Butanone (MEK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                      | 2.72E+01           | 2.51E+01        | no                                          | ND                                                           |                                        | No benchmark; ND in background       |  |  |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                      | 3.47E+02           | 1.00E+82        | no                                          | ND                                                           |                                        | No benchmark; ND in background       |  |  |
| 4,4'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                      | 7.80E-01           | 1.51E+00        | no                                          | 1.61E-02                                                     |                                        | No benchmark; higher than background |  |  |
| 4,4'-DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                      | 9.23E-01           | 1.30E+00        | no                                          | 1.41E-02                                                     |                                        | No benchmark; higher than background |  |  |
| 4-4'-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                      | 4.31E-01           | NC              | no                                          | ND                                                           |                                        | No benchmark; ND in background       |  |  |
| 4-Methyl-2-pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                      | 7.85E+00           | 1.90E+15        | no                                          | NA                                                           |                                        | No comparison possible               |  |  |
| 4-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                      | 1.72E-01           | NC              | no                                          | NA                                                           |                                        | No comparison possible               |  |  |
| 4-Nitroariline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                      | 1.83E+03           | NC              | no                                          | NA                                                           |                                        | No comparison possible               |  |  |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                      | 3.78E+02           | 4.03E+84        | no                                          | ND                                                           |                                        | No benchmark; ND in background       |  |  |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                     | 2.11E+01           | 1.58E+03        | no                                          | ND                                                           |                                        | No benchmark; ND in background       |  |  |
| Numinum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                     | 1.21E+04           | 1.08E+04        | yes                                         | 2.54E+04                                                     | NAME OF TAXABLE PARTY.                 | No benchmark; within background      |  |  |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                      | 6.80E+02           | 1.80E+34        | no                                          | 1.60E-01                                                     |                                        | No benchmark; higher than background |  |  |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                      | 2.60E+01           | NC              | no                                          | 1.91E+01                                                     | 9.9                                    | Maximum exceeds benchmark            |  |  |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                     | 3.24E+03           | 5.87E+03        | no                                          | 3.63E+02                                                     | 283                                    | Maximum exceeds benchmark            |  |  |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                      | 6.13E+01           | 1.27E+12        | no                                          | ND                                                           |                                        | No benchmark; ND in background       |  |  |
| Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                      | 3.78E+02           | 9.26E+60        | no                                          | 2.40E-01                                                     |                                        | No benchmark; higher than background |  |  |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                      | 2.72E+02           | NC              | no                                          | 1.87E-01                                                     |                                        | No benchmark; higher than background |  |  |
| Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                      | 2.11E+02           | 1.37E+50        | no                                          | 1.79E-01                                                     |                                        | No benchmark; higher than background |  |  |
| Benzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                      | 1.13E+02           | NC              | no                                          | 1.27E-01                                                     |                                        | No benchmark; higher than background |  |  |
| Benzoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                      | 2.64E+00           | NC              | no                                          | NA                                                           |                                        | No comparison possible               |  |  |
| Benzyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                      | 7.92E+00           | NC              | no                                          | NA                                                           |                                        | No comparison possible               |  |  |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                      | 2.94E+02           | 3.36E+02        | no                                          | 8.65E+00                                                     | 4                                      | Maximum exceeds benchmark            |  |  |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                      | 4.52E+02           | 2.94E+17        | no                                          | ND                                                           | 40                                     | Maximum exceeds benchmark            |  |  |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                      | 1.92E-01           | 5.61E-01        | no                                          | NA                                                           |                                        | No comparison possible               |  |  |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                      | 1.00E+02           | 6.37E+02        | no                                          | 3.93E+01                                                     |                                        | No benchmark; higher than background |  |  |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                      | 3.32E+02           | 5.95E+47        | no                                          | 2.73E-01                                                     |                                        | No benchmark; higher than background |  |  |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                      | 1.05E+02           | 7.44E+03        | no                                          | 1.55E+01                                                     | 20                                     | Maximum exceeds benchmark            |  |  |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                      | 2.44E+03           | 1.74E+06        | no                                          | 2.09E+02                                                     | 60                                     | Maximum exceeds benchmark            |  |  |
| Cyaride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                      | 2.00E+00           | NC              | no                                          | NA                                                           |                                        | No comparison possible               |  |  |
| Di-N-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                      | 2.57E+01           | 2.84E+01        | no                                          | 3.12E-01                                                     | 200                                    | Maximum less than benchmark          |  |  |
| Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                      | 6.04E+01           | 2.26E+15        | no                                          | ND                                                           |                                        | No benchmark; ND in background       |  |  |
| Dibenzo(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                      | 3.17E+01           | NC              | no                                          | ND                                                           |                                        | No benchmark; ND in background       |  |  |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                      | 1.28E+01           | 1.63E+01        | no                                          | ND                                                           |                                        | No benchmark; ND in background       |  |  |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                      | 1.33E+03           | 8.60E+34        | no                                          | 5.02E-01                                                     |                                        | No benchmark; higher than background |  |  |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                      | 4.83E+02           | 7.75E+78        | no                                          | ND                                                           |                                        | No benchmark; ND in background       |  |  |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                      | 7.14E-01           | NC              | no                                          | NA                                                           |                                        | No comparison possible               |  |  |
| deno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                      | 1.36E+02           | NC              | no                                          | ND                                                           |                                        | No benchmark; ND in background       |  |  |
| ron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                     | 8.45E+04           | 4.98E+05        | no                                          | 3.80E+04                                                     |                                        | No benchmark; higher than background |  |  |
| .ead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                      | 1.15E+03           | NC 2745.00      | no                                          | 1.85E+02                                                     | 40.5                                   | Maximum exceeds benchmark            |  |  |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                     | 3.65E+04           | 2.74E+06        | no                                          | 8.83E+02                                                     |                                        | No benchmark; higher than background |  |  |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                      | 3.90E+00           | 1.78E+03        | no                                          | 1.77E-01                                                     |                                        | No benchmark; higher than background |  |  |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                     | 5.56E+01           | 8.47E+03        | no                                          | 1.14E-02                                                     |                                        | No benchmark; higher than background |  |  |
| N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                      | 1.00E-07           | NC 1505         | no                                          | NA                                                           |                                        | No comparison possible               |  |  |
| Vaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                      | 2.27E+03           | 1.59E+44        | no                                          | ND                                                           | <b>为此等上的。此类</b>                        | No benchmark; ND in background       |  |  |
| lickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                     | 1.51E+04           | 3.57E+06        | no                                          | 4.27E+01                                                     | 30                                     | Maximum exceeds benchmark            |  |  |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                      | 2.11E+03           | 3.01E+14        | no                                          | 3.35E-01                                                     | A SECRETARIO                           | No benchmark; higher than background |  |  |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                      | 4.22E-01           | NC FORTH        | no                                          | NA<br>1355 01                                                | 30                                     | Maximum less than benchmark          |  |  |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                      | 6.64E+02           | 5.05E+63        | no                                          | 4.35E-01                                                     | 0.01                                   | No benchmark; higher than background |  |  |
| Selerium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                      | 2.00E+00           | NC              | no                                          | ND                                                           | 0.21                                   | Maximum exceeds benchmark            |  |  |
| Silver<br>Total PCBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                      | 4.40E+01           | NC<br>E 45E 145 | no                                          | 1.35E-03                                                     | 2                                      | Maximum exceeds benchmark            |  |  |
| Total PCBs Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                      | 1.80E+04           | 5.45E+15        | no                                          | 1.20E+00                                                     | 0.371                                  | Maximum exceeds benchmark            |  |  |
| Marie and the supplemental field of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the supplemental states of the suppleme | 26 1616                                | 5.65E+00           | NC              | no                                          | NA NA                                                        | MISSING PLANSING                       | No comparison possible               |  |  |
| Thallium Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                      | 1.00E+00           | NC<br>4.05E+07  | no                                          | ND                                                           | 1                                      | Maximum within benchmark             |  |  |
| īn .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                      | 1.11E+02           | 1.05E+07        | no                                          | NA<br>ND                                                     | 50                                     | Maximum exceeds benchmark            |  |  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                      | 7.65E+01           | 2.05E+10        | no                                          | ND                                                           | 200                                    | Maximum less than benchmark          |  |  |
| Total Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                      | 2.36E+01           | 3.46E+01        | no                                          | ND                                                           |                                        | No benchmark; ND in background       |  |  |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                      | 1.00E-02           | NC              | no                                          | ND                                                           |                                        | No benchmark; ND in background       |  |  |
| /anadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                      | 9.50E+01           | 1.97E+02        | no                                          | 6.90E+01                                                     | 2                                      | Maximum exceeds benchmark            |  |  |
| inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                     | 3.95E+04           | 1.61E+07        | no                                          | 8.08E+02                                                     | 8.5                                    | Maximum exceeds benchmark            |  |  |
| ois(2-ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                      | 6.14E-01           | 1.10E+00        | no                                          | 3.22E-01                                                     |                                        | No benchmark; higher than background |  |  |

<sup>&</sup>lt;sup>1</sup>Efroymson et al., 1997. Preliminary Remediation Goals for Ecological Endpoints

Yellow shading indicates maximum site concentration exceeds benchmark.

Green shading indicates upper 95% UCL concentration (or maximum if 95% UCL not available) exceeds twice average background concentration (or constituent was not detected in background soil) and no benchmark is available.

NC= value was not calculated

NA= background soil concentrations were not available for these constituents

#### Table 7-29c Comparison of Site I Subsurface Soil Concentrations to Ecological Benchmarks Sauget Area I

| Constituent (mg/kg)      | Number of Samples for Maximum Statistics (mg/kg) |          | 95% UCL        | 95% UCL Represents<br>Site Concentration | Twice Average<br>Background Soil<br>Concentration<br>(mg/kg) | Soil Benchmark<br>(mg/kg) <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|--------------------------|--------------------------------------------------|----------|----------------|------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1,1,1-Trichloroethane    | 2                                                | 1.69E+00 | NC             | no                                       | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| ,2,4-Trichlorobenzene    | 8                                                | 8.26E+03 | 1.17E+06       | no                                       | NA                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ,2-Dichlorobenzene       | 6                                                | 3.24E+02 | 7.93E+04       | no                                       | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| ,3-Dichlorobenzene       | 2                                                | 7.01E+01 | NC             | no                                       | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| ,4-Dichlorobenzene       | 8                                                | 1.84E+03 | 1.26E+05       | no                                       | NA                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 4-Dichlorophenol         | 1                                                | 9.00E+00 | NC             | no                                       | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Butanone (MEK)           | 15                                               | 1.69E+01 | 9.61E+00       | yes                                      | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Methylnapthalene         | 7                                                | 1.69E+02 | 2.64E+03       | no                                       | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 4'-DDT                   | 1                                                | 4.31E+00 | NC             | no                                       | 1.41E-02                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 4'-DDD                   | 2                                                | 2.97E+01 | NC             | no                                       | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Chloroaniline            | 1                                                | 4.32E+01 | NC             | no                                       | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Methyl-2-pentanone       | 2                                                | 4.16E+00 | NC             | no                                       | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| cenapthene               | 1                                                | 1.40E+01 | NC             | no                                       | ND                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| cetone                   | 16                                               | 1.69E+01 | 2.17E+01       | no                                       | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| uminum                   | 16                                               | 1.35E+04 | 7.92E+03       | . yes                                    | 2.54E+04                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| nthracene                | 2                                                | 2.03E+02 | NC             | no                                       | 1.60E-01                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| ntimony                  | 3                                                | 6.66E+03 | 5.78E+53       | no                                       | 3.80                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| rsenic                   | 9                                                | 1.40E+01 | 2.05E+01       | no                                       | 1.91E+01                                                     | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| arium                    | 10                                               | 3.60E+03 | 4.82E+04       | no '                                     | 3.63E+02                                                     | 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| enzene                   | 10                                               | 2.41E+01 | 2.34E+02       | no                                       | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| enzo(a)anthracene        | 2                                                | 6.72E+00 | NC             | no                                       | 2.40E-01                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| enzo(a)pyrene            | 1                                                | 2.47E+00 | NC             | no                                       | 1.87E-01                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| enzo(b)fluoranthene      | 2                                                | 3.24E+01 | NC             | no                                       | 1.79E-01                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| enzoic acid              | 1                                                | 6.21E+01 | NC             | no                                       | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| eryllium                 | 1                                                | 1.53E+03 | NC             | no                                       | 1.51E+00                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ıtyl benzyl phthalate    | 1                                                | 1.39E+02 | NC             | no                                       | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| entachlorophenol(PCP)    | 1                                                | 1.92E+02 | NC             | no                                       | 7.42E-01                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| admium                   | 7                                                | 1.30E+01 | 1.84E+01       | no                                       | 8.65E+00                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| hlorobenzene             | 12                                               | 1.27E+02 | 7.16E+04       | no                                       | ND                                                           | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| hromium                  | 14                                               | 7.31E+02 | 3.60E+02       | yes                                      | 3.93E+01                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| hrysene                  | 2                                                | 5.59E+00 | 9.88E+00       | no                                       | 2.73E-01                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| obalt                    | 7                                                | 1.40E+02 | 1.05E+02       | no                                       | 1.55E+01                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| opper                    | 8                                                | 6.30E+02 | 2.10E+03       | no                                       | 2.09E+02                                                     | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| yanide                   | 3                                                | 3.18E+03 | 1.14E+80       | no                                       | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| i-N-butyl phthalate      | 8                                                | 2.03E+02 | 3.15E+04       | no                                       | 3.12E-01                                                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ibenzofuran              | 1                                                | 5.59E+00 | NC             | no                                       | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| iethylphthalate          | 1                                                | 1.69E+01 | NC             | no                                       | 1.87E-01                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| hylbenzene               | 10                                               | 1.51E+01 | 1.14E+02       | no                                       | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| uoranthene               | 3                                                | 2.03E+02 | 3.81E+13       | no                                       | 5.02E-01                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| uorene                   | 3                                                | 3.54E+01 | 7.33E+08       | no                                       | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| exachlorobenzene         | 7                                                | 1.27E+03 | 2.10E+03       | no                                       | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| exachloroethane          | 1                                                | 3.01E+00 | NC             | no                                       | NA NA                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| on                       | 16                                               | 4.15E+04 | 3.11E+04       | yes                                      | 3.80E+04                                                     | 40.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No benchmark; within background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ead                      | 15                                               | 2.33E+04 | 3.08E+05       | no                                       | 1.85E+02                                                     | 40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| anganese                 | 1                                                | 9.80E+01 | NC OCCUPANT    | no                                       | 8.83E+02                                                     | THE RESERVE THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PA | No benchmark; within background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ercury                   | 5                                                | 3.20E+00 | 2.69E+00       | no                                       | 1.77E-01                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| ethylene chloride        | 16                                               | 6.77E+00 | 1.64E+02       | no                                       | 1.14E-02                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| -Nitrosodiphenylamine    | 2                                                | 1.00E+02 | NC FREE OF     | no                                       | NA NA                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| aphthalene               | 7                                                | 5.15E+02 | 5.75E+05       | no                                       | ND<br>4 07E+04                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| ckel                     | 12                                               | 2.41E+03 | 2.50E+04       | no                                       | 4.27E+01                                                     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| nenanthrene              | 5                                                | 1.02E+02 | 6.24E+04       | no                                       | 3.35E-01                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| nenol                    | 2                                                | 2.70E+01 | NC<br>9 42E+05 | no                                       | NA<br>4.35E-01                                               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| rene                     | 4                                                | 4.93E+01 | 8.42E+05       | no                                       |                                                              | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| elenium<br>etal PCPs     | 1                                                | 1.32E+03 | NC 3 06E+03    | no                                       | ND                                                           | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum exceeds benchmark  Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| otal PCBs                | 5                                                | 3.43E+02 | 3.06E+02       | no                                       | 1.20E+00                                                     | 0.3/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NAMES OF THE OWNER, THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY O |  |  |
| etrachloroethene         | 5                                                | 5.27E+00 | 1.81E+01       | no                                       | NA<br>NA                                                     | FO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| n                        | 9                                                | 5.50E+01 | 1.15E+02       | no                                       | NA                                                           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| oluene                   | 11                                               | 7.79E+01 | 4.10E+02       | no                                       | ND                                                           | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| otal Xylenes             | 10                                               | 1.92E+01 | 2.70E+02       | no                                       | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| oxaphene                 | 1                                                | 4.93E+02 | NC             | no                                       | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| richloroethene           | 2                                                | 3.81E+00 | 1.22E+01       | no                                       | ND                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| anadium                  | 7                                                | 5.53E+02 | 8.22E+02       | no                                       | 6.90E+01                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| nc                       | 16                                               | 6.33E+03 | 5.00E+03       | yes                                      | 8.08E+02                                                     | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| s(2-ethylhexyl)phthalate | 7                                                | 1.31E+02 | 7.45E+02       | no                                       | 3.22E-01                                                     | Charles of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| ans-1,2-Dichloroethene   | 1                                                | 3.00E-03 | NC             | no                                       | NA                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |

<sup>&</sup>lt;sup>1</sup>Efroymson et al., 1997. Preliminary Remediation Goals for Ecological Endpoints

Yellow shading indicates maximum site concentration exceeds benchmark.

Green shading indicates upper 95% UCL concentration (or maximum if 95% UCL not available) exceeds twice average background concentration (or constituent

was not detected in background soil) and no benchmark was available. NC= value was not calculated NA= background soil concentrations were not available for these constituents

#### Table 7-29d Comparison of Site L Subsurface Soil Concentrations to Ecological Benchmarks Sauget Area I

|                                 |                                        |                      | - T                  |                                          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|---------------------------------|----------------------------------------|----------------------|----------------------|------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Constituent (mg/kg)             | Number of<br>Samples for<br>Statistics | Maximum<br>(mg/kg)   | 95% UCL              | 95% UCL Represents<br>Site Concentration | Twice Average<br>Background Soil<br>Concentration (mg/kg) | Soil Benchmark<br>(mg/kg) <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| ,2,4-Trichlorobenzene           | 3                                      | 7.90E+01             | 1.21E+02             | no                                       | NA                                                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| ,2-Dichlorobenzene              | 4                                      | 7.70E+00             | 7.23E+00             | no                                       | NA                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 3-Dichlorobenzene               | 1                                      | 4.30E+00             | NC                   | no                                       | NA                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| ,4-Dichlorobenzene              | 9                                      | 1.00E+02             | 1.29E+07             | no                                       | NA                                                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 4,6-Trichlorophenol             | 1                                      | 1.50E+00             | NC                   | no                                       | NA                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 4-Dichlorophenol                | 2                                      | 1.10E+01             | NC                   | no                                       | NA                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| -Butanone (MEK)                 | 3                                      | 1.00E+01             | 6.98E+61             | no                                       | ND                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Chlorophenol                    | 3                                      | 2.60E+00             | 3.92E+00             | no                                       | NA NA                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| -Methylnapthalene               | 6                                      | 3.10E+00             | 2.36E+00             | no                                       | ND                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| -Chloroaniline                  | 6                                      | 2.70E+02<br>1.67E-01 | 2.89E+14<br>1.49E+02 | no                                       | NA                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| -Methyl-2-pentanone             | 5                                      | 7.10E+00             | 6.19E+00             | no                                       | NA<br>NA                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| -Methylphenol<br>cenapthene     | 3                                      | 3.10E+00             | 3.47E+23             | no<br>no                                 | NA<br>ND                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No comparison possible  Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| cenapthylene                    | 1                                      | 2.80E-01             | NC                   | no                                       | ND                                                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| cetone                          | 6                                      | 4.56E+00             | 2.30E+04             | no                                       | ND<br>ND                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark, ND in background  No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| uminum                          | 11                                     | 1.28E+04             | 7.82E+03             | yes                                      | 2.54E+04                                                  | Sandy School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-School-Sch | No benchmark; within background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| nthracene                       | 3                                      | 4.20E+00             | 3.58E+31             | no                                       | 1.60E-01                                                  | ESCHOLISTE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE O | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ntimony                         | 1                                      | 3.20E+01             | NC NC                | no                                       | 3.80E+00                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| rsenic                          | 10                                     | 1.72E+02             | 4.08E+02             | no                                       | 1.91E+01                                                  | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| arium                           | 15                                     | 1.44E+03             | 5.47E+04             | no                                       | 3.63E+02                                                  | 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| enzene                          | 5                                      | 5.70E+00             | 6.67E+13             | no                                       | ND                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| enzo(a)anthracene               | 4                                      | 8.60E+00             | 9.54E+08             | no                                       | 2.40E-01                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| enzo(a)pyrene                   | 3                                      | 5.30E+00             | 8.81E+35             | no                                       | 1.87E-01                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Senzo(b)fluoranthene            | 3                                      | 5.40E+00             | 2.48E+24             | no                                       | 1.79E-01                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| enzo(g,h,l)perylene             | 1                                      | 2.70E-02             | NC                   | no                                       | 1.27E-01                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| enzo(k)fluoranthene             | 1                                      | 4.60E+00             | NC                   | no                                       | 2.08E-01                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| enzoic acid                     | 2                                      | 3.20E+00             | NC                   | no                                       | NA                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| utyl benzyl phthalate           | 1                                      | 5.40E+00             | NC                   | no                                       | ND                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| entachlorophenol(PCP)           | 4                                      | 5.82E+01             | 2.13E+02             | no                                       | 7.42E-01                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| cadmium                         | 6                                      | 4.20E+01             | 1.32E+10             | no                                       | 8.65E+00                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| calcium                         | 6                                      | 7.55E+04             | 6.01E+04             | no                                       | 3.35E+04                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| chlorobenzene                   | 8                                      | 5.30E+00             | 2.41E+03             | no                                       | ND                                                        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Chloroform                      | 3                                      | 2.03E+01             | 2.66E+48             | no                                       | NA NA                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| chromium                        | 10                                     | 2.70E+01             | 2.36E+01             | yes                                      | 3.93E+01                                                  | COLUMN TO SERVICE SERVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No benchmark; within background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| chrysene                        | 4                                      | 8.20E+00             | 7.34E+08             | no                                       | 2.73E-01                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Cobalt                          | 7                                      | 9.00E+00             | 8.67E+00             | no                                       | 1.55E+01                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Copper                          | 10                                     | 3.08E+02             | 4.33E+02             | no                                       | 2.09E+02                                                  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Cresol(m,p)                     | 1                                      | 1.90E-01<br>4.60E-01 | 2.58E-01<br>NC       | no                                       | NA NA                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| cyanide<br>vi-N-butyl phthalate | 4                                      | 2.78E+00             | 3.15E+03             | no<br>no                                 | NA<br>3.12E-01                                            | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No comparison possible  Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| libenzofuran                    | 2                                      | 3.00E+00             | NC NC                | no                                       | ND                                                        | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| iethylphthalate                 | 2                                      | 1.00E+00             | NC                   | no                                       | 1.87E-01                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| ithylbenzene                    | 1                                      | 4.00E-02             | NC                   | no                                       | ND                                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| luoranthene                     | 4                                      | 1.60E+01             | 2.05E+09             | no                                       | 5.02E-01                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark, higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| luorene                         | 2                                      | 5.00E+00             | NC NC                | no                                       | ND ND                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| lexachlorobenzene               | 1                                      | 4.80E+00             | NC                   | no                                       | NA NA                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| lexachloroethane                | 1                                      | 4.90E-02             | NC                   | no                                       | NA NA                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No comparison possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| deno(1,2,3-cd)pyrene            | 2                                      | 2.90E+00             | NC                   | no                                       | ND                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| on                              | 11                                     | 2.40E+04             | 1.45E+04             | yes                                      | 3.80E+04                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ead                             | 13                                     | 6.64E+02             | 5.83E+03             | no                                       | 1.85E+02                                                  | 40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| lagnesium                       | 6                                      | 9.44E+03             | 7.92E+03             | no                                       | 1.72E+04                                                  | 医牙骨炎 化邻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No benchmark; within background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| anganese                        | 11                                     | 7.82E+02             | 3.68E+03             | no                                       | 8.83E+02                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; within than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ercury                          | 7                                      | 1.80E+00             | 6.02E+01             | no                                       | 1.77E-01                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ethylene chloride               | 5                                      | 2.28E+00             | 5.92E+07             | no                                       | 1.14E-02                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| aphthalene                      | 4                                      | 7.30E+00             | 7.72E+06             | no                                       | ND                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ickel                           | 10                                     | 2.39E+03             | 2.67E+03             | no                                       | 4.27E+01                                                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| henanthrene                     | 5                                      | 2.30E+01             | 1.33E+06             | no                                       | 3.35E-01                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| henol                           | 5                                      | 1.60E+01             | 1.57E+01             | no                                       | NA                                                        | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum less than benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| otassium                        | 6                                      | 2.28E+03             | 1.86E+03             | no                                       | 4.73E+03                                                  | THE RESERVE OF THE PERSON NAMED IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No benchmark; within background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| yrene<br>etal PCRe              | 4                                      | 2.30E+01             | 3.48E+10             | no                                       | 4.35E-01                                                  | 0.274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No benchmark, higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| otal PCBs                       | 2                                      | 5.00E+02             | NC                   | no                                       | 1.20E+00                                                  | 0.371<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Maximum exceeds benchmark  Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| oluene                          | 7                                      | 4.00E+02             | 3.21E+09             | no                                       | ND                                                        | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A STATE OF THE RESIDENCE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE |  |
| otal Xylenes                    | 4                                      | 1.10E+01             | 2.48E+06             | no                                       | ND SOOT OF                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No benchmark; ND in background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| anadium                         | 9                                      | 1.31E+02             | 7.51E+01             | yes                                      | 6.90E+01                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum exceeds benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| inc<br>s(2-ethylhexyl)phthalate | 11<br>6                                | 4.24E+03<br>2.20E+00 | 1.61E+04<br>1.61E+00 | no<br>no                                 | 8.08E+02<br>3.22E-01                                      | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum exceeds benchmark  No benchmark; higher than background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

<sup>&</sup>lt;sup>1</sup>Efroymson et al., 1997. Preliminary Remediation Goals for Ecological Endpoints

Yellow shading indicates maximum site concentration exceeds benchmark.

Green shading indicates upper 95% UCL concentration (or maximum if 95% UCL not available) exceeds twice average background concentration (or constituent

was not detected in background soil) and no benchmark available.

NC= value was not calculated

NA= background soil concentrations were not available for these constituents



|                | Assessment Endpoint 1  Sustainability of warm water fish  Welghing Factors (increasing Confidence or Weight) |                                                                                       |                                                                                                                                             |                                                                                                                                                                                                                                               | Assessment Endpoint                                                                                             | Assessment Endpoint 3  Survival, growth, and reproduction of bald eagles |                                                                                                                           |                                                                                                                                       | Assessment Endpoint 4 Survival, growth, and reproduction of terrestrial wildlife in |                                                                              |               |             |
|----------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------|-------------|
| Harm/Magnitude |                                                                                                              |                                                                                       |                                                                                                                                             | Survival, growth, and reproduction of aquatic wildlife species  Weighing Factors (Increasing Confidence or Weight)                                                                                                                            |                                                                                                                 |                                                                          | Weighing Factors (Increasing Confidence or Weight)                                                                        |                                                                                                                                       |                                                                                     | floodplain  Weighing Factors (Increasing Confidence or Weight)               |               |             |
|                | Low Weight                                                                                                   | Medium Weight                                                                         | $\longrightarrow$                                                                                                                           | Low Weight                                                                                                                                                                                                                                    | Medium Weight                                                                                                   | High Weight                                                              | Low Weight                                                                                                                |                                                                                                                                       | High Weight                                                                         | Low Weight                                                                   | Medium Weight | High Weight |
| Yes/High       |                                                                                                              |                                                                                       |                                                                                                                                             |                                                                                                                                                                                                                                               |                                                                                                                 |                                                                          |                                                                                                                           |                                                                                                                                       |                                                                                     |                                                                              |               |             |
| Yes/Low        | 1c - COPCs exceed<br>sediment guidelines for<br>benthic invertebrates                                        | 1a - fish body<br>burdens indicate<br>exposure to site-<br>related COPCs              |                                                                                                                                             | 2d - food chain modeling<br>indicated potential risk to<br>great blue heron that eats<br>Borrow Pit Lake fish due<br>to mercury                                                                                                               | 2b, 2d, 2e - concentrations<br>in plants, fish, clams, and<br>shrimp indicate exposure to<br>site-related COPCs |                                                                          |                                                                                                                           | 3a - concentrations in<br>fish indicate potential<br>exposure to site-related<br>COPCs - measure of<br>exposure rather than<br>effect |                                                                                     | 4a - concentratons of COPCs in surface soil exceed some screening benchmarks |               |             |
|                |                                                                                                              | 1a - mercury<br>concentrations in<br>some fish exceed<br>toxic benchmark              |                                                                                                                                             | 2e food chain modeling<br>indicated potential risk to<br>muskrat that eats enails<br>from CS-F due to<br>aluminum, mitmony,<br>copper, and dioxin (based<br>on BAF modeling)                                                                  |                                                                                                                 |                                                                          |                                                                                                                           |                                                                                                                                       |                                                                                     |                                                                              |               |             |
|                |                                                                                                              | 1c - sediments<br>exhibit toxicity<br>(similar to other<br>water bodies in<br>region) |                                                                                                                                             | 2e food chain modeling indicated potential risk to tree swallow that eats aquatic insacts from CSF and Borrow Pit Lake due to alaminum, chromium, mercury, zine, PCBs, DDT, copper, and dioxin (based on BAF modeling)                        |                                                                                                                 |                                                                          |                                                                                                                           |                                                                                                                                       |                                                                                     |                                                                              |               |             |
| Undetermined   |                                                                                                              |                                                                                       |                                                                                                                                             |                                                                                                                                                                                                                                               | 9.6                                                                                                             |                                                                          |                                                                                                                           |                                                                                                                                       |                                                                                     |                                                                              |               |             |
|                |                                                                                                              | 1e - benthic<br>community reflects<br>available habitat                               | 1h - COPCs that exceed<br>surface water criteria are<br>soil constituents (Al, Ba,<br>Fe, Mn) and likely to be<br>due to entrained sediment | 2a - species use of habitat<br>is high                                                                                                                                                                                                        | Ze - surface water<br>concentrations do not present<br>a risk to wildlife                                       |                                                                          | 3a - food chain<br>modeling indicated no<br>risk to bald eagles eating<br>fish from Borrow Pit or<br>Dead Creek Section F |                                                                                                                                       |                                                                                     |                                                                              |               |             |
| No Risk        |                                                                                                              |                                                                                       |                                                                                                                                             | 2b, 2e - food chain<br>modeling indicated no<br>risk to mallards that eat<br>plants or snails (CS-F);<br>risks to muskrats eating<br>plants (CS-F) and classified<br>(BPL) due to aluminum<br>is indistinguishable<br>from background risks   |                                                                                                                 |                                                                          |                                                                                                                           |                                                                                                                                       |                                                                                     |                                                                              |               |             |
|                |                                                                                                              |                                                                                       |                                                                                                                                             | 2d, 2e - food chain<br>modeling indicated no<br>risk to river otter that<br>eats fish (CS-F and<br>BPL) or clams (BPL),<br>no risk to mallard that<br>eats shring (BPL), no<br>risk to heron that eat CS<br>F fish (based on BAF<br>modeling) |                                                                                                                 |                                                                          |                                                                                                                           |                                                                                                                                       |                                                                                     |                                                                              |               |             |

|                  | FIELD OBSERVATIONS |
|------------------|--------------------|
| Line of Evidence | LABORATORY         |
| Category Key     | LITERATURE         |
|                  | MODELING           |





Figure 1-1: Site Locus and Sample Locations
Sauget Area 1
Sauget, Illinois

Figure 2-1: Dead Creek Section F and Borrow Pit Lake Sauget Area 1 Sauget, Illinois







Figure 2-2: Reference Area Locus Sauget Area 1 Sauget, Illinois



Figure 2-3: Monroe County Reference Areas Sauget Area 1 Sauget, Illinois



Figure 3-1: Ecological Conceptual Site Model for Dead Creek and Borrow Pit Lake
Sauget Area I
Sauget, Illinois



Note: This is a conceptual model that gives an overall view of potential fate and transport of COPCs and potential routes of exposure. It is not intended to represent every exposure that could possibly occur at the site. Other possible routes of exposure not depicted are:

- 1. Piscivorous birds could be exposed via ingestion of surface water.
- 2. Omnivorous fish could be exposed via incidental ingestion of sediment and ingestion of aquatic plants.
- 3. Piscivorous fish could be exposed via incidental ingestion of sediment.

Figure 3-2: Ecological Conceptual Site Model for Terrestrial Receptors and Dead Creek Floodplains
Sauget Area I
Sauget, Illinois



Note: Screening levels (Efroymson et al., 1997) also take into account exposure of carnivorous mammals and raptors via ingestion of small herbivorous and vermivorous mammals.





Figure 5-3

**Industry Specific** 

SEDIMENT SAMPLE LOCATIONS



FILE NO. 25501.FIG4 SEPTEMBER 2000



SAUGET AREA 1
SUPPORT SAMPLING PLAN
SAUGET AND CAHOKIA, ILLINOIS

SOLUTIA INC. REMEDIATION TECHNOLOGY GROUP ST. LOUIS, MISSOURI



Figure 5-4: Biota Sampling Summary Sauget Area 1 Sauget, Illinois





Figure 7-1
Summary of Functional Feeding Group (FFG) Abundance
Dead Creek Section F, Borrow Pit Lake, and Reference Areas
Sauget Area I







FC: Filter/collector GC: Gatherer/collector OM: Omnivore PA: Parasite PI: Piercer PR: Predator SC: Scraper SH: Shredder





# FOR SAUGET AREA I

SAUGET, ST. CLAIR COUNTY, ILLINOIS

August 11, 1999

# Prepared for:

Solutia, Inc. 10300 Olive Boulevard St. Louis, Missouri 63166-6760

# Prepared by:

Menzie-Cura & Associates, Inc. One Courthouse Lane, Suite Two Chelmsford, Massachusetts 01824 Phone: (978) 453-4300

# **TABLE OF CONTENTS:**

| 1.0 INTRODUCTION                                                                       | 1      |
|----------------------------------------------------------------------------------------|--------|
| 1.1 GOALS AND OBJECTIVES                                                               | 1      |
| 2.0 SITE CONCEPTUAL MODEL                                                              | 3      |
| 2.1 ECOLOGICAL OBSERVATIONS 2.2 SITE CONCEPTUAL MODEL                                  | 3<br>6 |
| 3.0 SELECTION OF CHEMICALS OF ECOLOGICAL CONCERN (COECS)                               | 10     |
| 4.0 IDENTIFICATION OF RECEPTORS, ASSESSMENT ENDPOINTS, AND MEASURES OF EFFECT          | 11     |
| 4.1 RECEPTORS                                                                          | 11     |
| 4.2 ASSESSMENT ENDPOINTS                                                               | 16     |
| 4.3 SELECTION OF MEASURES OF EFFECTS                                                   |        |
| 4.3.1 Measures of Effects for Assessment Endpoint 1, Sustainability of Warm Water Fish | 19     |
| 4.3.2 Measures of Effects Associated with Assessment Endpoint 2                        | 21     |
| 4.3.3 Measures of effects Associated with Assessment Endpoint 3                        |        |
| 4.4 STRUCTURE OF WILDLIFE EXPOSURE MODELS                                              |        |
| 5.0 RISK CHARACTERIZATION                                                              | 27     |
| 5.1 Use of Hazard Quotients                                                            | 27     |
| 5.2 TOXICITY REFERENCE VALUES FOR WILDLIFE                                             | 27     |
| 6.0 DISCUSSION OF UNCERTAINTIES AND EXPOSURE ASSUMPTIONS                               | 30     |
| 7.4 REFERENCES                                                                         | 31     |

#### 1.0 INTRODUCTION

### 1.1 Goals and Objectives

This document is a workplan for a baseline ecological risk assessment at the Sauget Area I in Sauget, Illinois. The plan addresses Dead Creek Segments B, M, C, D, E, and F, and recent USEPA comments regarding the development of a baseline ecological risk assessment for this area (USEPA, 1999). It is also contingent upon a planned field reconnaissance of the subject areas. In particular, this planned reconnaissance will help to finalize sampling locations, receptors, and the location of a reference area. Observations made during the reconnaissance may necessitate alterations in the workplan. We will communicate such proposed alterations in a technical amendment to the plan, should they occur.

The plan follows current United States Environmental Protection Agency (USEPA) guidance in:

Ecological Risk Assessment Guidance For Superfund: Process For Designing and Conducting Ecological Risk Assessments (USEPA, 1997a); and

Guidelines for Ecological Risk Assessment (EPA/630/R-95/002F, April, 1998).

The USEPA 1997 guidance document provides an eight-step process. Steps 1 and 2 of this process are a screening level assessment, and Steps 3 through 7 provide guidance for a baseline assessment. The screening level assessment may conclude that site data indicate either:

a negligible ecological risk and therefore the site requires no further study; or, there is (or might be) a risk of adverse ecological effects, and the ecological risk assessment process will continue.

Previously, the USEPA conducted a Preliminary Ecological Assessment of Dead Creek Segment F, which essentially provides the screening analyses required in Steps 1 and 2 of the guidance (USEPA, 1997b). This USEPA assessment concluded that the site warrants further investigation. Therefore this Work Plan addresses the various elements of Steps 3 through 7 of USEPA guidance for designing a baseline ecological risk assessment to Segment F, as well as Segments B, C, D, E even though they have not been subject to a prior screening level assessment. The workplan includes:

- Description of a Site Conceptual Model;
- Selection of Chemicals of Ecological Concern;
- Identification of Assessment Endpoints:
- Selection of Receptors;
- Selection of Measures of effects and their relation to assessment endpoints;
- Risk Characterization;
- Discussion of Uncertainties and Assumptions.

The workplan will explain how the baseline risk assessment will use data described in the Quality Assurance Project Plan/Field-Sampling Plan (QAPP/FSP), that has been prepared and

submitted separately. The FSP for the baseline ecological risk assessment describes the details of the field sampling effort as well as the data analysis methods and data quality objectives (DOOs). These include methods for:

conducting a field reconnaissance;

collecting vegetation and benthic organisms in Creek Sectors B to F, M, and the reference areas, and analyzing them for target analytes;

collecting forage fish, predator fish, bottom fish and crayfish in Creek Sector F and the reference areas, and analyzing them for target analytes (we will also collect these organisms in segments B,C,D,E, and, M if observed in those areas);

collecting sediments in Creek Sectors B to F, M, and the reference areas for sediment toxicity testing;

collecting sediments in Creek Sectors B to F, M, and the reference areas for benthic community analysis.

Please refer to the QAPP/FSP for details of field sampling, number of stations, and station locations, and analytical methods.

## 2.0 SITE CONCEPTUAL MODEL

## 2.1 Ecological Observations

We will conduct a reconnaissance survey to provide more details and more current information regarding ecological conditions at the various creek sectors. This section provides a description of the site as observed on 29-30 July 1996, when Menzie-Cura & Associates, Inc. personnel (David Peterson, Certified Wildlife Biologist), visited the Sauget Area 1 in Sauget and Cahokia, Illinois and conducted an evaluation of local habitats. The areas observed at that time included ecological resources along: Dead Creek, Prairie du Pont Creek, the associated wetlands, Cahokia Chute, and the Mississippi River. In addition, we contacted federal/state agencies and private conservation organizations concerning additional ecological information available about the area (see Attached List).

Potentially sensitive environments in the Dead Creek area include: Habitat Known to be Used by Federal Designated or Proposed Endangered or Threatened (T/E) Species, Habitat Known to be Used by State Designated Endangered or Threatened Species, and Wetlands.

Habitat Known to be Used by Federal Designated or Proposed Endangered or Threatened Species

According to the records of the Illinois Department of Natural Resources' Natural Heritage Inventory, the only federally endangered or threatened species in the study area is the federally threatened bald eagle (Haliaeetus leucocephalus). In 1993, a pair of eagles unsuccessfully attempted to nest at the southern tip of Arsenal Island, where the ditched portion of Prairie du Pont Creek enters the Mississippi River. The pair apparently was scared off the site. The next year the pair returned to the island, but no monitoring was conducted to determine if they successfully nested. During the late July 1996 survey we did not observe any eagles in the study area. Remains of a large stick nest were observed at the southern tip of Arsenal Island, but it did not appear to have been used during 1996. We will also check the State of Missouri files for State Designated Endangered or Threatened Species.

Portions of the area suitable for eagle foraging include waterbodies large enough to support large fish such as carp and catfish. The Mississippi River, the channelized section of Prairie du Pont Creek, and a borrow pond at the lower end of Dead Creek all appear to support large fish and provide enough open water for eagles to fish. No foraging eagles were observed during the site visit, nor have local people in the area seen eagles in the vicinity.

Habitat Known to be Used by State Designated Endangered or Threatened Species

The Illinois Natural Heritage Inventory did not have any records of state-listed endangered or threatened species in the study area. However a number of state-listed wading birds were observed throughout the wetlands and waterways. Illinois endangered species observed were

little blue heron (Egretta caerulea), snowy egret (Egretta thula)<sup>1</sup>, and black-crowned night heron (Nycticorax nycticorax). Great egret (Casmerodius albus), an Illinois threatened species, was also observed. Small numbers (one to ten individuals) of these wading birds were found foraging along sections of Dead Creek, the ditched length of Prairie du Pont Creek, Cahokia Chute, and the Mississippi River. The largest concentrations of foraging herons (approximately ten individuals at a location) were observed at the confluence of Dead Creek and the ditched Prairie du Pont Creek, and where the ditched Prairie du Pont flows into the Mississippi. These areas likely support the best concentrated fishing areas for wildlife along the waterways.

No wading bird colonies were located within the study area. However, the Illinois Natural Heritage Inventory has documented two 1000-2000 nest mixed-species colonies in East St. Louis. The closest of these two colonies is approximately one mile east of the Monsanto plant near the Alton & Southern rail yards in Alorton. The second site is over two miles to the north at Audubon Avenue and 26th Street. These two colonies contain the only breeding little blue heron and snowy egret in Illinois. In addition, black-crowned night heron, great egret, cattle egret (Bubulcus ibis), great blue heron (Ardea herodias), and green-backed heron (Butorides virescens) nest in the colonies.

In 1988, because the region is heavily industrialized with numerous Superfund sites, the U.S. Fish & Wildlife Service (USFWS) collected black-crowned night heron and little blue heron eggs from the Alorton colony for contaminant analysis (Young, 1989 - unpublished draft). Sediment samples were also taken in areas of observed wading bird foraging around the East St. Louis region. No testing was done of sediments in the Dead Creek drainage. PCB's, DDE, and metals were detected at varying levels from the wading bird eggs.

The observed endangered and threatened wading birds forage on a wide range of aquatic organisms, such as fish, frogs, and crayfish, as well as some terrestrial species such as reptiles and insects. The USFWS study found that wading birds forage over a wide area around East St. Louis. The Dead Creek/Prairie du Pont wetlands system composes a relatively small percentage of the available wetland foraging area in the region.

#### Wetlands

Wetlands in the study area consist of riparian woods, shrub swamp, marsh, and wet meadow located adjacent to the area's waterways. Drainage from much of the industrial area at the head of Dead Creek is routed away from the Dead Creek drainage via the local municipal sewer system. Dead Creek begins south of an industrial zone adjacent to the Cerro property and flows slowly south through residential neighborhoods. The stream is bordered by a dense, narrow band of riparian trees and shrubs, including cottonwood, willow, mulberry, and box elder (Photo B-1). Homeowners have cleared to the creek's edge and have established lawn along several sections. Within the residential area (east of Route 3) the stream is crossed, via

<sup>&</sup>lt;sup>1</sup> Also endangered in Missouri.

culverts, by seven roads. At the Judith Lane road crossing, the road culvert has been set approximately one foot higher than the observed water level, apparently to allow drainage of the channel only during high-water events. The pooled channel behind this road is connected to a small pond located at the end of Walnut Street where herons, painted turtle, wood duck, fish, and evidence of beaver (chewed trees, see Photo B-2) were observed (see Table B-1).

Downstream of the impounded channel, Dead Creek segments C and D flow south through bordering wetlands (Photo B-3, note Green Backed Heron in center of photograph). For a short section, adjacent to Parks College, the creek is routed through a culvert under a parking area. Throughout the rest of the creek's length it is bordered by either riparian vegetation (Photo B-4) or lawn (Photo B-5). Emergent and aquatic vegetation occurs along the creek's shores. Wildlife observed in and adjacent to the stream included herons, turtles, songbirds, squirrel, and raccoon. Small fish and frogs were observed throughout the creek's length.

West of Route 3, the creek flows south and west through the American Bottoms floodplain. This area contains active and abandoned agricultural land divided by levees and railroad right-of-ways. After crossing Route 3 Dead Creek flows under a railroad right-of-way and is joined by a stream draining land from the north. North of the confluence of these two waterways is a road that cuts SE to NW across the floodplain, connecting Cahokia to Fox Terminal. To the north (upstream) of this road is a gas tank farm and fields. The stream was observed to flow south under the Fox Terminal road and into Dead Creek. A second dry culvert was observed west of the stream crossing in the vicinity of the north end of the Dead Creek borrow pond. This culvert appeared to drain the land north of the Fox Terminal road during high-water events when water from the tank farm and surrounding area becomes impounded behind the roadway.

Downstream of the confluence of the two waterways, Dead Creek flows through riparian woods and shrubs and into a borrow pond. The pond appears to have been excavated during the construction of the local levee system. The United States Geological Survey (USGS) map of the area (Cahokia) indicates that the pond was dug to its current shape sometime after 1954. The pond is the largest non-flowing water body in the area. Its shore is surrounded with mature riparian trees and emergent wetland vegetation. Ducks, herons, and fish were observed in the pond.

Dead Creek forms the outlet of the pond, draining south through a pump station under the levee (Photo B-6) and into the ditched section of Prairie du Pont Creek. At the confluence and above it (Photo B-7) the ditch shore is vegetated with grasses, herbs, and small shrubs. The channel flows northwest to Arsenal Island on the Mississippi River. Arsenal Island contains areas of mature riparian woods and agricultural fields. The shoreline of the lower end of the ditch (referred to on the USGS map as Cahokia Chute) is lined with riparian woods, principally large cottonwoods and willow (Photo B-8). Large catfish, wood duck, wading birds, and turtles were observed in the channel. Cahokia Chute forms the eastern border of Arsenal Island. The waterway flows north to south, draining the region northeast of the island. It appears that during times when the Mississippi River is high, the River uses the Chute channel to flow around Arsenal Island. Any water from the Dead Creek watershed

therefore only flows through the lower half of the Cahokia Chute between the confluence with the ditched Prairie du Pont and the Mississippi River. The remains of the bald eagle nest and congregating wading birds were observed at the southern tip of Arsenal Island, where the Chute flows into the Mississippi.

Almost the entire length of the Dead Creek study area is bordered by wetlands. Most of the wetlands are confined to a narrow riparian strip adjacent to the Creek. More extensive wetlands occur west of Route 3, particularly in the vicinity of the borrow pond. The Creek's wetlands appeared healthy with no evidence of ecological stress (no chlorotic plants, no nonspecific stands of vegetation, no areas of dying or dead vegetation, observable presence of diverse pelagic communities in the stream, no observed surface water sheens or sediment staining). The wetlands also appeared to support a diverse aquatic and terrestrial wildlife community, with abundant prey species (i.e. fish, frogs, turtles) and predatory species (i.e. wading birds, waterfowl, raccoons) present. The wetlands west of Route 3 receive water from both Dead Creek and from drainages to the north, including the area around the gas tank farm.

### Summary

During the field survey and subsequent contact with state and federal agencies, three categories of sensitive environments were located in the Monsanto/Dead Creek area: Habitat Known to be Used by Federal Designated or Proposed Endangered or Threatened Species, Habitat Known to be Used by State Designated Endangered or Threatened Species, and Wetlands. These three categories are interrelated with the rare species documented all utilizing wetland/waterway habitats. The rare species observed forage over a wide area, with the Dead Creek watershed forming only a small part of their available feeding territory.

The Dead Creek watershed also appears to support a diverse plant and animal community. While much of the Creek flows through residential neighborhoods, sufficient natural riparian vegetation remains to support local aquatic and terrestrial communities. No evidence of ecological stress was evident in the upper Creek, nor anywhere else along the waterway's path to the Mississippi.

### 2.2 Site Conceptual Model

The foundation of an ERA work plan is the site conceptual model. It integrates information from the preliminary observations at the site (usually incorporated into the screening level risk assessment). According to EPA guidance, the conceptual model addresses:

environmental setting and contaminants known or suspected to exist at the site; contaminant fate and transport mechanisms; mechanisms of ecotoxicity and likely categories of potentially affected receptors; complete exposure pathways.

Figure 1C-1 provides a Preliminary Conceptual Model diagram. It illustrates potential contaminant transport from the contaminated media through the potentially affected habitats to important ecological receptors. We will revisit and, if necessary, amend this model after completion of the site reconnaissance survey.

The site conceptual model is consistent with our knowledge of the area to date as described in our 1996 survey and in the recent EPA Preliminary Risk Assessment.

Environmental Setting and Contaminants Known Or Suspected To Exist At The Site

Subsection 2.1 describes the environmental setting. The EPA Preliminary Ecological Risk Assessment describes the contaminants known or suspected to be at the site. The environmental setting is an aquatic environment with extensive wetlands, riparian woods, narrow, shallow streams, broader semi-impounded basins, and floodplain.

The likely contaminants include those addressed in the EPA assessment:

metals (arsenic, barium, cadmium, chromium, lead, mercury);

PCBs:

PAHs:

dioxin.

The eventual execution of the QAPP/FSP will analyze for a broader list of potential contaminants in sediments, surface water, and biota. We will evaluate those data within the baseline risk assessment and add contaminants as appropriate based on: frequency of occurrence within a particular media, likely bioavailabilty, evidence for bioaccumulation, toxicity to likely receptors, and comparison of concentrations to a reference area. Obviously, the addition of more contaminants of concern may require changes in the conceptual model for the baseline risk assessment depending upon the fate, transport, and biological properties of these contaminants. The EPA guidance recognizes and encourages this iterative process.

### Contaminant Fate and Transport Mechanisms

In an aquatic system such as occurs over Dead Creek Sectors B through F, and M, various physical, chemical, and biological transport mechanisms will affect the fate of contaminants. All the contaminants listed in the EPA Preliminary Assessment adhere to particulate matter to varying degrees. Therefore, the conceptual model should address those mechanism affecting particle distribution in aquatic systems. These include:

particulate runoff from the watershed,
deposition in areas of sluggishly flowing waters,
erosion in faster moving stream segments, and
resuspension of particulates from the stream bed and over the floodplain.

Chemicals with lower particle affinities may be more subject to dissolution in and transport by surface water. Increasing solubility generally correlates with increasing bioavailability. In particular, various metals on the preliminary list of contaminants are subject to transport in soluble form, depending on their valence states.

The major biological mechanisms affecting fate and transport are:

biological uptake directly from environmental media; and,

bioaccumulation through ingestion of prey or media;

biomagnification through the food chain.

Several of the contaminants are subject to one or all of these biological fate and transport mechanisms.

The baseline risk assessment will describe each contaminant of concern (including any added after the next sampling rounds) in terms of the transport mechanisms most likely to affect it. The EPA Preliminary Risk Assessment provides a description of the likely transport mechanisms for each of the contaminants or classes of contaminants listed.

Mechanisms of Ecotoxicity And Likely Categories Of Potentially Affected Receptors

The EPA Preliminary Risk Assessment summarizes the ecotoxicological properties of the potential contaminants in sufficient detail to develop the first iteration of the conceptual model. As indicated in the summaries, the various contaminants may affect the survival and reproductive capacity of benthic biota, fish, invertebrates, vascular plants, and algae.

The baseline risk assessment will provide detailed ecotoxicity profiles for the final list of contaminants of concern. These will include summaries of the toxicity of these chemicals to receptors likely to occur in the Dead Creek environment (insofar as these exist), and a selection of the most appropriate toxicity factor to use in the baseline risk assessment.

The categories of likely potentially affected receptors for an aquatic system such as the Dead Creek, Sectors B through F, and M include:

The benthic macroinvertebrate community;

warm water fish (e.g., largemouth bass);

waterfowl (e.g. mallard) that feed on plants and macroinvertebrates (including crayfish); piscivorous birds (e.g., great blue heron, bald eagle);

aquatic mammals (e.g. muskrat) that feed on plants and macroinvertebrates (including crayfish);

aquatic mammals (e.g., river otter or racoon) that feed on fish and macroinvertebrates (including crayfish).

There is also some potential for exposure to terrestrial plants and wildlife from exposure to contaminants in soil or through exposure to soil based food chains.

### Complete Exposure Pathways

The USEPA guidance indicates that the risk assessment must identify complete exposure pathways before a quantitative evaluation of toxicity to allow the assessment to focus on those contaminants that can reach ecological receptors. The likely complete exposure pathways in Dead Creek, Sectors B through F, and M are:

sediment to benthic invertebrates via direct contact and ingestion;

sediment and surface water to aquatic plants via uptake;

surface water to invertebrates and fish though direct contact and ingestion;

benthic biota (including crayfish) to higher order predators (e.g. fish) through food chain;

forage fish and crayfish to piscivorous fish, mammals, or birds;

soil to soil invertebrates along the creek banks or floodplain;

soil to plants or wildlife along the creek banks or floodplain.

### 3.0 SELECTION OF CHEMICALS OF ECOLOGICAL CONCERN (COECs)

As indicated in subsection 2.2, the USEPA Preliminary Risk Assessment provides an initial list of contaminants of ecological concern (COECs). The QAPP/FSP includes target analytes beyond these initial COECs. These target analytes include: VOCs, metals, SVOCs, PCBs, and pesticides.

The baseline risk assessment will re-evaluate the COEC list based in the results of the proposed sampling and analysis of surface water, sediment, and biota. The criteria for final selection include:

Comparison to Background – the baseline risk assessment will eliminate a contaminants which occurs below the maximum concentration measured at a local reference area for a given medium;

Frequency of Detection – the baseline risk assessment will retain a contaminant detected in more than 5% of samples for a particular media.

For those compounds which exceed background and/or are frequently detected in a particular medium, the baseline risk assessment will add them to the final list of COECs if they exhibit any of the following characteristics:

Toxic - exhibit toxicity (based on scientific literature) to the receptors likely to occur along the Dead Creek, Sectors B through F and M, or adjacent habitats;

Bioaccumulative – are likely to bioconcentrate or biomagnify through the food chains represented in Dead Creek, Sectors B through F, and M, and adjacent habitats;

Persistent – are likely to remain in environmental media over time frames that are long relative to the life spans or exposure periods of receptors likely to occur in Dead Creek, Sectors B through F, and M, and adjacent habitats.

The ERA will include a current review of toxicological information for all COECs on the final list. Where available, this information will include toxicity benchmarks that are applicable to water and sediments.

### 4.0 IDENTIFICATION OF RECEPTORS, ASSESSMENT ENDPOINTS, AND MEASURES OF EFFECT

### 4.1 Receptors

This subsection of the ecological risk assessment identifies the receptors (receptor species) and provides the rationale for their selection as representative of the species that occur or are likely to occur near the site. This subsection also provides an ecological characterization of each receptor for eventual use in developing the exposure assessment.

The selected receptors represent those types of organisms most likely to encounter the contaminants of concern at the site. They include a reasonable (although not comprehensive) cross-section of the major functional and structural components of the ecosystem under study based on:

relative abundance and ecological importance within the selected habitats; availability and quality of applicable toxicological literature; relative sensitivity to the contaminants of concern; trophic status; relative mobility and local feeding ranges; ability to bioaccumulate contaminants of concern.

The selected species represent different feeding guilds. This representative species approach for assessing exposures for wildlife is a common practice for assessing risk. A guild is a group of animals within a habitat that use resources in the same way. Coexisting members of guilds are similar in terms of their habitat requirements, dietary habits, and functional relationships with other species in the habitat. Guilds may be organized into potential receptor groups. The use of the guild approach allows focused integration of many variables related to potential exposure. These variables include characteristics of COECs (toxicity, bioaccumulation, and mode of action), and characteristics of potential receptors (habitat, range and feeding requirements, and relationships between species). This approach evaluates potential exposures to all animals by considering the major feeding guilds found in a habitat. It is assumed that evaluation of the potential effects of COECs to the representative species will be indicative of the potential effects of COECs to individual member classes of organisms within each feeding guild.

The selected species represent the ecological community and its sensitivity to the contaminants of concern. They are: benthic invertebrates, shellfish, local fin fish, great blue heron, mallard, bald eagle, muskrat, and river otter or raccoon.

### Benthic invertebrates

Benthic invertebrates are potential receptor species in Dead Creek because they:

have the greatest exposure to sediments;

provide food for bottom-feeding fish species (in the river);

are relatively immobile (sessile) in habit, and therefore their general health and condition reflects local conditions:

### Warm Water Fish Species

Warm water resident fish species were selected to reflect local sediment and water quality conditions. The typical warm water fish species such as centrachids (sunfish, bass) and bottom feeding fish such as bullheads are likely and abundant local resident with a limited foraging range. These organisms are potential receptor species representing local fish because they are:

resident in this reach of the Dead Creek:

exposed to sediments as well as surface water,

represent forage fish and higher order predators feeding on smaller fish and invertebrates.

#### Aquatic Birds

We have selected great blue heron, mallard duck, and bald eagle to represent aquatic birds feeding in Dead Creek, Sectors B through F, and M for at least a portion of the time.

Great Blue Heron (Ardea herodias)

The great blue heron inhabits salt and freshwater environments, typically shallow waters and shores of lakes, flooded gravel pits, marshes and oceans. In marsh environments, the great blue heron is an opportunistic feeder; they prefer fish, but they will also eat amphibians, reptiles, crustaceans, insects, birds, and mammals. The diet varies but may include up to 100% fish. A Nova Scotia study found 6% forage fish (Atlantic silverside and mummichog), 52.6% eels, and 41.4% other fish in the diet of great blue heron (USEPA, 1993). A food ingestion rate for adult breeding birds of 0.18 g food/g body weight/day has been reported.

Great blue heron tend to forage near nesting sites (USEPA, 1993). A study in Minnesota measured the distance between nesting and foraging grounds to range from 0 to 2.7 miles. A Carolina study found the same distance to be 4 to 5 miles. The maximum distance great blue heron will fly between foraging areas is 9 to 13 miles (USEPA, 1993). The size of the feeding territory in a freshwater area in Oregon was 1.5 acres, while the feeding territory in an estuarine area was 21 acres.

These organisms are potential receptor species because they:

Consume near shore fish;

Have a foraging range about equal to the downstream area of the Dead Creek sectors;

Are a higher trophic level predator in the creek and Mississippi.

Great blue heron, therefore, represent piscivorous birds in this reach of the river.

Mallard (Anas platyrhynchos)

The mallard is the most common freshwater duck of the United States, found on lakes, rivers, ponds, etc. It is a dabbling duck, and feeds (usually in shallow water) by "tipping up" and eating food off the bottom of the water body. Primarily, it consumes aquatic plants and seeds (for instance, primrose willow and bulrush seeds), but it will also eat aquatic insects, other aquatic invertebrates, snails and other molluscs, tadpoles, fishes, and fish eggs. Ducklings and breeding females consume mostly aquatic invertebrates. The mallard's home range is variable, but an approximate range is 500 hectares. It prefers to nest on ground sheltered by dense grass-like vegetation, near the water.

Mallards are a potential receptor species because they:

Consume both aquatic plants and aquatic invertebrates;

Live on or near the water;

Are a lower trophic level duck in the creek and in Mississippi.

Mallards, therefore, represent waterfowl in this reach of the river.

Bald Eagle (Haliaeetus leucocephalus)

Bald eagles are generally found in coastal areas, near lakes or rivers. Their preferred breeding sites are in large trees near open water. They are usually found in areas with minimal human activity.

Bald eagles, although primarily carrion feeders, are opportunistic and will eat whatever is plentiful including fish, birds, and mammals. Reported food ingestion rates range from 0.064 to 0.14 g/g/day. A study of adult breeding bald eagles in Connecticut estimated a food ingestion rate of 0.12 g/g/day (USEPA, 1993). A study of bald eagle diets in Maine indicated that their diets consisted of 76.7% fish, 16.5% birds, and 6.8% mammals (USEPA, 1993).

Foraging areas vary according to season and location. The USEPA (1993) reports a foraging length of 2 to 4.5 miles along a river.

These organisms are potential receptor species because they:

Consume fish;

Are a higher trophic level predator in the river;

Are sensitive to contaminants that biomagnify in the food chain.

The bald eagle, therefore, represents predatory birds in these sectors of Dead Creek.

### Aquatic Mammals

This assessment assumes that either river otter (or racoon if the site reconnaissance indicates that otter are unlikely to occur in the area) and muskrat represent aquatic mammals in Dead Creek sectors B through F.

River Otter (Lutra canadensis)

The river otter can be found in primarily freshwater but also saltwater environments, but seems to prefer flowing-water habitats rather than still water. It has been found in lakes, marshes, streams, and seashores. It consumes largely fish, but is opportunistic and will consume aquatic invertebrates (crabs, crayfish, etc.), aquatic insects, amphibians, birds (e.g. ducks), small or young mammals, and turtles. They may also sift through sediment for food. The otter dens in banks, in hollow logs, or similar burrow-like places. Home range varies depending on habitat and sex, but an approximate measure is 300 hectares.

River otters are a potential receptor species because they:

Consume fish and aquatic invertebrates;

Live in or near the water.

Are a higher trophic level predator in the creek and in Mississippi.

River otters, therefore, represent higher trophic level aquatic mammals in this reach of the river.

Raccoon (Procyon lotor)

The raccoon is likely to be present because the creek and surrounding areas consist of its most preferred types of habitat (marshes and suburban residential areas). Because the raccoon is an omnivore, it is likely to experience greater exposure to than the muskrat which is primarily a herbivore. The raccoon is known to consume aquatic invertebrates (such as crayfish), fish, insects, mollusks, annelids, bird eggs, small passerine birds, small mammals such as squirrels, and plants (Chapman and Feldhamer, 1990).

Raccoon are a potential receptor species because they:

Consume fish and aquatic invertebrates;

Live near the water;

Are a higher trophic level predator in the creek and in Mississippi.

Raccoon, therefore, represent higher trophic level aquatic mammals in this reach of the river.

Muskrat (Ondatra zibethicus)

The muskrat is a semiaquatic large rodent which lives near freshwater and brackish aquatic environments: marshes, ponds, creeks, lakes, etc. It feeds largely on aquatic plants, but depending on location and time of year may also consume aquatic invertebrates (crayfish, crabs, etc.), small amphibians, turtles, fish, molluscs, and even young birds. The muskrat lives quite close to the water, either on the bank of the water body or constructing a lodge in the water body. Its home range is small (0.17 hectares on average) and one study found that muskrats remain within 15 meters of their primary dwellings 50 percent of the time.

Muskrats are a potential receptor species because they:

Consume aquatic plants and aquatic invertebrates;

Live on or near the water:

Are a lower trophic level omnivore in the creek and in Mississippi.

Muskrats, therefore, represent lower trophic level aquatic mammals in this reach of the river.

Soil invertebrates

Soil invertebrates are potential receptor species in Dead Creek banks and floodplain because

they:

have the greatest exposure to soil;

provide food for birds and mammals (in the river);

are relatively immobile (sessile) in habit, and therefore their general health and condition reflects local conditions;

### 4.2 Assessment Endpoints

Assessment endpoints are expressions of the environmental value to be protected at a site. Assessment endpoints are often not directly measurable. Therefore, assessment employs measures of effects. These are biological or measurable ecological characteristics which reflect the assessment endpoint (USEPA, 1997). Where the assessment endpoint is not directly measurable, the use of a measure of effect may result in some uncertainty in the risk characterization. Ultimately, the selection of assessment endpoints requires the consensus of the regulators, the regulated community, and state or local concerns. This work plan proposes the following assessment endpoints for the potentially-affected aquatic receptors and their habitats:

Sustainability (survival, growth, and reproduction) of warm water fish species typical of those found in similar habitats (incorporates the assessment of benthic macroinvertebrates and crayfish);

Survival, growth, and reproduction of local populations of aquatic wildlife represented by bald eagles, mallard duck, great blue heron, muskrat, and river otter or raccoon (incorporates the assessment of benthic macroinvertebrates and crayfish).

The assessment will evaluate risk relative to these assessment endpoints in Creek, Sectors B through F and M, collectively and individually, based on prior observations and the work proposed in the QAPP/FSP.

### 4.3 Selection of Measures of Effects

The measures of effect direct data collection needs for the baseline ecological risk assessment. They provide the actual measurements for estimating risk. A weight-of-evidence approach (Menzie et al., 1996) weighs each of the measures of effects by considering:

strength of association between the measure of effects and assessment endpoint; data quality; and study design and execution.

Strength of association refers to how well a measure of effects represents an assessment endpoint. The greater the strength of association between the measurement and assessment

endpoint, the greater the weight given to that measure of effect in the risk analysis.

The weight given a measure of effect also depends on the quality of the data as well as the overall study design and execution. The QAPP/FSP describes a sampling program that will provide information adequate for evaluating each selected measure. However, the risk assessment must evaluate the performance of the sampling effort and the variability and uncertainties associated with the results following implementation. The risk characterization gives higher weight to measures of effect that are based on good quality data and are obtained using study designs that account for confounding variables.

There is considerable uncertainty associated with estimating risks, because ecological systems are complex and exhibit high natural variability. Measures of effects typically have specific strengths and weaknesses related to the factors discussed above. Therefore, it is common practice to use more than one measure of effect to evaluate each assessment endpoint. This subsection describes the measures of effects and how the baseline risk assessment will use them to evaluate risks for each of the assessment endpoints.

## TABLE 1 ASSESSMENT ENDPOINTS AND ASSOCIATED MEASURES OF EFFECTS

### Assessment Endpoint 1: Sustainability of warm water fish in Creek Sector F

Measure of effect 1a: body burdens of COECs in selected fish species as a measure of exposure (compared to body burdens in fish from reference areas) and effects (compared to benchmark values).

Measure of effect 1b: COEC concentrations in surface waters as compared to applicable water quality criteria for protection of fish and wildlife.

Measure of effect 1c: sustainability of a benthic macroinvertebrate community that can serve as a prey base for fish:

Concentration of COECs in sediment:

Field assessment of benthic macroinvertebrate community structure (using EPA Rapid Bioassessment Protocol I, as described in Rapid Bioassessment Protocols for Use in Streams and Rivers, Benthic Macroinvertebrates and Fish, EPA/444/4-89-001.

Sediment toxicity tests.

Assessment Endpoint 2: Survival, growth, and reproduction of local populations of aquatic wildlife as represented by the bald eagle, mallard duck, great blue beron, muskrat, and river otter or raccoon in Creek Sectors B through F, and M

Measure of effect 2a: Wildlife species composition and habitat use.

Measure of effect 2b: Concentration of semi-volatile compounds (SVOCs), metals, mercury, Polychlorinated Biphenyls (PCBs), pesticides, cyanide, herbicides, and dioxin in aquatic and marsh plants for use in evaluating exposure via the food chains for mallard duck, river otter or raccoon, and muskrat.

Measure of effect 2c: Concentration of COECs in surface waters in comparison to wildlife benchmarks.

Measure of effect 2d: Concentration of COECs in forage fish and crayfish for use in evaluating exposure via the food chain for great blue heron and river otter or raccoon.

Measure of effect 2e: Concentration of SVOCs, metals, mercury, PCBs, pesticides, cyanide, herbicides, and dioxin in macroinvertebrates (including crayfish) for use in evaluating exposure via the food chain for mallard duck, river otter or raccoon and muskrat.

Measure of effect 2f: sustainability of a benthic macroinvertebrate community that can serve as a prey base for fish (includes three lines of evidence as in Assessment Endpoint 1).

Assessment Endpoint 3: Survival, growth, and reproduction of individuals within the local bald eagle population in Creek Sectors B through F, and M

Measure of effect 3a: Concentration of COECs in fish for use in evaluating exposure via the food chain.

Assessment Endpoint 4: Survival, growth, and reproduction of local populations of terrestrial wildlife along the banks and floodplain of Creek Sectors B through F, and M

Measure of effect 4a: Soil screening effect levels for the protection of wildlife, plants, and soil dwelling invertebrates.

### 4.3.1 Measures of Effects for Assessment Endpoint 1, Sustainability of Warm Water Fish

The COECs may exert direct effects on warm water fish through exposure in the water, sediment, or prey, and indirectly by affecting their prey, the macroinvertebrate community. The proposed measures of effects assess exposure pathways and potential effects. Some rely upon direct observations of conditions; some involve measures of toxicity; and others use literature values.

### Measure of effect 1a: body burdens of COECs in selected fish species.

Purpose and Rationale. Fish exposed to bioaccumulative compounds in their diet or in water can accumulate these COECs in their tissues. Contaminants tend to accumulate in organs such as the liver and kidney to a greater degree than in the musculature. However, COEC levels in the muscle tissue and on a whole body basis are useful for evaluating risks to animals that eat fish. The assessment will use measurements of COECs in fish tissues to evaluate exposure and effects on the fish, and to provide data for use in other parts of the assessment.

Approach. The assessment will use this endpoint to evaluate exposure and effects. As a measure of exposure, it will compare body burdens of COECs in small forage fish, medium bottom-feeding fish and large piscivorous fish to those same fish species in the reference area. Therefore, the comparisons of fish body will help to assess if fish in Dead Creek are exposed to COECs in excess of those that occur in the reference area. The assessment will also use the body burden data as input to the food chain exposure models for the representative piscivores (the great blue heron, bald eagle, and the river otter or raccoon).

As a measure of effects, the assessment will compare measured body burdens to literature values at which effects have been reported. The Waterways Experiment Station (WES) of the Army Corps of Engineers provides an on-line database and The Society of Environmental Toxicology and Chemistry (Jarvinen and Ankley, 1999) provides a compilation of such residue effect levels. The assessment will query these databases. If body burdens exceed levels at which effects have been reported in the databases, it will be presumed that the measure of effect indicates the potential for effects in the selected fish species found in Dead

#### Creek.

Measure of effect 1b: COEC concentrations in surface waters as compared to applicable water quality criteria for protection of fish and wildlife.

Purpose and Rationale. Water concentrations provide a measure of exposure, and water quality criteria indicate levels above which effects may occur. This measure of effect will evaluate the potential for water concentrations of COECs in Dead Creek to cause adverse effects.

Approach: The assessment will compare measured concentrations of dissolved metals in surface waters to water quality criteria. Exposure of individual fish and the populations of fish in water will partly depend on the exposure field and the distribution and behavior of the fish. Thus, the area over which water quality criteria are exceeded becomes an important consideration when evaluating exposure. We will evaluate effects with respect to spatial extent and degree to which surface water concentrations exceed water quality criteria.

The USEPA has published an ECO-UPDATE entitled: "Ecotox Thresholds" that includes COEC-specific water quality benchmarks. If an Ecotox Threshold value is available for a COEC, the concentration of the COEC in water will be compared to its respective Ecotox Threshold value. When specific benchmarks are not available and when appropriate, USEPA has suggested using appropriate extrapolations between related species.

### Measure of effect 1c: Sustainability of benthic macroinvertebrate communities that comprise a prey base

Purpose and Rationale. Benthic macroinvertebrates are an important source of food for many fish species. They experience direct sediment exposures due to their life histories. Exposures that result in reduced abundance, diversity, or biomass of these aquatic macroinvertebrates, could indirectly effect fish populations. Further, quantitative studies of benthic macroinvertebrates have a long history of use in water quality studies.

The assessment will use the sediment triad approach as part of a weight-of-evidence analysis to evaluate the sustainability of benthic macroinvertebrate communities in these water bodies. The sediment triad approach evaluates three elements of a benthic community:

field assessment of benthic macroinvertebrates;

sediment chemistry measurements;

sediment toxicity testing using indicator benthic macroinvertebrates.

Field assessment of benthic macroinvertebrate community

Effects will be evaluated by comparing the composition and abundance of benthic

macroinvertebrates within Dead Creek at different levels of concentrations of COECs in sediments (generally following EPA Rapid Bioassessment Level I Protocols in the field). These comparisons will help to estimate if there is a level above which effects are evident. Data from the reference areas will help to support the assessment because these reflect conditions in water bodies unaffected by site contaminants. If there are observable reductions in the abundance of benthic macroinvertebrates, we will assess the significance of this for the fish species that rely upon the macroinvertebrates for food as this is the basis for the assessment. This will be accomplished by relating the abundance and biomass of benthic macroinvertebrates to their production, and ultimately to the potential production of fish, using available production:biomass ratios from the literature.

### Sediment chemical measurements

Concentrations of COECs in sediment will be compared to sediment benchmarks to judge whether adverse biological effects to benthic macroinvertebrates are plausible. The USEPA compares sediment chemical measurements to Effect Range-Low (ERL) values and Effect Range-Median (ERM) values (Long and Morgan, 1990). However, sediment concentrations which exceed ER-Ls and/or ER-Ms do not necessary indicate that adverse effects to benthic macroinvertebrates have occurred. The USEPA's sediment triad approach uses multiple lines of evidence to assess if benthic macroinvertebrates are adversely affected by sediment-associated contaminants.

The USEPA has published an ECO-UPDATE entitled: "Ecotox Thresholds" that includes COEC-specific sediment benchmarks. If an Ecotox Threshold value is available for a COEC, the concentration of the COEC in sediment will be compared its respective Ecotox Threshold value. When specific benchmarks are not available and when appropriate, USEPA has suggested that appropriate extrapolations between related species can be used.

### Sediment toxicity testing

The assessment will use laboratory sediment bioassays conducted on sediments from Dead Creek and the reference area to evaluate the potential effects of whole sediment on representative benthic macroinvertebrates. The toxicity of the sediment will be compared to that of the standard control sediment used by the laboratory as part of the laboratory's standard operating procedures. Statistically significant decreases in survival and/or growth relative to controls will be considered a COEC-related effect when they can be related to exposures associated with COECs in the sediments.

### 4.3.2 Measures of Effects Associated with Assessment Endpoint 2

Survival, growth, and reproduction of local populations of aquatic wildlife populations represented by bald eagles, mallard duck, great blue heron, muskrat, and river otter or racoon (incorporates the assessment of benthic macroinvertebrates)

The assessment will use six measures of effects (some species-specific) to evaluate risks to the wildlife assessment endpoint. Food-chain modeling will estimate exposure to the four wildlife species.

Wildlife either sighted during prior site visits or likely to occur based on the evaluation of habitats was used to identify representative wildlife species.

Table 2. Representative Aquatic Wildlife Species Proposed for Assessing Risks of COECs to Wildlife.

| Species          | Feeding Guild                                              | Primary Habitat | Use in ERA                                                             |
|------------------|------------------------------------------------------------|-----------------|------------------------------------------------------------------------|
| Bald Eagle       | Eats fish and other small animals                          | Aquatic         | Evaluate exposure to COECs in aquatic food webs                        |
| Great Blue Heron | Eats fish and other small animals                          | Aquatic         | Evaluate exposure to COECs in aquatic food webs                        |
| Mallard Duck     | Eats plants and macroinvertebrates                         | Aquatic         | Evaluate exposure to COECs in aquatic plants and macroinvertebrates    |
| Muskrat          | Eats plants and some macroinvertebrates (e.g., clams)      | Aquatic         | Evaluate exposure to COECs in aquatic plants and in macroinvertebrates |
| River otter or   | Eats fish, other small animals and some macroinvertebrates | Aquatic         | Evaluate exposures to COECs in fish and macroinvertebrates             |

The assessment will use exposure models to evaluate different routes of exposure including ingestion of water, sediment and food (plants, benthic macroinvertebrates and fish). This subsection describes the measures of effects and the general model used to evaluate exposures.

### Measure of effect 2a: Wildlife species composition and habitat use.

Purpose and Rationale. The measure of effect directly examines the receptors – wildlife – to estimate if they are using the various sectors of Dead Creek. The assessment is a measure of the degree to which local and migratory wildlife use the habitat and the extent to which it supports their needs.

Approach: The assessment will compare the composition and habitat use by wildlife to observations of species composition of wildlife and their use of a reference area. A wildlife biologist will make these observations This type of survey is qualitative. The strength of the

analysis is that it indicates whether Dead Creek can support wildlife species comparable to unaffected reference areas. However, because of the qualitative nature of the observations and the high natural variability that can exist in wildlife populations, direct observations may not reveal effects.

### Measure of effect 2b: Concentrations of COECs in aquatic and marsh plants.

This measure of effect will be conducted within Dead Creek Segments B to F, and M and the reference areas.

This plan recommends collecting aquatic and marsh plants for analysis of COECs because some species of wildlife using Dead Creek and wetlands eat aquatic and marsh plants. This is a potentially complete exposure pathway for wildlife. The QAPP/FSP describes the details of the aquatic and marsh plant collection and analysis.

Purpose and Rationale. The assessment will compare measures of COECs in submerged aquatic and emergent marsh vegetation within Dead Creek and a reference water body. Waterfowl graze on aquatic plants. Herbivorous mammals such as the muskrat eat aquatic and emergent vegetation in wetlands. If plants take up metals and PAHs from the water or sediments, waterfowl and herbivorous mammals could be exposed to these COECs in their diet.

As the QAPP/FSP indicates, fruiting bodies/leaves and roots from aquatic plants and emergent plants will be composited separately.

Approach: The endpoint will be evaluated in multi-pathway exposure models for the mallard and the muskrat that considers sediment, water, and food. Exposures to water fowl and herbivorous mammals within the Dead Creek sectors will be compared to: 1) appropriate NOAEL and LOAEL values, and 2) exposures that occur in reference areas. The COEC concentrations measured in submergent aquatic plants will be used to evaluate potential dietary exposures to the mallard, which graze on aquatic plants. The COEC concentrations measured in submergent and emergent plants will be used to evaluate potential dietary exposures to the muskrat, which graze on greens.

### Measure of effect 2c: Concentration of COECs in surface waters.

Purpose and Rationale. Many wildlife species will use Dead Creek and associated wetlands as a drinking water source. The presence of COECs in water could be a source of exposure to these species. This measure of effect examines this potential route of exposure.

Approach: This endpoint will be evaluated in multi-pathway exposure models for the mallard and the great blue heron that considers sediment, water, and food. The assessment will compare exposures to these selected representative species within the Dead Creek sectors to:

1) appropriate NOAEL and LOAEL values, and 2) exposures that occur in reference areas.

### Measure of effect 2d: Concentration of COECs in fish.

Purpose and Rationale: Some wildlife species such as the bald eagle, the great blue heron eat primarily fish. This measure of effect evaluates this potential route of exposure.

Approach. Fish will be collected and analyzed for COECs. The COEC levels measured in fish will be used in the multi-pathway exposure model for the bald eagle and the great blue heron that considers sediment, water, and food. Exposures to the bald eagle and the great blue heron within the Dead Creek Sectors will be compared to: 1) appropriate NOAEL and LOAEL values, and 2) exposures that occur in reference areas.

### Measure of effect 2e: Concentration of metals and PAHs in benthic macroinvertebrates (including crayfish).

Purpose and Rationale. Waterfowl (such as the mallard) and mammals (such as the muskrat) eat benthic macroinvertebrates as a portion of their diet. This measure of effect evaluates this potential route of exposure.

Approach: Benthic macroinvertebrates and crayfish will be collected and analyzed for COECs. The COEC levels measured in benthic macroinvertebrates will be used in a multipathway exposure model for the mallard and for the muskrat that considers sediment, water, and food. Exposures to water-fowl and mammals within the Dead Creek Sectors will be compared to: 1) appropriate NOAEL and LOAEL values, and 2) exposures that occur in reference areas.

### 4.3.3 Measures of effects Associated with Assessment Endpoint 3

Assessment Endpoint 3 is survival, growth, and reproduction of individuals within the local bald eagle population in Creek Sectors B through F, and M.

Measure of effect 3a: Concentration of COECs in forage fish for use in evaluating exposure via the food chain.

Purpose and Rationale. Bald eagle may use fish in Dead Creek and associated wetlands as food. The presence of COECs in fish could be a source of exposure to this species. This measure of effect examines this potential route of exposure.

Approach: This endpoint will be evaluated in a an exposure model for the bald eagle. The assessment will compare exposures to: 1) appropriate NOAEL and LOAEL values, and 2) exposures that occur in reference areas.

### 4.3.4 Measures of Effect Associated with Assessment Endpoint 4

Measure of effect 4a: COEC concentrations in soil samples from Creek bank and floodplain as compared to applicable soil screening levels for protection of wildlife, plants, and soil dwelling invertebrates.

Purpose and Rationale. Soil concentrations provide a measure of exposure, and screening level criteria indicate levels above which effects may occur. This measure of effect will evaluate the potential for soil concentrations of COECs in Dead Creek banks and floodplains to cause adverse effects.

Approach: The assessment will compare measured concentrations of total contaminant concentrations in soils to existing (e.g. Oak Ridge National Laboratory Toxicological Benchmarks for Wildlife; Oak Ridge National Laboratory Toxicological Benchmarks for Screening Potential Effects on Terrestrial Plants; Oak Ridge National Laboratory Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Processes).

We will also use any terrestrial soil screening concentrations or benchmarks developed by the time the proposed work occurs.

### 4.4 Structure of Wildlife Exposure Models

The general form of the wildlife exposure model is:

Exposure Dose (oral) = [Conc<sub>food</sub> \* Ingest<sub>food</sub>] + [RAF \* Conc<sub>soil</sub> \* Sediment<sub>diet</sub> \* Ingest<sub>food</sub>]

Where:

Exposure Dose (oral) = dose of a COEC in ug/g-day

Conc<sub>food</sub> = concentration of the COEC (ug/g) in the food (measured or estimated); this is the average and the 95 % CL concentration in the relevant exposure zone – an area determined by the size and locations of foraging areas. The average is the appropriate statistic because ecological receptors integrate exposure over their foraging areas. We will also use the 95% CL and calculate risk from this exposure separately.

Ingest<sub>food</sub> = amount of food ingested per day normalized to body weight (g/g-day) and usually expressed in terms of wet weight/wet weight

RAF - relative availability factor for COECs in sediment via incidental ingestion of sediment

Conc<sub>sediment</sub> = concentration ug/g in the relevant exposure zone; this is estimated as an average concentration in the exposure zone for chronic exposure and effects, and as upper bound (e.g., maximum or hot spot concentrations) for evaluation of short-term or acute exposures. The average is the appropriate statistic because ecological receptors integrate exposure over their foraging areas.

Sediment<sub>dect</sub> = fraction of sediment in the diet; the product of this number and Ingest<sub>food</sub> yields an estimate of the amount of sediment that is incidentally ingested

Sediments that are collected within shallow water (< 3 feet deep) in open water areas of Dead Creek, sediments along the bank, and soils adjacent to the creek (where available) will be used to assess incidental sediment ingestion. Sediments collected from the top 5 cm will be considered accessible to aquatic wildlife.

Because exposures to COECs associated with diet and sediment will be higher than surface water ingestion, this exposure pathway will not be estimated within the model. However, we will compare National Recommenced Water Quality Criteria for the protection of wildlife to surface water concentrations where such data and corresponding criteria are available.

### **Model Application**

The model will be applied in several ways:

- Acute exposure: The potential for acute exposure is considered without incorporating
  information on foraging area. The rationale for this is that an acute exposure involves a
  short-term feeding or exposure event that does not have to be averaged over the foraging
  area. When calculating the potential for acute exposure, maximum concentrations are used
  within the geographically defined local population or Threatened and Endangered species.
  Locations that exceed exposure concentrations that could result in acute toxic effects are
  identified.
- 2. Chronic exposure to individuals: The potential for chronic exposure to individuals is considered by determining both the maximum concentration and calculating an average concentration of food and sediments at spatial scales defined by the foraging areas of the species. For example, exposure concentrations for a species with a foraging area of 10 ha would be determined by averaging the food and sediments concentrations within this spatial scale. A species with a foraging area of 0.1 ha would have an averaging area that is 100 times less.
- 3. Chronic exposure to the population. The local population as defined above is made up of a number of individuals. Because the success of the local population is not dependent on the risk to any particular individual, a wildlife exposure model will also be used to estimate chronic exposures to individuals throughout the local population. These estimates take into account the spatial distribution of COECs, the foraging areas of the individuals within the species, and possible spatial distributions of these individuals within the area that defines the local population. Results are used to estimate risks as a percentage of the local population. The local population is confined to individual animals that use Dead Creek and its associated wetlands and small ponds.
- 4. Acute and chronic exposures to the Bald Eagle. Because the Bald eagle is rare and the risk to the individual is considered, the wildlife exposure model will also be used to estimate exposures to the individual.

The Waterways Experimental Station on-line database;

The Society of Environmental Toxicology and Chemistry's recently published database of residual effect levels (Jarvinen and Ankley, 1999);

Computer on-line data bases, such as Toxline, Biosis, Wildlife Fisheries Review, Pollution Abstracts, and Environmental Abstracts.

When reviewing the toxicological literature and selecting the most appropriate TRV, several factors will be considered including:

- Taxonomic relationship between the test animal and the indicator species;
- Use of laboratory or domesticated animals;
- Ecological relevance of the study endpoints—Studies with chronic toxicity endpoints, such as reproductive, growth, behavior and developmental endpoints, are targeted. Sensitive endpoints, such as reproductive or developmental toxicity, are preferentially selected because they are closely related to the selected assessment endpoints (e.g., population declines);
- Toxicological studies in which the chemical was administered through the diet of the test species are preferred over studies using other oral dosing methods, such as gavage;
   and
- Long-term studies representing chronic exposure are preferentially selected.

Dietary concentrations (mg/kg diet) cited in the reference study will be converted to mg/kg BW/day. If the daily dose reported in the selected study is a Lowest Adverse Effect Level (LOAEL), then the LOAEL will be converted to a NOAEL using a factor of 10. Interspecies correlations will be considered.

If toxicological animal studies are not available for a particular COEC, then QSAR will be considered and a surrogate chemical will be selected when possible. If the COEC can not be assessed quantitatively, then the risk to the COEC will be qualitatively discussed.

Species specific toxicity factors may not be available for all COEC. In such cases, the assessment will apply the following sequential steps to develop a toxicity factor.

- Use a toxicity value or criterion for the protection of exposed organisms, if an appropriate state or federal agency has proposed it.
- If criteria are unavailable, but appropriate data are available on NOAELs for the receptor species, use the lowest NOAEL for the receptor species.
- If an appropriate NOAEL is unavailable for the receptor species, use a NOAEL for a

species which is phylogenetically similar (within the same genera or family) and ecologically similar to the selected receptor species (e.g. from the same family of birds or mammals).

- If an appropriate NOAEL is unavailable for a phylogenetically similar species, extrapolate from an appropriate NOAEL value for other species (as closely related as possible) by dividing by 5 to account for extrapolations between families and by 10 to account for extrapolations between orders. Use the lowest appropriate NOAEL whenever several studies are available.
- In the absence of an appropriate NOAEL, if a LOAEL is available for a
  phylogenetically similar species, divide it by 10 to account for a LOAEL to NOAEL
  conversion. The LOAEL to NOAEL conversion is similar to EPA's derivation of
  human health RfD values, where LOAEL studies are adjusted by a factor of 10 to
  estimate NOAEL values.
- For calculating chronic toxicity values from data for sub-chronic tests, divide the resultant LOAEL or NOAEL by an additional factor of 10. This is consistent with the methodology used to derive human RfD values. EPA has no clear guidance on the dividing line between subchronic and chronic exposures. The present risk assessment follows recently developed guidance (Sample et al., 1996) which considers 10 weeks to be the minimum time for chronic exposure of birds and 1 year for chronic exposure of mammals. In addition to duration of exposure, the time when exposure to contaminant occurs is critical.
- In cases where NOAELs are available as a dietary concentration (e.g., mg contaminant per kg food), calculate a daily dose for birds or mammals based on standard estimates of food intake rates and body weights (USEPA, 1993c).

### **6.0** DISCUSSION OF UNCERTAINTIES AND EXPOSURE ASSUMPTIONS

Sources of uncertainty and variability within the ERA will be identified. The impact associated with these uncertainties will be qualitatively addressed. Sensitivity analyses will be conducted for the important exposure parameters that are used in the wildlife exposure models and for the TRVs that are used to determine risk to the representative wildlife species.

### 7.0 REFERENCES

Nagy, K.A., (1987). "Field Metabolic Rate and Food Requirement Scaling in Mammals and Birds". Ecological Monographs, 57(2), 1987, pp 111-128

US Environmental Protection Agency. (1993). Wildlife Exposure Factors Handbook Volume I. Washington D.C: Office of Research and Development; USEPA Report no. EPA/600/R-93/187a

Beyer, W.N., E.E. Connor, and S. Gerould. (1994). Estimates of soil ingestion by wildlife. J. Wildl. Manage. 58: 375-382.

Chapman, J.A., and G.A. Feldhamer. 1982. Wild Mammals of North America. Johns Hopkins University Press, Baltimore, MD and London.

Harris, C. J. (1968) Otters: a study of the recent Lutrinae. London, U.K.: Weidenfield & Nicolson.

Jarvinen, A.W. and G.T. Ankley, 1999. Linkage Effects to Tissue Residues: Development of a Comprehensive Database for Aquatic Organisms Exposed to Inorganic and Organic Chemicals. Pensacola FL, Society of Environmental Toxicology and Chemistry Press, 364pp.

Svihla, A.; Svihla, R. D. (1931) The Louisiana muskrat. J. Mammal. 12: 12-28

U.S. Environmental Protection Agency. (1993). Wildlife Exposure Factors Handbook. U.S. EPA Office of research and Development. EPA/600/R-93/187a.

Figure 1-C-1: Preliminary Ecological Conceptual Model



# APPENDIX B PHOTOGRAPHS



Photograph B-1 Dead Creek Section F, October 1999.



Photograph B-2 Low water level in Borrow Pit Lake, October, 1999.



Photograph B-3 Station 2 in Borrow Pit Lake, October, 1999.



Photograph B-4 Station 3 in Borrow Pit Lake, October, 1999.



Photograph B-5 Beach seining in reference location PDC-1 (Prairie DuPont Creek), October, 1999.



Photograph B-6 Reference location PDC-1 (Prairie DuPont Creek), October, 1999.



Photograph B-7 Reference location Ref2-1 (Creek Portion), October, 1999.



Photograph B-8 Reference location Ref2-2 (Lake Portion), October, 1999.



Photograph B-9 Vegetation, Ranunculus reptans, sample, covered with Duckweed, being washed, October, 1999.



Photograph B-10 Shrimp, Palaemonetes kadiakensis, (diameter of sieve is 8 inches), October 1999.



Photograph B-11 Clam, Pyganodon grandis, samples. Specimen in hand is about 5 inches across, October 1999.





# Site Surface Water Summary Statistics Dead Creek Sector F and Borrow Pit Lake Sauget Area I

|                                         |          | <u> </u>           | <del></del>               |                     |             | Γ                        |
|-----------------------------------------|----------|--------------------|---------------------------|---------------------|-------------|--------------------------|
|                                         |          |                    |                           |                     |             |                          |
| Compounds                               | Number   | Number<br>Detected | Frequency of<br>Detection | Minimum<br>Detected |             | Average<br>Concentration |
| Herbicides, ug/l                        | Mialyzeu | Detected           | Detection                 | Datactag            | Detacted    | Concentration            |
| 2,4,5-T                                 | 1 6      |                    | 0%                        |                     |             | 0.25                     |
| 2,4,5-TP (Silvex)                       | ] 6      | ļ                  | 0%                        |                     |             | 0.25                     |
| 2,4-D                                   | 6        |                    | 0%                        |                     |             | 0.25                     |
| 2,4-DB                                  | 6        |                    | 0%<br>0%                  |                     |             | 0.25                     |
| Dicamba                                 | 6        |                    | 0%                        |                     |             | 60/<br>0.60              |
| Dichloroprop                            | 6        |                    | 0%                        |                     |             | 3.0                      |
| Dinoseb                                 | 6        |                    | 0%                        |                     |             | 3.0                      |
| MCPA                                    | 6        |                    | 0%                        |                     |             | 60                       |
| MCPP                                    | 6        |                    | 0%                        |                     |             | 60                       |
| Pentachlorophenol Metals, mg/l          | 6        |                    | 0%                        |                     |             | 0.50                     |
| Aluminum                                | 6        | 6                  | 100%                      | 0.039               | 3.4         | 0.92                     |
| Antimony                                | 6        |                    | 0%                        | 0.005               | 0.4         | 0.010                    |
| Arsenic                                 | 6        | 5                  | 83%                       | 0.0032              | 0.015       | 0.0080                   |
| Barium                                  | 6        | 6                  | 100%                      | 0.045               | 0.32        | 0.14                     |
| Beryllium                               | 6        |                    | 0%                        |                     |             | 0.0020                   |
| Cadmium<br>Calcium                      | 6        | اے                 | 100%                      | ,_[                 | 89          | 0.0025                   |
| Chromium                                | 6        | 6<br>1             | 100%<br>17%               | 47<br>0.0041        | 0.0041      | 0.0049                   |
| Cobalt                                  | 6        | 1                  | 17%                       | 0.0041              | 0.0041      | 0.0044                   |
| Copper                                  | 6        | 6                  | 100%                      | 0.0016              | 0.012       | 0.0052                   |
| Cyanide, Total                          | 6        | 1                  | 0%                        | Ì                   |             | 0.0050                   |
| Iron                                    | 6        | 6                  | 100%                      | 0.5                 | 8.7         | 2.3                      |
| Lead                                    | 6        | 5                  | 83%                       | 0.002               | 0.02        | 0.0056                   |
| Magnesium<br>Manganese                  | 6        | 6<br>6             | 100%<br>100%              | 26<br>0.082         | 33<br>1.7   | 31<br>0.39               |
| Mercury                                 | 6        | ١                  | 0%                        | 0.002               | 1.7         | 0.00010                  |
| Molybdenum                              | 6        | 3 (                | 50%                       | 0.0028              | 0.004       | 0.0042                   |
| Nickel                                  | 6        | 6                  | 100%                      | 0.0069              | 0.021       | 0.013                    |
| Potassium                               | 6        | 6                  | 100%                      | 5.1                 | 7.6         | 6.6                      |
| Selenium                                | 6        |                    | 0%                        |                     |             | 0.0050                   |
| Silver<br>Sodium                        | 6        | 6                  | 0%<br>100%                | 21                  | 24          | 0.0050                   |
| Thallium                                | 6        | J i                | 0%                        | ~ '                 | 2-7         | 0.0050                   |
| Vanadium                                | 6        | 4                  | 67%                       | 0.003               | 0.014       | 0.0072                   |
| Zinc                                    | 6        | 6                  | 100%                      | 0.0073              | 0.075       | 0.035                    |
| Fluoride (mg/l)                         | 6        | 6                  | 100%                      | 0.24                | 0.29        | 0.26                     |
| Hardness as CaCO3 (mg/l)                | 6        | 6                  | 100%                      | 220                 | 350         | 272                      |
| Ortho-Phosphate-P (mg/l)<br>pH          | 6        | 6                  | 100%<br>100%              | 0.063<br>7.4        | 0.83<br>9.7 | 0.25<br>8.5              |
| Suspended Solids (mg/l)                 | 6        | 5                  | 83%                       | 7.7                 | 160         | 46                       |
| Total Dissolved Solids                  | ě l      | 6                  | 100%                      | 280                 | 480         | 358                      |
| Total Phosphorus (mg/l)                 | 6        | 6 [                | 100%                      | 0.13                | 1.2         | 0.37                     |
|                                         |          |                    |                           |                     |             |                          |
| PCB, ug/l                               | اء       | ľ                  | ا رو                      |                     | 1           | 0.05                     |
| Decachlorobiphenyl Dichlorobiphenyl     | 6<br>6   | ŀ                  | 0% <br>0%                 | ļ                   |             | 0.25<br>0.050            |
| Heptachlorobiphenyl                     | 6        | ł                  | 0%                        | }                   |             | 0.030                    |
| Hexachlorobiphenyl                      | 6        | ŀ                  | 0%                        |                     |             | 0.10                     |
| Monochlorobiphenyl                      | 6        | ļ                  | 0%                        | Į                   |             | 0.050                    |
| Nonachlorobiphenyl                      | 6        | Ì                  | 0%                        | 1                   |             | 0.25                     |
| Octachiorobiphenyl                      | 6        | ļ                  | 0%                        |                     |             | 0.15                     |
| Pentachlorobiphenyl Tetrachlorobiphenyl | 6 i      |                    | 0% <br>0%                 |                     |             | 0.10<br>0.10             |
| Trichlorobiphenyl                       | 6        | 1                  | 0%                        |                     |             | 0.050                    |
| - Triorio cosprioriti                   | 1        | ľ                  | 0,0                       | ĺ                   |             | 0.000                    |
| Total PCBs                              | 6        | i                  | 0%                        |                     |             | 0.050                    |
| Pesticides, ug/i                        |          |                    |                           |                     |             |                          |
| 4,4'-DDD                                | 6        |                    | 0%                        |                     |             | 0.050                    |
| 4,4'-DDE<br>4.4'-DDT                    | 6<br>6   | l                  | 0%)<br>0%                 | }                   |             | 0.050                    |
| Total DDT                               | 6        |                    | 0%                        |                     |             | 0.050<br>0.050           |
| Aldrin                                  | 6        | ł                  | 0%                        | }                   |             | 0.025                    |
| Alpha Chlordane                         | 6        |                    | 0%                        |                     |             | 0.025                    |
| alpha-BHC                               | 6        | 2                  | 33%                       | 0.00047             | 0.001       | 0.013                    |
| beta-BHC                                | 6        | 3                  | 50%                       | 0.0096              | 0.02        | 0.010                    |
| delta-BHC                               | 6_       | 2                  | 33%                       | 0.00013             | 0.0022      | 0.0044                   |

## Site Surface Water Summary Statistics Dead Creek Sector F and Borrow Prt Lake Sauget Area I

|                                                         | T        | <u> </u> |              |                   |                   |                  |
|---------------------------------------------------------|----------|----------|--------------|-------------------|-------------------|------------------|
|                                                         | Number   | Number   | Frequency of | Minimum           | Maximum           | Average          |
| Compounds                                               | Analyzed | Detected | Detection    | Detected          |                   | Concentration    |
| Dieldrin                                                | 6        | 1        | 17%          | 0.001             | 0.001             | 0.042            |
| Endosulfan I                                            | 6        | 2        | 33%          | 0.0015            | 0.0024            | 0.017            |
| Endosulfan II                                           | 6        |          | 0%           |                   |                   | 0.050            |
| Endosulfan sulfate                                      | 6        | 1        | 17%          | 0.0032            | 0.0032            | 0.042            |
| Endnn<br>Endnn aldehyde                                 | 6        | 1 2      | 17%<br>33%   | 0.00095<br>0.0016 | 0.00095<br>0.0032 | 0.042<br>0.034   |
| Endon ketone                                            | 6        | 1        | 17%          | 0.0077            | 0.0032            | 0.042            |
| Gamma Chlordane                                         | 6        | ' '      | 0%           | 0.0027            | 0.0027            | 0.025            |
| gamma-BHC (Lindane)                                     | 6        | 2        | 33%          | 0.0024            | 0.0038            | 0.007            |
| Heptachior                                              | 6        | 3        | 50%          | 0.0022            | 0.0029            | 0.014            |
| Heptachior eposode                                      | 6        | 2        | 33%          | 0.0009            | 0.00096           | 0.017            |
| Methoxychlor                                            | 6        |          | 0%           |                   |                   | 0.25             |
| Toxaphene                                               | 6        |          | 0%           |                   |                   | 2.5              |
| SVOCs, ug/l                                             |          |          |              |                   |                   |                  |
| 1,2,4-Trichlorobenzene                                  | 6        |          | 0%           |                   | }                 | 5.0              |
| 1.2-Dichlorobenzene                                     | 6        |          | 0%           |                   |                   | 5.0              |
| 1.3-Dichlorobenzene                                     | 6        |          | 0%           |                   |                   | 5.0              |
| 1,4-Dichlorobenzene                                     | 6        | 1        | 0%           |                   | 1                 | 5.0              |
| 2,2'-Oxybis(1-<br>2,4,5-Trichlarophenol                 | 6        |          | 0%<br>0%     |                   | ļ                 | 5.0<br>5.0       |
| 2,4,6-Trichlorophenol                                   | 6        |          | 0%           |                   |                   | 1.1              |
| 2,4-Dichlorophenoi                                      | 6        |          | 0%           |                   | į                 | 5.0              |
| 2,4-Dintrophenoi                                        | 6        |          | 0%           |                   |                   | 7.0              |
| 2,4-Dinitrotoluene                                      | 6        |          | 0%           | 1                 |                   | 5.0              |
| 2,6-Dinitrololuene                                      | 6        |          | 0%           |                   |                   | 5.0              |
| 2-Chloronaphthalene                                     | 6        |          | 0%           |                   |                   | 5.0              |
| 2-Chiarophenol                                          | 6        |          | 0%           |                   | 1                 | 5.0              |
| 2-Methytnaphthalene                                     | 6        |          | 0%           |                   |                   | 5.0              |
| 2-Methylphenal (o-cresal)                               | 6        |          | 0%           |                   |                   | 5.0              |
| 2-Nitroeniine                                           | 6        | ŀ        | 0%           | 1                 | ľ                 | 25               |
| 2-Nitrophenol                                           | 6        |          | 0%           |                   |                   | 5.0              |
| 3,3'-Dichlorobenzidine                                  | 6        |          | 0%           |                   |                   | 10               |
| 3-MethytphenoV4-                                        | 6        | Į.       | 0%<br>0%i    |                   |                   | 5.0              |
| 3-Nitroeniine                                           | 6        |          | 0%           |                   | İ                 | 25<br>6.5        |
| i_6-Dinitro-2-methylphenol<br>i-Bromophenylphenyl ether | 6        | J        | 0%           | }                 | j                 | 0.50             |
| -Chloro-3-methylphenol                                  | 6        |          | 0%           |                   | ŀ                 | 5.0              |
| I-Chlorogniline                                         | 6        |          | 0%           |                   | ŀ                 | 10               |
| -Chlorophenylphenyl ether                               | 6        |          | 0%           |                   | ŀ                 | 5.0              |
| l-Naroaniine                                            | 6        |          | 0%           |                   |                   | 25               |
| -Nitrophenol                                            | 6        |          | 0%           |                   | ŀ                 | 25               |
| Voeraphthene                                            | 6        | 1        | 0%           | 1                 | 1                 | 5.0              |
| cenaphthylene                                           | 6        |          | 0%           |                   | 1                 | 5.0              |
| Vnithracene                                             | 6        |          | 0%           |                   |                   | 5.0              |
| enzo(a)enthracene                                       | 6        |          | 0%           |                   |                   | 5.0              |
| Senzo(a)pyrene                                          | 6        |          | 0%           |                   |                   | 5.0              |
| Benzo(b)fluoranthene                                    | 6        |          | 0%           | į                 |                   | 5.0<br>5.0       |
| Benzo(g.h.i)perylene                                    | 6        |          | 0%           |                   | Į.                | 5.0<br>5.0       |
| Benzo(k)fluoranthene<br>us(2-                           | 6        |          | 0%           | 1                 | !                 | 5.0              |
| is(2-Chloroethyl)ether                                  | 6        |          | 0%           |                   |                   | 5.0 <sub>1</sub> |
| s(2-Ethylhexyl)phthalate                                | 6        |          | 0%           |                   |                   | 0.90             |
| utylbenzylphthalate                                     | 6        |          | 0%           |                   |                   | 5.0              |
| arbezole                                                | 6        | - 1      | 0%           |                   |                   | 5.0              |
| hrysene                                                 | 6        |          | 0%           |                   |                   | 5.0              |
| h-n-butylphthelete                                      | 6        |          | 0%           |                   |                   | 5.0              |
| i-n-octylphthelate                                      | 6        |          | 0%           |                   |                   | 5.0              |
| Diberzo(a,h)anthracene                                  | 6        |          | 0%           |                   |                   | 5.0              |
| Noenzofuran                                             | 6        |          | 0%           |                   |                   | 5.0              |
| hethylphthalate                                         | 6        | ľ        | 0%           |                   |                   | 5.0              |
| imethylphthalate                                        | 6        | 1        | 0%           |                   |                   | 5.0              |
| luoranthene                                             | 6        | 1        | 17%          | 0.7               | 0.7               | 4.3              |
| luorene                                                 | 6        | i        | 0%           |                   |                   | 0.50             |
| lexachlorobenzene                                       | 6        | - 1      | 0%           |                   |                   | 5.0              |
| lexachiorobutadiene                                     | 6        | J        | 0%           |                   |                   | 5.0              |
| lexachiorocyclopentadien                                | 6        |          | 0%           |                   |                   | 5.0              |
| exactionethane                                          | 6        | - 1      | 0%<br>0%     |                   |                   | 0.95             |
| ndeno(1,2,3-cd)pyrene<br>cophorone                      | 6        |          | 0%           |                   |                   | 5.0<br>5.0       |
| NA CHOICE                                               | 0        |          | U76          |                   |                   | 5.0              |

# Site Surface Water Summary Statistics Dead Creek Sector F and Borrow Pit Lake Sauget Area I

|                            | ·      |          | · · · · · ·  |           |          | [             |
|----------------------------|--------|----------|--------------|-----------|----------|---------------|
|                            |        |          |              |           |          |               |
|                            | Number | Number   | Frequency of | Minimum   | Maximum  | Average       |
| Compounds                  |        | Detected |              | Detected  | Detected | Concentration |
| N-Nitroso-di-n-propylamine | 6      |          | 0%           |           |          | 5.0           |
| N-Nitrosodiphenylamine     | 6      |          | 0%           |           |          | 2.5           |
| Naphthalene                | 6      |          | 0%           |           |          | 5.0           |
| Nitrobenzene               | 6      |          | 0%           |           |          | 1.8           |
| Pentachlorophenol          | 6      |          | 0%           |           |          | 2.5           |
| Phenanthrene               | 6      | 1        | 17%          | 0.7       | 0.7      | 4.3           |
| Phenol                     | 6      |          | 0%           |           |          | 5.0           |
| Pyrene                     | 6      |          | 0%           |           |          | 5.0           |
| Total PAHs                 | 6      | 1        | 17%          | 1.4       | 1.4      | 4.4           |
| VOCs, ug/I                 |        |          |              |           |          |               |
| 1,1,1-Trichloroethane      | 6      |          | 0%           |           |          | 2.5           |
| 1,1,2,2-Tetrachloroethane  | 6      |          | 0%           |           |          | 2.5           |
| 1,1,2-Trichloroethane      | 6      |          | 0%           |           |          | 2.5           |
| 1,1-Dichloroethane         | 6      |          | 0%           |           |          | 2.5           |
| 1,1-Dichloroethene         | 6      |          | 0%           |           |          | 2.5           |
| 1.2-Dichloroethane         | 6      |          | 0%           |           |          | 2.5           |
| 1,2-Dichloropropane        | 6      |          | 0%           |           |          | 2.5           |
| 2-Butanone (MEK)           | 6      |          | 0%           |           |          | 13            |
| 2-Hexanone                 | 6      | 1        | 0%           |           |          | 13            |
| 4-Methyl-2-pentanone       | 6      |          | 0%           |           |          | 13            |
| Acetone                    | 6      | 3        | 50%          | 13        | 18       | 20            |
| Benzene                    | 6      | 1        | 17%          | 1.7       | 1.7      | 0.78          |
| Bromodichloromethane       | 6      | 1        | 0%           | · · · · J |          | 2.5           |
| Bromoform                  | 6      |          | 0%           |           |          | 2.5           |
| Bromomethane (Methyl       | 6      | }        | 0%           | l         |          | 4.9           |
| Carbon disulfide           | 6      | ĺ        | 0%           | 1         |          | 2.5           |
| Carbon tetrachloride       | 6      |          | 0%           |           |          | 2.5           |
| Chlorobenzene              | 6      | ł        | 0%           | ì         |          | 2.5           |
| Chloroethane               | 6      | ļ        | 0%           | ļ         |          | 5.0           |
| Chloroform                 | 6      | }        | 0%           | )         |          | 2.5           |
| Chloromethane              | 6      |          | 0%           |           |          | 5.0           |
| cis-1,3-Dichloropropene    | 6      |          | 0%           | j         |          | 0.5           |
| Cis/Trans-1.2-             | 6      | i        | 0%           | [         |          | 2.5           |
| Dibromochloromethane       | 6      | ĺ        | 0%           |           |          | 2.5           |
| Ethylbenzene               | 6      | ľ        | 0%           | l         |          | 2.5           |
| Methylene chloride         | 6      |          | 0%           |           |          | 2.4           |
| Styrene                    | 6      | ļ        | 0%           | }         |          | 2.5           |
| Tetrachloroethene          | 6      | -        | 0%           | }         |          | 2.5           |
| Toluene                    | 6      |          | 0%           | J         |          | 2.5           |
| trans-1,3-Dichloropropene  | 6      |          | 0%           |           |          | 2.5           |
| Trichloroethene            | 6      |          | 0%           |           |          | 1.4           |
| Vinyl chloride             | 6      | ĺ        | 0%           | j         |          | 5             |
| Xylenes, Total             | 6      |          | 0%           | i         |          | 2.5           |

# Site Surface Water Dioxin Data Summary Dead Creek Sector F and Borrow Pit Lake Sauget Area I

|                          |                    | I                   |                           |                     |                     |                       |
|--------------------------|--------------------|---------------------|---------------------------|---------------------|---------------------|-----------------------|
|                          |                    | <b>A</b> 1 <b>-</b> | F                         | <b></b>             | <b>A.</b>           | •                     |
| Compounds                | Number<br>Analyzed | Number<br>Detected  | Frequency of<br>Detection | Minimum<br>Detected | Maximum<br>Detected | Average Concentration |
| Dioxins and Furans, ug/l |                    |                     |                           | _                   |                     |                       |
| 1,2,3,4,6,7,8,9-OCDD     | 6                  | 5                   | 83%                       | 5.73E-04            | 1.43E-03            | 7.08E-04              |
| 1,2,3,4,6,7,8,9-OCDF     | 6                  | 5                   | 83%                       | 5.03E-05            | 2.60E-04            | 1.21E-04              |
| 1,2,3,4,6,7,8-HpCDD      | 6                  | 4                   | 67%                       | 4.42E-05            | 6.92E-05            | 4.41E-05              |
| 1,2,3,4,6,7,8-HpCDF      | 6                  | 6                   | 100%                      | 1.34E-05            | 5.05E-05            | 2.72E-05              |
| 1,2,3,4,7,8,9-HpCDF      | 6                  | 1                   | 17%                       | 5.48E-04            | 5.48E-04            | 9.45E-05              |
| 1,2,3,4,7,8-HxCDD        | 6                  |                     | 0%                        |                     |                     | 2.73E-06              |
| 1,2,3,4,7,8-HxCDF        | 6                  | 1                   | 17%                       | 2.40E-05            | 2.40E-05            | 6.05E-06              |
| 1,2,3,6,7,8-HxCDD        | 6                  |                     | 0%                        |                     |                     | 2.56E-06              |
| 1,2,3,6,7,8-HxCDF        | 6                  | 1                   | 17%                       | 8.90E-06            | 8.90E-06            | 3.39E-06              |
| 1,2,3,7,8,9-HxCDD        | 6                  |                     | 0%                        |                     |                     | 2.66E-06              |
| 1,2,3,7,8,9-HxCDF        | 6                  |                     | 0%                        |                     |                     | 2.67E-06              |
| 1,2,3,7,8-PeCDD          | 6                  |                     | 0%                        |                     |                     | 3.19E-06              |
| 1,2,3,7,8-PeCDF          | 6                  |                     | 0%                        |                     |                     | 2.04E-06              |
| 2,3,4,6,7,8-HxCDF        | 6                  |                     | 0%                        |                     |                     | 2.38E-06              |
| 2,3,4,7,8-PeCDF          | 6                  |                     | 0%                        | ľ                   |                     | 2.15E-06              |
| 2,3,7,8-TCDD             | 6                  |                     | 0%                        |                     |                     | 2.96E-06              |
| 2,3,7,8-TCDF             | 6                  |                     | 0%                        |                     |                     | 2.52E-06              |
| Total HpCDD              | 6                  | 4                   | 67%                       | 9.35E-05            | 1.28E-04            | 9.07E-05              |
| Total HpCDF              | 6                  | 5                   | 83%                       | 4.16E-05            | 6.00E-04            | 1.65E-04              |
| Total HxCDD              | 6                  | 2                   | 33%                       | 6.20E-06            | 9.02E-05            | 1.91E-05              |
| Total HxCDF              | 6                  | 2                   | 33%                       | 2.49E-05            | 5.81E-04            | 1.04E-04              |
| Total PeCDD              | 6                  | }                   | 0%                        | ]                   | ł                   | 3.19E-06              |
| Total PeCDF              | 6                  |                     | 0%                        |                     |                     | 2.10E-06              |
| Total TCDD               | 6                  |                     | 0%                        |                     |                     | 2.96E-06              |
| Total TCDF               | 6                  |                     | 0%                        |                     |                     | 2.52E-06              |

## Note:

# Dead Creek Sector F Surface Water Data Summary Sauget Area I

Appendix C-1.3

|                          | T             | ]        | T                |              |          |               |
|--------------------------|---------------|----------|------------------|--------------|----------|---------------|
| 1                        | Number        | Number   | <br> Frequency o | <br> Minimum | Maximum  | Average       |
| Compounds                | Analyzed      | Detected | Detection        | Detected     | Detected | Concentration |
| Herbicides, ug/i         |               |          |                  |              |          |               |
| 2,4,5-T                  | 3             |          | 0%               |              |          | 0.25          |
| 2,4,5-TP (Silvex)        | ] 3           |          | 0%               |              |          | 0.25          |
| 2,4-D                    | ] 3           |          | 0%               |              |          | 0.25          |
| 2,4-DB                   | 3             |          | 0%               |              |          | 0.25          |
| Dalapon                  | 3             |          | 0%               |              |          | 60            |
| Dicamba                  | 3             |          | 0%               |              |          | 0.60          |
| Dichloroprop             | 3             |          | 0%               |              |          | 3.0           |
| Dinoseb                  | 3             |          | 0%               |              |          | 3.0           |
| MCPA                     | 3             |          | 0%               |              |          | 60            |
| MCPP                     | 3             |          | 0%               |              |          | 60            |
| Pentachlorophenol        | 3             |          | 0%               |              |          | 0.50          |
| Metals, mg/l             |               |          |                  |              |          |               |
| Aluminum                 | ~ 3 <u> </u>  | 3        | 100%             | 0.039        | 0.55     | 0.25          |
| Antimony                 | 3             |          | 0%               |              |          | 0.010         |
| Arsenic                  | ີ <b>່ 3</b>  | 2        | 67%              | 0.0032       | 0.0049   | 0.0044        |
| Barium                   | 3             | 3        | 100%             | 0.12         | 0.13     | 0.13          |
| Beryllium                | ຶ່] 3         |          | 0%               |              |          | 0.0020        |
| Cadmium                  | 3             |          | 0%               |              |          | 0.0025        |
| Calcium                  | ] 3           | 3        | 100%             | 52           | 53       | 53            |
| Chromium                 | ] 3           |          | 0%               |              |          | 0.0050        |
| Cobalt                   | 3             |          | 0%               | ' I          |          | 0.0050        |
| Copper                   | ] 3 [         | 3        | 100%             | 0.0016       | 0.012    | 0.0052        |
| Cyanide, Total           | 3             | -        | 0%               | (            |          | 0.0050        |
| Iron                     | ] 3           | 3        | 100%             | 0.5          | 1.0      | 0.68          |
| Lead                     | ] 3           | 2        | 67%              | 0.0022       | 0.0037   | 0.0028        |
| Magnesium                | ] 3           | 3        | 100%             | 30           | 33       | 32            |
| Manganese                | ] 3           | 3        | 100%             | 0.082        | 0.14     | 0.11          |
| Mercury                  | ] 3 [         | {        | 0%               |              |          | 0.00010       |
| Molybdenum               | 3             | 1        | 33%              | 0.0028       | 0.0028   | 0.0043        |
| Nickel                   | ] 3           | 3        | 100%             | 0.0069       | 0.021    | 0.014         |
| Potassium                | 3             | 3        | 100%             | 6.4          | 6.9      | 6.6           |
| Selenium                 | 3             | 1        | 0%               |              |          | 0.0050        |
| Silver                   | ] 3 [         |          | 0%(              | ĺ            | í        | 0.0050        |
| Sodium                   | ] 3           | 3 ]      | 100%             | 21           | 22       | 21            |
| Thallium                 | 3             |          | 0%               |              |          | 0.0050        |
| Vanadium                 | 3             | 1 ]      | 33%              | 0.003        | 0.0030   | 0.0043        |
| Zínc                     | 3             | 3        | 100%             | 0.0073       | 0.075    | 0.039         |
| Fluoride (mg/l)          | 3             | 3        | 100%             | 0.24         | 0.27     | 0.25          |
| Hardness as CaCO3 (mg/l) | 3             | 3        | 100%             | 260          | 270      | 263           |
| Ortho-Phosphate-P (mg/l) | 3             | 3        | 100%             | 0.063        | 0.12     | 0.092         |
| pH                       | 3             | 3        | 100%             | 7.4          | 8.6      | 7.9           |
| Suspended Solids (mg/l)  | 3             | 2        | 67%              | 8            | 12       | 7.5           |
| Total Dissolved Solids   | 3             | 3        | 100%             | 330          | 360      | 347           |
| Total Phosphorus (mg/l)  | 3             | 3        | 100%             | 0.13         | 0.18     | 0.15          |
| PCB, ug/l                | <del>  </del> |          |                  |              |          |               |
| Decachlorobiphenyl       | 3             | ļ        | 0%               | j            | ļ        | 0.25          |
| Dichlorobiphenyl         | 3             | J        | 0%               | ļ            |          | 0.050         |
| Heptachlorobiphenyl      | 3             | l        | 0%               |              |          | 0.15          |
| Hexachlorobiphenyl       | 3             | l        | 0%               |              | Ì        | 0.10          |
| Monochlorobiphenyl       | 3 1           | Í        | 0%               | ł            | ĺ        | 0.050         |
| Nonachlorobiphenyl       | 3<br>3<br>3   | - 1      | 0%               | ŀ            |          | 0.25          |
| Octachlorobiphenyl       | 3             | -        | 0%               | 1            | 1        | 0.15          |
| Pentachlorobiphenyl      | 3             |          | 0%               |              | ļ        | 0.10          |
| Tetrachlorobiphenyl      | 3             | j        | 0%               | j            | j        | 0.10          |
| Trichlorobiphenyl        | 3             |          | 0%               |              |          | 0.050         |
| Total PCBs               | 3             |          | 0%               |              | ļ        | 0.050         |

# Dead Creek Sector F Surface Water Data Summary Sauget Area I

|                                             | I                  |          | 1                      | <u> </u> | 1         | _                        |
|---------------------------------------------|--------------------|----------|------------------------|----------|-----------|--------------------------|
|                                             |                    | <b></b>  |                        |          | <b>36</b> | <b>A.</b>                |
| Compounds                                   | Number<br>Analyzed |          | Frequency of Detection |          |           | Average<br>Concentration |
| Pesticides, ug/l                            | Assiyasu           | Detected | Detection              | Detected | Detected  | CONCERN AUG              |
| 4,4'-DOO                                    | 3                  |          | 0%                     |          |           | 0.050                    |
| 4.4'-DDE                                    | 3                  |          | 0%                     |          |           | 0.050                    |
| 4.4'-DOT                                    | 3                  |          | 0%                     |          |           | 0.050                    |
| Total DDT                                   | 3                  |          | 0%                     |          |           | 0.050                    |
| Aldrin                                      | 3                  |          | 0%                     |          |           | 0.025                    |
| Alpha Chlordane                             | 3                  |          | 0%                     |          |           | 0.025                    |
| alpha-BHC                                   | ] 3                |          | 0%                     |          |           | 0.020                    |
| beta-BHC                                    | 3                  |          | 0%                     | }        |           | 0.0070                   |
| delta-BHC                                   | 3                  |          | 0%                     |          |           | 0.0060                   |
| Dieldrin                                    | 3                  |          | 0%                     |          |           | 0.050                    |
| Endosulfan I<br>Endosulfan II               | 3                  |          | 0%                     |          |           | 0.025                    |
| Endosulfan sulfate                          | 3                  |          | 0%<br>0%               |          |           | 0.050<br>0.050           |
| Endrin                                      | 3                  |          | 0%                     |          |           | 0.050                    |
| Endrin aldehyde                             | 3                  |          | 0%                     |          |           | 0.050                    |
| Endrin ketone                               | 3                  |          | 0%                     |          |           | 0.050                    |
| Gamma Chlordane                             | 3                  |          | 0%                     |          |           | 0.025                    |
| gamma-BHC (Lindane)                         | 3                  |          | 0%                     |          |           | 0.010                    |
| Heptachlor                                  | 3                  |          | 0%                     |          |           | 0.025                    |
| Heptachlor epoxide                          | 3                  |          | 0%                     |          |           | 0.025                    |
| Methoxychlor                                | 3                  |          | 0%                     |          |           | 0.25                     |
| Toxaphene                                   | 3                  |          | 0%                     |          |           | 2.5                      |
| \$VOCs, ug/l                                |                    |          |                        |          |           |                          |
| 1,2,4-Trichlorobenzene                      | 3                  |          | 0%                     |          |           | 5.0                      |
| 1.2-Dichlorobenzene                         | 3                  |          | 0%                     |          |           | 5.0                      |
| 1,3-Dichlorobenzene                         | 3<br>3             |          | . 0%                   |          |           | 5.0                      |
| 1,4-Dichlorobenzene<br>2,2'-Oxybis(1-       | 3                  |          | 0%<br>0%               |          |           | 5.0<br>5.0               |
| 2,4,5-Trichlorophenol                       | 3                  |          | 0%                     |          |           | 5.0<br>5.0               |
| 2,4,6-Trichlorophenol                       | 3                  |          | 0%                     |          |           | 1.1                      |
| 2,4-Dichlorophenol                          | 3                  |          | 0%                     |          |           | 5.0                      |
| 2,4-Dinitrophenol                           | 3                  |          | 0%                     |          |           | 7.0                      |
| 2,4-Dinitrotoluene                          | 3                  |          | 0%                     |          |           | 5.0                      |
| 2.6-Dinitrotoluene                          | 3                  |          | 0%                     |          |           | 5.0                      |
| 2-Chloronaphthalene                         | 3                  |          | 0%                     |          |           | 5.0                      |
| 2-Chlorophenol                              | 3                  |          | 0%                     |          |           | 5.0                      |
| 2-Methylnaphthalene                         | 3                  |          | 0%                     |          |           | 5.0                      |
| 2-Methylphenol (o-cresol)                   | 3                  |          | 0%                     |          |           | 5.0                      |
| 2-Nitroaniline                              | 3                  |          | 0%                     |          |           | 25                       |
| -Nitrophenol                                | 3                  |          | 0%                     |          |           | 5.0                      |
| 3,3'-Dichlorobenzidine<br>3-Methylphenol/4- | 3<br>3             |          | 0%<br>0%               |          | İ         | 10<br>5.0                |
| -Menyprenov-                                | 3                  |          | 0%                     |          |           | 5.0<br>25                |
| .6-Dinitro-2-methylphenol                   | 3                  |          | 0%                     |          |           | 6.5                      |
| -Bromophenylphenyl                          | 3                  |          | 0%                     |          | İ         | 0.50                     |
| -Chloro-3-methylphenol                      | 3                  |          | 0%                     |          | ļ         | 5.0                      |
| -Chloroaniline                              | 3                  |          | 0%                     |          |           | 10                       |
| -Chlorophenylphenyl                         | 3                  |          | 0%                     |          |           | 5.0                      |
| Nitroaniine                                 | 3                  |          | 0%                     |          |           | 25                       |
| -Nitrophenol                                | 3                  |          | 0%                     |          |           | 25                       |
| cenaphthene                                 | 3                  |          | 0%                     |          |           | 5.0                      |
| cenaphthylene                               | 3                  |          | 0%                     |          |           | 5.0                      |
| nthracene                                   | 3                  |          | 0%                     |          |           | 5.0                      |
| enzo(a)anthracene                           | 3                  |          | 0%                     | ' I      |           | 5.0                      |
| enzo(a)pyrene                               | 3                  |          | 0%                     |          |           | 5.0                      |
| enzo(b)fluoranthene                         | 3                  |          | 0%                     |          |           | 5.0                      |
| enzo(g,h,i)perylene                         | 3                  |          | 0%                     |          |           | 5.0                      |
| enzo(k)fluoranthene                         | 3                  |          | 0%                     |          |           | 5.0                      |
| is(2-                                       | 3                  |          | 0%                     |          |           | 5.0                      |
| is(2-Chloroethyl)ether                      | 3                  |          | 0%                     |          | ļ         | 5.0                      |
| is(2-Ethythexyl)phthalate                   | 3                  |          | 0%                     |          | 1         | 0.90                     |
| utybenzylphthalate                          | 3                  |          | 0%                     |          |           | 5.0                      |
| arbazole                                    | 3                  |          | 0%                     |          |           | 5.0                      |
| thrysene                                    | 3                  |          | 0%                     |          |           | 5.0                      |

# Dead Creek Sector F Surface Water Data Summary Sauget Area I

| <del></del>                   | 1          | <del> </del>       | <del>,</del>           | <del>,                                    </del> |          |                          |
|-------------------------------|------------|--------------------|------------------------|--------------------------------------------------|----------|--------------------------|
|                               |            |                    | L                      |                                                  |          |                          |
| Companye                      | Number     | Number<br>Detected | Frequency of Detection |                                                  |          | Average<br>Concentration |
| Compounds Di-n-butylphthalate | Analyzed 3 | Detected           | O%                     | Detected                                         | Detected | 5.0                      |
| Di-n-octylphthalate           | 3          |                    | 0%                     |                                                  |          | 5.0<br>5.0               |
|                               | 3          |                    |                        | ŀ                                                |          | 5.0<br>5.0               |
| Dibenzo(a,h)anthracene        |            |                    | 0%                     | 1                                                |          |                          |
| Dibenzofuran                  | 3          |                    | 0%                     | }                                                |          | 5.0                      |
| Diethylphthalate              | 3          |                    | 0%                     |                                                  |          | 5.0                      |
| Dimethylphthalate             | 3          |                    | 0%                     |                                                  | 0.7      | 5.0                      |
| Fluoranthene                  | 3          | 1                  | 33%                    | 0.7                                              | 0.7      | 3.6                      |
| Fluorene                      | 3          |                    | 0%                     | <b>i</b> 1                                       |          | 0.50                     |
| Hexachlorobenzene             | 3          |                    | 0%                     | ļ                                                | j        | 5.0                      |
| Hexachlorobutadiene           | 3          |                    | 0%                     |                                                  |          | 5.0                      |
| Hexachlorocyclopentadien      | 3          |                    | 0%                     |                                                  |          | 5.0                      |
| Hexachloroethane              | 3          |                    | 0%                     |                                                  |          | 0.95                     |
| Indeno(1,2,3-cd)pyrene        | 3          |                    | 0%                     |                                                  |          | 5.0                      |
| Isophorone                    | 3          |                    | 0%                     |                                                  |          | 5.0                      |
| N-Nitroso-di-n-propylamine    | 3          |                    | 0%                     |                                                  |          | 5.0                      |
| N-Nitrosodiphenylamine        | 3          |                    | 0%                     |                                                  |          | 2.5                      |
| Naphthalene                   | 3          | İ                  | 0%                     |                                                  |          | 5.0                      |
| Nitrobenzene                  | 3          |                    | 0%                     |                                                  |          | 1.8                      |
| Pentachlorophenol             | 3          | ļ                  | 0%                     |                                                  |          | 2.5                      |
| Phenanthrene                  | 3          | 1 ]                | 33%                    | 0.7                                              | 0.7      | 3.6                      |
| Phenol                        | 3          | 1                  | 0%                     |                                                  |          | 5.0                      |
| Pyrene                        | 3          |                    | 0%                     |                                                  |          | 5.0                      |
| Total PAHs                    | 3          | 1                  | 33%                    | 1.4                                              | 1.4      | 3.8                      |
| VOCs, ug/l                    |            |                    |                        | _                                                |          |                          |
| 1,1,1-Trichloroethane         | 3          |                    | 0%                     |                                                  |          | 2.5                      |
| 1,1,2,2-Tetrachloroethane     | 3          | ľ                  | 0%                     |                                                  |          | 2.5                      |
| 1,1,2-Trichloroethane         | 3          | 1                  | 0%                     |                                                  |          | 2.5                      |
| 1,1-Dichloroethane            | 3 (        | ſ                  | 0%(                    |                                                  |          | 2.5                      |
| 1,1-Dichloroethene            | 3          | j                  | 0%                     |                                                  |          | 2.5                      |
| 1,2-Dichloroethane            | 3          |                    | 0%                     | · 1                                              | i        | 2.5                      |
| 1,2-Dichloropropane           | 3          | }                  | 0%                     |                                                  |          | 2.5                      |
| 2-Butanone (MEK)              | 3          |                    | 0%                     |                                                  |          | 13                       |
| 2-Hexanone                    | 3          | }                  | 0%                     |                                                  |          | 13)                      |
| 4-Methyl-2-pentanone          | 3          |                    | 0%                     |                                                  |          | 13                       |
| Acetone                       | 3          | Ì                  | 0%                     | }                                                | ł        | 25                       |
| Benzene                       | 3          | 1                  | 33%                    | 1.7                                              | 1.7      | 0.97                     |
| Bromodichloromethane          | 3          | 1                  | 0%                     | ľ                                                | i        | 2.5                      |
| Bromoform                     | 3          |                    | 0%                     | ļ                                                |          | 2.5                      |
| Bromomethane (Methyl          | 3          | í                  | 0%                     | - (                                              | ľ        | 4.9                      |
| Carbon disulfide              | 3          | J                  | 0%                     | }                                                | - 1      | 2.5                      |
| Carbon tetrachloride          | 3          |                    | 0%                     |                                                  |          | 2.5                      |
| Chlorobenzene                 | 3          |                    | 0%                     |                                                  |          | 2.5                      |
| Chloroethane                  | 3          |                    | 0%                     |                                                  |          | 5.0                      |
| Chloroform                    | 3          | 1                  | 0%                     | 1                                                |          | 2.5                      |
| Chloromethane                 | 3          | (                  | 0%                     | ſ                                                | į        | 5.0                      |
| cis-1,3-Dichloropropene       | 3 (        | l                  | 0%                     |                                                  | ł        | 0.50                     |
| Cis/Trans-1,2-                | 3          | İ                  | 0%                     | ļ                                                |          | 2.5                      |
| Dibromochloromethane          | 3          | 1                  | 0%                     | ľ                                                |          | 2.5                      |
| Ethylbenzene                  | 3          | Į                  | 0%                     | Ì                                                |          | 2.5                      |
| Methylene chloride            | 3          | l                  | 0%                     | }                                                |          | 2.4                      |
|                               | 3          |                    | 0%                     |                                                  |          | 2.5                      |
| Styrene                       | 3          | [                  |                        | ĺ                                                |          |                          |
| Tetrachloroethene             | 3          | 1                  | 0%                     | j                                                |          | 2.5                      |
| Toluene                       | ချ         |                    | 0%                     |                                                  |          | 2.5                      |
| trans-1,3-Dichloropropene     | 3          | Į                  | 0%                     | ,                                                |          | 2.5                      |
| Trichloroethene               | 3          | 1                  | 0%                     | ł                                                |          | 1.4                      |
| Vinyl chloride                | 3          | 1                  | 0%                     | }                                                |          | 5.0                      |
| Xylenes, Total                | 3          |                    | 0%                     |                                                  |          | 2.5                      |

### Note:

Appendix C-1.4

Dioxin Surface Water Data Summary for Dead Creek Sector F
Sauget Area I

|                          |                    |                    | <u> </u>               | ·                   |                     |                          |
|--------------------------|--------------------|--------------------|------------------------|---------------------|---------------------|--------------------------|
| Compounds                | Number<br>Analyzed | Number<br>Detected | Frequency of Detection | Minimum<br>Detected | Maximum<br>Detected | Average<br>Concentration |
| Dioxins and Furans, ug/l |                    |                    |                        |                     |                     |                          |
| 1,2,3,4,6,7,8,9-OCDD     | 3                  | 2                  | 67%                    | 5.73E-04            | 6.17E-04            | 4.24E-04                 |
| 1,2,3,4,6,7,8,9-OCDF     | 3                  | 3                  | 100%                   | 8.17E-05            | 2.60E-04            | 1.91E-04                 |
| 1,2,3,4,6,7,8-HpCDD      | 3                  | 2                  | 67%                    | 6.29E-05            | 6.92E-05            | 4.71E-05                 |
| 1,2,3,4,6,7,8-HpCDF      | 3                  | 3                  | 100%                   | 1.34E-05            | 5.05E-05            | 3.63E-05                 |
| 1,2,3,4,7,8,9-HpCDF      | 3                  | 1                  | 33%                    | 5.48E-04            | 5.48E-04            | 1.84E-04                 |
| 1,2,3,4,7,8-HxCDD        | 3                  |                    | 0%                     |                     |                     | 2.12E-06                 |
| 1,2,3,4,7,8-HxCDF        | 3                  | 1                  | 33%                    | 2.40E-05            | 2.40E-05            | 8.98E-06                 |
| 1,2,3,6,7,8-HxCDD        | 3                  |                    | 0%                     |                     |                     | 1.98E-06                 |
| 1,2,3,6,7,8-HxCDF        | 3                  | 1                  | 33%                    | 8.90E-06            | 8.90E-06            | 3.88E-06                 |
| 1,2,3,7,8,9-HxCDD        | 3                  |                    | 0%                     |                     |                     | 2.07E-06                 |
| 1,2,3,7,8,9-HxCDF        | 3                  |                    | 0%                     |                     |                     | 1.88E-06                 |
| 1,2,3,7,8-PeCDD          | 3                  |                    | 0%                     |                     |                     | 3.13E-06                 |
| 1,2,3,7,8-PeCDF          | 3                  |                    | 0%                     |                     |                     | 1.80E-06                 |
| 2,3,4,6,7,8-HxCDF        | 3                  |                    | 0%                     |                     |                     | 1.68E-06                 |
| 2,3,4,7,8-PeCDF          | 3                  |                    | 0%                     |                     |                     | 1.90E-06                 |
| 2,3,7,8-TCDD             | 3                  |                    | 0%                     |                     |                     | 2.60E-06                 |
| 2,3,7,8-TCDF             | 3                  |                    | 0%                     |                     |                     | 1.97E-06                 |
| Total HpCDD              | 3                  | 2                  | 67%                    | 1.27E-04            | 1.28E-04            | 9.13E-05                 |
| Total HpCDF              | 3                  | 2                  | 67%                    | 1.82E-04            | 6.00E-04            | 2.83E-04                 |
| Total HxCDD              | 3                  | 1                  | 33%                    | 9.02E-05            | 9.02E-05            | 3.37E-05                 |
| Total HxCDF              | 3                  | 2                  | 67%                    | 2.49E-05            | 5.81E-04            | 2.04E-04                 |
| Total PeCDD              | 3                  |                    | 0%                     | 1                   |                     | 3.13E-06                 |
| Total PeCDF              | 3                  |                    | 0%                     | ľ                   |                     | 1.85E-06                 |
| Total TCDD               | 3                  |                    | 0%                     | 1                   |                     | 2.60E-06                 |
| Total TCDF               | 3                  |                    | 0%                     |                     |                     | 1.97E-06                 |

# Note:

# Borrow Pit Lake Surface Water Data Summary Sauget Area I

|                               | Γ                               | l                  |                        | Γ        | [           |                          |
|-------------------------------|---------------------------------|--------------------|------------------------|----------|-------------|--------------------------|
|                               |                                 |                    | L                      |          |             | •                        |
| Compounds                     | Number<br>Analyzed              | Number<br>Detected | Frequency of Detection | Minimum  | Detected    | Average<br>Concentration |
| Herbicides, ug/l              | Allalyzed                       | Detected           | Detection              | Detected | Detected    | Concentration            |
| 2,4,5-T                       | 3                               |                    | 0%                     | [        | ĺ           | 0.25                     |
| 2,4,5-TP (Silvex)             | 3                               |                    | 0%                     |          |             | 0.25                     |
| 2,4-D                         | 3                               |                    | 0%                     |          | ) }         | 0.25                     |
| 2,4-DB                        | 1 3                             |                    | 0%                     |          |             | 0.25                     |
| Dalapon                       | 3                               |                    | 0%                     |          | l l         | 60                       |
| Dicamba                       | 3                               |                    | 0%                     |          | ĺ           | 0.60                     |
| Dichloroprop                  | 3                               |                    | 0%                     |          |             | 3.0                      |
| Dinoseb                       | 3                               |                    | 0%                     | l        |             | 3.0                      |
| MCPA                          | 3                               |                    | 0%                     |          |             | 60                       |
| MCPP                          | 3                               |                    | 0%                     |          |             | 60                       |
| Pentachlorophenol             | Í š l                           |                    | 0%                     |          | 1           | 0.50                     |
| Metals, mg/l                  |                                 |                    |                        |          |             |                          |
| Aluminum                      | 3                               | 3                  | 100%                   | 0.65     | 3.4         | 1.6                      |
| Antimony                      | 3                               | _                  | 0%                     |          | iI          | 0.010                    |
| Arsenic                       | 3                               | 3                  | 100%                   | 0.0079   | 0.015       | 0.012                    |
| Barium                        | 3                               | 3                  | 100%                   | 0.045    | 0.32        | 0.16                     |
| Beryllium                     | 3                               |                    | 0%                     |          | 1           | 0.0020                   |
| Cadmium                       | 3                               |                    | 0%                     |          |             | 0.0025                   |
| Calcium                       | 3                               | 3                  | 100%                   | 47       | 89          | 64                       |
| Chromium                      | 3                               | 1                  | 33%                    | 0.0041   | 0.0041      | 0.0047                   |
| Cobalt                        | 3 (                             | 1 (                | 33%                    | 0.0015   | 0.0015      | 0.0038                   |
| Copper                        | 3                               | 3                  | 100%                   | 0.0036   | 0.0074      | 0.0053                   |
| Cyanide, Total                | 3                               | - 1                | 0%                     |          | 1           | 0.0050                   |
| Iron                          | 3                               | 3                  | 100%                   | 1.3      | 8.7         | 3.9                      |
| Lead                          | 3                               | 3                  | 100%                   | 0.002    | 0.02        | 0.0083                   |
| Magnesium                     | 3                               | 3 (                | 100%                   | 26       | 31          | 29                       |
| Manganese                     | 3                               | 3                  | 100%                   | 0.13     | 1.7         | 0.67                     |
| Mercury                       | 3                               | 1                  | 0%                     |          | }           | 0.00010                  |
| Molybdenum                    | 3                               | 2                  | 67%                    | 0.0035   | 0.004       | 0.0042                   |
| Nickel                        | 3                               | 3                  | 100%                   | 0.0077   | 0.015       | 0.012                    |
| Potassium                     | 3                               | 3 (                | 100%                   | 5.1      | 7.6         | 6.6                      |
| Selenium                      | 3                               |                    | 0%                     |          | ł           | 0.0050                   |
| Silver                        | 3                               | }                  | 0%                     |          | ,           | 0.0050                   |
| Sodium                        | 3                               | 3 ]                | 100%                   | 21       | 24          | 22                       |
| Thallium                      | 3                               | 1                  | 0%                     |          | ŀ           | 0.0050                   |
| Vanadium                      | 3                               | 3                  | 100%                   | 0.0051   | 0.014       | 0.010                    |
| Zinc                          | 3                               | 3                  | 100%                   | 0.017    | 0.048       | 0.031                    |
| Fluoride (mg/l)               | 3                               | 3                  | 100%                   | 0.25     | 0.29        | 0.26                     |
| Hardness as CaCO3 (mg/l)      | 3                               | 3                  | 100%)                  | 220      | 350         | 280                      |
| Ortho-Phosphate-P (mg/l)      | 3                               | 3                  | 100%                   | 0.2      | 0.83        | 0.42                     |
| PH                            | 3                               | 3                  | 100%                   | 8.5      | 9.7         | 9.1                      |
| Suspended Solids (mg/l)       | 3                               | 3                  | 100%                   | 37       | 160         | 84                       |
| Total Dissolved Solids (mg/l) | 3                               | 3                  | 100%                   | 280      | 480         | 370                      |
| Total Phosphorus (mg/l)       | 3                               | 3                  | 100%                   | 0.26     | 1.2         | 0.59                     |
|                               |                                 |                    |                        |          |             |                          |
| PCBs, ug/l                    | _ [                             | 1                  |                        | ł        | ł           |                          |
| Decachlorobiphenyl            | 3                               |                    | 0%                     |          | -           | 0.25                     |
| Dichlorobiphenyl              | 3                               | }                  | 0%                     |          |             | 0.050                    |
| Heptachlorobiphenyl           | 3                               |                    | 0%                     | l l      | 1           | 0.15                     |
| Hexachlorobiphenyl            | 3<br>3<br>3<br>3<br>3<br>3<br>3 | -                  | 0%                     | ĺ        | 1           | 0.10                     |
| Monochlorobiphenyl            | 3                               | 1                  | 0%                     | ł        | ì           | 0.050                    |
| Nonachlorobiphenyl            | 3                               |                    | 0%                     |          | 1           | 0.25                     |
| Octachlorobiphenyl            | 3                               |                    | 0%                     |          |             | 0.15                     |
| Pentachlorobiphenyl           | 3                               |                    | 0%                     |          |             | 0.10                     |
| Tetrachlorobiphenyl           | 3                               | ľ                  | 0%                     | ľ        | İ           | 0.10                     |
| Trichlorobiphenyl             |                                 | -                  | 0%                     | 1        | - 1         | 0.050                    |
| Total PCBs                    | 3                               |                    | 0%                     |          | Ì           | 0.050                    |
| Postleides ug/                |                                 |                    |                        |          | <del></del> |                          |
| Pesticides, ug/i              | اء                              |                    | 0%                     |          |             | ا محماً                  |
| 4,4'-DDD<br>4,4'-DDE          | 3 3                             | }                  | 0%)<br>0%              | l        | 1           | 0.050<br>0.050           |
| 4,4'-DDT                      | 3                               | ł                  | 0%)<br>0%              | }        | - 1         |                          |
| Total DDT                     | 3                               |                    | 0%<br>0%               |          |             | 0.050                    |
| ו טעו טט ו                    | 3                               |                    | 0%                     |          |             | 0.050                    |

### Borrow Pit Lake Surface Water Data Summary Sauget Area I

|                                       | T        | Γ        |             |         |          | 1             |
|---------------------------------------|----------|----------|-------------|---------|----------|---------------|
|                                       | Number   | Number   | Frequency o | Minimum | Maximum  | Average       |
| Compounds                             | Analyzed | Detected |             |         | Detected | Concentration |
| Aldrin                                | 3        |          | 0%          |         |          | 0.025         |
| Alpha Chlordane                       | 1 3      |          | 0%          | ĺ       |          | 0.025         |
| alpha-BHC                             | 3        | 2        | 67%         | 0.00047 | 0.001    | 0.0070        |
| beta-BHC                              | 3        | 3        | 100%        | 0.0096  | 0.02     | 0.014         |
| delta-BHC                             | 3        | 2        | 67%         | 0.00013 | 0.0022   | 0.0028        |
| Dieldrin                              | 3        | 1        | 33%         | 0.001   | 0.001    | 0.034         |
| Endosulfan I                          | 3        | 2        | 67%         | 0.0015  | 0.0024   | 0.0096        |
| Endosulfan II                         | 3        | _        | 0%          | 3.00    |          | 0.050         |
| Endoculian sulfate                    | 3        | 1        | 33%         | 0.0032  | 0.0032   | 0.034         |
| Endrin                                | 3        | 1        | 33%         | 0.00095 | 0.00095  | 0.034         |
| Endrin aldehyde                       | 3        | 2        | 67%         | 0.0016  | 0.0032   | 0.018         |
| Endrin ketone                         | 3        | 1        | 33%         | 0.0027  | 0.0027   | 0.034         |
| Gamma Chlordane                       | 3        | •        | 0%          | 0.0027  | 0.0021   | 0.025         |
| gamma-BHC (Lindane)                   | 3        | 2        | 67%         | 0.0024  | 0.0038   | 0.0052        |
| Heptachlor                            | 3        | 3        | 100%        | 0.0022  | 0.0029   | 0.0026        |
|                                       | 3        | 2        | 67%         | 0.0022  |          | 0.0020        |
| Heptachlor epoxide                    | 3        | 2        | 0%          | U.UUUS  | 0.00096  |               |
| Methoxychior                          | 3        |          | 0%          |         |          | 0.25          |
| Toxaphene                             | 3        |          | 076         |         |          | 2.5           |
| \$340Ca 454                           |          | _        |             |         |          |               |
| SVOCs, ug/l<br>1,2,4-Trichlorobenzene | 3        |          | 0%          |         |          | 5.0           |
|                                       | - 1      |          |             |         |          |               |
| 1,2-Dichlorobenzene                   | 3        |          | 0%          |         |          | 5.0           |
| 1,3-Dichlorobenzene                   |          |          | 0%          |         |          | 5.0           |
| 1,4-Dichloroberzene                   | 3        |          | 0%          |         |          | 5.0           |
| 2.2'-Oxybis(1-                        | 3        |          | 0%          |         |          | 5.0           |
| 2.4.5-Trichlorophenol                 | 3        |          | 0%          |         |          | 5.0           |
| 2.4.6-Trichlorophenol                 | 3        |          | 0%          |         |          | 1.1           |
| 2.4-Dichlorophenol                    | 3        |          | 0%          |         |          | 5.0           |
| 2,4-Dinitrophenol                     | 3        |          | 0%          |         |          | 7.0           |
| 2.4-Dinitrotoluene                    | 3        |          | 0%          |         |          | 5.0           |
| 2.6-Dinitrotoluene                    | 3        |          | 0%          |         |          | 5.0           |
| 2-Chloronaphthalene                   | 3        | - 1      | 0%          |         |          | 5.0           |
| 2-Chilorophenol                       | 3        |          | 0%          |         |          | 5.0           |
| 2-Methylnaphthalene                   | 3        |          | 0%          |         |          | 5.0           |
| 2-Methylphenol (o-cresol)             | 3        |          | 0%          |         |          | 5.0           |
| 2-Nitroaniline                        | 3        |          | 0%          |         |          | 25            |
| 2-Nitrophenol                         | 3        | 1        | 0%          | - 1     |          | 5.0           |
| 3,3'-Dichlorobenzidine                | 3        |          | 0%          |         |          | 10            |
| 3-Methytphenol/4-                     | 3        |          | 0%          |         |          | 5.0           |
| 3-Nitroaniline                        | 3        |          | 0%          |         | 1        | 25            |
| 4,6-Dinitro-2-methylphenol            | 3        |          | 0%          |         | -        | 6.5           |
| 4-Bromophenylphenyl ether             | 3        | }        | 0%          |         | ł        | 0.50          |
| 4-Chloro-3-methytphenol               | 3        |          | 0%          |         |          | 5.0           |
| 4-Chloroaniline                       | 3        | ļ        | 0%          | ]       |          | 10            |
| 4-Chlorophenylphenyl ether            | 3        |          | 0%          |         |          | 5.0           |
| 1-Nitroaniline                        | 3        | 1        | 0%          |         |          | 25            |
| l-Nitrophenol                         | 3        | !        | 0%          | ļ       |          | 25            |
| Acensphilhene                         | 3        | !        | 0%          |         |          | 5.0           |
| Acenaphthylene                        | 3        | į        | 0%          |         | 1        | 5.0           |
| Anthracene                            | 3        | ļ        | 0%          |         |          | 5.0           |
| Benzo(a)anthracene                    | 3        | i        | 0%          |         |          | 5.0           |
| Benzo(a)pyrene                        | 3        | -        | 0%          |         |          | 5.0           |
| Benzo(b) fluoranthene                 | 3        | -        | 0%          |         |          | 5.0           |
| Benzo(g.hu)perytene                   | 3        |          | 0%          | ļ       |          | 5.0           |
| Benzo(k)fluoranthene                  | 3        |          | 0%          | 1       |          | 5.0           |
| ois(2-Chioroethoxy)methane            | 3        |          | 0%          |         |          | 5.0           |
| ois(2-Chloroethyl)ether               | 3        |          | 0%          | !       |          | 5.0<br>5.0    |
| pis(2-Ethylhexyl)phthalate            | 3        |          | 0%          | ı       | -        | 0.90          |
| Sutybenzylphthalate                   | 3        |          | 0%          | I       | 1        | 0.90<br>5.0   |
| Carbazole                             | 3        |          | 0%          | ŀ       |          |               |
|                                       | <u> </u> |          |             |         |          | 5.0           |

# Borrow Pit Lake Surface Water Data Summary Sauget Area I

|                                       | 7                  | 1        |                        |            |          |                          |
|---------------------------------------|--------------------|----------|------------------------|------------|----------|--------------------------|
|                                       | Number             | Number   |                        | RAIS ISSUE | Marian   | Average                  |
| Compounds                             | Number<br>Analyzed | Detected | Frequency of Detection | Detected   | Detected | Average<br>Concentration |
| Chrysene                              | 3                  | Detected | 0%                     | Dotected   | Detacted | 5.0                      |
| Di-n-butylphthalate                   | 1 3                |          | 0%                     |            | 1 1      | 5.0                      |
| Di-n-octylphthalate                   | 3                  |          | 0%                     |            | J        | 5.0                      |
| Dibenzo(a,h)anthracene                | 1 3                |          | 0%                     |            | 1 1      | 5.0                      |
| Dibenzofuran                          | 1 3                |          | 0%                     |            |          | 5.0                      |
| Diethylphthalate                      | 1 3                |          | 0%                     |            | 1 1      | 5.0                      |
| Dimethylphthalate                     | 3                  |          | 0%                     |            |          | 5.0                      |
| Fluoranthene                          | 3                  |          | 0%                     |            | <b>!</b> | 5.0                      |
| Fluorene                              | î 3 l              |          | 0%                     |            | 1        | 0.50                     |
| Hexachlorobenzene                     | 3                  |          | 0%                     |            | }        | 5.0                      |
| Hexachlorobutadiene                   | 3                  |          | 0%                     |            | 1        | 5.0                      |
| Hexachlorocyclopentadiene             | 3                  |          | 0%                     |            |          | 5.0                      |
| Hexachloroethane                      | ] 3                |          | 0%                     |            |          | 0.95                     |
| Indeno(1,2,3-cd)pyrene                | ] 3                |          | 0%                     |            | l l      | 5.0                      |
| Isophorone                            | ] 3                |          | 0%                     |            |          | 5.0                      |
| N-Nitroso-di-n-propylamine            | ] 3                |          | 0%                     |            |          | 5.0                      |
| N-Nitrosodiphenylamine                | 3                  |          | 0%                     |            |          | 2.5                      |
| Naphthalene                           | ] 3                |          | 0%                     |            |          | 5.0                      |
| Nitrobenzene                          | ] 3 [              | ĺ        | 0%                     |            | 1        | 1.8                      |
| Pentachlorophenol                     | ] 3                | ļ        | 0%                     |            |          | 2.5                      |
| Phenanthrene                          | ] 3                | ľ        | 0%                     |            |          | 5.0                      |
| Phenol                                | 3                  | }        | 0%                     |            | l ,      | 5.0                      |
| Pyrene                                | 3                  | 1        | 0%                     |            |          | 5.0                      |
| Total PAHs                            | 3                  |          | 0%                     |            |          | 5.0                      |
| VOCs, ug/l                            |                    | }        |                        |            | 1        | }                        |
| 1,1,1-Trichloroethane                 | 3                  | 1        | 0%                     |            | }        | 2.5                      |
| 1,1,2,2-Tetrachloroethane             | 3                  | - 1      | 0%                     | -          |          | 2.5                      |
| 1,1,2-Trichloroethane                 | 3                  |          | 0%                     |            |          | 2.5                      |
| 1,1-Dichloroethane                    | 3                  |          | 0%                     |            |          | 2.5                      |
| 1,1-Dichloroethene 1,2-Dichloroethane | 3 3                | i        | 0%}                    |            | İ        | 2.5                      |
| 1,2-Dichloropropane                   | 3                  | ļ        | 0% <br>0%              | ļ          | ·        | 2.5                      |
| 2-Butanone (MEK)                      | 3                  | ļ        | 0%                     |            | 1        | 2.5                      |
| 2-Hexanone                            | 3                  | j        | 0%                     | j          | }        | 13)<br>13                |
| 4-Methyl-2-pentanone                  | 3                  |          | 0%                     |            |          | 13                       |
| Acetone                               | 3                  | 3        | 100%                   | 13         | 18       | 15                       |
| Benzene                               | 3                  | <b>"</b> | 0%                     | ا"         | [        | 0.6                      |
| Bromodichloromethane                  | 3                  | }        | 0%                     | 1          | i        | 2.5                      |
| Bromoform                             | 3                  |          | 0%                     | ĺ          | 1        | 2.5                      |
| Bromomethane (Methyl                  | 3                  |          | 0%                     | 1          | 1        | 4.9                      |
| Carbon disulfide                      | 3                  | 1        | 0%                     |            | i        | 2.5                      |
| Carbon tetrachloride                  | 3                  |          | 0%                     |            |          | 2.5                      |
| Chlorobenzene                         | 3                  | ľ        | 0%                     | 1          | ì        | 2.5                      |
| Chloroethane                          | 3                  |          | 0%                     |            | l        | 5.0                      |
| Chloroform                            | 3                  | 1        | 0%                     | - }        | Į.       | 2.5                      |
| Chloromethane                         | 3                  |          | 0%                     | 1          | 1        | 5.0                      |
| cis-1,3-Dichloropropene               | 3                  | -        | 0%                     | 1          | }        | 0.50                     |
| Cis/Trans-1,2-                        | 3                  |          | 0%                     |            | Ļ        | 2.5                      |
| Dibromochloromethane                  | 3                  |          | 0%                     |            | ļ        | 2.5                      |
| Ethylbenzene                          | 3                  | ĺ        | 0%∫                    | [          | ĺ        | 2.5                      |
| Methylene chloride                    | 3                  | ]        | 0%                     | J          | J        | 2.4                      |
| Styrene                               | 3                  |          | 0%                     | 1          | [        | 2.5                      |
| Tetrachloroethene                     | 3                  | j        | 0%                     | j          |          | 2.5                      |
| Toluene                               | 3                  | 1        | 0%[                    | ĺ          | (        | 2.5                      |
| trans-1,3-Dichloropropene             | 3                  |          | 0%                     |            | <b> </b> | 2.5                      |
| Trichloroethene                       | 3                  | į        | 0%                     |            | l        | 1.4                      |
| Vinyl chloride                        | 3                  | 1        | 0%                     | }          | }        | 5.0                      |
| Xylenes, Total                        | 3                  |          | 0%]                    | 1          |          | 2.5                      |

Appendix C-1.6

# Dioxin Surface Water Summary Statistics Borrow Pit Lake Sauget Area I

|                          | Number   | Marinhan           |                           | 88::              |          | •             |
|--------------------------|----------|--------------------|---------------------------|-------------------|----------|---------------|
| <br>                     | 1        | Number<br>Detected | Frequency of<br>Detection | Minimum  Detected | Maximum  | Average       |
| Compounds                | Analyzed | Detected           | Detection                 | Detected          | Detected | Concentration |
| Dioxins and Furans, ug/l |          |                    |                           |                   |          |               |
| 1,2,3,4,6,7,8,9-OCDD     | 3        | 3                  | 100%                      | 7.51E-04          | 1.43E-03 | 9.91E-04      |
| 1,2,3,4,6,7,8,9-OCDF     | 3        | 2                  | 67%                       | 5.03E-05          | 7.10E-05 | 5.05E-05      |
| 1,2,3,4,6,7,8-HpCDD      | 3        | 2                  | 67%                       | 4.42E-05          | 5.69E-05 | 4.12E-05      |
| 1,2,3,4,6,7,8-HpCDF      | 3        | 3                  | 100%                      | 1.44E-05          | 2.17E-05 | 1.80E-05      |
| 1,2,3,4,7,8,9-HpCDF      | 3        |                    | 0%                        |                   |          | 4.83E-06      |
| 1,2,3,4,7,8-HxCDD        | 3        |                    | 0%                        |                   |          | 3.35E-06      |
| 1,2,3,4,7,8-HxCDF        | 3        |                    | 0%                        |                   |          | 3.12E-06      |
| 1,2,3,6,7,8-HxCDD        | 3        |                    | 0%                        |                   |          | 3.13E-06      |
| 1,2,3,6,7,8-HxCDF        | 3        |                    | 0%                        |                   |          | 2.90E-06      |
| 1,2,3,7,8,9-HxCDD        | 3        |                    | 0%                        |                   |          | 3.25E-06      |
| 1,2,3,7,8,9-HxCDF        | 3        |                    | 0%                        |                   |          | 3.45E-06      |
| 1,2,3,7,8-PeCDD          | 3        |                    | 0%                        |                   |          | 3.25E-06      |
| 1,2,3,7,8-PeCDF          | 3        |                    | 0%                        |                   |          | 2.28E-06      |
| 2,3,4,6,7,8-HxCDF        | 3        |                    | 0%                        | ſ                 |          | 3.07E-06      |
| 2.3,4,7,8-PeCDF          | 3        |                    | 0%                        |                   |          | 2.40E-06      |
| 2,3,7,8-TCDD             | 3        |                    | 0%                        |                   |          | 3.32E-06      |
| 2,3,7,8-TCDF             | 3        |                    | 0%                        |                   |          | 3.07E-06      |
| Total HpCDD              | 3        | 2                  | 67%                       | 9.35E-05          | 1.22E-04 | 9.02E-05      |
| Total HpCDF              | 3        | 3                  | 100%                      | 4.16E-05          | 5.51E-05 | 4.76E-05      |
| Total HxCDD              | 3        | 1                  | 33%                       | 6.20E-06          | 6.20E-06 | 4.43E-06      |
| Total HxCDF              | 3        |                    | 0%                        |                   |          | 3.12E-06      |
| Total PeCDD              | 3        |                    | 0%                        |                   |          | 3.25E-06      |
| Total PeCDF              | 3 .      |                    | 0%                        |                   |          | 2.35E-06      |
| Total TCDD               | 3        |                    | 0%                        | ſ                 | [        | 3.32E-06      |
| Total TCDF               | 3        |                    | 0%                        |                   |          | 3.07E-06      |

### Note:

# Reference Area Surface Water Data Summary Sauget Area I

|                          | <del></del> | г        | <del></del> | Γ        |          |                          |
|--------------------------|-------------|----------|-------------|----------|----------|--------------------------|
|                          | Number      | Number   | Frequency o | Minimum  | Maximum  | Averene                  |
| Compounds                | Analyzed    | Detected |             |          |          | Average<br>Concentration |
| Herbicides, ug/l         | Allalyzed   | Detected | Detection   | Detected | Detected | DOILCEILLI ACIOI         |
| 2,4,5-T                  | 1 4         |          | 0%          |          |          | 0.25                     |
| 2,4,5-TP (Silvex)        | 4           |          | 0%          |          |          | 0.25                     |
| 2,4-D                    | 4           |          | 0%          |          |          | 0.25                     |
| 2,4-DB                   | 4           |          | 0%          |          |          | 0.25                     |
| Dalapon                  | 1 4         |          | 0%          |          | '        | 60                       |
| Dicamba                  | 4           |          | 0%          |          |          | 0.60                     |
| Dichloroprop             | 4           |          | 0%          |          |          | 3.00                     |
| Dinoseb                  | 4           |          | 0%          |          |          | 3.00                     |
| MCPA                     | 4           |          | 0%          |          |          | 60                       |
| MCPP                     | 4           |          | 0%          |          |          | 60                       |
| Pentachlorophenol        | 4           |          | 0%          |          |          | 0.50                     |
| Metals, mg/i             | <del></del> |          | 0.70        |          |          | 0.50                     |
| Aluminum                 | 4           | 4        | 100%        | 9.4      | 19.5     | 13                       |
| Antimony                 | 4           | 4        | 0%          | 9.4      | 19.5     | 0.01                     |
| Arsenic                  | 4           | 4        | 100%        | 0.0093   | 0.017    |                          |
| Barium                   |             | 4        | 100%        |          |          | 0.01                     |
|                          | 4           | 4        |             | 0.32     | 0.41     | 0.36                     |
| Beryllium                | 4           | 2        | 50%         | 0.00067  | 0.00083  | 0.001                    |
| Cadmium                  | 4           |          | 0%          | ~~       |          | 0.003                    |
| Calcium                  | 4           | 4        | 100%        | 50       | 72       | 59                       |
| Chromium                 | 4           | 4        | 100%        | 0.011    | 0.0225   | 0.02                     |
| Cobalt                   | 4           | 4        | 100%        | 0.0047   | 0.0076   | 0.01                     |
| Copper                   | 4           | 4        | 100%        | 0.0097   | 0.0185   | 0.01                     |
| Cyanide, Total           | 4           | . !      | 0%          |          |          | 0.01                     |
| Iron                     | 4           | 4        | 100%        | 11       | 25.5     | 16                       |
| Lead                     | 4           | 4        | 100%        | 0.02     | 0.032    | 0.03                     |
| Magnesium                | 4           | 4        | 100%        | 23       | 35       | 27                       |
| Manganese                | 4           | 4        | 100%        | 1.5      | 2.9      | 1.98                     |
| Mercury                  | 4           |          | 0%          |          |          | 0.0001                   |
| Molybdenum               | 4           | 4        | 100%        | 0.0032   | 0.00655  | 0.01                     |
| Nickel                   | 4           | 4        | 100%        | 0.013    | 0.0245   | 0.02                     |
| Potassium                | 4           | 4        | 100%        | 7        | 11       | 8.50                     |
| Selenium                 | 4           |          | 0%          | ĺ        |          | 0.01                     |
| Silver                   | 4 ]         |          | 0%          |          |          | 0.01                     |
| Sodium                   | 4           | 4        | 100%        | 16       | 23       | 19                       |
| Thallium                 | 4           |          | 0%          |          |          | 0.01                     |
| Vanadium                 | 4           | 4        | 100%        | 0.031    | 0.0525   | 0.04                     |
| Zinc                     | 4           | 4        | 100%        | 0.042    | 0.13     | 0.08                     |
| Fluoride (mg/l)          | 4           | 4        | 100%        | 0.23     | 0.38     | 0.31                     |
| Hardness as CaCO3 (mg/l) | 4 [         | 4        | 100%        | 220      | 330      | 256                      |
| Ortho-Phosphate-P (mg/l) | 4 [         | 3 (      | 75%         | 0.089    | 0.215    | 0.12                     |
| pH                       | 4           | 4        | 100%        | 7.3      | 8.1      | 7.83                     |
| Suspended Solids (mg/l)  | 4           | 4        | 100%        | 270      | 700      | 420                      |
| Total Dissolved Solids   | 4           | 4        | 100%        | 310      | 460      | 368                      |
| Total Phosphorus (mg/l)  | 4           | 4        | 100%        | 0.87     | 3        | 1.64                     |
| PCB, ug/l                |             |          |             |          |          |                          |
| Decachlorobiphenyl       | 4           | j        | 0%          | i        |          | 0.25                     |
| Dichlorobiphenyl         | 4           | ł        | 0%          |          |          | 0.05                     |
| Heptachlorobiphenyl      | 4           |          | 0%          |          |          | 0.15                     |
| Hexachlorobiphenyl       | 4           | }        | 0%          |          |          | 0.10                     |
| Monochlorobiphenyl       | 4           | [        | 0%          | [        |          | 0.05                     |
| Nonachlorobiphenyl       | 4           | ,        | 0%          |          |          | 0.25                     |
| Octachlorobiphenyl       | 4           | (        | 0%          | 1        | į        | 0.15                     |
| Pentachlorobiphenyl      | 4           |          | 0%          |          |          | 0.10                     |
| Tetrachlorobiphenyl      | 4           | 1        | 0%          | -        |          | 0.10                     |
| Trichlorobiphenyl        | 4           |          | 0%          |          |          | 0.10                     |
| THORIOTOPHOLY:           | 7           | ]        | 0.0         | ļ        |          | 0.05                     |
| Pesticides, ug/l         | 4           |          | 0%          |          |          | 0.05                     |
| 4,4'-DDE                 | 4           | 1        | 25%         | 0.0015   | 0.0015   | 0.03                     |
| 4,4'-DDT                 | 4           | 1        | 25%         | 0.0013   | 0.0057   | 0.04                     |
| י טטי ד,ד                | 4           |          | 2070        | 0.0007   | 0.0057   | 0.04                     |

# Reference Area Surface Water Data Summary Sauget Area I

| <del></del>                         | <del></del> | <u> </u> | <del></del>  |                    |          |               |
|-------------------------------------|-------------|----------|--------------|--------------------|----------|---------------|
|                                     | Number      | Number   | Frequency of | Minimum            | Maximum  | Average       |
| Compounds                           | Analyzed    | Detected | Detection    |                    |          | Concentration |
| Aldrin                              | 4           | 2        | 50%          | 0.0024             | 0.004    | 0.01          |
| Alpha Chlordane                     | 4           | 2        | 50%          | 0.0019             | 0.013    | 0.02          |
| alpha-BHC                           | 4           | 1        | 25%          | 0.00155            |          | 0.02          |
| beta-BHC                            | 4           | 4        | 100%         | 0.0048             | 0.015    | 0.01          |
| delta-BHC                           | 4           | 1        | 25%          | 0.007              | 0.007    | 0.01          |
| Dieldrin                            | 4           | 2        | 50%          | 0.0021             | 0.0036   | 0.03          |
| Endosulfan I                        | 4           | 4        | 100%         | 0.0017             | 0.026    | 0.01          |
| Endosulfan II                       | 4           | 1        | 25%          |                    | 0.000096 | 0.04          |
| Endosulfan sulfate                  | 4           | 3        | 75%          | 0.0028             |          | 0.02          |
| Endrin<br>Endrin aldehyde           | 4           | 2        | 50%<br>25%   | 0.00048<br>0.05115 |          | 0.03<br>0.05  |
| Endrin ketone                       | 4           | 2        | 50%          | 0.0047             | 0.03113  | 0.03          |
| Garmma Chlordane                    | 4           | 2        | 50%          |                    |          | 0.03          |
| gamma-BHC (Lindane)                 | 4           | 4        | 100%         | 0.0002             | 0.0051   | 0.01          |
| Heptachlor                          | 4           | 1        | 25%          | 0.0035             | 0.0035   | 0.02          |
| Heptachlor epoxide                  | 4           | 4        | 100%         | 0.0047             | 0.0082   | 0.01          |
| Methoxychlor                        | 4           | •        | 0%           | 3.0047             | 3.0002   | 0.25          |
| Toxaphene                           | 4           |          | 0%           |                    |          | 2.50          |
| SVOCs, ug/l                         |             |          | <del></del>  |                    |          |               |
| 1,2,4-Trichlorobenzene              | 4           |          | 0%           |                    |          | 5.00          |
| 1,2-Dichlorobenzene                 | 4           |          | 0%           |                    |          | 5.00          |
| 1,3-Dichloroberzene                 | 4           |          | 0%           |                    |          | 5.00          |
| 1,4-Dichlorobenzene                 | 4           |          | 0%           |                    |          | 5.00          |
| 2,2'-Oxybis(1-                      | 4           |          | 0%           |                    |          | 5.00          |
| 2.4.5-Trichlorophenol               | 4 ,         |          | 0%           |                    |          | 5.00          |
| 2,4,6-Trichlorophenol               | 4           |          | 0%           |                    |          | 1.05          |
| 2.4-Dichlorophenol                  | 4           |          | 0%           |                    |          | 5.00          |
| 2,4-Dinitrophenol                   | 4           |          | 0%           |                    |          | 7.00          |
| 2.4-Dinitrotoluene                  | 4           |          | 0%           |                    |          | 5.00          |
| 2.6-Dinitrotoluene                  | •           |          | 0%<br>0%     |                    |          | 5.00          |
| -Chloronaphthalene<br>-Chlorophenol | 7           |          | 0%           |                    |          | 5.00<br>5.00  |
| 2-Methylnaphthalene                 | 7           |          | 0%           |                    |          | 5.00<br>5.00  |
| -Methylphenol (o-cresol)            | 7           |          | 0%           |                    |          | 5.00          |
| 2-Nitroaniine                       | 4           |          | 0%           | 1                  |          | 25            |
| 2-Nitrophenol                       | 4           |          | 0%           |                    |          | 5.00          |
| 3.3'-Dichlorobenzidine              | 4           |          | 0%           |                    |          | 10            |
| -Methylphenol/4-                    | 4           |          | 0%           |                    |          | 5.00          |
| -Nitroaniline                       | 4           |          | 0%           |                    |          | 25            |
| ,6-Dinitro-2-methylphenol           | 4           |          | 0%           |                    |          | 6.50          |
| -Bromophenylphenyl ether            | 4           |          | 0%           |                    |          | 0.50          |
| I-Chloro-3-methylphenol             | 4           |          | 0%           |                    |          | 5.00          |
| -Chloroaniline                      | 4           |          | 0%           |                    |          | 10            |
| -Chlorophenylphenyl ether           | 4           | }        | 0%           |                    |          | 5.00          |
| -Nitroaniline                       | 4           | Ì        | 0%           |                    | ļ        | 25            |
| -Nitrophenol                        | 4           |          | 0%           |                    |          | 25            |
| cenaphthene                         | 4           |          | 0%           |                    | j        | 5.00          |
| cenaphthylene                       | 4           |          | 0%           |                    |          | 5.00          |
| vnthracene                          | 4           | 1        | 0%           |                    |          | 5.00          |
| lenzo(a)anthracene                  | 4           |          | 0%           |                    | ł        | 5.00          |
| lenzo(a)pyrene                      | 4           | :        | 0%           |                    |          | 5.00          |
| lenzo(b)fluoranthene                | 4           |          | 0%           |                    | ]        | 5.00          |
| lenzo(g,h,i)perylene                | 4           | ;        | 0%           |                    |          | 5.00          |
| lenzo(k)fluoranthene                | 4           |          | 0%           |                    |          | 5.00          |
| is(2-                               | 4           |          | 0%           |                    |          | 5.00          |
| is(2-Chloroethyl)ether              | 4           |          | 0%           | ļ                  | J        | 5.00          |
| is(2-Ethylhexyl)phthalate           | 4           |          | 0%           |                    |          | 0.90          |
| Sutylbenzylphthalate                | 4           |          | 0%           |                    |          | 5.00          |
| Carbazole<br>Chosene                | 4           |          | 0%           | 1                  | į        | 5.00<br>5.00  |
| hrysene                             | 4           |          | 0%           |                    |          | 5.00          |

# Reference Area Surface Water Data Summary Sauget Area I

|                            | Ī        |          |              |              |              |               |
|----------------------------|----------|----------|--------------|--------------|--------------|---------------|
|                            | Number   | Number   | Frequency of | <br> Minimum | <br> Maximum | Average       |
| Compounds                  | Analyzed | Detected | Detection    | Detected     | Detected     | Concentration |
| Di-n-butylphthalate        | 4        |          | 0%           |              |              | 5.00          |
| Di-n-octylphthalate        | 4        |          | 0%           |              |              | 5.00          |
| Dibenzo(a,h)anthracene     | 4        |          | 0%           |              |              | 5.00          |
| Dibenzofuran               | 4        |          | 0%           |              |              | 5.00          |
| Diethylphthalate           | 1 4      |          | 0%           |              |              | 5.00          |
| Dimethylphthalate          | 4        |          | 0%           |              |              | 5.00          |
| Fluoranthene               | 4        |          | 0%           |              | i            | 5.00          |
| Fluorene                   | 1 4      |          | 0%           |              |              | 0.50          |
| Hexachlorobenzene          | 4        |          | 0%           |              | ł            | 5.00          |
| Hexachlorobutadiene        | 4        |          | 0%           |              |              | 5.00          |
| Hexachlorocyclopentadiene  | 4        |          | 0%           |              |              | 5.00          |
| Hexachloroethane           | ] 4]     |          | 0%           |              |              | 0.95          |
| Indeno(1,2,3-cd)pyrene     | 4        |          | 0%           |              |              | 5.00          |
| Isophorone                 | 4        |          | 0%           |              |              | 5.00          |
| N-Nitroso-di-n-propylamine | 4        |          | 0%           |              |              | 5.00          |
| N-Nitrosodiphenylamine     | 4        |          | 0%           |              |              | 2.50          |
| Naphthalene                | 4        |          | 0%           |              |              | 5.00          |
| Nitrobenzene               | 4        |          | 0%           |              |              | 1.75          |
| Pentachlorophenol          | 4        |          | 0%           |              |              | 2.50          |
| Phenanthrene               | 4        |          | 0%           |              |              | 5.00          |
| Phenol                     | 4        |          | 0%           |              |              | 5.00          |
| Pyrene                     | 4        |          | 0%           |              |              | 5.00          |
| VOCs, ug/l                 |          |          |              |              |              |               |
| 1,1,1-Trichloroethane      | 4        |          | 0%           |              |              | 2.5           |
| 1,1,2,2-Tetrachloroethane  | 4        |          | 0%           |              |              | 2.5           |
| 1,1,2-Trichloroethane      | 4        |          | 0%           | j            |              | 2.5           |
| 1,1-Dichloroethane         | 4        |          | 0%           |              |              | 2.5           |
| 1,1-Dichloroethene         | 4 ]      |          | 0%           |              |              | 2.5           |
| 1,2-Dichloroethane         | 4        |          | 0%           |              |              | 2.5           |
| 1,2-Dichloropropane        | 4        |          | 0%           |              |              | 2.5           |
| 2-Butanone (MEK)           | 4 [      | ſ        | 0%           | ĺ            |              | 12.5          |
| 2-Hexanone                 | 4        |          | 0%           |              |              | 12.5          |
| 4-Methyl-2-pentanone       | 4        |          | 0%           | ì            |              | 12.5          |
| Acetone                    | 4        | 1        | 25%          | 38           | 38           | 28            |
| Benzene                    | 4        | }        | 0%           | -            | ł            | 0.6           |
| Bromodichloromethane       | 4        |          | 0%           |              |              | 2.5           |
| Bromoform                  | 4        | ł        | 0%           | -            |              | 2.5           |
| Bromomethane (Methyl       | 4        | ĺ        | 0%           | Ĭ            | Ì            | 4.9           |
| Carbon disulfide           | 4        | 1        | 0%           |              |              | 2.5           |
| Carbon tetrachloride       | 4        |          | 0%           |              |              | 2.5           |
| Chlorobenzene              | 4 ]      | ]        | 0%           |              |              | 2.5           |
| Chloroethane               | 4        |          | 0%[          |              |              | 5             |
| Chloroform                 | 4        |          | 0%           |              |              | 2.5           |
| Chloromethane              | 4        | ĺ        | 0%           | ĺ            |              | 5             |
| cis-1,3-Dichloropropene    | 4        | · I      | 0%           | l            |              | 0.5           |
| Cis/Trans-1,2-             | 4        |          | 0%           | i            |              | 2.5           |
| Dibromochloromethane       | 4        |          | 0%           |              |              | 2.5           |
| Ethylbenzene               | 4        | 1        | 0%           |              | ľ            | 2.5           |
| Methylene chloride         | 4        | j        | 0%           |              | ]            | 2.35          |
| Styrene                    | 4        | ļ        | 0%           | ļ            |              | 2.5           |
| Tetrachloroethene          | 4        |          | 0%           |              |              | 2.5           |
| Toluene                    | 4        | ]        | 0%           |              |              | 2.5           |
| rans-1,3-Dichloropropene   | 4        |          | 0%           |              |              | 2.5           |
| Trichloroethene            | 4        |          | 0%           |              |              | 1.35          |
| Vinyl chloride             | 4        | [        | 0%           | ſ            | 1            | 5             |
| Xylenes, Total             | 4        |          | 0%           |              |              | 2.5           |

Note:

# Reference Area Surface Water Dioxin Data Summary Statistics Sauget Area I

|                          | Number    | Number   | Emayonayaf                | Minimum  | Maximum  | Avenage                  |
|--------------------------|-----------|----------|---------------------------|----------|----------|--------------------------|
| Compounds                | Analyzed  | Detected | Frequency of<br>Detection | Detected | Detected | Average<br>Concentration |
|                          | Allalyzeu | Detected | Detection                 | Detected | Detected | Concentration            |
| Dioxins and Furans, ug/l |           |          |                           |          |          |                          |
| 1,2,3,4,6,7,8,9-OCDD     | 4         | 4        | 100%                      | 2.88E-03 | 7.40E-03 |                          |
| 1,2,3,4,6,7,8,9-OCDF     | 4         | 3        | 75%                       | 1.23E-04 | 1.96E-04 |                          |
| 1,2,3,4,6,7,8-HpCDD      | 4         | 4        | 100%                      | 9.59E-05 | 1.83E-04 |                          |
| 1,2,3,4,6,7,8-HpCDF      | 4         | 4        | 100%                      | 1.47E-05 | 4.45E-05 |                          |
| 1,2,3,4,7,8,9-HpCDF      | 4         | 1        | 25%                       | 1.19E-05 | 1.19E-05 |                          |
| 1,2,3,4,7,8-HxCDD        | 4         | 2        | 50%                       | 5.75E-06 | 8.00E-06 |                          |
| 1,2,3,4,7,8-HxCDF        | 4         |          | 0%                        |          |          | 3.20E-06                 |
| 1,2,3,6,7,8-HxCDD        | 4         | 3        | 75%                       | 9.00E-06 | 9.80E-06 | 7.51E-06                 |
| 1,2,3,6,7,8-HxCDF        | 4         | 2        | 50%                       | 5.30E-06 | 7.20E-06 | 4.04E-06                 |
| 1,2,3,7,8,9-HxCDD        | 4         | 3        | 75%                       | 1.09E-05 | 1.39E-05 | 1.00E-05                 |
| 1,2,3,7,8,9-HxCDF        | 4         | 3        | 75%                       | 7.50E-06 | 1.27E-05 | 7.95E-06                 |
| 1,2,3,7,8-PeCDD          | 4         | 2        | 50%                       | 8.30E-06 | 8.70E-06 | 5.32E-06                 |
| 1,2,3,7,8-PeCDF          | 4         | 2        | 50%                       | 6.80E-06 | 7.10E-06 | 4.79E-06                 |
| 2,3,4,6,7,8-HxCDF        | 4         |          | 0%                        |          |          | 3.38E-06                 |
| 2,3,4,7,8-PeCDF          | 4         | 1        | 25%                       | 5.90E-06 | 5.90E-06 | 3.29E-06                 |
| 2,3,7,8-TCDD             | 4         |          | 0%[                       | ĺ        |          | 1.61E-06                 |
| 2,3,7,8-TCDF             | 4         | 3        | 75%                       | 5.40E-06 | 8.35E-06 | 5.70E-06                 |
| Total HpCDD              | 4         | 4        | 100%                      | 2.02E-04 | 4.04E-04 | 3.27E-04                 |
| Total HpCDF              | 4         | 2        | 50%                       | 8.10E-05 | 1.52E-04 | 7.80E-05                 |
| Total HxCDD              | 4         | 2        | 50%                       | 6.33E-05 | 6.43E-05 | 4.35E-05                 |
| Total HxCDF              | 4         | 2        | 50%                       | 2.16E-05 | 3.68E-05 | 2.86E-05                 |
| Total PeCDD              | 4         | 1        | 25%                       | 8.30E-06 | 8.30E-06 | 5.34E-06                 |
| Total PeCDF              | 4         | 2        | 50%                       | 1.30E-05 | 1.64E-05 | 9.20E-06                 |
| Total TCDD               | 4         | 3        | 75%                       | 3.90E-06 | 1.70E-05 | 7.35E-06                 |
| Total TCDF               | 4         | 3        | 75%                       | 5.40E-06 | 9.00E-06 | 5.86E-06                 |

### Note:

#### Comparison of Surface Water Detection Limits to Standards and Guidelines Dead Creek Sector F and Borrow Pit Lake Sauget Area I

| i                             |                 |                                                   | nois <sup>1</sup> |                                                  | Criteria <sup>2</sup>                 | Tier II                                          | Values <sup>3</sup> | Oak Ridge                      | A COPC   |                                                  |                                                                                         |
|-------------------------------|-----------------|---------------------------------------------------|-------------------|--------------------------------------------------|---------------------------------------|--------------------------------------------------|---------------------|--------------------------------|----------|--------------------------------------------------|-----------------------------------------------------------------------------------------|
|                               | Detection       | Acute WQ                                          | Chronic WQ        | CMC                                              | CCC                                   | Secondary                                        | Secondary           | Lowest Chronic Value           | for this |                                                  | }                                                                                       |
| Compounds                     | Limit           | Standards                                         | Standards         |                                                  |                                       | Acute Value                                      | Chronic Value       | for All Organisms <sup>4</sup> | Medium?  | Why is this a COC?                               | Comments on Detection Limits                                                            |
|                               |                 |                                                   |                   |                                                  |                                       |                                                  |                     |                                |          | 7.0                                              | CONTROL OF DOLOGICAL ENTED                                                              |
| Herbicides (ug/l)             |                 |                                                   |                   |                                                  |                                       |                                                  |                     |                                |          |                                                  | † - · · · · · · · · · · · · · · · · · ·                                                 |
| 2,4,5-T                       | 0.5             |                                                   |                   | -                                                |                                       |                                                  |                     |                                | No       |                                                  | No criteria available to evaluate detection limit.                                      |
| 2,4,5-TP (Silvex)             | 0.5             |                                                   |                   |                                                  |                                       |                                                  |                     |                                | No       |                                                  | No criteria available to evaluate detection limit.                                      |
| 2,4-D                         | 0.5             |                                                   |                   |                                                  |                                       |                                                  |                     |                                | No       |                                                  | No criteria available to evaluate detection limit.                                      |
| 2.4-DB                        | 0.5             |                                                   |                   |                                                  |                                       |                                                  |                     |                                | No       |                                                  | No criteria available to evaluate detection limit.                                      |
| Dalapon                       | 120             |                                                   |                   |                                                  |                                       |                                                  |                     |                                | No       | · · · · · · · · · · · · · · · · · · ·            | No criteria available to evaluate detection limit.                                      |
| Dicamba                       | 1.2             |                                                   |                   |                                                  |                                       |                                                  |                     |                                | No       |                                                  | No criteria available to evaluate detection limit.                                      |
| Dichloroprop                  | 6               |                                                   |                   |                                                  |                                       |                                                  |                     |                                | No       |                                                  | No criteria available to evaluate detection limit.                                      |
| Dinoseb                       | 6               |                                                   | T                 |                                                  |                                       |                                                  |                     |                                | No       | <del></del>                                      | No criteria available to evaluate detection limit.                                      |
| MCPA                          | 120             |                                                   |                   | _                                                |                                       |                                                  |                     |                                | No       |                                                  | No criteria available to evaluate detection limit.                                      |
| MCPP                          | 120             |                                                   |                   |                                                  | · · · · · · · · · · · · · · · · · · · |                                                  |                     |                                | No       |                                                  |                                                                                         |
| Pentachiorophenol at pH 7.4   | 1               |                                                   |                   | 13                                               | 10                                    |                                                  |                     |                                | No       |                                                  | No criteria available to evaluate detection limit.  Detection limit less than criteria. |
| Metals/inorganics (mg/l)      |                 |                                                   |                   |                                                  | 1                                     |                                                  |                     | <del> </del>                   | 140      |                                                  | Detection limit less tran criteria.                                                     |
| Aluminum                      | All Detected    | <b></b>                                           |                   | 0.75ª                                            | 0.087*                                |                                                  |                     |                                | Yes      |                                                  | 15                                                                                      |
| Antimony                      | 0.02            |                                                   |                   | 0.73                                             | 0.007                                 | 0.18                                             | 0.03                | <del></del>                    |          | greater than criteria                            | Detected in all samples.                                                                |
|                               |                 | 0.36                                              | 0.19              | 0.34                                             | 0.15                                  |                                                  |                     |                                | No       |                                                  | Detection limit less than criteria.                                                     |
| Arsenic                       | 0.01            | 0.36                                              | 0.19              | J 0.34                                           | 0.15                                  | 0.066 <sup>b</sup>                               | 0.0031 <sup>b</sup> |                                | No       |                                                  | Detection limit greater than Tier II values in 1/6                                      |
| Barium                        | All Detected    | <del></del>                                       | <u> </u>          |                                                  |                                       | 0.11                                             | 0.004               | ļ                              |          |                                                  | samples.                                                                                |
|                               |                 | <del> </del>                                      | <del></del>       |                                                  | ļ                                     |                                                  |                     |                                | Yes      | greater than Tier II                             | Detected in all samples.                                                                |
| Beryllium                     | 0.004           |                                                   | ľ                 | 1                                                |                                       | 0.035                                            | 0.00066             |                                | No       |                                                  | Detection limit greater than Tier II chronic value                                      |
|                               |                 | <del> </del>                                      | 0.0004            | 0.044                                            | 0.0046                                | <b> </b>                                         | <del> </del>        |                                | <u> </u> |                                                  | in 6/6 samples; source of uncertainty.                                                  |
| Cadmium                       | 0.005           | 0.024                                             | 0.0021            | 0.011                                            | 0.0046                                | Į                                                | ļ                   | l                              | No       | 1                                                | Detection limit greater than Illinois chronic                                           |
|                               |                 |                                                   | ļ                 | 1                                                | İ                                     | 1                                                |                     |                                |          |                                                  | standard and the NAWQ CCC in 6/6 samples;                                               |
|                               | 400 50 10 10 10 | <b></b> -                                         | ļ                 |                                                  |                                       |                                                  |                     |                                | <u> </u> |                                                  | source of uncertainty.                                                                  |
| Calcium                       | All Detected    | L                                                 |                   |                                                  |                                       |                                                  |                     | 116                            | No       |                                                  | Detected in all samples.                                                                |
| Chromium                      | 0.01            | 3.3 /0.016                                        | 0.39°/0.011°      | 3.4 / 0.016                                      | 0.167 0.0114                          | <u> </u>                                         |                     |                                | No       |                                                  | Detection limit less than criteria.                                                     |
| Cobalt                        | 0.01            | ļ                                                 |                   |                                                  |                                       | 1.5                                              | 0.023               |                                | No       |                                                  | Detection limit less than criteria.                                                     |
| Copper                        | All Detected    |                                                   | 0.023             | 0.029                                            | 0.018                                 |                                                  |                     |                                | No       |                                                  | Detected in all samples.                                                                |
| Cyanide, Total                | 0.01            | 0.022                                             | 0.0052            | 0.022                                            | 0.0052                                |                                                  |                     | 1                              | No       |                                                  | Detection limit greater than chronic values in 6/                                       |
| i                             |                 | <u></u>                                           | l.,               |                                                  | 1                                     |                                                  |                     |                                |          |                                                  | samples; source of uncertainty.                                                         |
| Iron                          | All Detected    |                                                   | <u></u>           | 1                                                | 11                                    |                                                  |                     |                                | Yes      | greater than criteria                            | Detected in all samples.                                                                |
| Lead                          | 0.005           | 0.26                                              | 0.055             | 0.22                                             | 0.0087                                |                                                  | L                   |                                | Yes      | greater than NAWQ criteria                       | Detection limit less than criteria.                                                     |
| Magnesium                     | All Detected    |                                                   |                   |                                                  |                                       |                                                  | L                   | 82                             | No       |                                                  | Detected in all samples.                                                                |
| Manganese                     | All Detected    | Į.                                                |                   |                                                  | l                                     | 2.3                                              | 0.12                |                                | Yes      | greater than criteria                            | Detected in all samples.                                                                |
| Mercury                       | 0.0002          | 0.0026                                            | 0.0013            | 0.0014                                           | 0.00077                               |                                                  | 0.0013              |                                | No       |                                                  | Detection limit less than criteria.                                                     |
| Molybdenum                    | 0.01            |                                                   |                   |                                                  |                                       | 16                                               | 0.37                | L                              | No       |                                                  | Detection limit less than criteria.                                                     |
| Nickel                        | All Detected    |                                                   |                   | 0.91                                             | 0.1                                   | 1                                                | 1                   |                                | No       |                                                  | Detected in all samples.                                                                |
| Potassium                     | All Detected    |                                                   | 1                 |                                                  |                                       |                                                  |                     | 53                             | No       |                                                  | Detected in all samples.                                                                |
| Selenium                      | 0.01            |                                                   |                   |                                                  | 0.005                                 |                                                  |                     |                                | No       |                                                  | Detection limit greater than NAWQ CCC in 6/6                                            |
| 00.01.10.11                   | """             | 1                                                 | 1                 | }                                                | j                                     | J                                                | 1                   | J                              |          | ļ                                                | samples; source of uncertainty.                                                         |
| Silver                        | 0.01            | t                                                 | ·                 | 0.016                                            |                                       |                                                  | 0.00036             |                                | No       |                                                  | Detection limit greater than Tier II chronic value                                      |
| Sive:                         | ""              | 1                                                 |                   |                                                  | 1                                     |                                                  | 1                   |                                |          | <b>\</b>                                         | in 6/6 samples.                                                                         |
| Sodium                        | All Detected    | t                                                 |                   | 1                                                | 1                                     | I                                                |                     | 680                            | No       |                                                  | Detected in all samples.                                                                |
| Thallium                      | 0.01            | <del>†                                     </del> | <del> </del>      |                                                  | 1                                     | 0.11                                             | 0.012               | 1                              | No       |                                                  | Detection limit less than criteria.                                                     |
| Vanadium                      | 0.01            | 1                                                 | +                 | <b></b>                                          | 1                                     | 0.28                                             | 0.02                | <u> </u>                       | No       |                                                  | Detection limit less than criteria.                                                     |
| Zinc                          | All Detected    | 1                                                 | +                 | 0.23                                             | 0.23                                  | † <del></del>                                    | †:- <u>-</u>        |                                | No       | <u> </u>                                         | Detected in all samples.                                                                |
|                               | All Detected    |                                                   | +                 | 1                                                |                                       | <del>                                     </del> | 1                   | <del> </del>                   | No       |                                                  | No criteria available to evaluate detection limit                                       |
| Fluoride (mg/l)               | All Delected    | '1                                                |                   | 1                                                | I                                     |                                                  |                     |                                | '"       | 1                                                | water quality parameter.                                                                |
| Hardness as CaCO3 (mg/l)      | All Detected    | .+                                                | +                 | <del>                                     </del> | <del> </del>                          | <del> </del>                                     | <del> </del>        | <del> </del>                   | No       |                                                  | No criteria available to evaluate detection limit                                       |
| maiuness as CaCO3 (mg/i)      | A Delected      | ' <del> </del>                                    |                   | 1                                                | 1                                     | 1                                                |                     |                                | '**      | 1                                                | water quality parameter.                                                                |
| Ortho Dheanhate D (           | All Detected    | <del> </del>                                      | <del> </del>      | <del> </del>                                     | +                                     | <del> </del>                                     | <del> </del> -      | <del> </del>                   | No       | <del>                                     </del> | No criteria available to evaluate detection limit                                       |
| Ortho-Phosphate-P (mg/l)      | Ail Detected    | '1                                                |                   | <b>!</b>                                         | 1                                     | ļ                                                | 1                   |                                | '**      | 1                                                | water quality parameter.                                                                |
| lau                           | All Detected    | <del></del>                                       | +                 | <del> </del>                                     | 6.5 - 9                               | <del> </del>                                     | · · · · · ·         | t                              | No       | <del> </del>                                     | Detected in all samples; water quality parameter                                        |
| pH                            |                 | 4                                                 | +                 | <del> </del>                                     | 0.5-3                                 | <del>                                     </del> | <del> </del>        | <del> </del>                   | No       |                                                  | No criteria available to evaluate detection limit                                       |
| Suspended Solids (mg/l)       | 5               | 1                                                 |                   | 1                                                | i                                     | 1                                                |                     |                                | l No     | i                                                | water quality parameter.                                                                |
|                               | All Date -1-    | .+                                                | <del> </del>      | <del></del>                                      | +                                     | <del> </del>                                     | <del> </del>        | <del></del>                    | No       | <del>                                     </del> | No criteria available to evaluate detection limit                                       |
| Total Dissolved Solids (mg/l) | All Detected    | 'l                                                |                   | 1                                                | 1                                     | 1                                                | 1                   |                                | ] NO     |                                                  | water quality parameter.                                                                |
| <u></u>                       | A               | <del> </del>                                      | <del> </del>      | <del> </del>                                     | <del> </del>                          | <del> </del>                                     | <del> </del>        | <del> </del>                   | No       |                                                  | No criteria available to evaluate detection limit                                       |
| Total Phosphorus (mg/l)       | All Detected    | 'I                                                |                   | 1                                                | 1                                     | 1                                                | 1                   |                                | l vo     |                                                  | water quality parameter.                                                                |
|                               |                 |                                                   | ,                 |                                                  |                                       |                                                  |                     |                                |          | 1                                                | I WALE: UUdiily Dalai Reiël.                                                            |

Appendix C-1 9

Comparison of Surface Water Detection Limits to Standards and Guidelines
Dead Creek Sector F and Borrow Pit Lake
Sauget Area I

| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |           | role'      |       | Cutéus, | ] THEFT     | Values"          | Oak Hidge            | A COPC   |                    |                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|------------|-------|---------|-------------|------------------|----------------------|----------|--------------------|--------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Detection | Acute WO  | Chronic WQ | CMC   | CCC     | Becondary   | Becondery        | Lowest Chronic Value | for this |                    |                                                                                                  |
| Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limit     | Standards | Blandards  | ļ     |         | Acute Value | Chronic Value    | for All Organisms*   | Medium?  | Why is this a COC? | Comments on Detection Limits                                                                     |
| PCB (ug/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |           |            |       | 0.014   |             |                  |                      |          |                    |                                                                                                  |
| Decachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5       |           |            |       | l       | 1           | 1                |                      | No       |                    | Detection limit greater than NAWG CCC for                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           | l i        |       |         | ļ           |                  |                      |          |                    | PCBs in 6/6 samples, source of uncertainty                                                       |
| Dichlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1       | 1         |            |       |         | ]           |                  |                      | No       | •                  | Detection limit greater than NAWO CCC for                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |            |       |         | Į.          |                  |                      |          |                    | PCBs in 6/6 samples, source of uncertainty                                                       |
| Heptachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3       | 1         |            |       |         | 1           |                  |                      | No       |                    | Detection limit greater than NAWQ CCC for                                                        |
| Hexachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2       |           | 1          |       |         |             | 1                |                      | No       |                    | PCBs in 6/6 samples; source of uncertainty<br>Detection limit greater than NAWQ CCC for          |
| The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | J.2       |           | 1          |       |         | ŀ           |                  |                      | '**      |                    | PCBs in 6/6 samples; source of uncertainty                                                       |
| Monochlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1       | Į.        | 1          |       |         |             |                  |                      | No       |                    | Detection limit greater than NAWO CCC for                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | ,         |            |       |         |             | 1                |                      |          |                    | PCBs in 6/6 samples, source of uncertainty.                                                      |
| Nonachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5       | l         |            |       |         | İ           | 1                |                      | No       |                    | Detection limit greater than NAWQ CCC for                                                        |
| 0-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3       |           |            |       |         | 1           |                  |                      |          |                    | PCBs in 6/6 samples, source of uncertainty                                                       |
| Octachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3       |           |            |       |         |             |                  |                      | No       |                    | Detection limit greater than NAWQ CCC for<br>PCHs in 6/6 samples, source of uncertainty          |
| Pentachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2       | i         | 1          |       | i       | ì           |                  |                      | No       |                    | Detection limit greater than NAWQ CCC for                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           | 1          |       |         | 1           |                  |                      | '        |                    | PCBs in 6/6 samples, source of uncertainty                                                       |
| Tetrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2       | ĺ         | ; i        |       |         | 1           |                  |                      | No       |                    | Detection limit greater than NAWQ CCC for                                                        |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | l         | ļ .        |       |         | 1           | ļ.               |                      | l        |                    | PCBs in 6/6 samples, source of uncertainty                                                       |
| Trichlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1       |           | <b>{</b>   |       |         | 1           | 1                |                      | No       |                    | Detection limit greater than NAWQ CCC for                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | }         | ł         | <b> </b>   |       | ł       |             | ł                |                      |          |                    | PCBs in 6/6 samples, source of uncertainty                                                       |
| Posticides (ug/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ł         | ł         | † !        |       | Ì       |             |                  |                      | ì        |                    |                                                                                                  |
| 4,4'-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1       | 1         | 1          |       | İ       | 0.19        | 0 011            |                      | No       |                    | Detection limit greater than Tier II chronic value                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1         | l l        |       | 1       | 1           | ł                |                      | 1        |                    | in 6/6 samples; source of uncertainty                                                            |
| 4,4'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1       | Ţ         | ! !        |       | j       | 1           | [                |                      | No       |                    | No criteria available to evaluate detection limit                                                |
| 4,4'-DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1       | ł         | <u> </u>   | 1.1   | 0 001   |             | 0 0 1 3'         |                      | No       |                    | Detection limit greater than CCC and Tier II                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |            |       |         |             |                  | ŀ                    |          | į.                 | chronic value in 6/6 samples, source of<br>uncertainty.                                          |
| Aldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05      | t         |            | 3     | ł       | ì           | ł                | i                    | No       |                    | Detection limit less than criteria                                                               |
| Alpha Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.08      | 1         | i i        | 2.4*  | 0.0043* | t           | Ì                | 1                    | No       |                    | Detection limit greater than NAWQ CCC in 6/6                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |           | i I        |       | 0.0043  | İ           | 1                | [                    | 1        |                    | samples; source of uncertainty                                                                   |
| alpha-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.039     | j         | i I        |       | ]       | 39^         | 2.2              |                      | No       |                    | Detection limit less than criteria                                                               |
| bela-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 1 4   |           |            |       |         | 39^         | 2.2 <sup>h</sup> |                      | No       | ]                  | Detection limit less than criteria.                                                              |
| delta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.012     | ŀ         |            |       | 1       | 36,         | 2.2 <sup>h</sup> | ļ                    | No       |                    | Detection limit less than criteria.                                                              |
| Dieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1       |           |            | 0.24  | 0.056   |             | i                | ł                    | No       |                    | Detection limit greater than NAWQ CCC in 5/6                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1         | }          |       |         | 1           |                  | ļ.                   | l No     |                    | samples, source of uncertainty.  Detection limit less than criteria.                             |
| Endosulfan I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05      | 1         |            | 0.22  | 0.056   |             | 0.61             |                      | No.      |                    | Detection limit greater than NAWQ CCC in 6/6                                                     |
| Endosulfan II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1       |           | 1          | 0 22' | 0.056   |             | 0.81             |                      | 140      |                    | samples; source of uncertainty.                                                                  |
| Endosulfan sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1       | 1         |            |       |         | İ           | İ                |                      | Yes      | no criteria        | No criteria available to evaluate detection limit.                                               |
| Endrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1       | l .       | l i        | 0.066 | 0.036   | i           | Į                | Ī                    | No       | Į.                 | Detection limit greater than NAWQC in 5/6                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Ī         |            |       |         |             |                  | !                    | 1        |                    | samples; source of uncertainty.                                                                  |
| Endrin aldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1       | 1         |            |       | 1       | 1           | ļ                |                      | Yes      | no criteria        | No criteria available to evaluate detection limit.                                               |
| Endrin ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1       | I         |            |       |         |             | 1                | 1                    | Yes      | no criteria        | No criteria available to evaluate detection limit.  Detection limit greater than NAWQ CCC in 6/6 |
| Gamma Chlordana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.08      |           |            | 2.4*  | 0,0043° |             |                  |                      | NO       |                    | samples; source of uncertainty.                                                                  |
| gamma-BHC (Lindane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.019     |           |            | 0.96  | 1       | 1           |                  | 1                    | No       | 1                  | Detection limit less than criteria.                                                              |
| Heptachior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.08      |           |            | 0.62  | 0.0036  | 0.125       | 0.0069           | !                    | No       | Ī                  | Detection limit greater than CCC and Tier II                                                     |
| repart not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |           |            |       |         |             |                  |                      |          |                    | chronic value in 3/6 samples; source of                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | ]         | [          |       |         |             |                  | 1                    | l        | Į.                 | uncertainty.                                                                                     |
| Heptachior epoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05      |           | ]          | 0.52  | 0.0038  |             |                  |                      | No       |                    | Detection limit greater than NAWQ CCC in 4/6 samples; source of uncertainty.                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |            |       | 0.03    |             | 0.019            |                      | No       |                    | Detection limit greater than CCC and Tier II                                                     |
| Methoxychlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5       |           |            |       | 0.03    |             | 0.019            |                      | "        |                    | chronic value in 6/6 samples; source of                                                          |
| i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |           |            |       |         |             |                  |                      | l        | 1                  | uncertainty.                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           | 1          |       | 1       | 1           | 1                |                      | No       | 1                  | Detection limit greater than NAWQC in 6/6                                                        |
| Toxaphene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6         | 1         |            | 0.73  | 0.0002  |             |                  | 1                    | NO       |                    | samples; source of uncertainty.                                                                  |

#### Comparison of Surface Water Detection Limits to Standards and Guidelines Dead Creek Sector F and Borrow Pit Lake Sauget Area I

|                               |              | Illir        | nois¹                                            | NAWQ Crit                                        | teria <sup>2</sup> | Tier II                                        | Values <sup>3</sup>                              | Oak Ridge                      | A COPC         |                                                  |                                                                                                          |
|-------------------------------|--------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------------|------------------------------------------------|--------------------------------------------------|--------------------------------|----------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                               | Detection    |              | Chronic WQ                                       | CMC                                              | CCC                | Secondary                                      | Secondary                                        | Lowest Chronic Value           | for this       |                                                  |                                                                                                          |
| Compounds                     | Limit        | Standards    | Standards                                        |                                                  |                    | Acute Value                                    | Chronic Value                                    | for All Organisms <sup>4</sup> | Medium?        | Why is this a COC?                               | Comments on Detection Limits                                                                             |
| SVOC (ug/l)                   |              |              |                                                  |                                                  |                    |                                                |                                                  |                                |                |                                                  |                                                                                                          |
| 1,2,4-Trichlorobenzene        | 10           | L            |                                                  |                                                  |                    | 700                                            | 110                                              |                                | No             |                                                  | Detection limit less than criteria.                                                                      |
| 1,2-Dichlorobenzene           | 10           |              |                                                  |                                                  |                    | 260                                            | 14                                               |                                | No             |                                                  | Detection limit less than criteria.                                                                      |
| 1,3-Dichlorobenzene           | 10           |              |                                                  |                                                  |                    | 630                                            | 71                                               |                                | No             |                                                  | Detection limit less than criteria.                                                                      |
| 1,4-Dichlorobenzene           | 10           |              |                                                  |                                                  |                    | 180                                            | 15                                               |                                | No             |                                                  | Detection limit less than criteria.                                                                      |
| 2,2'-Oxybis(1-Chloropropane)  | 10           | ļ            |                                                  | <u> </u>                                         | _                  | i                                              |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 2,4,5-Trichlorophenol         | 10           | <u> </u>     |                                                  | <u> </u>                                         |                    |                                                |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 2,4,6-Trichlorophenol         | 2.1          |              | l                                                |                                                  |                    | <b></b>                                        |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 2,4-Dichlorophenol            | 10           | ļ            |                                                  | <u> </u>                                         |                    | <u> </u>                                       |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 2,4-Dinitrophenol             | 14           | <b>-</b>     |                                                  |                                                  |                    | <u> </u>                                       |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 2,4-Dinitrotoluene            | 10           | ļ            |                                                  |                                                  |                    | ļ                                              |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 2,6-Dinitrotoluene            | 10           | <b>ļ</b>     | ļ                                                | ļ                                                |                    | ļ                                              |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 2-Chloronaphthalene           | 10           | <b>.</b>     |                                                  | <u> </u>                                         |                    | <b>!</b>                                       |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 2-Chiorophenol                | 10           |              |                                                  | ļ                                                |                    | <u> </u>                                       |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 2-Methylnaphthalene           | 10           | <b>-</b>     |                                                  | <b></b> _                                        |                    | L                                              |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 2-Methylphenol (o-cresol)     | 10           | ļ. ———       |                                                  | <del></del>                                      |                    | 230                                            | 13                                               |                                | No             |                                                  | Detection limit less than criteria.                                                                      |
| 2-Nitroaniline                | 50           | <u> </u>     |                                                  |                                                  |                    | <u> </u>                                       |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 2-Nitrophenol                 | 10           | <del> </del> | l — —                                            | <b> </b>                                         |                    | <del> </del>                                   | ļ                                                |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 3,3'-Dichlorobenzidine        | 20           | ļ            |                                                  |                                                  |                    |                                                |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 3-Methylphenol/4-Methylphenol | 10           | ļ            |                                                  | <del></del>                                      |                    | ļ                                              |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 3-Nitroaniline                | 50           | L            | <u> </u>                                         | <b></b>                                          |                    | <b> </b>                                       |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 4,6-Dinitro-2-methylphenol    | 13           | <b></b>      |                                                  | <b> -</b>                                        |                    | <del> </del>                                   |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 4-Bromophenylphenyl ether     | 1 1          | <b>└</b>     |                                                  | l                                                |                    | <del> </del>                                   | 1.5                                              |                                | No             |                                                  | Detection limit less than criteria.                                                                      |
| 4-Chioro-3-methylphenol       | 10           | ļ            |                                                  | <b> </b>                                         |                    |                                                |                                                  | <b>_</b>                       | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 4-Chloroaniline               | 20           | Ļ            |                                                  | <del> </del>                                     |                    | <del> </del>                                   |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 4-Chlorophenylphenyl ether    | 10           |              |                                                  | <b> </b>                                         |                    | ļ                                              |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 4-Nitroaniline                | 50           |              |                                                  | <b> </b>                                         |                    | <del> </del>                                   |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| 4-Nitrophenol                 | 50           | <b></b>      | L                                                | L                                                |                    | 1200                                           | 300                                              |                                | No             |                                                  | Detection limit less than criteria.                                                                      |
| Acenaphthene                  | 10           | <b>{</b>     | <b>_</b>                                         | <b></b>                                          |                    | <del></del>                                    |                                                  | 74                             | No             |                                                  | Detection limit less than criteria.                                                                      |
| Acenaphthylene                | 10           |              | ļ                                                | I                                                |                    | <del> </del>                                   |                                                  | L                              | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| Anthracene                    | 10           | i            |                                                  | ļ !                                              |                    | 13                                             | 0.73                                             |                                | No             | 1.                                               | Detection limit greater than Tier II chronic value                                                       |
|                               | <del> </del> | <del></del>  | <u> </u>                                         |                                                  |                    | <del> </del>                                   |                                                  |                                | <del> </del> _ |                                                  | in 6/6 samples; source of uncertainty.                                                                   |
| Benzo(a)anthracene            | 10           | 1            |                                                  | <b>)</b>                                         |                    | 0.49                                           | 0.027                                            | ĺ                              | No             | ł                                                | Detection limit greater than Tier II values in 6/6                                                       |
|                               | <u> </u>     |              | L                                                |                                                  |                    |                                                |                                                  |                                | L              |                                                  | samples; source of uncertainty.                                                                          |
| Benzo(a)pyrene                | 10           | 1            | 1                                                | 1 1                                              |                    | 0.24                                           | 0.014                                            |                                | No             | 1                                                | Detection limit greater than Tier II values in 6/6                                                       |
|                               | <del></del>  | <b>↓</b>     | ļ <u>-</u>                                       | <b>_</b>                                         |                    | ļ <u>.</u>                                     |                                                  |                                | <del> </del> - |                                                  | samples; source of uncertainty.                                                                          |
| Benzo(b)fluoranthene          | 10           | <del></del>  |                                                  | ļ                                                |                    | ļ                                              |                                                  |                                | No             | <u> </u>                                         | No criteria available to evaluate detection limits.                                                      |
| Benzo(g,h,i)perylene          | 10           |              |                                                  | <del> </del>                                     |                    | <del> </del>                                   |                                                  |                                | No             |                                                  | No criteria available to evaluate detection limits.                                                      |
| Benzo(k)fluoranthene          | 10           |              | ļ                                                | ļ                                                |                    | <b>_</b>                                       | <u> </u>                                         |                                | No             | ·                                                | No criteria available to evaluate detection limits.                                                      |
| bis(2-Chloroethoxy)methane    | 10           | <del></del>  | L                                                | <b></b>                                          |                    | ļ. <u>.                                   </u> |                                                  | ļ                              | No             | <b>-</b>                                         | No criteria available to evaluate detection limits.                                                      |
| bis(2-Chloroethyl)ether       | 10           | J            | <u> </u>                                         | <del> </del>                                     |                    | <u> </u>                                       |                                                  |                                | No             | <del>                                     </del> | No criteria available to evaluate detection limits.                                                      |
| bis(2-Ethylhexyl)phthalate    | 1.8          | <u> </u>     | <del>                                     </del> | <del> </del>                                     |                    | 27                                             | 3                                                |                                | No             |                                                  | Detection limit less than criteria.                                                                      |
| Butylbenzylphthalate          | 10           | <b></b> _    | <del> </del>                                     | <del> </del>                                     |                    | <b></b>                                        | 19                                               | ļ                              | No             | <del> </del>                                     | Detection limit less than criteria.                                                                      |
| Carbazole                     | 10           | <b></b>      | <del> </del>                                     | <del>                                     </del> |                    | <del></del>                                    | <del>                                     </del> | <del> </del>                   | No             | <del></del>                                      | No criteria available to evaluate detection limits.                                                      |
| Chrysene                      | 10           | <del> </del> | 1                                                | <del> </del>                                     |                    | +                                              |                                                  | <del> </del>                   | No<br>No       | <del></del>                                      | No criteria available to evaluate detection limits.                                                      |
| Di-n-butylphthalate           | 10           | 4            | <del> </del>                                     | <del>                                     </del> |                    | 190                                            | 35                                               | 700                            |                | <del>                                     </del> | Detection limit less than criteria.                                                                      |
| Di-n-octylphthalate           | 10           | <b>↓</b>     | <del> </del>                                     | <del>   </del>                                   |                    | <del> </del>                                   | <del> </del>                                     | 708                            | No             | <del> </del>                                     | Detection limit less than criteria.                                                                      |
| Dibenzo(a,h)anthracene        | 10           | <del> </del> | <b></b>                                          | <del>                                     </del> |                    | <del> </del>                                   | <del> </del>                                     | <del> </del>                   | No<br>No       | <del>                                     </del> | No criteria available to evaluate detection limits.                                                      |
| Dibenzofuran                  | 10           | 1            | 1                                                | 1                                                |                    | 66                                             | 3.7                                              | 1                              | NO             | Į.                                               | Detection limit greater than Tier II chronic value                                                       |
|                               | <del> </del> | <b>↓</b>     | <del> </del>                                     | <del> </del>                                     |                    | 1000                                           | 210                                              | <del> </del>                   | No             | <del> </del>                                     | in 6/6 samples; source of uncertainty.  Detection limit less than criteria.                              |
| Diethylphthalate              | 10           | <del></del>  |                                                  | <del> </del>                                     |                    | 1800                                           | <u>∠10</u>                                       | <del> </del>                   | No<br>No       | <del></del>                                      | No criteria available to evaluate detection limits.                                                      |
| Dirnethylphthalate            | 10           | <del></del>  | <del></del>                                      | <b>├</b> ────                                    |                    | <del> </del>                                   | <del> </del>                                     | 15                             | No<br>No       | <del> </del>                                     | Detection limit less than criteria.                                                                      |
| Fluoranthene                  | 10           | +            | <del> </del>                                     | <del> </del>                                     |                    | <del>  70</del> -                              | <del> </del>                                     | 15                             |                | <del> </del>                                     |                                                                                                          |
| Fluorene                      | 1            | 4            | <del> </del>                                     | <del> </del>                                     |                    | 70                                             | 3.9                                              | <del> </del>                   | No             | <del></del>                                      | Detection limit less than criteria.                                                                      |
| Hexachlorobenzene             | 10           | <del></del>  | <del> </del>                                     | <del>                                     </del> |                    | <del> </del>                                   |                                                  | <del> </del>                   | No             | <del> </del>                                     | No criteria available to evaluate detection limits.                                                      |
| Hexachlorobutadiene           | 10           | <b>├</b>     | <del> </del>                                     | <del>                                     </del> |                    | +                                              | <del></del>                                      | <del> </del>                   | No             | <del> </del>                                     | No criteria available to evaluate detection limits.  No criteria available to evaluate detection limits. |
| Hexachlorocyclopentadiene     | 10           | <b>├</b>     | <del></del>                                      | <del> </del>                                     |                    | + ===                                          | <del> </del>                                     | <del> </del>                   | No             |                                                  |                                                                                                          |
| Hexachloroethane              | 1.9          | <b>↓</b>     |                                                  | <del>                                     </del> |                    | 210                                            | 12                                               | <del> </del>                   | No             | <del> </del>                                     | Detection limit less than criteria.                                                                      |
| Indeno(1,2,3-cd)pyrene        | 10           | <b></b>      | <del> </del>                                     | <b>∤</b>                                         |                    | <del> </del>                                   | <del> </del>                                     | <del> </del>                   | No             | ļ <u>-</u>                                       | No criteria available to evaluate detection limits.                                                      |
| Isophorone                    | 10           | 1            |                                                  |                                                  |                    |                                                |                                                  | L                              | No             | L                                                | No criteria available to evaluate detection limits.                                                      |

# Correspond of Burlace Water Detection Limits to Blandards and Guidelines Dead Creek Bactor F and Borrow Pil Lake Baugel Area I

|                                      |              |              |                                                  |             |                       | 9                     | augel Area I               |                                            |          |                    |                                                                       |
|--------------------------------------|--------------|--------------|--------------------------------------------------|-------------|-----------------------|-----------------------|----------------------------|--------------------------------------------|----------|--------------------|-----------------------------------------------------------------------|
|                                      | Detection    |              | nois¹<br>  Chronic WG                            | NAWQ<br>CMC | Criterie <sup>®</sup> | Tier III<br>Secondary | Values <sup>3</sup>        | Oak Ridge                                  | A COPC   |                    |                                                                       |
| Compounds                            | Fruit        | Standards    |                                                  | CINC        | CCC                   | Acute Value           | Secondary<br>Chronic Value | Lowest Chronic Value<br>for All Organisms* | for this | Why is this a COC? | Comments on Detection Limits                                          |
| N-Nitroso-di-n-propylamine           | 10           |              |                                                  |             |                       | 1.00.0                | 0.110-110-10-00            |                                            | No       |                    | No criteria available to evaluate detection limits.                   |
| N-Nitrosodiphenylamine               | 5            |              | l l                                              |             |                       | 3800                  | 210                        |                                            | No       | Į.                 | Detection limit less then criteria detection limits                   |
| Nachthalene                          | 10           |              | 1                                                |             |                       | 190                   | 12                         |                                            | No       |                    | Detection limit less than criteria                                    |
| Nitrobenzene                         | 3.5          |              | 1 1                                              |             | İ                     |                       |                            |                                            | No       |                    | 1                                                                     |
| Pentachtorophenol                    | 6            |              | 1 1                                              |             | Ĭ                     |                       |                            |                                            | No       |                    | No criteria available to evaluate detection limits                    |
| Phenenthrene                         | 10           |              | i I                                              |             |                       |                       |                            | 200                                        | No.      |                    | No criteria available to evaluate detection limits                    |
| Phenoi                               | 10           | Į.           | 1 1                                              |             | Į.                    | l                     |                            | <b>₹200</b>                                | No.      |                    | Detection limit less than criteria.                                   |
| Pyrene                               | 10           | 1            | 1 1                                              |             |                       |                       | 1                          | 1200                                       | No No    | ł                  | Detection limit less than criteria.                                   |
| 1,,,,,,,                             |              |              | i i                                              |             | 1                     |                       |                            |                                            | 1700     | ł                  | No criteria available to evaluate detection limits                    |
| VOC (ug/l)                           |              |              | ļ j                                              |             | ļ                     |                       |                            |                                            |          | [                  | · †                                                                   |
| 1,1,1-Trichloroethane                | 5            |              | i 1                                              |             | ļ                     | 200                   | 11                         |                                            | No       | ŀ                  | Detection limit less than criteria                                    |
| 1,1,2,2-Teirschloroethene            | 5            |              |                                                  |             |                       | 2100                  | 610                        | ĺ                                          | No       |                    | Detection limit less than criteria                                    |
| 1,1,2-Trichloroethane                | 5            |              |                                                  |             | i                     | 5200                  | 1200                       |                                            | No       |                    | Detection limit less than criteria                                    |
| 1,1-Dichloroethane                   | 5            |              | 1                                                |             | 1                     | 830                   | 47                         |                                            | No       | t                  | Detection limit less than criteria                                    |
| 1,1-Dichloroethene                   | 5            |              | 1                                                |             | 1                     | 450                   | 25                         |                                            | No       | ł                  | Detection limit less than criteria                                    |
| 1,2-Dichloroethane                   | 5            | 1            |                                                  |             | ł                     | 8800                  | 910                        |                                            | No       | ł                  | Detection limit less than criteria                                    |
| 1,2-Dichloropropene                  | 5            | 1            | i I                                              |             | l                     | 1                     |                            |                                            | No.      | ŀ                  | No criteria available to evaluate detection limit                     |
| 2-Bulanone (MEK)                     | 26           | 1            |                                                  |             | 1                     | 240000                | 14000                      |                                            | No       | ł                  | Detection limit less than criteria                                    |
| 2-Hexanone                           | 25           | 1            | j                                                |             | 1                     | 1800                  | 99                         |                                            | No.      | ł                  | Detection limit less than criteria                                    |
| 4-Methyl-2-pentanone (MiBK)          | 25           | 1            | <b> </b>                                         |             | i                     | 2200                  | 170                        |                                            | No.      | ł                  | Detection limit less than criteria.                                   |
| Acetone                              | 50           |              | 1                                                |             |                       | 28000                 | 1500                       |                                            | No       |                    |                                                                       |
| Benzene                              | 12           | ļ            | 1 1                                              |             |                       | 2300                  | 130                        |                                            | No.      | 1                  | Detection limit less than criteria Detection limit less than criteria |
| Bromodichioromethene                 | 5            |              | i I                                              |             |                       | 2300                  | 130                        |                                            | No.      | ŀ                  | a control of the second                                               |
| Bromoform                            | 6            |              | 1                                                |             |                       | 1                     | !                          |                                            |          | }                  | No criteria available to evaluate detection limit                     |
| Bromomethene (Methyl bromide)        | 9.8          |              | Į I                                              |             |                       |                       | 1                          |                                            | No<br>No | 1                  | No criteria available to evaluate detection limit                     |
|                                      |              |              |                                                  |             |                       | l                     |                            |                                            |          |                    | No criteria available to evaluate detection limit                     |
| Carbon disulfide                     |              |              |                                                  |             |                       | 17                    | 0.92                       |                                            | No       |                    | Detection limit greater than Tier II chronic value                    |
| C                                    | 5            | ł            | 1                                                |             |                       |                       |                            |                                            |          | l.                 | in 6/6 samples; source of uncertainty                                 |
| Carbon tetrachloride                 | _            | ł            | ! !                                              |             |                       | 180                   | 9.6                        | ļ                                          | No       | 1                  | Detection limit less than criteria                                    |
| Chlorobenzene                        | 8            | ł .          | 1                                                |             | 1                     | 1100                  | 64                         |                                            | No       | 1                  | Detection limit less than criteria                                    |
| Chloroethane                         | 10           | l            | 1                                                |             | 1                     |                       | Į.                         | ļ                                          | No       |                    | No criteria available to evaluate detection limit                     |
| Chloroform                           | 5            |              | ! !                                              |             | Į.                    | 490                   | 26                         | ļ                                          | No       | <u> </u>           | Detection limit less than criteria                                    |
| Chloromethane                        | 10           | ļ            | ļ <u></u>                                        |             | ļ                     | 1                     | Į.                         | <u> </u>                                   | No       | !                  | No criteria available to evaluate detection limit.                    |
| cis-1,3-Dichloropropene              | 1            |              | 1                                                |             |                       | 0.99                  | 0 055                      |                                            | No       |                    | Detection limit greater than Tier II values in 6/6                    |
|                                      |              | I            | 1. 1                                             |             |                       | 1                     |                            | 1                                          | l        |                    | samples; source of uncertainty.                                       |
| Cis/Trans-1,2-Dichloroethene         | Б —          | l .          | 1 1                                              |             | 1                     | 1100                  | 590                        | 1                                          | No       |                    | Detection limit less than criteria                                    |
| Dibromochloromethane                 | 5            | [            | 1                                                |             | ]                     | 1                     | I                          |                                            | No       | I                  | No criteria available to evaluate detection limit.                    |
| Ethylbenzene                         | 6            | I            | I I                                              |             | i                     | 130                   | 7.3                        | I                                          | No       | _                  | Detection limit less than criteria.                                   |
| Methylene chloride (Dichloromethane) | 4.7          | Ĭ            | i I                                              |             | 1                     | 26000                 | 2200                       | 1                                          | No       | <u>l</u> '         | Detection limit less than criteria                                    |
| Styrene                              | 6            | i            | i .                                              |             | 1                     |                       | 1                          | Ī                                          | No       | 1                  | No criteria available to evaluate detection limit.                    |
| Tetrachloroethene                    | 6            | · .          | i . i                                            |             |                       | 830                   | 96                         | İ                                          | No       | 1                  | Detection limit less than criteria.                                   |
| Toluene                              | 6            | ľ            | į <b>i</b>                                       |             | 1                     | 120                   | 9.8                        | ľ                                          | No       | i                  | Detection firmit less than criteria.                                  |
| trans-1.3-Dichloropropene            | i -          | 1 .          |                                                  |             | Ì                     | 0.99                  | 0.088                      | i                                          | No       | i                  | Detection limit greater than Tier II values in 6/6                    |
|                                      | _            | 1            | 1 1                                              |             |                       | ",""                  | 0.000                      |                                            | 1        |                    | samples; source of uncertainty.                                       |
| Trichloroethene                      | 2.7          | 1            | i I                                              |             | İ                     | 440                   | 47                         |                                            | No       | †                  | Detection limit less than criteria.                                   |
| Vinyl chloride                       | 10           | 1            | 1 1                                              |             | 1                     | '''                   | "                          | ]                                          | No       | İ                  | No criteria available to evaluate detection limit.                    |
| Xylenes, Total                       |              | 1            | 1 1                                              |             | t                     | 2301/32               | 131/ 1.8                   |                                            | No       | İ                  | Detection limit greater than Tier II chronic value                    |
| Ayrenes, rotal                       | •            | 1            | 1                                                |             |                       | 230 / 32              | 13/1.0                     |                                            | '**      | į                  | in 6/6 samples; source of uncertainty.                                |
| · · ·                                | -            | 1            | 1 1                                              |             | t                     | 1                     | 1                          |                                            | 1        | İ                  | 1 .                                                                   |
| Dioxine (ug/l)                       |              | 1.           | 1 1                                              |             | t                     | 1                     | 1                          | Ì                                          | İ        | 1                  | er er e er e e e e e e e                                              |
| 1,2,3,4,6,7,8,9-OCDD                 | All Delected | 1            | 1 1                                              |             |                       | 1                     | 1                          | Ì                                          | Yes      | COPC in sediment   | No criteria available to evaluate detection limit.                    |
| 1,2,3,4,8,7,8,0,000F                 | All Detected |              | 1                                                | ·           |                       |                       | <b>!</b>                   | ł                                          | Yes      | COPC in sediment   | No criteria available to evaluate detection limit.                    |
| 1,2,3,4,6,7,6,9-OCDF                 | All Detected |              | <del> </del>                                     |             |                       |                       | <b>∮</b>                   |                                            | Yes      | ICOPC in sediment  | No criteria available to evaluate detection limit.                    |
| 1,2,3,4,6,7,8-HpCDD                  | All Detected |              | <del> </del>                                     |             | t                     | <del></del>           | <del> </del>               | ł                                          | Yes      | COPC in sediment   | No criteria avallable to evaluate detection limit.                    |
| 1,2,3,4,8,7,8-HpCDF                  |              | <del> </del> | <del>                                     </del> |             | <del> </del>          |                       | <del> </del>               |                                            |          | COPC in sediment   | No criteria avallable to evaluate detection limit.                    |
| 1,2,3,4,7,8,9-HpCDF                  | 1.28E-06     | <del> </del> | <del> </del>                                     |             |                       | <del></del>           | ł                          |                                            | Yes      |                    |                                                                       |
| 1,2,3,4,7,8-HxCDD                    | 8.80E-06     | <del> </del> | <b>├</b> ──                                      |             | <b> </b>              | <b></b>               | <del> </del>               | <b> </b>                                   | Yes      | COPC in sediment   | No criteria available to evaluate detection limit.                    |
| 1,2,3,4,7,8-HxCDF                    | 8.30E-06     | ļ            | <b></b>                                          |             | <b></b>               | <del> </del>          | <del></del>                | <b></b>                                    | Yes      | COPC in sediment   | No criteria available to evaluate detection limit.                    |
| 1,2,3,6,7,8-HxCDD                    | 8.20E-06     | <b>}</b>     | <del>                                     </del> |             | <del> </del>          | ·                     | <b>+</b>                   | <del> </del>                               | Yes      | COPC in sediment   | No criteria available to evaluate detection limit.                    |
| 1,2,3,8,7,8-HxCDF                    | 7.70E-06     | <del> </del> | <b>↓</b>                                         |             | ļ                     | <del></del>           | ļ                          | ļ                                          | Yes      | COPC in sediment   | No criteria available to evaluate detection limit.                    |
| 1,2,3,7,8,9-HxCDD                    | 8.50E-06     | <b> </b>     | <b>  </b>                                        |             | ļ                     |                       |                            |                                            | Yes      | COPC in sediment   | No criteria available to evaluate detection limit.                    |
| 1,2,3,7,6,9-HxCDF                    | 9.20E-06     | 1            |                                                  |             | L                     | .l. <u>.</u>          | L                          | L                                          | Yes      | COPC in sediment   | No criteria available to evaluate detection limit.                    |

#### Comparison of Surface Water Detection Limits to Standards and Guidelines Dead Creek Sector F and Borrow Pit Lake Sauget Area I

|                    |              | Illin     | nois       | NAWQ Criteria <sup>2</sup> |     | Tier II     | Values <sup>3</sup> | Oak Ridge            | A COPC   |                                  | <del></del>                                        |
|--------------------|--------------|-----------|------------|----------------------------|-----|-------------|---------------------|----------------------|----------|----------------------------------|----------------------------------------------------|
| [                  | Detection    | Acute WQ  | Chronic WQ | CMC                        | CCC | Secondary   | Secondary           | Lowest Chronic Value | for this |                                  |                                                    |
| Compounds          | Limit        | Standards | Standards  | {                          |     | Acute Value | Chronic Value       | for All Organisms    | Medium?  | Why is this a COC?               | Comments on Detection Limits                       |
| 1,2,3,7,8-PeCDD    | 8.70E-06     |           |            |                            |     |             |                     |                      | Yes      | COPC in sediment                 | No criteria available to evaluate detection limit. |
| 1,2,3,7,8-PeCDF    | 6.00E-06     |           |            |                            |     |             |                     |                      | Yes      | COPC in sediment                 | No criteria available to evaluate detection limit. |
| 2,3,4,6,7,8-HxCDF  | 8.20E-06     |           |            |                            |     | .[          |                     |                      | Yes      | COPC in sediment                 | No criteria available to evaluate detection limit. |
| 2,3,4,7,8-PeCDF    | 6.30E-06     |           |            |                            |     |             |                     |                      | Yes      | COPC in sediment                 | No criteria available to evaluate detection limit, |
| 2,3,7,8-TCDD       | 9.00E-06     |           |            |                            |     |             |                     |                      | Yes      | COPC in sediment                 | No criteria available to evaluate detection limit. |
| 2,3,7,8-TCDF       | 8.80E-06     |           |            |                            |     | 1           |                     |                      | Yes      |                                  | No criteria available to evaluate detection limit. |
| Total HpCDD        | All Detected |           |            |                            |     |             |                     |                      | Yes      |                                  | No criteria available to evaluate detection limit. |
| Total HpCDF        | All Detected |           |            |                            |     | 1           |                     |                      | Yes      |                                  | No criteria available to evaluate detection limit. |
| Total HxCDD        | 8.50E-06     |           |            |                            |     |             |                     |                      | Yes      |                                  | No criteria available to evaluate detection limit. |
| Total HxCDF        | 8.30E-06     |           |            |                            |     |             |                     |                      | Yes      |                                  | No criteria available to evaluate detection limit. |
| Total PeCDD        | 8.70E-06     |           |            |                            |     |             |                     |                      | Yes      | COPC in sediment                 | No criteria available to evaluate detection limit. |
| Total PeCDF        | 6.20E-06     |           |            |                            |     |             |                     |                      | Yes      | COPC in sediment                 | No criteria available to evaluate detection limit. |
| Total TCDD         | 9.00E-06     |           |            |                            |     |             |                     |                      | Yes      | COPC in sediment                 | No criteria available to evaluate detection limit. |
| Total TCDF         | 8.80E-06     |           |            |                            |     | 1           |                     |                      | Yes      | COPC in sediment                 | No criteria available to evaluate detection limit. |
| Total TEQ (mammal) | NA           |           |            |                            |     |             | 3.1E-09             |                      | Yes      | greater than Great Lakes Tier II |                                                    |

#### Notes:

\*Criterion is for total recoverable Aluminum at pH 6.5 - 9.0; USEPA says Water-Effects ratios may be more appropriate.

<sup>b</sup>Criterion is for Arsenic V

<sup>c</sup>Criterion is for Chromium III

<sup>4</sup>Criterion is for Chromium VI

\*Criterion is for Chlordane

Criterion is for alpha- and beta-Endosulfan

<sup>9</sup>Criterion is for PCBs

<sup>h</sup>Criterion is for BHC forms other than gamma-BHC

Criterion is for DDT

Criterion is for 1,3-Dichloropropene

<sup>k</sup>Criterion is for Xylene

Criterion is for m-Xylene

1 Illinois, 1999. Title 35 of the Illinois Administrative Code, Subtitle C, Chapter I, Part 302 Water Quality Standards, Subpart B.

<sup>2</sup> USEPA, 1999. National Recommended Water Quality Criteria - Correction, Office of Water, EPA 82-2-Z-99-001 (April 1999)

Hardness dependent criteria calculated at a hardness of 220 mg/l as CaCO<sub>3</sub> (the lowest detected on site)

Bold indicates detection limit exceeds screening benchmark.

Results in ug/l for organic constituents; mg/l for inorganic constituents

<sup>&</sup>lt;sup>3</sup> Suter, G.W. II, and C.L. Tsao, 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effect on Aquatic Biota: 1996 Revision. Risk Assessment, Health Sciences Research Division, Oak Ridge, Tennessee, ES/ER/TM-96/R2.



Appendix C-2.1

Sediment Summary Statistics for Dead Creek Section F and Borrow Pit Lake Sauget Area I

|                                         | Number   | Number   | Frequency Of | Minimum  | Maximum  | Average       |
|-----------------------------------------|----------|----------|--------------|----------|----------|---------------|
| Compounds                               | Analyzed | Detected | Detection    | Detected | Detected | Concentration |
| Herbicides, ug/kg                       |          | i        | 1            |          |          |               |
| 2,4,5-T                                 | ∫ 6      |          | 0%           | İ        |          | 38            |
| 2,4,5-TP (Silvex)                       | 6        |          | 0%           | }        |          | 38            |
| 2,4-D                                   | ∫ 6      | 3        | 50%          | 8.8      | 23       | 38            |
| 2,4-DB                                  | 6        |          | 0%           |          |          | 38            |
| Dalapon                                 | 6        |          | 0%           | 1        |          | 304           |
| Dicamba                                 | .] 6     |          | 0%           | }        |          | 89            |
| Dichloroprop                            | 6        |          | 0%           | [        | !        | 452           |
| Dinoseb                                 | 6        |          | 0%           |          |          | 452           |
| MCPA                                    | . 6      |          | 0%           | ļ        |          | 8,942         |
| MCPP                                    | 6        |          | 0%           |          |          | 8,942         |
| Pentachlorophenol                       | 6        |          | 0%           |          |          | 64            |
| Inorganics, mg/kg                       |          | -        | ]            |          |          |               |
| Aluminum                                | 6        | 6        | 100%         | 7,800    | 17,000   | 13,300        |
| Antimony                                | 6        | 5        | 83%          | 1.5      | 4.7      | 2.7           |
| Arsenic                                 | 6        | 6        | 100%         | 8.0      | 19       | 15            |
| Barium                                  | 6        | 6        | 100%         | 150      | 420      | 287           |
| Beryllium                               | 6        | 6        | 100%         | 0.53     | 0.89     | 0.74          |
| Cadmium                                 | 6        | 6        | 100%         | 1.6      | 47       | 12            |
| Calcium                                 | 6        | 6        | 100%         | 11,000   | 17,000   | 13,167        |
| Chromium                                | 6        | 6        | 100%         | 18       | 38       | 25            |
| Cobalt                                  | 6        | 6        | 100%         | 5.5      | 13       | 9.4           |
| Copper                                  | 6        | 6        | 100%         | 36       | 410      | 159           |
| Cyanide, Total                          | 6        |          | 0%           |          |          | 0.83          |
| Iron                                    | 6        | 6        | 100%         | 14,000   | 38,000   | 27,333        |
| Lead                                    | 6        | 6        | 100%         | 34       | 320      | 114           |
| Magnesium                               | 6        | 6        | 100%         | 3,600    | 6,800    | 5,033         |
| Manganese                               | 6        | 6        | 100%         | 170      | 1,400    | 758           |
| Mercury                                 | 6        | 6        | 100%         | 0.10     | 1.1      | 0.37          |
| Molybdenum                              | 6 (      | 6        | 100%         | 0.37     | 3.7      | 1.2           |
| Nickel                                  | 6        | 6        | 100%         | 35       | 390      | 134           |
| Potassium                               | 6        | 6        | 100%         | 1,500    | 2,900    | 2,183         |
| Selenium                                | 6        | . 1      | 0%           |          |          | 1.6           |
| Silver                                  | 6        | 1        | 17%          | 0.79     | 0.79     | 1.5           |
| Sodium                                  | 6        |          | 0%           |          |          | 113           |
| Thallium                                | 6        | _        | 0%           |          |          | 1.6           |
| Vanadium                                | 6        | 6        | 100%         | 25       | 51       | 37            |
| Zinc                                    | 6        | 6        | 100%         | 250      | 3,700    | 1,197         |
| рН                                      | 6        | 6        | 100%         | 6.7      | 7.06     | 6.9           |
| Total Organic Carbon (mg/kg dry weight) | 6        | 6        | 100%         | 33,000   | 140,000  | 64,333        |
| PCBs, ug/kg                             | _ 1      |          | ***          |          |          | [             |
| Decachlorobiphenyl                      | 6        | ļ        | 0%           |          |          | 56            |
| Dichlorobiphenyl                        | 6        | ł        | 0%           |          |          | 11            |
| Heptachlorobiphenyl                     | 6        |          | 0%           |          |          | 33            |
| Hexachlorobiphenyl                      | 6        | 2        | 33%          | 17       | 22       | 25            |
| Monochlorobiphenyl                      | 6        |          | 0%           |          |          | 11            |
| Nonachlorobiphenyl                      | 6        |          | 0%           |          |          | 56            |
| Octachlorobiphenyl                      | 6        | _        | 0%           |          |          | 33            |
| Pentachlorobiphenyl                     | 6        | 2        | 33%          | 61       | 66       | 39            |
| Tetrachlorobiphenyl                     | 6        |          | 0%           |          |          | 22            |
| Trichlorobiphenyl                       | 6        | ا ۗ      | 0%           | ا مم     |          | 11            |
| Total PCBs                              | 6        | 2        | 33%          | 83       | 83       | 57            |
| Pesticides, ug/kg                       | اء       | ا ر      | 4=01         |          |          |               |
| 4,4'-DDD                                | 6        | 1        | 17%          | 3.8      | 3.8      | 9.8           |
| 4,4'-DDE                                | 6        | 6        | 100%         | 1.1      | 11       | 4.6           |
| 4,4'-DDT                                | 6        | 3        | 50%          | 1.1      | 4.5      | 7.7           |
| Total DDT                               | 6        | 6        | 100%         | 2.2      | 43       | 18            |
| Aldrin                                  | 6        | 1        | 17%          | 4.1      | 4.1      | 5.4           |
| Alpha Chlordane                         | 6        | 6        | 100%         | 0.48     | 5.3      | 2.6           |

Appendix C-2.1

Sediment Summary Statistics for Dead Creek Section F and Borrow Pit Lake Sauget Area I

| Compounds                                      | Number<br>Analyzed                               | Number<br>Detected | Frequency Of<br>Detection | Minimum<br>Detected | Maximum<br>Detected | Average<br>Concentration |
|------------------------------------------------|--------------------------------------------------|--------------------|---------------------------|---------------------|---------------------|--------------------------|
| alpha-BHC                                      | 6                                                |                    | 0%                        |                     |                     | 1.6                      |
| beta-BHC                                       | 6                                                |                    | 0%                        |                     |                     | 1.6                      |
| delta-BHC                                      | 6                                                | 1                  | 17%                       | 0.34                | 0.34                | 1.5                      |
| Dieldrin                                       | 6                                                | 4                  | 67%                       | 0.26                | 9.3                 | 6.3                      |
| Endosulfan I                                   | 6                                                | 6                  | 100%                      | 1.0                 | 5.7                 | 2.9                      |
| Endosulfan II                                  | 6                                                | 3                  | 50%                       | 1.8                 | 8.1                 | 6.8                      |
| Endosulfan sulfate                             | 6                                                | 3                  | 50%                       | 1.4                 | 9.5                 | 8.7                      |
| Endrin                                         | 6                                                | 2                  | 33%                       | 1.7                 | 1.7                 | 7.7                      |
| Endrin aldehyde                                | 6                                                | 6                  | 100%                      | 1.2                 | 14                  | 5.2                      |
| Endrin ketone                                  | 6                                                | 4                  | 67%                       | 0.7                 | 10                  | 6.7                      |
| Gamma Chlordane                                | 6                                                | 5                  | 83%                       | 0.74                | 17                  | 5.9                      |
| gamma-BHC (Lindane)                            | 6                                                | 1                  | 17%                       | 4.8                 | 4.8                 | 5.6                      |
| Heptachlor                                     | 6                                                | 1                  | 17%                       | 0.93                | 0.93                | 4.5                      |
| Heptachlor epoxide                             | 6                                                | 3                  | 50%                       | 0.51                | 5.4                 | 4.9                      |
| Methoxychlor                                   | 6                                                | 3                  | 50%                       | 7.3                 | 24                  | 30                       |
| Toxaphene                                      | <del>                                     </del> |                    | 0%                        |                     |                     | 535                      |
| <b>\$VOCs, ug/kg</b><br>1,2,4-Trichlorobenzene | 6                                                |                    | 0%                        |                     |                     | 279                      |
| 1,2-4- i richioroberizene                      | 6                                                |                    | 0%                        |                     |                     | 279<br>279               |
| 1,3-Dichloroberzene                            | 6                                                |                    | 0%                        |                     |                     | 279                      |
| 1.4-Dichlorobenzene                            | 6                                                |                    | 0%                        |                     |                     | 279<br>279               |
| 2.2'-Oxybis(1-Chloropropane)                   | 6                                                |                    | 0%                        |                     |                     | 279                      |
| 2.4,5-Trichlorophenol                          | 6                                                |                    | 0%                        | l                   | i                   | 279                      |
| 2,4,6-Trichlorophenol                          | 6                                                |                    | 0%                        |                     | ľ                   | 279                      |
| 2.4-Dichlorophenol                             | 6                                                |                    | 0%                        |                     |                     | 279                      |
| 2,4-Dinitrophenol                              | 6                                                |                    | 0%                        |                     |                     | 1,400                    |
| 2,4-Dinitrotoluene                             | 6                                                |                    | 0%                        |                     |                     | 279                      |
| 2,6-Dinitrotoluene                             | 6                                                | ł                  | 0%                        |                     |                     | 279                      |
| 2-Chloronaphthalene                            | 6                                                |                    | 0%                        |                     |                     | 279                      |
| 2-Chlorophenol                                 | 6                                                | j                  | 0%                        |                     |                     | 279                      |
| 2-Methylnaphthalene                            | 6                                                |                    | 0%                        |                     |                     | 279                      |
| 2-Methylphenol (o-cresol)                      | 6                                                |                    | 0%                        |                     |                     | 279                      |
| 2-Nitroaniline                                 | 6                                                |                    | 0%                        |                     |                     | 1,400                    |
| 2-Nitrophenol                                  | 6                                                |                    | 0%                        |                     |                     | 279                      |
| 3,3'-Dichlorobenzidine                         | 6                                                |                    | 0%                        |                     |                     | 538                      |
| 3-Methylphenol/4-Methylphenol                  | 6                                                |                    | 0%                        | ı                   |                     | 279                      |
| 3-Nitroaniine                                  | 6                                                | ł                  | 0%                        |                     | İ                   | 1,400                    |
| 4,6-Dinitro-2-methylphenol                     | 6                                                | i                  | 0%                        |                     |                     | 1,400                    |
| 4-Bromopherrylpherryl ether                    | 6                                                |                    | 0%                        |                     |                     | 279                      |
| 4-Chloro-3-methylphenol 4-Chloroaniline        | 0                                                |                    | 0%<br>0%                  |                     |                     | 279                      |
| 4-Chlorophenylphenyl ether                     | 6<br>6                                           |                    | 0%                        |                     |                     | 538<br>279               |
| 4-Nitroaniine                                  | 6                                                |                    | 0%                        |                     |                     | 1,400                    |
| 4-Nitrophenol                                  | 6                                                | 1                  | 0%                        |                     |                     | 1,400                    |
| Acenaphthene                                   | 6                                                | i                  | 0%                        |                     |                     | 279                      |
| Acenaphthylene                                 | 6                                                |                    | 0%                        |                     |                     | 279                      |
| Anthracene                                     | 6                                                |                    | 0%                        |                     |                     | 279                      |
| Benzo(a)anthracene                             | 6                                                |                    | 0%                        |                     |                     | 279                      |
| Benzo(a)pyrene                                 | 6                                                |                    | 0%                        |                     |                     | 148                      |
| Benzo(b)fluoranthene                           | 6                                                | i                  | 0%                        |                     |                     | 279                      |
| Benzo(g,h,i)perylene                           | 6                                                | ŀ                  | 0%                        |                     |                     | 279                      |
| Berizo(k)fluoranthene                          | 6                                                |                    | 0%                        |                     |                     | 279                      |
| bis(2-Chloroethoxy)methane                     | 6                                                |                    | 0%                        |                     |                     | 279                      |
| bis(2-Chloroethyl)ether                        | 6                                                |                    | 0%                        |                     |                     | 279                      |
| bis(2-Ethythexyl)phthalate                     | 6                                                |                    | 0%                        |                     |                     | 279                      |
| Butylbenzylphthalate                           | 6                                                |                    | 0%                        |                     |                     | 279                      |
| Carbazole                                      | 6                                                |                    | 0%                        |                     |                     | 279                      |
| Chrysene                                       | 6                                                | 1                  | 17%                       | 74                  | 74                  | 258                      |
| Di-n-butylphthalate                            | _ 6                                              |                    | 0%                        |                     |                     | 279                      |

# Sediment Summary Statistics for Dead Creek Section F and Borrow Pit Lake Sauget Area I

| Compounds                            | Number<br>Analyzed | Number<br>Detected                    | Frequency Of Detection | Minimum<br>Detected | Maximum<br>Detected | Average<br>Concentration |
|--------------------------------------|--------------------|---------------------------------------|------------------------|---------------------|---------------------|--------------------------|
| Di-n-octylphthalate                  | 6                  | "                                     | 0%                     |                     |                     | 279                      |
| Dibenzo(a,h)anthracene               | 6                  |                                       | 0%                     |                     |                     | 148                      |
| Dibenzofuran                         | 6                  | į                                     | 0%                     |                     |                     | 279                      |
| Diethylphthalate                     | 6                  |                                       | 0%                     |                     | j                   | 279                      |
| Dimethylphthalate                    | 6                  |                                       | 0%                     |                     |                     | 279                      |
| Fluoranthene                         | 6                  | 2                                     | 33%                    | 120                 | 130                 | 236                      |
| Fluorene                             | ~ 6 l              |                                       | 0%                     | 120                 | 100                 | 279                      |
| Hexachlorobenzene                    | 6                  |                                       | 0%                     |                     |                     | 114                      |
| Hexachlorobutadiene                  | 6                  | ,                                     | 0%                     |                     |                     | 279                      |
| Hexachlorocyclopentadiene            | 6                  |                                       | 0%                     |                     |                     | 279                      |
| Hexachloroethane                     | 1 6                |                                       | 0%                     |                     |                     | 279                      |
| Indeno(1,2,3-cd)pyrene               | 6                  |                                       | 0%                     |                     |                     | 279<br>279               |
| Isophorone                           | 6                  |                                       | 0%                     |                     |                     | 279                      |
| N-Nitroso-di-n-propylamine           | -) 1               |                                       | 0%                     |                     |                     |                          |
|                                      | 6                  |                                       |                        |                     |                     | 279                      |
| N-Nitrosodiphenylamine               | 6                  |                                       | 0%                     | <u>'</u>            |                     | 279                      |
| Naphthalene                          | 6                  |                                       | 0%                     |                     | ļ                   | 279                      |
| Nitrobenzene                         | 6                  |                                       | 0%                     |                     |                     | 279                      |
| Pentachlorophenol                    | [6]                |                                       | 0%                     |                     |                     | 1,400                    |
| Phenanthrene                         | ] 6]               |                                       | 0%                     |                     | }                   | 279                      |
| Phenol                               | 6                  |                                       | 0%                     |                     |                     | 279                      |
| Pyrene                               | 6                  |                                       | 0%                     |                     |                     | 279                      |
| Total PAHs                           | 6                  | 2                                     | 33%                    | 194                 | 440                 | 300                      |
| VOCs, ug/kg                          | 1 _1               |                                       |                        |                     |                     |                          |
| 1,1,1-Trichloroethane                | [ 6                |                                       | 0%                     |                     |                     | 14                       |
| 1,1,2,2-Tetrachloroethane            | 6                  |                                       | 0%                     |                     |                     | 14                       |
| 1,1,2-Trichloroethane                | 6                  |                                       | 0%                     |                     |                     | 14                       |
| 1,1-Dichloroethane                   | 6                  | l                                     | 0%                     |                     |                     | 14 [                     |
| 1,1-Dichloroethene                   | 6                  | ì                                     | 0%                     |                     |                     | 13                       |
| 1,2-Dichloroethane                   | ] 6]               | j                                     | 0%                     |                     |                     | 14                       |
| 1,2-Dichloropropane                  | 6                  |                                       | 0% (                   |                     |                     | 14                       |
| 2-Butanone (MEK)                     | 6                  | ļ                                     | 0%                     |                     |                     | 67                       |
| 2-Hexanone                           | 6                  |                                       | 0%                     | '                   |                     | 67                       |
| 4-Methyl-2-pentanone (MIBK)          | 6                  | Í                                     | 0% {                   |                     |                     | 67                       |
| Acetone                              | [ 6]               |                                       | 0%                     |                     |                     | 138                      |
| Benzene                              | 6                  | İ                                     | 0%                     |                     |                     | 14                       |
| Bromodichloromethane                 | 6                  |                                       | 0%                     |                     |                     | 14                       |
| Bromoform                            | 6                  |                                       | 0%                     |                     |                     | 14                       |
| Bromomethane (Methyl bromide)        | 6                  |                                       | 0%                     | l                   |                     | 27                       |
| Carbon disulfide                     | 6                  |                                       | 0%                     |                     |                     | 14                       |
| Carbon tetrachloride                 | 6 [                | · · · · · · · · · · · · · · · · · · · | 0% {                   |                     |                     | 14 (                     |
| Chlorobenzene                        | 6                  | 1                                     | 0%                     |                     |                     | 14                       |
| Chloroethane                         | 6                  |                                       | 0%                     |                     |                     | 27                       |
| Chloroform                           | 6                  | 1                                     | 0%                     |                     |                     | 14                       |
| Chloromethane                        | 6                  |                                       | 0%                     |                     |                     | 27                       |
| cis-1,3-Dichloropropene              | 6                  | İ                                     | 0%                     | ı                   |                     | 11                       |
| Cis/Trans-1,2-Dichloroethene         | 6                  | j                                     | 0%                     |                     |                     | 14                       |
| Dibromochloromethane                 | 6                  | ļ                                     | 0%                     |                     |                     | 14                       |
| Ethylbenzene                         | 6                  | 1 (                                   | 17%                    | 11                  | 11                  | 13                       |
| Methylene chloride (Dichloromethane) | 6                  | 1                                     | 0%                     |                     |                     | 14                       |
| Styrene                              | 6                  | ľ                                     | 0%                     |                     |                     | 14                       |
| Tetrachloroethene                    | 6                  | - 1                                   | 0%                     |                     |                     | 14                       |
| Toluene                              | 6                  | 1                                     | 0%                     |                     |                     | 14                       |
| trans-1,3-Dichloropropene            | 6                  | Į                                     | 0%                     |                     |                     | 11                       |
| Trichloroethene                      | 6                  | 1                                     | 0%                     |                     | ļ                   | 14                       |
| Vinyl chloride                       | 6                  | l                                     | 0%                     |                     | ľ                   | 27                       |
| Xylenes, Total                       | 6                  | l                                     | 0%                     |                     |                     | 14                       |
| Aylonos, rotal                       |                    |                                       | U /0                   |                     |                     |                          |

Note:

Appendix C-2.2

Site Sediment Dioxin Summary Statistics Creek Sector F and Borrow Pit Lake
Sauget Area I

|                           |                    |                    |                        |                     |                     | - 17                     |
|---------------------------|--------------------|--------------------|------------------------|---------------------|---------------------|--------------------------|
| Compounds                 | Number<br>Analyzed | Number<br>Detected | Frequency Of Detection | Minimum<br>Detected | Maximum<br>Detected | Average<br>Concentration |
| Dioxins and Furans, ug/kg |                    |                    |                        | ·                   |                     |                          |
| 1,2,3,4,6,7,8,9-OCDD      | 6                  | 6                  | 100%                   | 8.63E+00            | 8.84E+01            | 3.60E+01                 |
| 1,2,3,4,6,7,8,9-OCDF      | 6                  | 6                  | 100%                   | 2.35E-01            | 3.26E+01            | 1.14E+01                 |
| 1,2,3,4,6,7,8-HpCDD       | 6                  | 6                  | 100%                   | 2.38E-01            | 9.44E+00            | 3.17E+00                 |
| 1,2,3,4,6,7,8-HpCDF       | 6                  | 6                  | 100%                   | 5.48E-02            | 5.08E+00            | 1.78E+00                 |
| 1,2,3,4,7,8,9-HpCDF       | 6                  | 6                  | 100%                   | 6.00E-03            | 3.20E-01            | 1.17E-01                 |
| 1,2,3,4,7,8-HxCDD         | 6                  | 5                  | 83%                    | 2.40E-03            | 6.88E-02            | 2.17E-02                 |
| 1,2,3,4,7,8-HxCDF         | 6                  | 6                  | 100%                   | 5.05E-03            | 1.62E-01            | 5.92E-02                 |
| 1,2,3,6,7,8-HxCDD         | 6                  | 6                  | 100%                   | 7.95E-03            | 3.20E-01            | 1.10E-01                 |
| 1,2,3,6,7,8-HxCDF         | 6                  | 6                  | 100%                   | 2.95E-03            | 7.19E-02            | 2.57E-02                 |
| 1,2,3,7,8,9-HxCDD         | 6                  | 6                  | 100%                   | 9.75E-03            | 2.21E-01            | 6.98E-02                 |
| 1,2,3,7,8,9-HxCDF         | 6                  | 6                  | 100%                   | 7.40E-04            | 2.23E-02            | 8.21E-03                 |
| 1,2,3,7,8-PeC00           | 6                  | 6                  | 100%                   | 2.10E-03            | 3.89E-02            | 1.41E-02                 |
| 1,2,3,7,8-PeCDF           | 6                  | 4                  | 67%                    | 1.50E-03            | 1.24E-02            | 7.66E-03                 |
| 2,3,4,6,7,8-HxCDF         | 6                  | 6                  | 100%                   | 3.50E-03            | 8.99E-02            | 3.41E-02                 |
| 2,3,4,7,8-PeCDF           | 6                  | 6                  | 100%                   | 2.90E-03            | 3.33E-02            | 1.28E-02                 |
| 2.3.7.8-TCDD              | 6                  | 6                  | 100%                   | 9.00E-04            | 1.60E-02            | 7.58E-03                 |
| 2,3,7,8-TCDF              | 6                  | 6                  | 100%                   | 6.20E-03            | 4.48E-02            | 1.95E-02                 |
| Total HpCDD               | 6                  | 6                  | 100%                   | 5.41E-01            | 1.79E+01            | 6.11E+00                 |
| Total HpCDF               | 6                  | 5                  | 83%                    | 1.83E-01            | 2.17E+01            | 7.50E+00                 |
| Total HxCDD               | 6                  | 1                  | 17%                    | 1.37E+00            | 1.37E+00            | 5.92E-01                 |
| Total HxCDF               | 6                  | J                  | 0%                     | ĺ                   | ſ                   | 5.28E-01                 |
| Total PeCDD               | 6                  |                    | 0%                     |                     |                     | 1.42E-01                 |
| Total PeCDF               | 6                  |                    | 0%                     |                     |                     | 1.20E-01                 |
| Total TCDD                | 6                  |                    | 0%                     |                     | ļ                   | 1.16E-01                 |
| Total TCDF                | 6                  |                    | 0%                     |                     |                     | 1.79E-01                 |

### Note:

# Sediment Summary Statistics for Dead Creek Sector F Sauget Area I

|                      | Τ            | Γ        |              |           |            | <u> </u>         |
|----------------------|--------------|----------|--------------|-----------|------------|------------------|
| ]                    | Number       | Number   | Frequency of | Minimum   | Maximum    | Average          |
| Compounds            | Analyzed     | Detected | Detection    | Detected  | Detected   | Concentration    |
| Herbicides, ug/kg    | 7            | 20.00.00 | 2010011011   | Dotootoa  | 20100104   | 0011001111111111 |
| 2,4,5-T              | 3            |          | 0%           |           |            | 63               |
| 2,4,5-TP (Silvex)    | 3            | 1        | 0%           |           |            | 63               |
| 2,4-D                | 3            | 1        | 33%          | 23        | 23         | 66               |
| 2,4-DB               | 3            | 1        | 0%           |           |            | 63               |
| Dalapon              | 3            |          | 0%           |           |            | 517              |
| Dicamba              | i 3 i        |          | 0%           |           |            | 151              |
| Dichloroprop         | ີ <b>່ 3</b> |          | 0%           | '         |            | 762              |
| Dinoseb              | 3            |          | 0%           | ·         |            | 762              |
| MCPA                 | 3            |          | 0%           |           |            | 15067            |
| MCPP                 | i 3 i        |          | 0%           |           |            | 15067            |
| Pentachlorophenol    | 1 3          |          | 0%           |           |            | 104              |
| Metals, mg/kg        |              |          |              |           |            |                  |
| Aluminum             | 3            | 3        | 100%         | 7800      | 17000      | 12933            |
| Antimony             | 2            | 2        | 100%         | 2.5       | 2.6        | 2.55             |
| Arsenic              | 3            | 3        | 100%         | 8         | 19         | 14               |
| Barium               | 3            | 3        | 100%         | 150       | 270        | 223              |
| Beryllium            | 3            | 3        | 100%         | 0.53      | 0.89       | 0.76             |
| Cadmium              | 3            | 3        | 100%         | 7.4       | 47         | 23               |
| Calcium              | 3            | 3        | 100%         | 11000     | 13000      | 11667            |
| Chromium             | 3            | 3        | 100%         | 19        | 38         | 29               |
| Cobalt               | 3            | 3        | 100%         | 5.5       | 13         | 9.83             |
| Copper               | 3            | 3        | 100%         | 160       | 410        | 270              |
| Cyanide, Total       | 3            | J        | 0%           |           | 7.0        | 0.95             |
| Iron                 | 3            | 3        | 100%         | 14000     | 26000      | 20667            |
| Lead                 | ] 3          | 3        | 100%         | 110       | 320        | 180              |
| Magnesium            | 3 3          | 3        | 100%         | 4100      | 6800       | 5400             |
| Manganese            | 3            | 3        | 100%         | 170       | 510        | 303              |
| Mercury              | 3            | 3        | 100%         | 0.3       | 1.1        | 0.62             |
| Molybdenum           | 3            | 3        | 100%         | 0.5       | 3.7        | 1.72             |
| Nickel               | 3            | 3        | 100%         | 90        | 3.7<br>390 | 220              |
| Potassium            | 3            | 3        | 100%         | 1600      | 2900       | 2400             |
| Selenium             | 3            | 3        | 0%           | 1000      | 2900       | 1.80             |
| Silver               | 3            | 1        | 0%           | }         |            | 1.80             |
| Sodium               | 3            | ļ        | 0%)<br>0%)   |           | ļ          | 132              |
| Thallium             | 3            |          | 0%<br>0%     |           | i          | 1.80             |
| Vanadium             | 3            | ا و      | 100%         | 25        | 51         | 39               |
| Zinc                 | 3            | 3        | 100%         | 25<br>950 | 3700       | 2083             |
|                      | 3            | 3<br>3   |              |           |            |                  |
| pH                   |              |          | 100%         | 6.71      | 6.87       | 6.81             |
| Total Organic Carbon | 3            | 3 ]      | 100%         | 40000     | 140000     | 80333            |
| DOB walks            |              |          |              |           |            |                  |
| PCB, ug/kg           | . ا          | j        | ارمم         |           |            | 70               |
| Decachlorobiphenyl   | 3            | ļ        | 0%           |           | ĺ          | 73               |
| Dichlorobiphenyl     | 3            | j        | 0%           |           | i          | 14               |
| Heptachlorobiphenyl  | 3            | _ 1      | 0%           | ,_[       | [          | 43               |
| Hexachlorobiphenyl   | 3            | 2        | 67%          | 17        | 22         | 33               |
| Monochlorobiphenyl   | 3            | 1        | 0%           | ĺ         | ĺ          | 14               |
| Nonachlorobiphenyl   | 3            | İ        | 0%           |           | 1          | 73               |
| Octachlorobiphenyl   | 3            | ſ        | 0%           | [         | ĺ          | 43               |
| Pentachlorobiphenyl  | 3            | 2        | 67%          | 61        | 66         | 62               |
| Tetrachlorobiphenyl  | 3            | [        | 0%           | ſ         | ſ          | 29               |
| Trichlorobiphenyl    | 3            | ì        | 0%           | ł         | ł          | 14               |
|                      | {            | í        |              |           | ĺ          |                  |
| Total PCBs           | 3            | 2        | 67%          | 83        | 120        | 75               |
| Pesticides, ug/kg    |              |          |              |           |            |                  |
| 4,4'-DDD             | 3            | 1 (      | 33%          | 3.8       | 3.8        | 11               |
| 4,4'-DDE             | 3            | 3        | 100%         | 2.5       | 11         | 7.20             |
| 4,4'-DDT             | 3            | 1        | 33%          | 4.5       | 4.5        | 11               |
| Total DDT            | 3            | 3        | 100%         | 19        | 43         | 30               |
| Aldrin               | 3            | 1        | 33%          | 4.1       | 4.1        | 6.37             |
| Alpha Chlordane      | 3            | 3        | 100%         | _0.84     | 5.3        | 3.58             |

# Sediment Summary Statistics for Dead Creek Sector F Sauget Area I

|                                  | <del></del> | <del></del> | 1            | _                                       |          | <del></del>   |
|----------------------------------|-------------|-------------|--------------|-----------------------------------------|----------|---------------|
|                                  |             |             |              |                                         |          |               |
| Company                          | Number      | Number      | Frequency of |                                         |          | Average       |
| Compounds alpha-BHC              | Analyzed    | Detected    | Detection 0% | Detected                                | Detected | Concentration |
| beta-BHC                         | 3           |             | 0%           |                                         |          | 1.88          |
| delta-BHC                        | 3           |             |              | 0.24                                    | 0.04     | 1.88          |
|                                  | 3           | 1           | 33%          | 0.34                                    | 0.34     | 1.61          |
| Dieldrin                         | 3           | 2           | 67%          | 0.99                                    | 9.3      | 9.26          |
| Endosulfan I<br>Endosulfan II    | 3           | 3           | 100%         | 1.2                                     | 5.7      | 2.97          |
| Endosulfan sulfate               | 3           | 3           | 100%         | 1.8                                     | 8.1      | 5.13          |
| Endrin                           | 3           | 1           | 33%<br>67%   | 2.8<br>1.7                              | 2.8      | 11            |
|                                  | 3           | 2           |              |                                         | 1.7      | 6.97          |
| Endrin aldehyde                  | 3           | 3           | 100%         | 3.6                                     | 14       | 8.87          |
| Endrin ketone<br>Gamma Chlordane | 3           | 3           | 100%         | 3.8                                     | 10       | 7.00          |
| gamma-BHC (Lindane)              | 3           | 3           | 100%         | 2.4                                     | 17       | 8.97          |
|                                  | 3           | _           | 0%           | 0.00                                    | 0.00     | 6.30          |
| Heptachlor                       | 3           | 1           | 33%          | 0.93                                    | 0.93     | 4.61          |
| Heptachior epoxide               | 3           | 2           | 67%          | 0.51                                    | 5.4      | 4.97          |
| Methoxychlor                     | 3           | 3           | 100%         | 7.3                                     | 24       | 15            |
| Toxaphene                        | 3           |             | 0%           |                                         |          | 630           |
| SVOCs, ug/kg                     | _           |             |              |                                         |          |               |
| 1,2,4-Trichlorobenzene           | 3           |             | 0%           |                                         | i        | 318           |
| 1,2-Dichlorobenzene              | 3           |             | 0%           |                                         |          | 318           |
| 1,3-Dichlorobenzene              | 3           |             | 0%           |                                         |          | 318           |
| 1,4-Dichlorobenzene              | 3           |             | 0%           |                                         |          | 318           |
| 2,2'-Oxytois(1-Chloropropane)    | 3           |             | 0%           |                                         |          | 318           |
| 2,4,5-Trichlorophenol            | 3           |             | 0%           |                                         |          | 318           |
| 2,4,6-Trichlorophenol            | 3           |             | 0%           |                                         |          | 318           |
| 2,4-Dichlorophenol               | 3           |             | 0%           |                                         |          | 318           |
| 2,4-Dinitrophenol                | 3           |             | 0%           |                                         |          | 1600          |
| 2,4-Dinitrotoluene               | 3           |             | 0%           |                                         |          | 318           |
| 2,6-Dinitrololuene               | 3           |             | 0%           |                                         |          | 318           |
| 2-Chloronaphthalene              | 3           |             | 0%           |                                         |          | 318           |
| 2-Chlorophenol                   | 3           |             | 0%           |                                         |          | 318           |
| 2-Methylnaphthalene              | 3           |             | 0%           | ĺ                                       |          | 318           |
| 2-Methylphenol (o-cresol)        | 3           |             | 0%           | i                                       |          | 318           |
| 2-Nitroaniline                   | 3           |             | 0%           |                                         |          | 1600          |
| 2-Nitrophenol                    | 3           |             | 0%           |                                         |          | 318           |
| 3,3'-Dichlorobenzidine           | 3           | ľ           | 0%           | ł                                       |          | 612           |
| 3-Methylphenol/4-Methylphenol    | 3           |             | 0%           |                                         |          | 318           |
| 3-Nitroaniline                   | 3           |             | 0%           | •                                       |          | 1600          |
| 4,6-Dinitro-2-methylphenol       | 3           |             | 0%           |                                         |          | 1600          |
| 4-Bromophenylphenyl ether        | 3           | ł           | 0%           | ł                                       | ł        | 318           |
| 4-Chloro-3-methylphenol          | 3           |             | 0%           | 1                                       |          | 318           |
| 4-Chloroaniline                  | 3           |             | 0%           |                                         |          | 612           |
| 4-Chlorophenylphenyl ether       | 3           |             | 0%           |                                         |          | 318           |
| 4-Nitroaniline                   | 3           | J           | 0%           | j                                       | ļ        | 1600          |
| 4-Nitrophenol                    | 3           |             | 0%           |                                         |          | 1600          |
| Acenaphthene                     | 3           |             | 0%           |                                         |          | 318           |
| Acenaphthylene                   | 3           |             | 0%           |                                         |          | 318           |
| Anthracene                       | 3           |             | 0%           |                                         |          | 318           |
| Benzo(a)anthracene               | 3           | 1           | 0%           |                                         | ľ        | 318           |
| Benzo(a)pyrene                   | 3           | ľ           | 0%           |                                         | 1        | 168           |
| Benzo(b)fluoranthene             | 3           |             | 0%           |                                         | ļ        | 318           |
| Benzo(g,h,i)perylene             | 3           | ļ           | 0%           |                                         |          | 318           |
| Benzo(k)fluoranthene             | 3           | i           | 0%           |                                         | }        | 318           |
| bis(2-Chloroethoxy)methane       | 3           |             | 0%           |                                         |          | 318           |
| bis(2-Chloroethyl)ether          | 3           |             | 0%           |                                         |          | 318           |
| bis(2-Ethylhexyl)phthalate       | 3           |             | 0%           |                                         |          |               |
| Butylbenzylphthalate             | 3           | ļ           | 0%           | 1                                       | ļ        | 318           |
| Carbazole                        | 3           | Į           | 0%           | - 1                                     |          | 318           |
|                                  |             | اہ          |              | ا ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ |          | 318           |
| Chrysene<br>Di a bradabithata    | 3           | 1           | 33%          | 74                                      | 74       | 276           |
| Di-n-butylphthalate              | 3           |             | 0%           |                                         |          | 318           |
| Di-n-octylphthalate              | 3           | [           | 0%           | [                                       | ſ        | 318           |
| Dibenzo(a,h)anthracene           | 3           |             | 0%           |                                         |          | 168           |

# Sediment Summary Statistics for Dead Creek Sector F Sauget Area I

|                                      | <del></del>        | <del></del>        | <del></del>            |                  | <del></del>      | <del> </del>          |
|--------------------------------------|--------------------|--------------------|------------------------|------------------|------------------|-----------------------|
| ]                                    |                    |                    | ]                      |                  |                  |                       |
| Compounds                            | Number<br>Analyzed | Number<br>Detected | Frequency of Detection | Minimum Detected | Maximum Detected | Average Concentration |
| Dibenzofuran                         | 3                  | Detected           | 0%                     | Detected         | Detected         | 318                   |
| Diethylphthalate                     | 3                  | }                  | 0%                     |                  |                  | 318                   |
| Dimethylphthalate                    | 3                  |                    | 0%                     |                  |                  | 318                   |
| Fluoranthene                         | 3                  | 2                  | 67%                    | 120              | 130              |                       |
| Fluorene                             | 3                  | _                  | 0%                     | 120              | 130              |                       |
| Hexachlorobenzene                    |                    |                    |                        |                  |                  | 318                   |
|                                      | 3                  |                    | 0%                     |                  |                  | 132                   |
| Hexachlorobutadiene                  | 3                  |                    | 0%                     |                  |                  | 318                   |
| Hexachlorocyclopentadiene            | 3                  |                    | 0%                     |                  |                  | 318                   |
| Hexachloroethane                     | 3                  | •                  | 0%                     |                  |                  | 318                   |
| Indeno(1,2,3-cd)pyrene               | 3                  |                    | 0%                     |                  |                  | 318                   |
| Isophorone                           | 3                  |                    | 0%                     |                  |                  | 318                   |
| N-Nitroso-di-n-propylamine           | ] 3                |                    | 0%                     |                  |                  | 318                   |
| N-Nitrosodiphenylamine               | ] 3                |                    | 0%                     |                  |                  | 318                   |
| Naphthalene                          | ] 3                | 1                  | 0%                     |                  |                  | 318                   |
| Nitrobenzene                         | ] 3                |                    | 0%                     |                  |                  | 318                   |
| Pentachlorophenol                    | ] 3                |                    | 0%                     |                  |                  | 1600                  |
| Phenanthrene                         | ] 3                |                    | 0%                     | [                |                  | 318                   |
| Phenol                               | ] 3                |                    | 0%                     |                  |                  | 318                   |
| Pyrene                               | 3                  |                    | 0%                     |                  | i ,              | 318                   |
|                                      | 1                  |                    |                        |                  |                  |                       |
| Total PAHs                           | 1 3                | 2                  | 67%                    | 194              | 440              | 360                   |
| VOCs, ug/kg                          | <del> </del>       |                    |                        |                  |                  |                       |
| 1,1,1-Trichloroethane                | 3                  |                    | 0%                     |                  |                  | 14                    |
| 1,1,2,2-Tetrachloroethane            | 3                  |                    | 0%                     |                  |                  | 14                    |
| 1,1,2-Trichloroethane                | j š                |                    | 0%                     |                  | ŀ                | 14                    |
| 1,1-Dichloroethane                   | 3                  |                    | 0%                     |                  |                  | 14                    |
| 1,1-Dichloroethene                   | 3                  |                    | 0%                     | 1                | ł                | 13                    |
| 1,2-Dichloroethane                   | 3                  |                    | 0%                     | ł                |                  | 14                    |
| 1,2-Dichloropropane                  | 3                  |                    | 0%                     |                  | i                | 14                    |
| 2-Butanone (MEK)                     | 3                  |                    | 0%                     |                  | 1                | 69                    |
| 2-Hexanone                           | 3                  |                    | 0%                     |                  |                  | 69                    |
| 4-Methyl-2-pentanone (MIBK)          |                    |                    |                        | - (              | ſ                |                       |
|                                      | 3                  |                    | 0%                     |                  |                  | 69                    |
| Acetone                              | ] 3                |                    | 0%                     |                  | ļ                | 145                   |
| Benzene                              | 3                  |                    | 0%                     |                  |                  | 14(                   |
| Bromodichloromethane                 | 3                  |                    | 0%                     |                  |                  | 14                    |
| Bromoform                            | 3                  |                    | 0%                     | 1                | 1                | 14                    |
| Bromomethane (Methyl bromide)        | 3                  | l                  | 0%                     |                  | ļ                | 28                    |
| Carbon disulfide                     | 3                  | 1                  | 0%                     | ļ                | J                | 14                    |
| Carbon tetrachloride                 | 3                  |                    | 0%                     | ŀ                | ì                | 14                    |
| Chlorobenzene                        | 3                  | j                  | 0%                     | ļ                |                  | 14                    |
| Chioroethane                         | 3                  | ļ                  | 0%                     | l                |                  | 28                    |
| Chloroform                           | 3                  |                    | 0%                     |                  |                  | 14                    |
| Chloromethane                        | 3                  | }                  | 0%                     | ł                | }                | 28                    |
| cis-1,3-Dichloropropene              | 3                  |                    | 0%                     | [                | ſ                | 11                    |
| Cis/Trans-1,2-Dichloroethene         | 3                  | J                  | 0%                     | ļ                | J                | 14                    |
| Dibromochloromethane                 | 3                  | ł                  | 0%                     | ł                |                  | 14                    |
| Ethylbenzene                         | 3                  | 1                  | 33%                    | 11               | 11               | 13                    |
| Methylene chloride (Dichloromethane) | 3                  | 1                  | 0%)                    | - 1              | ]                | 14                    |
| Styrene                              | 3                  | ĺ                  | 0%                     | Ī                | i                | 14                    |
| Tetrachloroethene                    | 3                  |                    | 0%                     |                  |                  | 14                    |
| Toluene                              | 3                  | }                  | 0%                     | 1                | ļ                | 14                    |
| trans-1,3-Dichloropropene            | 3                  | ļ                  | 0%                     | 1                |                  | 11                    |
| Trichloroethene                      | 3                  |                    | 0%                     | ļ                |                  |                       |
| Vinyl chloride                       | 3                  |                    | 0%                     | ſ                |                  | 14)                   |
| Xylenes, Total                       | 3                  | ļ                  | 0%                     | 1                |                  | 28                    |
| Aylenes, rotal                       | 31                 |                    | U%]                    |                  |                  | 14                    |

### Note:

# Sediment Dioxin Data Summary for Dead Creek Sector F Sauget Area I

|                           |          |          | <u> </u>     |          |          |               |
|---------------------------|----------|----------|--------------|----------|----------|---------------|
|                           |          |          |              |          |          |               |
|                           | Number   | Number   | Frequency of |          | Maximum  | Average       |
| Compounds                 | Analyzed | Detected | Detection    | Detected | Detected | Concentration |
| Dioxins and Furans, ug/kg |          |          |              |          |          |               |
| 1,2,3,4,6,7,8,9-OCDD      | 3        | 3        | 100%         | 3.87E+01 | 8.84E+01 | 5.82E+01      |
| 1,2,3,4,6,7,8,9-OCDF      | 3        | 3        | 100%         |          |          | 2.23E+01      |
| 1,2,3,4,6,7,8-HpCDD       | 3        | 3        | 100%         |          |          | _             |
| 1,2,3,4,6,7,8-HpCDF       | 3        | 3        | 100%         |          |          |               |
| 1,2,3,4,7,8,9-HpCDF       | 3        | 3        | 100%         | 1.57E-01 | 3.20E-01 | 2.25E-01      |
| 1,2,3,4,7,8-HxCDD         | 3        | 3        | 100%         | 2.28E-02 | 6.88E-02 | 4.02E-02      |
| 1,2,3,4,7,8-HxCDF         | 3 3      | 3        | 100%         | 8.42E-02 | 1.62E-01 | 1.11E-01      |
| 1,2,3,6,7,8-HxCDD         | 3        | 3        | 100%         | 1.41E-01 | 3.20E-01 | 2.07E-01      |
| 1,2,3,6,7,8-HxCDF         | 3        | 3        | 100%         | 3.25E-02 | 7.19E-02 | 4.70E-02      |
| 1,2,3,7,8,9-HxCDD         | 3        | 3        | 100%         | 6.67E-02 | 2.21E-01 | 1.26E-01      |
| 1,2,3,7,8,9-HxCDF         | 3        | 3        | 100%         | 8.50E-03 | 2.23E-02 | 1.39E-02      |
| 1,2,3,7,8-PeCDD           | 3        | 3        | 100%         | 1.45E-02 | 3.89E-02 | 2.55E-02      |
| 1,2,3,7,8-PeCDF           | 3        | 2        | 67%          | 1.18E-02 | 1.24E-02 | 1.36E-02      |
| 2,3,4,6,7,8-HxCDF         | 3        | 3        | 100%         | 4.73E-02 | 8.99E-02 | 6.25E-02      |
| 2,3,4,7,8-PeCDF           | 3        | 3        | 100%         | 1.47E-02 |          | 2.20E-02      |
| 2,3,7,8-TCDD              | 3        | 3        | 100%         |          |          | 9.93E-03      |
| 2,3,7,8-TCDF              | 3        | 3        | 100%         | 1.60E-02 | 4.48E-02 | 3.04E-02      |
| Total HpCDD               | 3        | 3        | 100%         | 7.86E+00 | 1.79E+01 | 1.14E+01      |
| Total HpCDF               | 3        | 3        | 100%         | 1.07E+01 | 2.17E+01 | 1.46E+01      |
| Total HxCDD               | 3        | 1        | 33%          | 1.37E+00 | 1.37E+00 | 1.11E+00      |
| Total HxCDF               | 3        | l        | 0%           |          |          | 1.01E+00      |
| Total PeCDD               | 3        |          | 0%           |          |          | 2.60E-01      |
| Total PeCDF               | 3        |          | 0%           |          |          | 2.21E-01      |
| Total TCDD                | 3 :      |          | 0%           |          |          | 2.08E-01      |
| Total TCDF                | 3        |          | 0%           |          |          | 3.17E-01      |

#### Note:

# Sediment Data Summary for Borrow Pit Lake Sauget Area I

|                                         | 7                                                | ····     |              |              | Ι             |               |
|-----------------------------------------|--------------------------------------------------|----------|--------------|--------------|---------------|---------------|
|                                         | Number                                           | Number   | Frequency Of | Minimum      | Maximum       | Average       |
| Compounds                               | Analyzed                                         | Detected | Detection    | Detected     | Detected      | Concentration |
| Herbicides, ug/kg                       | 1 .                                              |          |              |              | İ             |               |
| 2,4,5-T                                 | 3                                                |          | 0%           |              |               | 12            |
| 2,4,5-TP (Silvex)                       | 3                                                |          | 0%           |              | ١             | 12            |
| 2,4-D                                   | 3                                                | 2        | 67%          | 8.8          | 11            | 11            |
| 2,4-DB                                  | 3                                                |          | 0%           |              |               | 12            |
| Dalapon<br>Dicamba                      | 3 3                                              |          | 0%<br>0%     |              | ·             | 92<br>28      |
| Dichloroprop                            | 3                                                |          | 0%           |              |               | 142           |
| Dinoseb                                 | 3                                                | i .      | 0%           |              |               | 142           |
| MCPA                                    | 3                                                |          | 0%           | 1            |               | 2,817         |
| MCPP                                    | 3                                                |          | 0%           |              |               | 2,817         |
| Pentachlorophenol                       | 3                                                |          | 0%           |              |               | 2,017         |
| Metals, mg/kg                           | <del>                                     </del> |          |              |              | <b></b>       | <u></u>       |
| Aluminum                                | 3                                                | 3        | 100%         | 11,000       | 16,000        | 13,667        |
| Antimony                                | 3                                                | 2        | 67%          | 1.5          | 2.2           | 2.2           |
| Arsenic                                 | 1 3                                              | 3        | 100%         | 13           | 17            | 16            |
| Barium                                  | ] 3                                              | 3        | 100%         | 240          | 420.00        | 350           |
| Beryllium                               | ] 3                                              | 3<br>3   | 100%         | 0.58         | 0.82          | 0.71          |
| Cadmium                                 | 3                                                | 3        | 100%         | 1.6          | 2.7           | 2.1           |
| Calcium                                 | ] 3                                              | 3        | 100%         | 11,000       | 17,000        | 14,667        |
| Chromium                                | 3                                                | 3        | 100%         | 18           | 26            | 22            |
| Cobalt                                  | ] 3 [                                            | 3        | 100%         | 7.1          | 10            | 8.9           |
| Copper                                  | ] 3                                              | 3        | 100%         | 36           | 64            | 49            |
| Cyanide, Total                          | 3                                                |          | 0%           |              |               | 0.72          |
| Iron                                    | 3                                                | 3<br>3   | 100%         | 28,000       | 38,000        | 34,000        |
| Lead                                    | 3                                                | 3        | 100%         | 34           | 58            | 48            |
| Magnesium                               | 3 3                                              | 3        | 100%<br>100% | 3,600<br>940 | 5,600         | 4,667         |
| Manganese<br>Mercury                    | 3                                                | 3 3      | 100%         | 0.10         | 1,400<br>0.16 | 1,213         |
| Molybdenum                              | 3                                                | 3        | 100%         | 0.10         | 0.18          | 0.12<br>0.60  |
| Nickel                                  | 3                                                | 3        | 100%         | 35           | 0.92<br>54    | 47            |
| Potassium                               | 3                                                | 3        | 100%         | 1,500        | 2,200         | 1,967         |
| Selenium                                | 3                                                | ۱ ۲      | 0%           | 1,300        | 2,200         | 1,907         |
| Silver                                  | 3                                                | 1        | 33%          | 0.79         | 0.79          | 1.1           |
| Sodium                                  | 3                                                | •        | 0%           | 0.70         | 0.70          | 93            |
| Thallium                                | 3                                                |          | 0%           |              |               | 1.4           |
| Vanadium                                | 3 (                                              | 3        | 100%         | 28           | 40            | 35            |
| Zinc                                    | 3                                                | 3        | 100%         | 250          | 370           | 310           |
| pH                                      | 3                                                | 3        | 100%         | 6.7          | 7.1           | 6.9           |
| Total Organic Carbon (mg/kg dry weight) | 3                                                | 3        | 100%         | 33,000       | 67,000        | 48,333        |
| PCB, ug/kg                              |                                                  |          |              |              |               | · · ·         |
| Decachlorobiphenyl                      | 3                                                |          | 0%           |              |               | 39            |
| Dichlorobiphenyl                        | 3                                                |          | 0%           |              |               | 7.8           |
| Heptachlorobiphenyl                     | 3                                                | <b>[</b> | 0%           | 1            | l             | 24            |
| Hexachlorobiphenyl                      | 3                                                | i        | 0%           | ł            |               | 16            |
| Monochlorobiphenyl                      | 3                                                |          | 0%           |              | ł             | 7.8           |
| Nonachlorobiphenyl                      | 3                                                |          | 0%           |              |               | 39            |
| Octachlorobiphenyl                      | 3<br>3                                           | 1        | 0%           | ſ            | ļ             | 24            |
| Pentachlorobiphenyl                     | 3                                                |          | 0%[          | 1            |               | 16            |
| Tetrachlorobiphenyl                     | 3                                                |          | 0%           |              |               | 16            |
| Trichlorobiphenyl                       | 3                                                | i        | 0%           | i            | ŀ             | 7.8           |
| Total PCBs                              | 3                                                |          | 0%           |              |               | 39            |
| Pesticides, ug/kg                       | _                                                |          | 20.          |              |               |               |
| 4,4'-DDD                                | 3                                                | ا ؞      | 0%           |              |               | 8.5           |
| 1,4'-DDE                                | 3                                                | 3        | 100%         | 1.1          | 3.2           | 2.0           |
| 1,4'-DDT                                | 3                                                | 2        | 67%          | 1.1          | 1.4           | 4.0           |
| Total DDT                               | 3                                                | 3        | 100%         | 2.2          | 12.7          | 6.0           |
| Aldrin                                  | 3                                                | _        | 0%           |              |               | 4.4           |
| Alpha Chlordane                         | 3                                                | 3        | 100%         | 0.48         | 3.2           | 1.6           |
| alpha-BHC                               | 3                                                | ŀ        | 0%           |              | ļ             | 1.3           |
| peta-BHC                                | 3                                                |          | 0%           |              | 1             | 1.3           |

### Sediment Data Summary for Borrow Pit Lake Sauget Area I

| Deliction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                | T      | T            |         |                                         | <u></u> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------|--------|--------------|---------|-----------------------------------------|---------|
| Detected   Detected   Detected   Detected   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration   Concentration      |                               | Number         | Mumber | Fraguescy Of | Minimum | Mayimum                                 | Averson |
| Seles-BHC   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Compounds                     |                |        |              |         | *************************************** |         |
| Deliction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                | -      |              |         |                                         | 1.3     |
| Endosulan I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dieldini                      |                | 2      |              | 0.26    | 0.50                                    | 3.3     |
| Endosulan II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Endosultan I                  |                |        |              |         |                                         | 2.9     |
| Excitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                |        |              | 1.00    |                                         | 8.5     |
| Entime   3   0%   1.2   2.2   1.1   Entime latehyde   3   3   10%   1.2   2.2   1.1   Entime latehyde   3   3   1   33%   0.72   0.72   Entime latehyde   3   1   33%   0.72   0.72   Entime latehyde   3   1   33%   4.8   4.8   Entime latehyde   3   1   33%   4.8   4.8   Espachfor   3   0%   4.8   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espachfor   3   0%   Espach |                               |                | ,      |              | 1.4     | 9.5                                     | 6.6     |
| Entima Internation   3   100%   1.2   2.2   1. Entima Internation   3   1   33%   0.72   0.72   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5    |                               |                | } -    |              |         | J.5                                     | 8.5     |
| Entrain teacher   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                | 3      |              | 12      | 22                                      | 1.6     |
| Samma Bir Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                | _      |              |         |                                         | ·       |
| parmis BHC (Lindone)   3   1   33%   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   4.8   |                               |                |        |              |         |                                         |         |
| Explacation   3   0%   4.8   4.8   4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                |        |              | -       |                                         |         |
| Improvided   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                | ·      |              | 4.0     | 4.0                                     | _       |
| Methosychlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                |        |              | AQ      | 40                                      |         |
| Grouphere   3   0%   444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                | '      |              | 4.0     | 4.0                                     |         |
| SVCEs, ughts   2.4 Trichtoroberozene   3   0%   24   2.2   2.4 Trichtoroberozene   3   0%   24   24   2.2   2.4 Trichtoroberozene   3   0%   24   24   24   25   25   25   25   25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                |        |              |         |                                         |         |
| 2.4-Trichioroberizane   3   0%   244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                |        |              |         |                                         | 440     |
| 2-Dichlorobenzene   3   0%   244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | —              |        |              |         |                                         | 040     |
| 3-Dichlorobenzene   3   0%   244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                |        |              |         |                                         |         |
| A-Dictivoroprene    3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | <del></del> -1 |        |              |         |                                         |         |
| 22-Orytos(1-Chloropropane)   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                |        |              |         |                                         |         |
| 24.4.5-Trichtorophenol   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                |        |              |         |                                         | 240     |
| 24-Dichlorophenol   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                |        |              |         |                                         | 240     |
| 24-Dintrophenol   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | i              |        |              |         |                                         | 240     |
| 4-Dintrotoluene   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                |        |              |         |                                         | 240     |
| A-Dintrotolulene   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                |        |              |         |                                         | 240     |
| Se Dinitrotoluene   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                |        |              |         |                                         | -       |
| Chlorophenol   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,4-Dinitrotoluene            |                |        |              | i       |                                         | 240     |
| Chlorophenol   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,6-Dinitrotoluene            |                |        |              |         |                                         | 240     |
| Allethylphenol (o-cresol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-Chloronaphthalene           |                |        |              |         |                                         | 240     |
| Aleitryphenol (o-cresol)   3   0%   1,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-Chlorophenol                | 3              |        |              |         | 1                                       | 240     |
| Altrophenol   3   3   3   3   3   3   3   3   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Methylnaphthalene           | 3              |        |              |         |                                         | 240     |
| Altrophenol   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Methylphenol (o-cresol)     | 3              |        |              |         |                                         | 240     |
| 3-Dichlorobertzidine   3   0%   244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-Nitroaniline                | 3              |        | 0%           |         |                                         | 1,200   |
| Alterhylphenol/4-Methylphenol   3   0%   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,200   1,2   | 2-Nitrophenol                 | 3              |        |              |         |                                         | 240     |
| Attribution   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Actio   |                               | 3              |        | 0%           |         |                                         | 463     |
| Attribution   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Actio   | 3-Methylphenol/4-Methylphenol | 3              |        | 0%           |         |                                         | 240     |
| 5-Dinitro-2-methylphenol   3   0%   244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3-Nitroaniline                |                |        | 0%           |         |                                         | 1,200   |
| Bromophenylphenyl ether   3   0%   244    -Chlorop-3-methylphenol   3   0%   245    -Chlorophenylphenyl ether   3   0%   245    -Nitrophenol   3   0%   1,200    -Nitrophenol   3   0%   1,200    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   245    -Nitrophenol   3   0%   | 4,6-Dinitro-2-methylphenol    |                |        | 0%           | ł       |                                         | 1,200   |
| Chloro-3-methylphenol   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                |        | 0%           |         |                                         | 240     |
| Chlorophenylphenyl ether   3   0%   244    -Nitrophenyl ether   3   0%   1,200    -Nitrophenyl ether   3   0%   1,200    -Nitrophenol   3   0%   1,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | <sub>3</sub>   |        | 0%           |         |                                         | 240     |
| Chlorophenylphenyl ether   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1-Chloroaniline               |                |        |              | 1       |                                         | 463     |
| Nitrophenol   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | _ 3            |        |              | j       | J                                       | 240     |
| Altrophenol   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l-Nitroaniine                 |                |        |              |         |                                         |         |
| ceraphthene         3         0%         24(           ceraphthylene         3         0%         24(           enzo(a)anthracene         3         0%         24(           enzo(a)pyrene         3         0%         127           enzo(b)fluoranthene         3         0%         24(           enzo(b, h)perylene         3         0%         24(           enzo(k, fluoranthene         3         0%         24(           enzo(k, fluoranthene         3         0%         24(           s(2-Chloroethoxy)methane         3         0%         24(           s(2-Chloroethyl)ether         3         0%         24(           s(2-Chloroethyl)phthalate         3         0%         24(           arbazole         3         0%         24(           arbazole         3         0%         24(           i-n-butylphthalate         3         0%         24(           i-n-octylphthalate         3         0%         24(           ibenzoluanthracene         3         0%         24(           ibenzoluran         3         0%         24(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | _ 3            |        |              |         |                                         |         |
| ceraphthylene         3         0%         240           enzo(a)anthracene         3         0%         240           enzo(a)pyrene         3         0%         240           enzo(b)fluoranthene         3         0%         240           enzo(k)fluoranthene         3         0%         240           enzo(k)fluoranthene         3         0%         240           enzo(k)fluoranthene         3         0%         240           enzo(k)fluoranthene         3         0%         240           enzo(k)fluoranthene         3         0%         240           enzo(k)fluoranthene         3         0%         240           enzo(k)fluoranthene         3         0%         240           enzo(k)fluoranthene         3         0%         240           enzo(k)fluoranthene         3         0%         240           enzo(k)fluoranthene         3         0%         240           enzo(k)fluoranthene         3         0%         240           enzo(k)fluoranthene         3         0%         240           enzo(k)fluoranthene         3         0%         240           enzo(k)fluoranthene         3         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Acenaphthene                  |                |        |              | 1       |                                         |         |
| 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | <del></del> .  |        |              |         |                                         |         |
| enzo(a)anthracene 3 0% 127 127 128 129 129 129 129 129 129 129 129 129 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | _              | ľ      |              | ľ       | 1                                       |         |
| enzo(a)pyrene   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                |        |              |         |                                         |         |
| enzo(b)   fluorarithene   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                |        |              |         |                                         |         |
| enzo(g,h,i)perylene         3         0%         24(           enzo(k)fluoranthene         3         0%         24(           s(2-Chloroethoxy)methane         3         0%         24(           s(2-Chloroethyl)ether         3         0%         24(           s(2-Ethylhexyl)phthalate         3         0%         24(           utylbenzyliphthalate         3         0%         24(           arbazole         3         0%         24(           hrysene         3         0%         24(           i-n-butylphthalate         3         0%         24(           i-n-octylphthalate         3         0%         24(           ibenzo(a,h)anthracene         3         0%         24(           ibenzofuran         3         0%         24(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                |        |              |         |                                         |         |
| enzo(k)fluoranthene         3         0%         24(           is(2-Chloroethoxy)methane         3         0%         24(           is(2-Chloroethyl)ether         3         0%         24(           s(2-Ethylhexyl)phthalate         3         0%         24(           utylbenzyliphthalate         3         0%         24(           arbazole         3         0%         24(           hrysene         3         0%         24(           i-n-butylphthalate         3         0%         24(           i-n-octylphthalate         3         0%         24(           ibenzo(a,h)anthracene         3         0%         24(           ibenzofuran         3         0%         24(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                | }      |              |         | 1                                       |         |
| s(2-Chloroethoxy)methane       3       0%       24(         s(2-Chloroethyl)ether       3       0%       24(         s(2-Ethylhexyl)phthalate       3       0%       24(         utylbenzylphthalate       3       0%       24(         arbazole       3       0%       24(         hrysene       3       0%       24(         i-n-butylphthalate       3       0%       24(         i-n-octylphthalate       3       0%       24(         ibenzo(a,h)anthracene       3       0%       127         ibenzofuran       3       0%       24(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Serizo(g)Tujperyione          |                |        |              |         |                                         |         |
| s(2-Chloroethyl)ether       3       0%       24(         s(2-Ethylhexyl)phthalate       3       0%       24(         utylbenzylphthalate       3       0%       24(         arbazole       3       0%       24(         hrysene       3       0%       24(         i-n-butylphthalate       3       0%       24(         i-n-octylphthalate       3       0%       24(         ibenzo(a,h)anthracene       3       0%       127         ibenzofuran       3       0%       24(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | <b>_</b>       |        |              |         |                                         |         |
| s(2-Ethylhexyl)phthalate       3       0%       24(         utylbenzylphthalate       3       0%       24(         arbazole       3       0%       24(         hrysene       3       0%       24(         i-n-butylphthalate       3       0%       24(         i-n-octylphthalate       3       0%       24(         ibenzo(a,h)anthracene       3       0%       127         ibenzofuran       3       0%       24(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | <del>_</del>   | }      |              | ļ       | ļ                                       | 240     |
| utyfbenzylphthalate     3     0%     24(       arbazole     3     0%     24(       hrysene     3     0%     24(       i-n-butylphthalate     3     0%     24(       i-n-octylphthalate     3     0%     24(       ibenzo(a,h)anthracene     3     0%     127       ibenzofuran     3     0%     24(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AS(2-CHOROEUTY) Jeuner        |                |        |              | l       | ]                                       | 240     |
| arbazole     3     0%     240       hrysene     3     0%     240       i-n-butylphthalate     3     0%     240       i-n-octylphthalate     3     0%     240       ibenzo(a,h)anthracene     3     0%     127       ibenzofuran     3     0%     240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | _              | ĺ      |              | [       | ſ                                       | 240     |
| hrysene 3 0% 24( i-n-butylphthalate 3 0% 24( i-n-octylphthalate 3 0% 24( ibenzo(a,h)anthracene 3 0% 127 ibenzofuran 3 0% 24(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                |        |              |         |                                         | 240     |
| -n-butylphthalate 3 0% 24(<br>-n-octylphthalate 3 0% 24(<br>ibenzo(a,h)anthracene 3 0% 127<br>ibenzofuran 3 0% 24(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                |        |              |         |                                         | 240     |
| -n-octylphthalate 3 0% 24(<br>ibenzo(a,h)anthracene 3 0% 127<br>ibenzofuran 3 0% 24(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                |        |              |         |                                         | 240     |
| ibenzo(a,h)anthracene         3         0%         127           benzofuran         3         0%         240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Di-n-butylphthalate           |                | ł      |              | l       | ł                                       | 240     |
| ibenzofuran 3 0% 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                |        |              | l       |                                         | 240     |
| ibenzofuran 3 0% 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dibenzo(a,h)anthracene        |                |        |              | l       |                                         | 127     |
| ethylphthalate 3 0% 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dibenzofuran                  |                |        |              | l       |                                         | 240     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diethylphthalate              | 3              | J      | 0%           | J       | J                                       | 240     |

# Sediment Data Summary for Borrow Pit Lake Sauget Area I

|                                      | Τ                  |                    |                        |                     |                     | <u> </u>                 |
|--------------------------------------|--------------------|--------------------|------------------------|---------------------|---------------------|--------------------------|
| 1                                    | Number             | N                  | F                      | Minimo              |                     | •                        |
| Compounds                            | Number<br>Analyzed | Number<br>Detected | Frequency Of Detection | Minimum<br>Detected | Maximum<br>Detected | Average<br>Concentration |
| Dimethylphthalate                    | 3                  |                    | 0%                     |                     |                     | 240                      |
| Fluoranthene                         | 3                  |                    | 0%                     |                     | 1                   | 240                      |
| Fluorene                             | 3                  |                    | 0%                     |                     |                     | 240                      |
| Hexachlorobenzene                    | 3                  |                    | 0%                     |                     | ]                   | 97                       |
| Hexachlorobutadiene                  | 3                  |                    | 0%                     |                     |                     | 240                      |
| Hexachlorocyclopentadiene            | 3                  | İ                  | 0%                     |                     |                     | 240                      |
| Hexachloroethane                     | 3                  |                    | 0%                     |                     |                     | 240                      |
| Indeno(1,2,3-cd)pyrene               | 3                  |                    | 0%                     |                     |                     | 240                      |
| Isophorone                           | 3                  |                    | 0%                     |                     |                     | 240                      |
| N-Nitroso-di-n-propylamine           | 3                  |                    | 0%                     |                     |                     | 240                      |
| N-Nitrosodiphenylamine               | 3                  |                    | 0%                     |                     |                     | 240                      |
| Naphthalene                          | 3                  |                    | 0%                     |                     |                     | 240                      |
| Nitrobenzene                         | 3                  |                    | 0%                     |                     |                     |                          |
| Pentachlorophenol                    | 3                  |                    | 0%                     |                     |                     | 240<br>1,200             |
|                                      |                    |                    |                        |                     |                     |                          |
| Phenanthrene                         | 3                  |                    | 0%                     |                     |                     | 240                      |
| Phenol                               | 3                  | İ                  | 0%                     |                     |                     | 240                      |
| Pyrene                               | 3                  |                    | 0%                     |                     |                     | 240                      |
| Total PAHs                           | 3                  |                    | 0%                     |                     |                     | 240                      |
| VOCs, ug/kg                          | 1 .1               |                    |                        |                     |                     |                          |
| 1,1,1-Trichloroethane                | ] 3                |                    | 0%                     |                     |                     | 13                       |
| 1,1,2,2-Tetrachloroethane            | 3                  |                    | 0%                     |                     |                     | 13                       |
| 1,1,2-Trichloroethane                | 3                  |                    | 0%                     |                     |                     | 13                       |
| 1,1-Dichloroethane                   | ] 3                |                    | 0%                     |                     |                     | 13                       |
| 1,1-Dichloroethene                   | ] 3                |                    | 0%                     |                     |                     | 12                       |
| 1,2-Dichloroethane                   | 3                  |                    | 0%                     |                     |                     | 13                       |
| 1,2-Dichloropropane                  | ] 3                |                    | 0%                     |                     |                     | 13                       |
| 2-Butanone (MEK)                     | 3                  |                    | 0%                     |                     |                     | 65                       |
| 2-Hexanone                           | 3                  |                    | 0%                     |                     |                     | 65                       |
| 4-Methyl-2-pentanone (MIBK)          | 3 [                |                    | 0%                     |                     |                     | 65                       |
| Acetone                              | ] 3 ]              |                    | 0%                     |                     |                     | 130                      |
| Benzene                              | 3                  |                    | 0%                     |                     |                     | 13                       |
| Bromodichloromethane                 | 3                  |                    | 0%                     | '                   |                     | 13                       |
| Bromoform                            | 3                  |                    | 0%                     |                     |                     | 13                       |
| Bromomethane (Methyl bromide)        | 3                  | J                  | 0%                     |                     |                     | 26                       |
| Carbon disulfide                     | 3                  |                    | 0%                     |                     |                     | 13                       |
| Carbon tetrachloride                 | 3                  | j                  | 0%                     |                     |                     | 13                       |
| Chlorobenzene                        | 3                  |                    | 0%                     |                     |                     | 13                       |
| Chloroethane                         | 3                  | j                  | 0%                     |                     |                     | 26                       |
| Chloroform                           | 3                  | i                  | 0%                     |                     |                     | 13                       |
| Chloromethane                        | 3                  | j                  | 0%                     |                     |                     | 26                       |
| cis-1,3-Dichloropropene              | 3                  |                    | 0%                     |                     |                     | 10                       |
| Cis/Trans-1,2-Dichloroethene         | 3                  | Į.                 | 0%                     |                     |                     |                          |
| Dibromochloromethane                 |                    | ]                  | 0%                     |                     |                     | 13                       |
|                                      | 3                  | 1                  | 0%                     |                     |                     | 13                       |
| Ethylbenzene                         | 3                  |                    | 0%                     |                     |                     | 13                       |
| Methylene chloride (Dichloromethane) | 3                  |                    | 0% <br>0%              |                     |                     | 13                       |
| Styrene                              | 3                  | ļ                  |                        |                     |                     | 13                       |
| Tetrachloroethene                    | 3                  | ł                  | 0%                     |                     |                     | 13                       |
| Toluene                              | 3                  | ſ                  | 0%                     |                     |                     | 13                       |
| trans-1,3-Dichloropropene            | 3                  | }                  | 0%                     |                     |                     | 10                       |
| Trichloroethene                      | 3                  |                    | 0%                     |                     |                     | 13                       |
| Vinyl chloride                       | 3                  | }                  | 0%                     |                     |                     | 26                       |
| Xylenes, Total                       | 3                  |                    | 0%                     |                     |                     | 13                       |

# Note:

# Sediment Dioxin Summary for Borrow Pit Lake Sauget Area I

|                           | · · ·              |                    | I                         |                     |                     |                          |
|---------------------------|--------------------|--------------------|---------------------------|---------------------|---------------------|--------------------------|
| Compounds                 | Number<br>Analyzed | Number<br>Detected | Frequency Of<br>Detection | Minimum<br>Detected | Maximum<br>Detected | Average<br>Concentration |
| Dioxins and Furans, ug/kg |                    |                    |                           | -                   |                     |                          |
| 1,2,3,4,6,7,8,9-OCDD      | 3                  | 3                  | 100%                      | 8.63                | 17.25               | 13.79                    |
| 1,2,3,4,6,7,8,9-OCDF      | ] 3                | 3                  | 100%                      | 0.24                | 0.76                | 0.55                     |
| 1,2,3,4,6,7,8-HpCDD       | 3                  | 3                  | 100%                      | 0.24                | 0.44                | 0.37                     |
| 1,2,3,4,6,7,8-HpCDF       | ] 3                | 3                  | 100%                      | 0.05                | 0.16                | 0.11                     |
| 1,2,3,4,7,8,9-HpCDF       | 3                  | 3                  | 100%                      | 0.01                | 0.01                | 0.01                     |
| 1,2,3,4,7,8-HxCDD         | 3                  | 2                  | 67%                       | 0.0024              | 0.0049              | 0.0031                   |
| 1,2,3,4,7,8-HxCDF         | 3                  | 3                  | 100%                      | 0.01                | 0.0092              | 0.01                     |
| 1,2,3,6,7,8-HxCDD         | 3                  | 3                  | 100%                      | 0.01                | 0.02                | 0.01                     |
| 1,2,3,6,7,8-HxCDF         | 3                  | 3                  | 100%                      | 0.0030              | 0.0059              | 0.0043                   |
| 1,2,3,7,8,9-HxCDD         | 3                  | 3                  | 100%                      | 0.01                | 0.02                | 0.01                     |
| 1,2,3,7,8,9-HxCDF         | 3                  | 3                  | 100%                      | 0.00074             | 0.0036              | 0.0025                   |
| 1,2,3,7,8-PeCDD           | 3                  | 3                  | 100%                      | 0.0021              | 0.0035              | 0.0026                   |
| 1,2,3,7,8-PeCDF           | 3                  | 2                  | 67%                       | 0.0015              | 0.0027              | 0.0017                   |
| 2,3,4,6,7,8-HxCDF         | 3                  | 3                  | 100%                      | 0.0035              | 0.0073              | 0.01                     |
| 2.3.4,7,8-PeCDF           | 3                  | 3                  | 100%                      | 0.0029              | 0.0042              | 0.0037                   |
| 2,3,7,8-TCDD              | 3                  | 3                  | 100%                      | 0.00090             | 0.01                | 0.01                     |
| 2,3,7,8-TCDF              | 3                  | 3                  | 100%                      | 0.01                | 0.01                | 0.01                     |
| Total HpCDD               | 3                  | 3                  | 100%                      | 0.54                | 0.93                | 0.80                     |
| Total HpCDF               | 3                  | 2                  | 67%                       | 0.18                | 0.60                | 0.35                     |
| Total HxCDD               | 3                  |                    | 0%                        |                     |                     | 0.07                     |
| Total HxCDF               | 3                  |                    | 0%                        |                     |                     | 0.05                     |
| Total PeCDD               | 3                  |                    | 0%                        |                     |                     | 0.02                     |
| Total PeCDF               | 3                  |                    | 0%                        |                     |                     | 0.02                     |
| Total TCDD                | 3                  |                    | 0%                        |                     |                     | 0.02                     |
| Total TCDF                | 3                  |                    | 0%                        |                     |                     | 0.04                     |

#### Note:

# Reference Area Sediment Summary Statistics Sauget Area I

|                     | 1                  |                    |                        |                     |                     |                          |
|---------------------|--------------------|--------------------|------------------------|---------------------|---------------------|--------------------------|
| Compounds           | Number<br>Analyzed | Number<br>Detected | Frequency of Detection | Minimum<br>Detected | Maximum<br>Detected | Average<br>Concentration |
| Herbicides, ug/kg   | 7 4121/200         | 20100100           |                        | 200000              | 20130103            | - CONTOUNTED TO          |
| 2,4,5-T             | 4                  |                    | 0%                     |                     |                     | 9.00                     |
| 2,4,5-TP (Silvex)   | 1 4                |                    | 0%                     |                     |                     | 9.00                     |
| 2,4-D               | 1 4                | 1                  | 25%                    | 12                  | 12                  | 10                       |
| 2,4-DB              | 4                  |                    | 0%                     | '-                  |                     | 9.00                     |
| Dalapon             | 4                  |                    | 0%                     |                     |                     | 69                       |
| Dicamba             | [ 4]               |                    | 0%                     |                     |                     | 22                       |
| Dichloroprop        | 4                  |                    | 0%                     |                     |                     | 110                      |
| Dinoseb             | 4                  |                    | 0%                     |                     |                     | 110                      |
| MCPA                | 4                  |                    | 0%                     |                     | -                   | 2175                     |
| MCPP                | 1 4                |                    | 0%                     |                     |                     | 2175                     |
| Pentachlorophenol   | 4                  | 1                  | 25%                    | 1.9                 | 1.9                 | 15                       |
| Metals, mg/kg       | <del> </del>       |                    | 2376                   | 1.5                 | 1,5                 | <u></u>                  |
| Aluminum            | ا ہا               |                    | 100%                   | 12000               | 19000               | 14500                    |
| Antimony            | 4                  | 4                  | 75%                    |                     |                     |                          |
|                     | 4                  | 3                  |                        | 1.3                 | 4                   | 2.10                     |
| Arsenic             | 4                  | 4                  | 100%                   | 6.7                 | 8                   | 7.18                     |
| Barium              | 4                  | 4                  | 100%                   | 170                 | 230                 | 208                      |
| Beryllium           | 4 [                | 4                  | 100%                   | 0.62                | 1                   | 0.78                     |
| Cadmium             | 4                  | 4                  | 100%                   | 0.29                | 0.65                | 0.42                     |
| Calcium             | 4                  | 4                  | 100%                   | 12000               | 18000               | 13500                    |
| Chromium            | 4                  | 4                  | 100%                   | 17                  | 25                  | 20                       |
| Cobalt              | 4 ]                | 4                  | 100%                   | 7.1                 | 10                  | 8.60                     |
| Copper              | 4                  | 4                  | 100%                   | 16                  | 23                  | 19                       |
| Cyanide, Total      | 4                  |                    | 0%                     |                     |                     | 0.55                     |
| ron                 | 4                  | 4                  | 100%                   | 18000               | 24000               | 20750                    |
| ead                 | 4                  | 4                  | 100%                   | 17                  | 26                  | 22                       |
| Magnesium           | 4                  | 4                  | 100%                   | 3300                | 6500                | 5150                     |
| Manganese           | 4                  | 4                  | 100%                   | 570                 | 770                 | 708                      |
| Mercury             | 4 أ                | 4                  | 100%                   | 0.04                | 0.063               | 0.05                     |
| Molybdenum          | 4                  | 4                  | 100%                   | 0.37                | 0.53                | 0.45                     |
| Vickel              | 41                 | 4                  | 100%                   | 18                  | 26                  | 22                       |
| Potassium           | 41                 | 4                  | 100%                   | 1600                | 2600                | 2100                     |
| Selenium            | 4                  | •                  | 0%                     |                     |                     | 1.03                     |
| Silver              | 4                  | j                  | 0%                     |                     |                     | 1.03                     |
| Sodium              | 4                  | i                  | 0%                     | ì                   |                     | 85                       |
| hallium             | 4                  |                    | 0%                     |                     |                     | 1.03                     |
| /anadium            | 41                 | 4                  | 100%                   | 30                  | 44                  | 35                       |
| inc                 | 4                  | 4                  | 100%                   | 59                  | 96                  | 83                       |
| H                   | . 1                |                    | 100%                   | 6.8                 | 7.31                | 7.07                     |
|                     | 4                  | 4                  | 100%                   | 12000               |                     | 17000                    |
| otal Organic Carbon | 4                  | 4                  | 100%                   | 12000               | 23000               | 17000                    |
| DOD                 |                    |                    |                        |                     |                     | <del></del>              |
| PCB, ug/kg          | _ [                |                    | 0%                     | 1                   | ľ                   | 40                       |
| Decachlorobiphenyl  | 4                  |                    |                        |                     |                     | 18                       |
| Dichlorobiphenyl    | 4                  | ſ                  | 0%                     | i                   |                     | 3.60                     |
| leptachlorobiphenyl | 4                  | ł                  | 0%                     | ł                   |                     | 11                       |
| lexachlorobiphenyl  | 4                  | }                  | 0%                     |                     |                     | 7.25                     |
| fonochlorobiphenyl  | 4                  | i                  | 0%                     | i                   |                     | 3.60                     |
| lonachlorobiphenyl  | 4 ]                |                    | 0%                     |                     |                     | 18.3                     |
| Octachlorobiphenyl  | 4                  | ĺ                  | 0%                     | 1                   |                     | 11                       |
| Pentachlorobiphenyl | 4                  |                    | 0%                     |                     |                     | 7.25                     |
| etrachlorobiphenyl  | 4                  | ł                  | 0%                     |                     |                     | 7.25                     |
| richlorobiphenyl    | 4                  | 1                  | 0%                     | 1                   |                     | 3.60                     |
|                     |                    | ļ                  |                        |                     |                     |                          |
| otal PCBs           | 4                  |                    | 0%                     | [                   |                     | 18.3                     |
| esticides, ug/kg    |                    |                    |                        | ı                   |                     |                          |
| ,4'-DDD             | 4                  |                    | 0%                     |                     |                     | 3.58                     |
| ,4'-DDE             | 4 [                | ſ                  | 0%                     | Ş                   | j                   | 3.58                     |
|                     | 4 1                |                    | 0%                     |                     | ļ                   | 3.58                     |
| ,4'-DDT             |                    |                    | 1                      |                     |                     |                          |
|                     | 4                  | ļ                  | 0%[                    |                     | l l                 | 1.85                     |
| ,4'-DDT<br>Ildrin   |                    |                    |                        |                     |                     |                          |
| ,4'-DDT             | 4                  |                    | 0% <br>0% <br>0%       |                     |                     | 1.85<br>1.85<br>0.54     |

# Reference Area Sediment Summary Statistics Sauget Area I

|                                    | 1                  |                    |                           |                     |                     |                       |
|------------------------------------|--------------------|--------------------|---------------------------|---------------------|---------------------|-----------------------|
| ]                                  | 86                 | <b>A</b> f6        |                           |                     |                     |                       |
| Compounds                          | Number<br>Analyzed | Number<br>Detected | Frequency of<br>Detection | Minimum<br>Detected | Maximum<br>Detected | Average Concentration |
| delta-BHC                          | 4                  | Detected           | 0%                        | Detected            | Detected            | 0.54                  |
| Dieldon                            | 4                  |                    | 0%                        |                     |                     | 3.58                  |
| Endosulfan I                       | 4                  |                    | 0%                        |                     |                     | 1.85                  |
| Endosulfan II                      | 4                  |                    | 0%                        |                     |                     | 3.58                  |
| Endosulfan sulfate                 | 4                  |                    | 0%                        |                     | 1                   | 3.58                  |
| Endrin                             | 4                  |                    | 0%                        |                     |                     | 3.58                  |
| Endrin aldehyde                    | 4                  |                    | 0%                        |                     |                     | 3.58                  |
| Endrin ketone                      | ] 4]               |                    | 0%                        |                     |                     | 3.58                  |
| Gamma Chlordane                    | 4                  |                    | 0%                        |                     |                     | 1.85                  |
| gamma-BHC (Lindane)                | 4                  |                    | 0%                        |                     |                     | 1.85                  |
| Heptachlor                         | ] 4                |                    | 0%                        |                     |                     | 1.85                  |
| Heptachlor epoxide                 | ] 4                |                    | 0%                        |                     |                     | 1.85                  |
| Methoxychlor                       | 4                  |                    | 0%                        |                     |                     | 19                    |
| Toxaphene                          | 4                  |                    | 0%                        |                     |                     | 185                   |
| SVOCs, ug/kg                       |                    |                    |                           |                     | ·                   |                       |
| 1,2,4-Trichloroberizene            | 4                  |                    | 0%                        |                     |                     | 184                   |
| 1,2-Dichlorobenzene                | 4                  |                    | 0%                        |                     |                     | 184                   |
| 1,3-Dichlorobenzene                | 4                  |                    | 0%                        |                     |                     | 184                   |
| 1,4-Dichlorobenzene                | 4                  |                    | 0%                        |                     |                     | 184                   |
| 2.2'-Oxybis(1-Chloropropane)       | 4                  |                    | 0%                        |                     |                     | 184                   |
| 2,4,5-Trichlorophenol              | 4                  |                    | 0%                        |                     |                     | 184                   |
| 2,4,6-Trichlorophenol              | 4                  |                    | 0%                        |                     |                     | 184                   |
| 2.4-Dichlorophenol                 | 4                  |                    | 0%                        |                     |                     | 184                   |
| 2.4-Dinitrophenol                  | 4                  |                    | 0%                        |                     |                     | 925                   |
| 2.4-Dinitrotoluene                 | •                  |                    | 0%                        |                     |                     | 184                   |
| 2.6-Dinitrotoluene                 | •                  |                    | 0%<br>0%                  |                     |                     | 184                   |
| 2-Chloronaphthalene                | 7                  |                    | 0%                        |                     |                     | 184                   |
| 2-Chlorophenol 2-Methylnaphthalene |                    |                    | 0%                        |                     |                     | 184<br>184            |
| 2-Methylphenol (o-cresol)          | ] ]                |                    | 0%                        |                     |                     | 184                   |
| 2-Nitroaniline                     | 7                  |                    | 0%<br>0%                  |                     |                     | 925                   |
| 2-Nitrophenol                      | ' 7                |                    | 0%                        |                     |                     | 184                   |
| 3,3'-Dichlorobenzidine             | 7                  |                    | 0%                        |                     |                     | 359                   |
| 3-Methylphenol/4-Methylphenol      | 4                  |                    | 0%                        |                     |                     | 184                   |
| 3-Nitroaniline                     | 4                  |                    | 0%                        |                     |                     | 925                   |
| 4,6-Dinitro-2-methylphenol         | 4                  |                    | 0%                        |                     |                     | 925                   |
| 4-Bromophenylphenyl ether          | 4                  |                    | 0%                        |                     |                     | 184                   |
| 4-Chloro-3-methylphenol            | 4                  |                    | 0%                        |                     |                     | 184                   |
| 4-Chloroaniine                     | 4                  |                    | 0%                        |                     |                     | 359                   |
| 4-Chlorophenylphenyl ether         | 4                  | l                  | 0%                        | İ                   |                     | 184                   |
| 4-Nitroaniline                     | 4                  |                    | 0%                        |                     |                     | 925                   |
| 4-Nitrophenol                      | 4                  |                    | 0%                        |                     |                     | 925                   |
| Acenaphthene                       | 4 [                | ſ                  | 0%[                       |                     | İ                   | 184                   |
| Acenaphthylene                     | 4                  |                    | 0%                        |                     |                     | 184                   |
| Anthracene                         | 4                  |                    | 0%                        |                     |                     | 184                   |
| Benzo(a)anthracene                 | 4                  |                    | 0%                        |                     |                     | 184                   |
| Benzo(a)pyrene                     | 4                  | j                  | 0%                        |                     |                     | 98                    |
| Berizo(b)fluoranthene              | 4                  |                    | 0%                        |                     | ļ                   | 184                   |
| Benzo(g,h,i)perylene               | 4                  |                    | 0%                        |                     | ĺ                   | 184                   |
| Benzo(k)fluoranthene               | 4                  |                    | 0%                        |                     |                     | 184                   |
| bis(2-Chloroethoxy)methane         | 4                  |                    | 0%                        |                     |                     | 184                   |
| bis(2-Chloroethyl)ether            | 4                  |                    | 0%                        |                     |                     | 184                   |
| bis(2-Ethylhexyl)phthalate         | 4                  | ļ                  | 0%                        |                     | '                   | 184                   |
| Butylbenzylphthalate               | 4                  |                    | 0%                        |                     |                     | 184                   |
| Carbazole                          | 4                  |                    | 0%                        |                     |                     | 184                   |
| Chrysene                           | 4                  |                    | 0%                        |                     |                     | 184                   |
| Di-n-butytohthalate                | 4                  | 1                  | 0%                        |                     |                     | 184                   |
| Di-n-octylphthalate                | 4                  |                    | 0%                        |                     |                     | 184                   |
| Dibenzo(a,h)anthracene             | 4                  |                    | 0%                        |                     |                     | 98                    |
| Dibenzofuran                       | 4                  |                    | 0%                        |                     |                     | 184                   |
| Diethylphthalate                   | 4                  |                    | 0%                        |                     |                     | 184                   |

#### Reference Area Sediment Summary Statistics Sauget Area I

|                                       | <u> </u>           | J                  | J                      |                     |                     | <u> </u>              |
|---------------------------------------|--------------------|--------------------|------------------------|---------------------|---------------------|-----------------------|
| [                                     | M                  | Non-the-           |                        | 8811                | <b>M</b>            | <b>A</b>              |
| Compounds                             | Number<br>Analyzed | Number<br>Detected | Frequency of Detection | Minimum<br>Detected | Maximum<br>Detected | Average Concentration |
| Dimethylphthalate                     | Allaly2ed 4        | Detected           | 0%                     | Detected            | Detected            | 184                   |
| Fluoranthene                          | 4                  | 1                  | 0%                     |                     |                     | 184                   |
| Fluorene                              | 1 4                |                    | 0%                     |                     |                     | 184                   |
| Hexachlorobenzene                     | [ 7]               |                    | 0%                     |                     |                     |                       |
| · · · · · · · · · · · · · · · · · · · | 1 71               |                    |                        |                     |                     | 75                    |
| Hexachlorobutadiene                   | 4                  |                    | 0%                     |                     |                     | 184                   |
| Hexachlorocyclopentadiene             | 4                  |                    | 0%                     |                     |                     | 184                   |
| Hexachloroethane                      | 4                  |                    | 0%                     |                     |                     | 184                   |
| Indeno(1,2,3-cd)pyrene                | 4                  |                    | 0%                     |                     |                     | 184                   |
| Isophorone                            | 4                  |                    | 0%                     | i i                 |                     | 184                   |
| N-Nitroso-di-n-propylamine            | 4                  |                    | 0%                     |                     |                     | 184                   |
| N-Nitrosodiphenylamine                | 4                  |                    | 0%                     |                     |                     | 184                   |
| Naphthalene                           | 4                  |                    | 0%                     |                     |                     | 184                   |
| Nitrobenzene                          | 4                  |                    | 0%                     |                     |                     | 184                   |
| Pentachiorophenol                     | 4                  |                    | 0%                     |                     |                     | 925                   |
| Phenanthrene                          | 4                  |                    | 0%                     |                     |                     | 184                   |
| Phenol                                | 1 4                |                    | 0%                     |                     |                     | 184                   |
| Pyrene                                | [ 4 [              |                    | 0%                     |                     |                     | 184                   |
| Total PAHs                            | 4                  |                    | 0%                     |                     |                     |                       |
| VOCs, ug/kg                           |                    |                    | 076                    |                     | L                   | 98                    |
| 1,1,1-Trichloroethane                 | ا ا                |                    | 0%                     |                     |                     | 6.50                  |
| 1,1,1-Irichioroethane                 | 4                  |                    |                        |                     |                     | 6.56                  |
| 1,1,2,2-Tetrachloroethane             | 4                  |                    | 0%                     |                     |                     | 6.56                  |
| 1,1,2-Trichloroethane                 | 4                  |                    | 0%                     |                     |                     | 6.56                  |
| 1,1-Dichloroethane                    | 4                  |                    | 0%                     |                     |                     | 6.56                  |
| 1,1-Dichloroethene                    | 4                  |                    | 0%                     |                     |                     | 5.96                  |
| 1,2-Dichloroethane                    | 4                  |                    | 0%                     |                     |                     | 6.56                  |
| 1,2-Dichloropropane                   | 4                  |                    | 0%                     |                     |                     | 6.56                  |
| 2-Butanone (MEK)                      | 4                  | 3                  | 75%                    | 14                  | 40                  | 25                    |
| 2-Hexanone                            | 4                  |                    | 0%                     |                     | i                   | 33                    |
| 4-Methyl-2-pentanone (MIBK)           | 4                  |                    | 0%                     |                     |                     | 33                    |
| Acetone                               | 4 ]                | 3                  | 75%                    | 52                  | 160                 | 78                    |
| Benzene                               | 4 ]                | J                  | 0%                     | j                   |                     | 6.56                  |
| Bromodichloromethane                  | 4                  | ł                  | 0%                     | ł                   |                     | 6.56                  |
| Bromoform                             | 4                  |                    | 0%                     |                     |                     | 6.56                  |
| Bromomethane (Methyl bromide)         | 4                  |                    | 0%                     |                     |                     | 13                    |
| Carbon disulfide                      | 4 [                | ſ                  | 0%                     | ĺ                   |                     | 6.56                  |
| Carbon tetrachloride                  | 4                  |                    | 0%                     |                     |                     | 6.56                  |
| Chlorobenzene                         | 4                  | }                  | 0%                     |                     |                     | 6.56                  |
| Chloroethane                          | 4                  | ł                  | 0%                     | ł                   |                     | 13                    |
| Chloroform                            | 4 أ                | ĺ                  | 0%                     | ĺ                   | 1                   | 6.56                  |
| Chloromethane                         | 4                  | j                  | 0%                     | ļ                   |                     | 13                    |
| cis-1,3-Dichloropropene               | 4                  |                    | 0%                     | j                   |                     | 5.34                  |
| Cis/Trans-1,2-Dichloroethene          | 4                  |                    | 0%                     | ŀ                   |                     | 6.56                  |
| Dibromochloromethane                  | 4                  | }                  | 0%                     | ł                   |                     | 6.56                  |
| Ethylbenzene                          | 4                  |                    | 0%                     | ļ                   |                     | 6.56                  |
| Methylene chloride (Dichloromethane)  | 4                  | ]                  | 0%                     |                     |                     | 6.56                  |
| Styrene                               | 4                  | 1                  | 0%                     | ſ                   |                     | 6.56                  |
| Tetrachloroethene                     | 4                  | İ                  | 0%                     |                     |                     | 6.56                  |
| Toluene                               | 4                  | J                  | 0%                     | j                   |                     | 6.56                  |
| trans-1,3-Dichloropropene             | 4                  |                    | 0%                     | l                   |                     | 5.34                  |
| Trichloroethene                       | 4                  | ]                  | 0%                     |                     | , İ                 | 6.56                  |
| Vinyl chloride                        | 4                  | j                  | 0%                     | ļ                   |                     | 13                    |
| Xylenes, Total                        | 4                  |                    | 0%                     |                     |                     | 6.56                  |
| 9.5.559 1000                          |                    |                    | <u> </u>               |                     |                     | <u> </u>              |

#### Note:

One-half the detection limit is used to represent non-detects in the calculation of average concentrations.

### Reference Area Sediment Dioxin Summary Statistics Sauget Area I

|                           | <u> </u>           | ·                  |                           |                     |                     |                          |
|---------------------------|--------------------|--------------------|---------------------------|---------------------|---------------------|--------------------------|
| Compounds                 | Number<br>Analyzed | Number<br>Detected | Frequency of<br>Detection | Minimum<br>Detected | Maximum<br>Detected | Average<br>Concentration |
| Dioxins and Furans, ug/kg |                    |                    |                           |                     |                     | _                        |
| 1,2,3,4,6,7,8,9-OCDD      | 4                  | 4                  | 100%                      | 3.47E+00            | 8.57E+00            | 5.24E+00                 |
| 1,2,3,4,6,7,8,9-OCDF      | 4                  | 4                  | 100%                      | 1.43E-02            | 1.36E-01            | 9.63E-02                 |
| 1,2,3,4,6,7,8-HpCDD       | 4                  | 4                  | 100%                      | 1.28E-01            | 1.62E-01            | 1.46E-01                 |
| 1,2,3,4,6,7,8-HpCDF       | 4                  | 4                  | 100%                      | 5.90E-03            | 3.07E-02            | 2.26E-02                 |
| 1,2,3,4,7,8,9-HpCDF       | 4                  | 1                  | 25%                       | 3.00E-03            | 3.00E-03            | 1.31E-03                 |
| 1,2,3,4,7,8-HxCDD         | 4                  | 3                  | 75%                       | 1.10E-03            | 2.20E-03            | 1.45E-03                 |
| 1,2,3,4,7,8-HxCDF         | 4                  | 2                  | 50%                       | 2.90E-03            | 3.00E-03            | 1.85E-03                 |
| 1,2,3,6,7,8-HxCDD         | 4                  | 4                  | 100%                      | 3.30E-03            | 4.60E-03            | 4.08E-03                 |
| 1,2,3,6,7,8-HxCDF         | 4                  | 1                  | 25%                       | 1.30E-03            | 1.30E-03            | 6.08E-04                 |
| 1,2,3,7,8,9-HxCDD         | 4                  | 4                  | 100%                      | 3.40E-03            | 5.10E-03            | 4.40E-03                 |
| 1,2,3,7,8,9-HxCDF         | 4                  |                    | 0%                        |                     |                     | 1.09E-04                 |
| 1,2,3,7,8-PeCDD           | 4                  | 2                  | 50%                       | 1.30E-03            | 1.50E-03            | 1.03E-03                 |
| 1,2,3,7,8-PeCDF           | 4                  | 1                  | 25%                       | 1.10E-03            | 1.10E-03            | 4.46E-04                 |
| 2,3,4,6,7,8-HxCDF         | 4                  | 2                  | 50%                       | 1.60E-03            | 1.80E-03            | 1.05E-03                 |
| 2,3,4,7,8-PeCDF           | 4                  | 1                  | 25%                       | 1.30E-03            | 1.30E-03            | 6.61E-04                 |
| 2,3,7,8-TCDD              | 4 ]                | 2                  | 50%                       | 6.40E-04            | 3.50E-03            | 1.16E-03                 |
| 2,3,7,8-TCDF              | 4                  | 4                  | 100%                      | 7.60E-04            | 1.40E-03            | 1.22E-03                 |
| Total HpCDD               | 4                  | 4                  | 100%                      | 2.78E-01            | 3.47E-01            | 3.23E-01                 |
| Total HpCDF               | 4                  | 2                  | 50%                       | 1.64E-02            | 1.13E-01            | 5.81E-02                 |
| Total HxCDD               | 4                  | 1                  | 25%                       | 4.58E-02            | 4.58E-02            | 2.88E-02                 |
| Total HxCDF               | 4                  | 3                  | 75%                       | 6.20E-03            | 2.52E-02            | 1.65E-02                 |
| Total PeCDD               | 4                  | 1                  | 25%                       | 2.10E-02            | 2.10E-02            | 1.75E-02                 |
| Total PeCDF               | 4                  |                    | 0%                        |                     |                     | 3.96E-03                 |
| Total TCDD                | 4                  |                    | 0%                        |                     |                     | 1.17E-02                 |
| Total TCDF                | 4                  | 2                  | 50%                       | 6.80E-03            | 1.45E-02            | 9.14E-03                 |

#### Note:

One-half the detection limit is used to represent non-detects in the calculation of average concentrations.

### Sediment Summary Statistics for Dead Creek Sector F (Combined Shallow (0-2 inch) and Deep "Industry Specific" Samples) Sauget Area I

| 2,4,5-TP (Silvex)   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Compounds          | Number<br>Analyzed | Number<br>Detected | Frequency Of Detection | Minimum<br>Detected | Maximum<br>Detected | Average<br>Concentration |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|------------------------|---------------------|---------------------|--------------------------|
| 2,4-D         3         1         33%         23         23           2,2-DB         3         0         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    | 0                  | 0%                     |                     |                     | 63                       |
| 2.4 DB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                    | 0                  |                        |                     |                     | 63                       |
| Dalapon   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                    | 1                  |                        | 23                  | 23                  | 66                       |
| Dicamba   3   0   0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,4-DB             |                    | 0                  |                        |                     |                     | 63                       |
| Dichloroprop   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    |                    |                        |                     |                     | 517                      |
| Dinoseb   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                    |                    |                        |                     |                     | 151                      |
| MCPA<br>MCPP         3<br>0<br>0<br>0<br>0<br>0%         0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                        |                     |                     | 762                      |
| MCPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                        |                     |                     | 762                      |
| Pentachlorophenol   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                    |                    |                        |                     |                     | 15067                    |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MCPP               |                    |                    | 0%                     |                     |                     | 15067                    |
| Antimony 2 2 2 100% 2.5 2.6 Arsenic 3 3 100% 8 19 Barium 3 3 100% 150 270 Beryllium 3 3 100% 0.53 0.89 Cadmium 3 3 100% 0.53 0.89 Cadmium 3 3 100% 11000 13000 13000 Chromium 3 3 100% 19 38 Cobalt 3 3 100% 150 5.5 13 Copper 19 19 100% 26 5400 Cyanide, Total 3 0 0 0% 1600 26000 2 1600 1600 1600 1600 1600 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                    |                    |                        |                     |                     | 104                      |
| Arsenic   3   3   100%   8   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |                    |                        |                     |                     | 12933                    |
| Barium   3   3   100%   150   270   Beryllium   3   3   100%   0.53   0.89   Cadmium   3   3   100%   7.4   47   47   Calcium   3   3   100%   11000   13000   Chromium   3   3   100%   5.5   13   Copper   19   19   100%   26   5400   Cyanide, Total   3   0   0%   14000   26000   7.4   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5    |                    |                    |                    |                        |                     |                     | 2.55                     |
| Beryllium   3   3   100%   0.53   0.89   Cadmium   3   3   100%   7.4   47   Calcium   3   3   100%   7.4   47   Calcium   3   3   100%   11000   13000   Chromium   3   3   100%   19   38   Cobalt   3   3   100%   5.5   13   Copper   19   19   100%   26   5400   Cyanide, Total   3   0   0%   Cyanide, Total   3   0   0%   Cyanide, Total   3   100%   14000   26000   7   7   7   7   7   7   7   7   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    |                    |                        |                     |                     | 14.0                     |
| Cadmium         3         3         100%         7.4         47           Calcium         3         3         100%         11000         13000           Chromium         3         3         100%         19         38           Cobalt         3         3         100%         5.5         13           Copper         19         19         100%         26         5400           Cyanide, Total         3         0         0%         26         5400           Iron         3         3         100%         14000         26000         26000           Lead         3         3         100%         14000         26000         26000           Margnesium         3         3         100%         110         320         320           Manganese         3         3         100%         4100         6800         30         1.1         30         30         1.1         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30 <t< td=""><td>—</td><td></td><td></td><td></td><td></td><td></td><td>223</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | —                  |                    |                    |                        |                     |                     | 223                      |
| Calcium   3   3   100%   11000   13000   Chromium   3   3   100%   19   38   Cobalt   3   3   100%   5.5   13   Copper   19   19   100%   26   5400   Cyanide, Total   3   0   0%   14000   26000   2   26000   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                    |                    |                        |                     |                     | 0.76                     |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                    |                        |                     |                     | 23                       |
| Cobalt         3         3         100%         5.5         13           Copper         19         19         100%         26         5400           Cyanide, Total         3         0         0%         26000         2           Iron         3         3         100%         14000         26000         2           Lead         3         3         100%         110         320         30           Magnesium         3         3         100%         4100         6800         30           Marganese         3         3         100%         170         510         510           Mercury         3         3         100%         0.7         3.7         Nickel         3         100%         0.7         3.7         Nickel         3         100%         90         390         390         390         390         390         390         390         390         390         390         390         390         390         390         390         390         390         390         390         390         390         390         390         390         390         390         390         390         390 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11667</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                    |                    |                        |                     |                     | 11667                    |
| Copper   19   19   100%   26   5400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                    |                    |                        |                     | 38                  | 29                       |
| Cyanide, Total         3         0         0%         14000         26000         2           Lead         3         3         100%         110         320         3         100%         110         320         3         100%         110         320         3         100%         110         320         3         100%         110         320         3         100%         110         320         3         100%         170         510         410         410         6800         410         410         6800         410         6800         410         410         6800         410         6800         410         6800         410         410         6800         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |                    |                        |                     |                     | 9,8                      |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                        | 26                  | 5400                | 1100                     |
| Lead   3   3   100%   110   320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |                    | 4000                   | 44000               | 00000               | 0.95                     |
| Magnesium         3         3         100%         4100         6800           Manganese         3         3         100%         170         510           Mercury         3         3         100%         0.3         1.1           Molybdenum         3         3         100%         0.7         3.7           Nickel         3         3         100%         90         390           Potassium         3         3         100%         90         390           Selenium         3         0         0%         0%         0%         0%           Sodium         3         0         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                    |                    |                        |                     |                     | 20667                    |
| Manganese         3         3         100%         170         510           Mercury         3         3         100%         0.3         1.1           Molybdenum         3         3         100%         0.7         3.7           Nickel         3         3         100%         90         390           Potassium         3         3         100%         90         390           Selenium         3         0         0%         500         0%         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    | 3                  |                        |                     |                     | 180                      |
| Mercury         3         3         100%         0.3         1.1           Molybdenum         3         3         100%         0.7         3.7           Nickel         3         3         100%         90         390           Potassium         3         3         100%         90         390           Selenium         3         0         0%         2900           Silver         3         0         0%         0%           Thallium         3         0         0%         0           Vanadium         3         3         100%         25         51           Zinc         19         19         100%         510         11000           pH         3         3         100%         551         11000           pH         3         3         100%         510         11000           pH         3         3         100%         551         11000           pH         3         3         100%         551         11000           pH         3         3         100%         50         14000         10           pH         3         3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5400</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                    |                    |                        |                     |                     | 5400                     |
| Molybdenum         3         3         100%         0.7         3.7           Nickel         3         3         100%         90         390           Potassium         3         3         100%         1600         2900           Selenium         3         0         0%         0%           Sodium         3         0         0%         0%           Thallium         3         0         0%         0%           Vanadium         3         3         100%         25         51           Zinc         19         19         100%         510         11000           pH         3         3         100%         5.71         6.87           tal Organic Carbon (mg/kg dry         19         19         100%         5.71         6.87           tal Organic Carbon (mg/kg dry         19         19         100%         5.71         6.87           tal Organic Carbon (mg/kg dry         19         19         100%         5.71         6.87           tal Organic Carbon (mg/kg dry         19         19         100%         15000         140000           Decachlorobiphenyl         19         0         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                    |                    |                        |                     |                     | 303                      |
| Nickel   3   3   100%   90   390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    |                    |                        |                     |                     | 0.62                     |
| Potassium   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                    | 100%                   |                     |                     | 1.7                      |
| Selenium   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                    |                    |                        |                     |                     | 220                      |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                    |                    |                        | 1000                | 2900                | 2400                     |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                    |                    |                        |                     |                     | 1.8                      |
| Thallium         3         0         0%           Vanadium         3         3         100%         25         51           Zinc         19         19         100%         510         11000           pH         3         3         100%         6.71         6.87           tal Organic Carbon (mg/kg dry         19         19         100%         15000         140000         5           Decachlorobiphenyl         19         13         68%         32         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460         460 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1.8<br/>132</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                    |                    |                        |                     |                     | 1.8<br>132               |
| Vanadium         3         3         100%         25         51           Zinc         19         19         100%         510         11000           pH         3         3         100%         510         11000           pH         3         3         100%         510         11000           tal Organic Carbon (mg/kg dry         19         19         100%         15000         140000           Decachlorobiphenyl         19         13         68%         32         460           Dichlorobiphenyl         19         0         0%         0%           Heptachlorobiphenyl         19         11         58%         13         260           Hexachlorobiphenyl         19         3         16%         17         22           Monochlorobiphenyl         19         0         0%         0%         0%           Nonachlorobiphenyl         19         11         58%         21         270         0ctachlorobiphenyl         19         11         58%         21         270         0ctachlorobiphenyl         19         17         89%         13         3700         18         1600         18         1600         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                    |                    |                        |                     |                     |                          |
| Zinc   19   19   100%   510   11000   pH   3   3   3   100%   6.71   6.87   121   Organic Carbon (mg/kg dry   19   19   100%   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   150 |                    |                    |                    |                        |                     | <u> </u>            | 1.8<br>39                |
| Dear Organic Carbon (mg/kg dry   19   19   100%   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   |                    |                    |                    |                        |                     |                     | 4848                     |
| Decachlorobiphenyl   19   19   100%   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   140000   15000   15000   15000   15000   150000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   15000   150 | -                  |                    |                    |                        |                     |                     | 6.81                     |
| Decachlorobiphenyl   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                  |                    |                    |                        |                     |                     | 55237                    |
| Dichlorobiphenyl   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                    |                    |                        |                     |                     | 103                      |
| Heptachlorobiphenyl         19         11         58%         13         260           Hexachlorobiphenyl         19         3         16%         17         22           Monochlorobiphenyl         19         0         0%         0%           Nonachlorobiphenyl         19         11         58%         21         270           Octachlorobiphenyl         19         8         42%         5.8         27           Pentachlorobiphenyl         19         17         89%         13         3700           Tetrachlorobiphenyl         19         12         63%         18         1600           Trichlorobiphenyl         19         4         21%         6.4         17           I otal PCBs         19         17         89%         76         6471           4,4'-DDD         3         1         33%         3.8         3.8           4,4'-DDE         3         3         100%         2.5         11           4,4'-DDT         3         1         33%         4.5         4.5           Total DDT         3         3         100%         19         43           Aldrin         3         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                    |                        |                     | 700                 | 7.7                      |
| Hexachlorobiphenyl   19   3   16%   17   22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                    |                    |                        | 13                  | 260                 | 49                       |
| Monochlorobiphenyl         19         0         0%           Nonachlorobiphenyl         19         11         58%         21         270           Octachlorobiphenyl         19         8         42%         5.8         27           Pentachlorobiphenyl         19         17         89%         13         3700           Tetrachlorobiphenyl         19         12         63%         18         1600           Trichlorobiphenyl         19         4         21%         6.4         17           I otal PCBs         19         17         89%         76         6471           4,4'-DDD         3         1         33%         3.8         3.8           4,4'-DDE         3         3         100%         2.5         11           4,4'-DDT         3         1         33%         4.5         4.5           Total DDT         3         3         100%         19         43           Aldrin         3         1         33%         4.1         4.1           Alpha-BHC         3         0         0%         0.84         5.3           alpha-BHC         3         0         0%         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Heyachlorobinhenyl |                    | <del>'3'</del>     |                        | <del>13</del>       |                     | 17                       |
| Nonachlorobiphenyl         19         11         58%         21         270           Octachlorobiphenyl         19         8         42%         5.8         27           Pentachlorobiphenyl         19         17         89%         13         3700           Tetrachlorobiphenyl         19         12         63%         18         1600           Trichlorobiphenyl         19         4         21%         6.4         17           I otal PCBs         19         17         89%         76         6471           4,4'-DDD         3         1         33%         3.8         3.8           4,4'-DDE         3         3         100%         2.5         11           4,4'-DDT         3         1         33%         4.5         4.5           Total DDT         3         3         100%         19         43           Aldrin         3         1         33%         4.1         4.1           Alpha-BHC         3         0         0%         084         5.3           alpha-BHC         3         0         0%         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                    |                    |                        |                     |                     | 7.7                      |
| Octachlorobiphenyl         19         8         42%         5.8         27           Pentachlorobiphenyl         19         17         89%         13         3700           Tetrachlorobiphenyl         19         12         63%         18         1600           Trichlorobiphenyl         19         4         21%         6.4         17           Lotal PCBs         19         17         89%         76         6471           4,4'-DDD         3         1         33%         3.8         3.8           4,4'-DDE         3         3         100%         2.5         11           4,4'-DDT         3         1         33%         4.5         4.5           Total DDT         3         3         100%         19         43           Aldrin         3         1         33%         4.1         4.1           Alpha Chlordane         3         3         100%         0.84         5.3           alpha-BHC         3         0         0%         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                        | <del>21</del>       | 270                 | 54                       |
| Pentachlorobiphenyl         19         17         89%         13         3700           Tetrachlorobiphenyl         19         12         63%         18         1600           Trichlorobiphenyl         19         4         21%         6.4         17           I otal PCBs         19         17         89%         76         6471           4,4'-DDD         3         1         33%         3.8         3.8           4,4'-DDE         3         3         100%         2.5         11           4,4'-DDT         3         1         33%         4.5         4.5           Total DDT         3         3         100%         19         43           Aldrin         3         1         33%         4.1         4.1           Alpha Chlordane         3         3         100%         0.84         5.3           alpha-BHC         3         0         0%         0%           beta-BHC         3         0         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                    |                    |                        |                     |                     | 25                       |
| Tetrachlorobiphenyl         19         12         63%         18         1600           Trichlorobiphenyl         19         4         21%         6.4         17           I otal PCBs         19         17         89%         76         6471           4,4'-DDD         3         1         33%         3.8         3.8           4,4'-DDE         3         3         100%         2.5         11           4,4'-DDT         3         1         33%         4.5         4.5           Total DDT         3         3         100%         19         43           Aldrin         3         1         33%         4.1         4.1           Alpha Chlordane         3         3         100%         0.84         5.3           alpha-BHC         3         0         0%         0%           beta-BHC         3         0         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                    |                        |                     |                     | 504                      |
| Trichlorobiphenyl I otal PCBs         19         4         21% 89% 76         6.4         17           4,4'-DDD         3         1         33% 3.8         3.8           4,4'-DDE         3         3         100% 2.5         11           4,4'-DDT         3         1         33% 4.5         4.5           Total DDT         3         3         100% 19         43           Aldrin         3         1         33% 4.1         4.1           Alpha Chlordane         3         3         100% 0.84         5.3           alpha-BHC         3         0         0%           beta-BHC         3         0         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                    |                        |                     |                     | 197                      |
| I otal PCBs         19         17         89%         76         6471           4,4'-DDD         3         1         33%         3.8         3.8           4,4'-DDE         3         3         100%         2.5         11           4,4'-DDT         3         1         33%         4.5         4.5           Total DDT         3         3         100%         19         43           Aldrin         3         1         33%         4.1         4.1           Alpha Chlordane         3         3         100%         0.84         5.3           alpha-BHC         3         0         0%         0%           beta-BHC         3         0         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                    |                    |                        |                     |                     | 9.5                      |
| 4,4'-DDD       3       1       33%       3.8       3.8         4,4'-DDE       3       3       100%       2.5       11         4,4'-DDT       3       1       33%       4.5       4.5         Total DDT       3       3       100%       19       43         Aldrin       3       1       33%       4.1       4.1         Alpha Chlordane       3       3       100%       0.84       5.3         alpha-BHC       3       0       0%       0%         beta-BHC       3       0       0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | 19                 |                    | 89%                    |                     |                     | 929                      |
| 4,4'-DDE     3     3     100%     2.5     11       4,4'-DDT     3     1     33%     4.5     4.5       Total DDT     3     3     100%     19     43       Aldrin     3     1     33%     4.1     4.1       Alpha Chlordane     3     3     100%     0.84     5.3       alpha-BHC     3     0     0%       beta-BHC     3     0     0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                        |                     |                     | 11                       |
| 4,4'-DDT     3     1     33%     4.5     4.5       Total DDT     3     3     100%     19     43       Aldrin     3     1     33%     4.1     4.1       Alpha Chlordane     3     3     100%     0.84     5.3       alpha-BHC     3     0     0%       beta-BHC     3     0     0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                    |                    |                        |                     |                     | 7.2                      |
| Total DDT         3         3         100%         19         43           Aldrin         3         1         33%         4.1         4.1           Alpha Chlordane         3         3         100%         0.84         5.3           alpha-BHC         3         0         0%         0%         0%         0%           beta-BHC         3         0         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | <del>3</del> 1     | <del></del>        |                        |                     |                     | 11                       |
| Aldrin     3     1     33%     4.1     4.1       Alpha Chlordane     3     3     100%     0.84     5.3       alpha-BHC     3     0     0%       beta-BHC     3     0     0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | <del>3</del>       |                    |                        |                     |                     | 30                       |
| Alpha Chlordane     3     3     100%     0.84     5.3       alpha-BHC     3     0     0%       beta-BHC     3     0     0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                    |                        |                     |                     | 6.4                      |
| alpha-BHC         3         0         0%           beta-BHC         3         0         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | <del> </del>       |                    |                        |                     |                     | 3.6                      |
| beta-BHC 3 0 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    | <del></del>        |                        | 0.04                |                     | 1.9                      |
| JG12-3110 3 0 0/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                    |                    |                        |                     |                     | 1.9                      |
| delta-BHC 3 1 33% 0.34 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | delta-BHC          | 3                  |                    | 33%                    | <u> </u>            | 0.34                | 1.6                      |
| Dieldrin 3 2 67% 0.99 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    |                    |                        |                     |                     | 9.3                      |

Appendix C-2.9

### Sediment Summary Statistics for Dead Creek Sector F (Combined Shallow (0-2 inch) and Deep "Industry Specific" Samples) Sauget Area I

| Compounds                                  | Number<br>Analyzed | Number<br>Detected | Frequency Of<br>Detection | Minimum<br>Detected | Maximum<br>Detected | Average<br>Concentratio |
|--------------------------------------------|--------------------|--------------------|---------------------------|---------------------|---------------------|-------------------------|
| Endosulfan I                               | 3                  | 3                  | 100%                      | 1.2                 | 5.7                 | 3.0                     |
| Endosulfan II                              | 3                  | 3                  | 100%                      | 1.8                 | 8.1                 | 5.1                     |
| Endosulfan sulfate                         | 3                  | Ĭ                  | 33%                       | 2.8                 | 2.8                 | 11                      |
| Endrin                                     | 3                  | 2                  | 67%                       | 1.7                 | 1.7                 | 7.0                     |
| Endrin aldehyde                            | 3                  | 3                  | 100%                      | 3.6                 | 14                  | 8.9                     |
| Endrin ketone                              | 3                  | 3                  | 100%                      | 3.8                 | 10                  | 7.0                     |
| Gamma Chlordane                            | 3                  | 3                  | 100%                      | 2.4                 | 17                  | 9.0                     |
| gamma-BHC (Lindane)                        | 3                  | ő                  | 0%                        | f::Z                | <del>- '</del>      | 6.3                     |
| Heptachlor                                 | 3                  | 1                  | 33%                       | 0.93                | 0.93                | 4.6                     |
| Heptachior epoxide                         | 3                  | 2                  | 53 A                      | 0.55                | 5.4                 | 5.0                     |
| Methoxychlor                               | 3                  | 3                  | 100%                      | 7.3                 | 24                  | 15                      |
| l oxaphene                                 | 3                  | 0                  | 0%                        | - 1.3               |                     | 630                     |
| 1.2.4-Trichlorobenzene                     | 3                  | 0                  | 0%                        |                     | _                   | 318                     |
|                                            | 3                  | 0                  | 0%<br>0%                  |                     |                     |                         |
| 1,2-Dichlorobenzene<br>1,3-Dichlorobenzene | 3                  | 0                  | 0%                        |                     |                     | 318<br>318              |
| . *5.7 *5.27 *5.7 *5.7                     | _                  |                    |                           |                     |                     |                         |
| 1,4-Dichlorobenzene                        | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| 2.2-Oxybis(1-Chloropropane)                | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| 2.4.5-Trichlorophenol                      | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| 2,4,6-Trichlorophenol                      | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| 2,4-Dichlorophenol                         | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| 2.4-Dinitrophenol                          | 3                  | 0                  | .0%                       |                     |                     | 1600                    |
| 2.4-Dinitrotoluene                         | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| 2,6-Dinitrotoluene                         | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| 2-Chloronaphthalene                        | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| 2-Chlorophenol                             | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| 2-Methylnaphthalene                        | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| 2-Methylphenol (o-cresol)                  | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| 2-Nitroaniline                             | 3                  | 0                  | 0%                        |                     |                     | 1600                    |
| 2-Nitrophenol                              | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| 3,3'-Dichlorobenzidine                     | 3                  | 0                  | 0%                        |                     |                     | 612                     |
| 3-Methylphenol/4-Methylphenol              | 3                  | O                  | 0%                        |                     |                     | 318                     |
| 3-Nitroaniline                             | 3                  | 0                  | 0%                        |                     |                     | 1600                    |
| 4,6-Dinitro-2-methylphenol                 | 3                  | 0                  | 0%                        |                     |                     | 1600                    |
| 4-Bromophenylphenyl ether                  | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| 4-Chloro-3-methylphenol                    | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| 4-Chloroaniline                            | 3                  | 0 1                | 0%                        |                     |                     | 612                     |
| 4-Chlorophenylphenyl ether                 | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| 4-Nitroaniline                             | 3                  | ŏ                  | 0%                        |                     |                     | 1600                    |
| 4-Nitrophenol                              | 3                  | ŏ                  | 0%                        |                     |                     | 1600                    |
| Acenaphthene                               | 3                  |                    | 0%                        |                     |                     | 318                     |
| Acenaphthylene                             | 3                  | ŏ                  | 0%                        |                     |                     | 318                     |
| Anthracene                                 | 3                  | Ö                  | 0%                        |                     |                     | 318                     |
| Benzo(a)anthracene                         | 3                  | 0 -                | 0%                        |                     |                     | 318                     |
| Benzo(a)pyrene                             | 3                  | 0                  | 0%                        |                     |                     | 168                     |
| Benzo(b) fluoranthene                      | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| Benzo(g.h.i)perylene                       | 3                  |                    | 0%                        |                     |                     |                         |
| Bookeriff in the Age is                    | 3                  | 0                  |                           |                     |                     | 318                     |
| Benzo(k)fluoranthene                       |                    | - 1                | 0%                        | ļ                   |                     | 318                     |
| bis(2-Chloroethoxy)methane                 | 3 -                | 0                  | 0%                        |                     |                     | 318                     |
| bis(2-Chloroethyl)ether                    | _3                 | 0                  | 0%                        |                     |                     | 318                     |
| bis(2-Ethylhexyl)phthalate                 | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| Butylbenzylphthalate                       | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| Carbazole                                  | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| Chrysene                                   | 3                  | 1                  | 33%                       | 74                  | 74                  | 276                     |
| Di-n-butylohthalate                        | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| Di-n-octylphthalate                        | 3                  | 0                  | 0%                        |                     |                     | 318                     |
| Dibenzo(a,h)anthracene                     | 3                  | 0                  | 0% ]                      |                     |                     | 168                     |
| Dibenzofuran                               | 3                  | 0                  | 0%                        | - 1                 |                     | 318                     |
| Diethylphthalate                           | 3                  | 0                  | 0% ~~~                    |                     |                     | 318                     |
| Dimethylphthalate                          | 3                  | 0                  | 0%                        |                     |                     | 318                     |

### Sediment Summary Statistics for Dead Creek Sector F (Combined Shallow (0-2 inch) and Deep "Industry Specific" Samples) Sauget Area I

| Compounds         Analyzed         Detected         Detected         Detected         Concernic           Fluorenthene         3         2         67%         120         130         130           Fluorene         3         0         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0% | erage<br>entration<br>232<br>318<br>132<br>318<br>318<br>318<br>318 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Fluorene         3         0         0%           Hexachlorobenzene         3         0         0%           Hexachlorobutadiene         3         0         0%           Hexachlorocyclopentadiene         3         0         0%           Hexachloroethane         3         0         0%           Indeno(1,2,3-cd)pyrene         3         0         0%           Isophorone         3         0         0%           N-Nitroso-di-n-propylamine         3         0         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 318<br>132<br>318<br>318<br>318                                     |
| Hexachlorobenzene         3         0         0%           Hexachlorobutadiene         3         0         0%           Hexachlorocyclopentadiene         3         0         0%           Hexachloroethane         3         0         0%           Indeno(1,2,3-cd)pyrene         3         0         0%           Isophorone         3         0         0%           N-Nitroso-di-n-propylamine         3         0         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 132<br>318<br>318<br>318                                            |
| Hexachlorobutadiene         3         0         0%           Hexachlorocyclopentadiene         3         0         0%           Hexachloroethane         3         0         0%           Indeno(1,2,3-cd)pyrene         3         0         0%           Isophorone         3         0         0%           N-Nitroso-di-n-propylamine         3         0         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 318<br>318<br>318                                                   |
| Hexachlorocyclopentadiene         3         0         0%           Hexachloroethane         3         0         0%           Indeno(1,2,3-cd)pyrene         3         0         0%           Isophorone         3         0         0%           N-Nitroso-di-n-propylamine         3         0         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 318<br>318                                                          |
| Hexachlorocyclopentadiene         3         0         0%           Hexachloroethane         3         0         0%           Indeno(1,2,3-cd)pyrene         3         0         0%           Isophorone         3         0         0%           N-Nitroso-di-n-propylamine         3         0         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 318                                                                 |
| Hexachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 318                                                                 |
| Indeno(1,2,3-cd)pyrene         3         0         0%           Isophorone         3         0         0%           N-Nitroso-di-n-propylamine         3         0         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     |
| N-Nitroso-di-n-propylamine 3 0 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 318                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 318                                                                 |
| N-Nitrosodiphenylamine 3 0 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 318                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 318                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 318                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 600                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 318                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 318                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 318                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 360                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0<br>3.0                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.2                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.2                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.2                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 145                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.8                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.8                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.8                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2                                                                 |
| Cis/Trans-1,2-Dichloroethene 3 0 0% 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.0                                                                 |
| Dibromochloromethane 3 0 0% 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0                                                                 |
| Ethylbenzene 3 1 33% 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.3                                                                 |
| Methylene chloride (Dichloromethane) 3 0 0% 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0                                                                 |
| Styrene 3 0 0% 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.0                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.8                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                 |

#### Note:

One-half the detection limit is used to represent non-detects in the calculation of average concentrations.

Appendix C-2.10

### Sediment Summary Statistics for Borrow Pit Lake (Shallow (0-2 inches) and Deep "Industry Specific" Sediments) Sauget Area I

|                                 | <del>,</del> |          | <del>,</del>    |               |                    | <del></del>         |
|---------------------------------|--------------|----------|-----------------|---------------|--------------------|---------------------|
|                                 | 1            |          |                 |               |                    |                     |
|                                 | Number       | Number   | Frequency Of    | Minimum       | Maximum            | Average             |
| Compounds<br>2.4.5-T            | Analyzed     | Detected | Detection<br>0% | Detected      | Detected           | Concentration<br>12 |
| 2.4.5-TP (Silvex)               | 3 3          | ŏ        | 0%              |               |                    | 12                  |
| 2.4-0                           | 3            | 2        | 67%             | 8.8           | 11                 | 11                  |
| 2,4-08                          | 3            | 0        | 0%              |               |                    | 12                  |
| Dalapon                         | 3            | 0        | 0%              |               |                    | 92                  |
| Dicamba                         | <b>[</b> 3 ] | 0        | 0%              |               |                    | 28                  |
| Dichloroprop                    | 3            | 0        | 0%              |               |                    | 142                 |
| Dinoseb                         | 3            | 0        | 0%              |               |                    | 142                 |
| MCPA                            | 3            | 0        | 0%              |               |                    | 2817                |
| MCPP<br>Pentachiorophenoi       | 3 3          | 0        | 0%<br>0%        |               |                    | 2817<br>24          |
| Auminum                         | 3            | 3        | 100%            | 11000         | 16000              | 13667               |
| Antimony                        | 3            | 2        | 67%             | 1.5           | 2.2                | 2.22                |
| Arsenic                         | 3            | 3        | 100%            | 13            | 17                 | 16                  |
| Barium                          | 3            | 3        | 100%            | 240           | 420                | 350                 |
| Beryllium                       | 3            | 3        | 100%            | 0.58          | 0.82               | 0.71                |
| Cadmium                         | ] 3          | 3        | 100%            | 1.6           | 2.7                | 2.1                 |
| Calcium                         | 3            | 3        | 100%            | 11000         | 17000              | 14667               |
| Chromium                        | 3            | 3        | 100%            | 18            | 26                 | 22                  |
| Cobalt                          | 3            | 3        | 100%            | 7.1           | 10                 | 8.9                 |
| Copper                          | 24           | 24       | 100%            | 9.9           | 370                | 44                  |
| Cyanide, Total                  | 3            | 0        | 0%              | 20000         | 20000              | 0.72                |
| lron                            | 3            | 3        | 100%<br>100%    | 28000<br>34   | <u>38000</u><br>58 | 34000<br>48         |
| Lead<br>Magnesium               | 3 3          | 3<br>3   | 100%            | 3600          | 5600               | 4667                |
| Manganese                       | 3            | 3        | 100%            | 940           | 1400               | 1213                |
| Mercury                         | 3            | 3        | 100%            | 0.1           | 0.16               | 0.12                |
| Molybdenum                      | 3            | 3        | 100%            | 0.37          | 0.92               | 0.60                |
| Nickel                          | 3 1          | 3        | 100%            | 35            | 54                 | 47                  |
| Potassium                       | 3            | 3        | 100%            | 1500          | 2200               | 1967                |
| Selenium                        | 3 ]          | 0        | 0%              |               |                    | 1,4                 |
| Silver                          | ] 3 [        | 1 ]      | 33%             | 0.79          | 0.79               | 1.1                 |
| Sodium                          | 3            | 0        | 0%              |               |                    | 93                  |
| Thallium                        | 3            | 0        | 0%              | 44            |                    | 1.4                 |
| Vanadium<br>∠inc                | 3            | 3        | 100%            | 28            | 40                 | 35                  |
|                                 | 24           | 24       | 100%            | 50<br>6.74    | 2100<br>7.06       | 354<br>6.94         |
| Total Organic Carbon (mg/kg dry |              |          | 100%            | 0.74          | 7.00               | 0.5=                |
| weight)                         | 24           | 24       | 100%            | 3900          | 67000              | 20596               |
| Decachiorobiphenyl              | 24           | 1        | 4%              | 33            | 33                 | 25                  |
| Dichlorobiphenyl                | 24           | Ó        | 0%              | T <del></del> |                    | 4.8                 |
| Heptachlorobiphenyl             | 24           | 0        | 0%              |               |                    | 15                  |
| Hexachlorobiphenyl              | [ 24 ]       | 0        | 0%              |               |                    | 9.9                 |
| Monochlorobiphenyl              | 24           | 0        | 0%              |               |                    | 4.8                 |
| Nonachiorobiphenyl              | 24           | 2        | 8%              | 10            | 250                | 25                  |
| Octachlorobiphenyl              | 24           | 0        | 0%              |               |                    | 15                  |
| Pentachlorobiphenyl             | 24           | 2        | 8%              | 140           | 160                | 18                  |
| Tetrachlorobiphenyl             | 24           | _ 1      | 4%              | 48            | 48                 | 12                  |
| Trichlorobiphenyl<br>Lotal PCBs | 24<br>24     | 0 3      | 0%<br>13%       | . 32          | 705                | <u>4.8</u><br>55    |
| 4,4'-000                        | 3            | 0        | 0%              | J <u>Z</u>    |                    | 8.5                 |
| 4.4'-DDE                        | 3            | 3        | 100%            | 1.1           | 3.2                | 2.0                 |
| 4.4'-DDT                        | 3            | 2        | 67%             | 1.1           | 1.4                | 4.0                 |
| Total DOT                       | 3            | 3        | 100%            | 2.2           | 12.7               | 6.0                 |
| Aldrin                          | 3            | Ö        | 0%              |               |                    | 4.4                 |
| Alpha Chlordane                 | 3 [          | 3        | 100%            | 0.48          | 3.2                | 1.6                 |
| alpha-BHC                       | 3 [          | 0        | 0%              |               |                    | 1.3                 |
| beta-BHC                        | 3 1          | 0        | 0%              |               |                    | 1.3                 |
| delta-BHC                       | 3            | 0        | 0%              |               |                    | 1.3                 |
| Dieldrin                        | 3            | 2        | 67%             | 0.26          | 0.5                | 3.3                 |
| Endosulfan I                    | 3            | 3        | 100%            | 1 _           | 4.9                | 2.9                 |
| Endosulfan II                   | 3            | 0        | 0%              |               |                    | 8.5                 |
| Endosulfan sulfate              | 3            | 2        | 67%             | 1.4           | 9.5                | 6.6                 |

## Sediment Summary Statistics for Borrow Pit Lake (Shallow (0-2 inches) and Deep "Industry Specific" Sediments) Sauget Area I

|                                                  | Number             | Norman and         | Erogue - Of               | Minimo              | Maylman             | Augus                    |
|--------------------------------------------------|--------------------|--------------------|---------------------------|---------------------|---------------------|--------------------------|
| Compounds                                        | Number<br>Analyzed | Number<br>Detected | Frequency Of<br>Detection | Minimum<br>Detected | Maximum<br>Detected | Average<br>Concentration |
| Endrin                                           | 3                  | 0                  | 0%                        |                     |                     | 8.5                      |
| Endrin aldehyde                                  | 3                  | 3                  | 100%                      | 1.2                 | 2.2                 | 1.6                      |
| Endrin ketone                                    | 3                  | 1                  | 33%                       | 0.72                | 0.72                | 6.4                      |
| Gamma Chlordane                                  | 3                  | 2                  | 67%                       | 0.74                | 3                   | 2.8                      |
| gamma-BHC (Lindane)                              | 3                  | 1                  | 33%                       | 4.8                 | 4.8                 | 4.8                      |
| Heptachlor                                       | 3                  | 0                  | 0%                        |                     | <u>-</u> -          | 4.4                      |
| Heptachlor epoxide<br>Methoxychlor               | 3                  | 1                  | 33%                       | 4.8                 | 4.8                 | 4.8                      |
| l oxaphene                                       | 3                  | 0                  | 0%<br>0%                  |                     |                     | 44<br>440                |
| 1.2.4-Trichlorobenzene                           | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| 1,2-Dichlorobenzene                              | 3                  | <del>0</del>       | 0%                        |                     |                     | 240                      |
| 1,3-Dichlorobenzene                              | 3                  | Ö                  | 0%                        |                     |                     | 240                      |
| 1,4-Dichlorobenzene                              | 3                  | · o                | 0%                        |                     |                     | 240                      |
| 2,2'-Oxybis(1-Chloropropane)                     | 3                  | O                  | 0%                        |                     |                     | 240                      |
| 2,4,5-Trichlorophenol                            | 3                  | 0                  | 0%                        | \                   |                     | 240                      |
| 2,4,6-Trichlorophenol                            | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| 2,4-Dichlorophenol                               | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| 2,4-Dinitrophenol                                | 3                  | 0                  | 0%                        |                     |                     | 1200                     |
| 2,4-Dinitrotoluene                               | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| 2,6-Dinitrotoluene                               | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| 2-Chloronaphthalene                              | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| 2-Chlorophenol                                   | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| 2-Methylnaphthalene<br>2-Methylphenol (o-cresol) | 3                  | 0                  | 0%<br>0%                  |                     |                     | 240                      |
| 2-Methylphenol (0-cresol) 2-Nitroaniline         | 3                  | - 6 -              | 0%                        |                     |                     | 240<br>1200              |
| 2-Nitrophenol                                    | 3                  | - 6 -              | 0%                        |                     |                     | 240                      |
| 3,3'-Dichlorobenzidine                           | 3                  | <del>0</del>       | 0%                        |                     |                     | 463                      |
| 3-Methylphenol/4-Methylphenol                    | 3                  | <del>- 0</del> -   | 0%                        |                     |                     | 240                      |
| 3-Nitroaniline                                   | 3                  | <del>-</del>       | 0%                        |                     |                     | 1200                     |
| 4,6-Dinitro-2-methylphenol                       | 3                  | <del>ŏ</del> (     | 0%                        |                     |                     | 1200                     |
| 4-Bromophenylphenyl ether                        | 3                  | ō                  | 0%                        |                     |                     | 240                      |
| 4-Chloro-3-methylphenol                          | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| 4-Chloroaniline                                  | 3                  | 0                  | 0%                        |                     |                     | 463                      |
| 4-Chlorophenylphenyl ether                       | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| 4-Nitroaniline                                   | 3                  | 0                  | 0%                        |                     |                     | 1200                     |
| 4-Nitrophenol                                    | 3                  | 0                  | 0%                        |                     |                     | 1200                     |
| Acenaphthene                                     | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| Acenaphthylene                                   | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| Anthracene                                       | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| Benzo(a)anthracene                               | 3                  | 0                  | 0%<br>0%                  |                     |                     | 240<br>127               |
| Benzo(a)pyrene Benzo(b)fluoranthene              | 3                  |                    | 0%                        |                     |                     | 240                      |
| Benzo(g,h,i)perylene                             | <u> </u>           |                    | 0%                        |                     |                     | 240                      |
| Benzo(k)fluoranthene                             | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| bis(2-Chloroethoxy)methane                       | $-\frac{3}{3}$     | <del>-</del> 0     | 0%                        |                     |                     | 240                      |
| bis(2-Chloroethyl)ether                          | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| bis(2-Ethylhexyl)phthalate                       | 3                  | Ö                  | 0%                        |                     |                     | 240                      |
| Butylbenzylphthalate                             | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| Carbazole                                        | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| Chrysene                                         | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| Di-n-butylphthalate                              | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| Di-n-octylphthalate                              | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| Dibenzo(a,h)anthracene                           | 3                  | 0                  | 0%                        |                     |                     | 127                      |
| Dibenzofuran                                     | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| Diethylphthalate                                 | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| Dimethylphthalate                                | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| Fluoranthene                                     | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| Fluorene                                         | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| Hexachlorobenzene                                | 3                  | 0                  | 0%                        |                     |                     | 97                       |
| Hexachlorobutadiene                              | 3                  | 0                  | 0%                        |                     |                     | 240                      |
| Hexachlorocyclopentadiene                        | 3                  | 0                  | 0%                        | ,.,                 |                     | 240                      |
| Hexachloroethane                                 | 3                  |                    | 0%<br>0%                  |                     |                     | 240                      |
| Indeno(1,2,3-cd)pyrene_                          | <u> </u>           |                    | U 70                      |                     |                     | 240                      |

Appendix C-2.10

### Sediment Summary Statistics for Borrow Pit Lake (Shallow (0-2 inches) and Deep "Industry Specific" Sediments) Sauget Area I

|                                      | T ——               |                    |                        |                     | _                   |                          |
|--------------------------------------|--------------------|--------------------|------------------------|---------------------|---------------------|--------------------------|
| Compounds                            | Number<br>Analyzed | Number<br>Detected | Frequency Of Detection | Minimum<br>Detected | Maximum<br>Detected | Average<br>Concentration |
| Isophorone                           | 3                  | Ó                  | 0%                     |                     |                     | 240                      |
| N-Nitroso-di-n-propytamine           | 3                  | 0                  | 0%                     |                     | **                  | 240                      |
| N-Nitrosodiphenylamine               | 3                  | 0                  | 0%                     |                     |                     | 240                      |
| Naphthalene                          | 3                  | 0                  | 0%                     |                     |                     | 240                      |
| Nitrobenzene                         | 3                  | 0                  | 0%                     |                     |                     | 240                      |
| Pentachlorophenol                    | 3                  | 0                  | 0%                     |                     |                     | 1200                     |
| Phenanthrene                         | 3                  | 0                  | 0%                     | _                   |                     | 240                      |
| Phenol                               | 3                  | 0                  | 0%                     |                     |                     | 240                      |
| Pyrene                               | 3                  | 0                  | 0%                     |                     |                     | 240                      |
| Iotal PAHs                           | 3                  | 0                  | 0%                     |                     |                     | 240                      |
| 1,1,1-Trichloroethane                | 3                  | 0                  | 0%                     |                     |                     | 13                       |
| 1,1,2,2-Tetrachloroethane            | 3                  | 0                  | 0%                     |                     |                     | 13                       |
| 1,1,2-Trichloroethane                | 3                  | 0                  | 0%                     |                     |                     | 13                       |
| 1,1-Dichloroethane                   | 3                  | 0                  | 0%                     |                     |                     | 13                       |
| 1,1-Dichloroethene                   | 3                  | 0                  | 0%                     |                     |                     | 12                       |
| 1,2-Dichloroethane                   | [ 3                | 0                  | 0%                     |                     | _                   | 13                       |
| 1,2-Dichloropropane                  | 3                  | 0                  | 0%                     |                     |                     | 13                       |
| 2-Butanone (MEK)                     | [ 3 ]              | 0                  | 0%                     |                     |                     | 65                       |
| 2-Hexanone                           | [ 3                | 0                  | 0%                     |                     |                     | 65                       |
| 4-Methyl-2-pentanone (MIBK)          | 3                  | 0                  | 0%                     |                     |                     | 65                       |
| Acetone                              | [ 3 ]              | 0                  | 0%                     |                     |                     | 130                      |
| Benzene                              | 3                  | 0                  | 0%                     |                     |                     | 13                       |
| Bromodichloromethane                 | 3                  | 0                  | 0%                     |                     |                     | 13                       |
| Bromoform                            | 3                  | 0                  | 0%                     |                     | _]                  | 13                       |
| Bromomethane (Methyl bromide)        | 3                  | 0                  | 0%                     |                     |                     | 26                       |
| Carbon disulfide                     | 3                  | 0                  | 0%                     |                     |                     | 13                       |
| Carbon tetrachloride                 | 3                  | 0 [                | 0%                     |                     | _                   | 13                       |
| Chlorobenzene                        | 3                  | 0                  | 0%                     |                     |                     | 13                       |
| Chloroethane                         | 3 [                | 0                  | 0%                     |                     |                     | 26                       |
| Chloroform                           | 3                  | 0                  | 0%                     |                     |                     | 13                       |
| Chloromethane                        | 3                  | 0                  | 0%                     |                     |                     | 26                       |
| cis-1,3-Dichloropropene              | 3                  | 0                  | 0%                     |                     |                     | 10                       |
| Cis/Trans-1,2-Dichloroethene         | 3                  | 0                  | 0%                     |                     |                     | 13                       |
| Dibromochloromethane                 | 3                  | 0                  | 0%                     |                     |                     | _ 13                     |
| Ethylbenzene                         | 3                  | 0                  | 0%                     |                     |                     | 13                       |
| Methylene chloride (Dichloromethane) | 3                  | 0                  | 0%                     |                     |                     | 13                       |
| Styrene                              | 3                  | 0                  | 0%                     |                     |                     | 13                       |
| Tetrachloroethene                    | 3                  | 0                  | 0%                     |                     |                     | 13                       |
| Toluene                              | 3                  | 0                  | 0%                     |                     |                     | 13                       |
| trans-1,3-Dichloropropene            | 3                  | 0                  | 0%                     |                     |                     | 10                       |
| Trichloroethene                      | 3                  | 0                  | 0%                     | ·                   |                     | 13                       |
| Vinyl chloride                       | 3                  | 0                  | 0%                     | ]                   |                     | 26                       |
| Xylenes, Total                       | 3                  | 0                  | 0%                     |                     |                     | 13                       |

#### Note:

One-half the detection limit is used to represent non-detects in the calculation of average concentrations.

Comparison of Detection Limits to Sediment Quality Guidelines Dead Creek Segment F and Borrow Pit Lake Shallow Sediment Sauget Area I

|                                | Maximum            | Sediment                           | Florida                      | 0                                  | 4.0000.6        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------|--------------------|------------------------------------|------------------------------|------------------------------------|-----------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | Detection<br>Limit | Quality<br>Guidelines <sup>1</sup> | Florida<br>SQAG <sup>2</sup> | Ontario<br>Guidelines <sup>3</sup> | A COPC for this |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Compounds                      | or Range           | TEC                                | TEL                          | LEL                                | Medium?         | Why was this a COPC?                                  | Comment on detection limits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Herbicides (ug/kg)             |                    |                                    |                              |                                    |                 |                                                       | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
| 2,4,5-T                        | 240                |                                    |                              |                                    | No              |                                                       | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2,4,5-TP (Silvex)              | 240                |                                    |                              |                                    | No              |                                                       | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2,4-D                          | 240                |                                    |                              |                                    | Yes             | No criteria; greater than background                  | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2,4-DB                         | 240                |                                    |                              |                                    | No              |                                                       | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dalapon                        | 2000               |                                    |                              |                                    | No              |                                                       | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dicamba                        | 570                |                                    |                              |                                    | No              |                                                       | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dichloroprop                   | 2900               |                                    |                              |                                    | No              |                                                       | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dinoseb                        | 2900               |                                    |                              |                                    | No              |                                                       | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MCPA                           | 57000              |                                    |                              |                                    | No              |                                                       | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MCPP                           | 57000              |                                    |                              |                                    | No              |                                                       | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pentachlorophenol              | 490                |                                    |                              |                                    | No              |                                                       | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Metals (mg/kg)                 |                    |                                    |                              |                                    |                 |                                                       | The street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of th |
| Aluminum                       | All Detected       |                                    |                              |                                    | No              |                                                       | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Antimony                       | 5.9                |                                    |                              |                                    | Yes             | No criteria; greater than background                  | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Arsenic                        | All Detected       | 9.79                               | 7.24                         | 6                                  | Yes             | Greater than criteria and background                  | Detected in all samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Barium                         | All Detected       |                                    |                              |                                    | Yes             | No criteria; greater than background                  | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Beryllium                      | All Detected       |                                    |                              | 1                                  | No              |                                                       | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Cadmium                        | All Detected       | 0.99                               | 0.676                        | 0.6                                | Yes             | Greater than criteria and background                  | Detected in all samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Calcium                        | All Detected       |                                    |                              |                                    | No              |                                                       | No criteria - a common nutrient.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Chromium                       | All Detected       | 43.4                               | 52.3                         | 26                                 | Yes             | Greater than criteria.                                | Detected in all samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cobalt                         | All Detected       |                                    |                              | 50                                 | No              |                                                       | Detected in all samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Copper                         | All Detected       | 31.6                               | 18.7                         | 16                                 | Yes             | Greater than criteria and background                  | Detected in all samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cyanide, Total                 | 1,2 to 2.6         |                                    |                              | 0.1                                | No              |                                                       | Detection limits greater than criteriain 6/6 samples;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| [ ]                            |                    |                                    |                              |                                    |                 |                                                       | source of uncertainty.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Iron                           | All Detected       |                                    |                              | 20000                              | Yes             | Greater than criteria                                 | Detected in all samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Lead                           | All Detected       | 35.8                               | 30.2                         | 31                                 | Yes             | Greater than criteria and background                  | Detected in all samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Magnesium                      | All Detected       |                                    |                              |                                    | No              |                                                       | No criteria - a common nutrient.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Manganese                      | All Detected       |                                    |                              | 460                                | Yes             | Greater than criteria.                                | Detected in all samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mercury                        | All Detected       | 0.18                               | 0.13                         | 0.2                                | Yes             | Greater than criteria and background                  | Detected in all samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Molybdenum                     | All Detected       |                                    |                              |                                    | Yes             | No criteria; greater than background                  | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Nickel                         | All Detected       | 22.7                               | 15.9                         | 16                                 | Yes             | Greater than criteria; greater than background        | Detected in all samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Potassium                      | All Detected       |                                    |                              |                                    | No              |                                                       | No criteria - common nutrient.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Selenium                       | 4.8                |                                    |                              |                                    | No              |                                                       | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Silver                         | 2.3 to 4.8         |                                    | 0.733                        | 0.5                                | Yes             | Detected at a concentration higher than the criteria. | Detection limit greater than criteria in 5/6 samples: source of uncertainty.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sodium                         | 350                |                                    |                              |                                    | No              |                                                       | No criteria - common nutrient.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Thallium                       | 4.8                |                                    | 1                            |                                    | No              |                                                       | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vanadium                       | All Detected       |                                    | T                            |                                    | No              |                                                       | No criteria available to evaluate detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Zinc                           | All Detected       | 121                                | 124                          | 120                                | Yes             | Greater than criteria and background                  | Detected in all samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| pH                             | All Detected       |                                    | T                            |                                    | No              | NA                                                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Total Organic Carbon (mg/kg dr |                    |                                    | T                            |                                    | No              | NA                                                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Appendix C-2 11

#### Comparison of Detection Limits to Sediment Quality Quidelines Dead Creek Segment F and Borrow Pit Lake Shallow Sediment Sauget Area I

| Compounds                        | Maximum<br>Detection<br>Limit<br>or Range | Sediment<br>Quality<br>Guidelines <sup>1</sup><br>TEC | Florida<br>SQAG <sup>2</sup><br>TEL | Ontario<br>Guidelines <sup>3</sup><br>LEL |         |                                         |                                                                              |
|----------------------------------|-------------------------------------------|-------------------------------------------------------|-------------------------------------|-------------------------------------------|---------|-----------------------------------------|------------------------------------------------------------------------------|
| Compounds                        | Of Italige                                | 150                                                   | IEL                                 | LEL                                       | Medium? | Why was this a COPC?                    | Comment on detection limits.                                                 |
| PCBs and Pesticides (ug/kg)      |                                           |                                                       | Ì                                   |                                           | l       |                                         |                                                                              |
| Decachloroblphenyl               | 310                                       |                                                       |                                     | ļ                                         | No      |                                         | No criteria available to evaluate detection limit.                           |
| Dichlorobiphenyi                 | 60                                        |                                                       | ]                                   |                                           | No      | 1                                       | No criteria available to evaluate detection limit.                           |
| Heptachlorobiphenyl              | 180                                       |                                                       |                                     |                                           | No      | 1                                       | No criteria avallable to evaluate detection limit.                           |
| Hexachlorobiphenyl               | 120                                       |                                                       | l                                   | Į.                                        | No      | (                                       | No criteria available to evaluate detection limit.                           |
| Monochlorobiphenyl               | 60                                        |                                                       |                                     |                                           | No      | ļ.                                      | No criteria available to evaluate detection limit.                           |
| Nonachlorobiphenyl               | 310                                       |                                                       | ŀ                                   |                                           | No      |                                         | No criteria available to evaluate detection limit.                           |
| Octachlorobiphenyl               | 180                                       |                                                       |                                     |                                           | No      |                                         | No criteria available to evaluate detection limit.                           |
| Pentachlorobiphenyl              | 120                                       |                                                       |                                     |                                           | No      |                                         | No criteria available to evaluate detection limit.                           |
| Tetrachlorobiphenyl              | 120                                       |                                                       |                                     |                                           | No      | ļ                                       | No criteria available to evaluate detection limit.                           |
| Trichlorobiphenyl                | 60                                        |                                                       |                                     | ļ                                         | No      | 1                                       | No criteria available to evaluate detection limit.                           |
| Total PCBs                       | 19 to 120                                 | 59.8                                                  | 21.6                                | 70                                        | Yes     | Greater than criteria; ND in background | Detection limit greater than criteria in 2/6 samples; source of uncertainty. |
| 4.4'-DDD                         | 14 to 35                                  | 4.88                                                  | 1.22                                | 8                                         | Yes     | Greater than criteria; ND in background | Detection limit greater than criteria in 5/6 samples; source of uncertainty  |
| 4,4'-DDE                         | All Detected                              | 3.16                                                  | 2.07                                | 5                                         | Yes     | Greater than criteria; ND in background | Detected in all samples.                                                     |
| 4,4'-DDT*                        | 19 to 35                                  | 4.16                                                  | 1.19                                | 8                                         | Yes     | Greater than criteria; ND in background | Detection limit greater than criteria in 3/6 samples; source of uncertainty. |
| Total DDT                        | All Detected                              | 5.28                                                  | 3.89                                | 7                                         | Yes     | Greater than criteria; ND in background | Concentration is sum of concentrations of DDE, DDD, and DDT.                 |
| Aldrin                           | 7.1 to 18                                 |                                                       |                                     | 2                                         | Yes     | Greater than criteria; ND in background | Detection limit greater than criteria in 5/6 samples; source of uncertainty. |
| Alpha Chlordane**                | All Detected                              | 3.24                                                  | 2.26                                | 7                                         | Yes     | Greater than criteria; ND in background | Detected in all samples                                                      |
| alpha-BHC                        | 5.3                                       | 1 5.2 1                                               | 1                                   | 6                                         | No      |                                         | Detection limits less than criteria.                                         |
| beta-BHC                         | 2.3 to 5.3                                | İ                                                     | İ                                   | 5                                         | No      | •                                       | Detection limit greater than criteria in 1/6 samples;                        |
|                                  | 2.5 15 5.5                                |                                                       |                                     |                                           |         |                                         | source of uncertainty.                                                       |
| delta-BHC                        | 5.3                                       |                                                       |                                     | Ì                                         | Yes     | No criteria; ND in background           | No criteria available to evaluate detection limit.                           |
| Dieldrin                         | 18 to 35                                  | 1.9                                                   | 0.715                               | 2                                         | Yes     | Greater than criteria; ND in background | Detection limit greater than criteria in 2/6 samples;                        |
|                                  | 10.000                                    | '."                                                   | 0.,,                                | •                                         |         | Ground man district the middle of the   | source of uncertainty.                                                       |
| Endosulfan I                     | All Detected                              |                                                       | 1                                   | 1                                         | Yes     | No criteria; ND in background           | No criteria available to evaluate detection limit.                           |
| Endosulfan II                    | 19                                        | 1                                                     | 1                                   | İ                                         | Yes     | No criteria; ND in background           | No criteria available to evaluate detection limit.                           |
| Endosulfan sulfate               | 35                                        | 1                                                     |                                     |                                           | Yes     | No criteria; ND in background           | No criteria available to evaluate detection limit.                           |
| Endrin                           | 14 to 35                                  | 2.22                                                  | İ                                   | 3                                         | No      |                                         | Detection limit greater than criteria in 4/6 samples;                        |
| Endrin                           | 14 (0 35                                  | 4.24                                                  |                                     | "                                         | 1       |                                         | source of uncertainty.                                                       |
| Endrin aldehyde                  | All Detected                              |                                                       |                                     | Ì                                         | Yes     | No criteria; ND in background           | No criteria available to evaluate detection limit.                           |
| Endrin aldenyde<br>Endrin ketone | 19                                        |                                                       | 1                                   | İ                                         | Yes     | No criteria; ND in background           | No criteria available to evaluate detection limit.                           |
| Gamma Chlordane**                | 9.4                                       | 3.24                                                  | 2.26                                | 7                                         | Yes     | Greater than criteria; ND in background | Detection limit greater than criteria in 1/6 samples;                        |
|                                  |                                           | -,-,                                                  |                                     | 1                                         |         | ,                                       | source of uncertainty.                                                       |
| gamma-BHC (Lindane)              | 7.8 to 18                                 | 2.37                                                  | 0.32                                | 3                                         | Yes     | Greater than criteria; ND in background | Detection limit greater than criteria in 5/6 samples; source of uncertainty. |
| Heptachlor                       | 7.1 to 18                                 |                                                       |                                     | 0.3 NEL                                   | Yes     | Greater than criteria; ND in background | Detection limit greater than criteria in 5/6 samples; source of uncertainty. |
| Heptachlor epoxide               | 9.4 to 18                                 | 2.47                                                  |                                     | 5                                         | Yes     | Greater than criteria; ND in background | Detection limit greater than criteria in 3/6 samples; source of uncertainty. |

#### Comparison of Detection Limits to Sediment Quality Guidelines Dead Creek Segment F and Borrow Pit Lake Shallow Sediment Sauget Area I

|                               | Maximum    | Sediment                |                                                  |                         | · · · · ·  | T T                                              | <del></del>                                           |
|-------------------------------|------------|-------------------------|--------------------------------------------------|-------------------------|------------|--------------------------------------------------|-------------------------------------------------------|
|                               | Detection  | Quality                 | Florida                                          | Ontario                 | A COPC for |                                                  | 1                                                     |
|                               | Limit      | Guldelines <sup>1</sup> | SQAG <sup>2</sup>                                | Guidelines <sup>3</sup> | this       | <u> </u>                                         |                                                       |
| Compounds                     | or Range   | TEC                     | TEL                                              | LEL                     | Medium?    | Why was this a COPC?                             | Comment on detection limits.                          |
| Methoxychlor                  | 99         |                         |                                                  |                         | Yes        | No criteria; ND in background                    | No criteria available to evaluate detection limit.    |
| Toxaphene                     | 1800       |                         |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| SVOCs ug/kg                   |            |                         |                                                  |                         |            |                                                  |                                                       |
| 1,2,4-Trichlorobenzene        | 890        |                         |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 1,2-Dichlorobenzene           | 890        |                         |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 1,3-Dichlorobenzene           | 890        |                         |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 1,4-Dichlorobenzene           | 890        |                         |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 2,2'-Oxybis(1-Chloropropane)  | 890        |                         |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 2,4,5-Trichlorophenol         | 890        |                         |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 2,4,6-Trichlorophenol         | 890        |                         |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 2,4-Dichlorophenol            | 890        |                         |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 2,4-Dinitrophenol             | 4500       |                         |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 2,4-Dinitrotoluene            | 890        |                         |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 2,6-Dinitrotoluene            | 890        |                         |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 2-Chloronaphthalene           | 890        |                         |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 2-Chlorophenol                | 890        | _                       |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 2-Methylnaphthalene           | 400 to 890 |                         | 20.2                                             |                         | No         |                                                  | Detection limit greater than criteria in 6/6 samples; |
|                               |            |                         |                                                  |                         |            |                                                  | source of uncertainty.                                |
| 2-Methylphenol (o-cresol)     | 890        |                         |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 2-Nitroaniline                | 4500       |                         |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 2-Nitrophenol                 | 890        | ··                      |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 3,3'-Dichlorobenzidine        | 1700       |                         |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 3-Methylphenol/4-Methylphenol | 890        |                         |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 3-Nitroanifine                | 4500       |                         |                                                  | J                       | No         |                                                  | No criteria available to evaluate detection limit.    |
| 4,6-Dinitro-2-methylphenol    | 4500       |                         |                                                  | t                       | No         |                                                  | No criteria available to evaluate detection limit.    |
| 4-Bromophenylphenyl ether     | 890        | f -                     |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 4-Chloro-3-methylphenol       | 890        |                         |                                                  | †                       | No         |                                                  | No criteria available to evaluate detection limit.    |
| 4-Chloroaniline               | 1700       |                         | <del> </del>                                     | 1                       | No         |                                                  | No criteria available to evaluate detection limit.    |
| 4-Chlorophenylphenyl ether    | 890        | f                       |                                                  | f                       | No         |                                                  | No criteria available to evaluate detection limit.    |
| 4-Nitroaniline                | 4500       |                         |                                                  |                         | No         |                                                  | No criteria available to evaluate detection limit.    |
| 4-Nitrophenol                 | 4500       |                         |                                                  | 1 -                     | No         |                                                  | No criteria available to evaluate detection limit.    |
| Acenaphthene                  | 400 to 890 |                         | 6.71                                             | <u> </u>                | No         |                                                  | Detection limit greater than criteria in 6/6 samples; |
| / tochaphalone                | 100.000    |                         |                                                  | i                       |            |                                                  | source of uncertainty.                                |
| Acenaphthylene                | 400 to 890 | <del></del>             | 5.87                                             |                         | No         |                                                  | Detection limit greater than criteria in 6/6 samples; |
| Chapitatyiono                 | 755 15 555 | ĺ                       |                                                  | i                       |            | i                                                | source of uncertainty.                                |
| Anthracene                    | 400 to 890 | 57.2                    | 46.9                                             | 220                     | No         |                                                  | Detection limit greater than criteria in 6/6 samples; |
| Allillacile                   | 700 10 000 | J 5: 12                 |                                                  |                         |            |                                                  | source of uncertainty.                                |
| Benzo(a)anthracene            | 400 to 890 | 108                     | 74.8                                             | 320                     | No         | 1                                                | Detection limit greater than criteria in 6/6 samples; |
| Donzola Janun acene           | 700 10 030 | 1                       | ' ''                                             |                         | 1          |                                                  | source of uncertainty.                                |
| Benzo(a)pyrene                | 210 to 470 | 150                     | 88.8                                             | 370                     | No         |                                                  | Detection limit greater than criteria (TEC, TEL) in   |
| Delizo(a)pyrene               | 2.0 10 470 | .50                     | 55.5                                             | ""                      |            |                                                  | 6/6 samples; source of uncertainty.                   |
| Benzo(b)fluoranthene          | 890        | <del> </del>            | <del>                                     </del> | <del> </del>            | No         | <del>                                     </del> | No criteria available to evaluate detection limit.    |
| Benzo(g,h,i)perylene          | 400 to 890 | <del> </del>            | <del> </del>                                     | 170                     | No         | <del>                                     </del> | Detection limit greater than criteria in 6/6 samples; |
| Denzo(g,n,i)peryiene          | 700 (0 030 | Į.                      | 1                                                | 1 .,,                   | '"         | 1                                                | source of uncertainty.                                |

Appendix C-2 11

#### Comparison of Detection Limits to Sediment Quality Guidelines Deed Creek Segment F and Borrow Pit Lake Shallow Sediment Sauget Area I

| Compounds                                          | Maximum Detection Limit or Range | Sediment<br>Quality<br>Guidelines <sup>1</sup><br>TEC | Florida<br>SQAG <sup>2</sup><br>TEL | Ontario<br>Guidelines <sup>3</sup><br>LEL | A COPC for this | Why was this a COPC?                    | Comment on detection limits.                                              |
|----------------------------------------------------|----------------------------------|-------------------------------------------------------|-------------------------------------|-------------------------------------------|-----------------|-----------------------------------------|---------------------------------------------------------------------------|
| Benzo(k)fluoranthene                               | 400 to 890                       | - '                                                   |                                     | 240                                       | No              | Timy was time a core of                 |                                                                           |
| Denzo(k)nuoranunene                                | 400 (0 890                       |                                                       |                                     | 240                                       | No              |                                         | Detection limit greater than criteria in 6/8 samples;                     |
| bis(2-Chloroethoxy)methane                         | 890                              | <b>,</b>                                              |                                     |                                           | l No            | İ                                       | source of uncertainty.                                                    |
| bis(2-Chloroethyl)ether                            | 890                              |                                                       |                                     |                                           | No No           |                                         | No criteria available to evaluate detection limit.                        |
| bis(2-Ethylhexyl)phthalate                         | 400 to 890                       | l                                                     | 182                                 |                                           | No No           |                                         | No criteria available to evaluate detection limit.                        |
| Dia(E-Carymoxy), printinate                        | 400 10 880                       |                                                       | 102                                 | ì                                         | 140             |                                         | Detection limit greater than criteria in 6/6 samples;                     |
| Butylbenzylphthalate                               | 890                              |                                                       |                                     | ŀ                                         | No              |                                         | source of uncertainty. No criteria available to evaluate detection limit. |
| Carbazole                                          | 890                              |                                                       |                                     | j                                         | No              | :                                       | No criteria available to evaluate detection limit.                        |
| Chrysene                                           | 470 to 890                       | 166                                                   | 108                                 | 340                                       | No              |                                         | Detection limit greater than criteria in 5/6 samples;                     |
| i vacino                                           | 1,010,000                        | , , , ,                                               | '00                                 | 340                                       | 140             |                                         | source of uncertainty.                                                    |
| Di-n-butylphthalate                                | 890                              |                                                       | 1                                   | i                                         | No              |                                         | No criteria available to evaluate detection limit.                        |
| Di-n-octylphthalate                                | 890                              |                                                       | 1                                   |                                           | No.             | †                                       | No criteria available to evaluate detection limit.                        |
| Dibenzo(a,h)anthracene                             | 210 to 470                       | 33.0                                                  | 6.22                                | 60                                        | No              | <u> </u>                                | Detection limit greater than criteria in 6/6 samples;                     |
| 151001120(4,11)411111111100110                     | 1 210 10 470                     | 55.5                                                  | 0.22                                | 55                                        | "               |                                         | source of uncertainty.                                                    |
| Dibenzofuran                                       | 890                              |                                                       |                                     |                                           | No              | i                                       | No criteria avallable to evaluate detection limit.                        |
| Diethylphthalate                                   | 890                              | 1                                                     |                                     |                                           | No              | †                                       | No criteria available to evaluate detection limit.                        |
| Dimethylphthalate                                  | 890                              | ţ                                                     |                                     | 1                                         | No              | †                                       | No criteria available to evaluate detection limit.                        |
| Fluoranthene                                       | 470 to 890                       | 423                                                   | 113                                 | 750                                       | Yes             | Greater than criteria; ND in background | Detection limit greater than criteria (TEC, TEL) in                       |
|                                                    | 1.0.000                          | '                                                     | '''                                 |                                           |                 |                                         | 4/6 samples; source of uncertainty.                                       |
| Fluorene                                           | 400 to 890                       | 77.4                                                  | 21.2                                | 190                                       | No              | †                                       | Detection limit greater than criteria in 6/6 samples;                     |
|                                                    | 700 10 000                       | ''''                                                  |                                     |                                           |                 |                                         | source of uncertainty.                                                    |
| Hexachiorobenzene                                  | 160 to 370                       | 1                                                     | t                                   | 20                                        | No.             |                                         | Detection limit greater than criteria in 6/6 samples;                     |
| T TO A BOTH TO TO TO TO TO TO TO TO TO TO TO TO TO | 10010010                         |                                                       | l                                   | ]                                         | ""              |                                         | source of uncertainty.                                                    |
| Hexachlorobutadiene                                | 890                              | 1                                                     | i                                   | 1                                         | No              |                                         | No criteria available to evaluate detection limit.                        |
| Hexachlorocyclopentadiene                          | 890                              | İ                                                     | † · ·                               |                                           | No              | 1                                       | No criteria available to evaluate detection limit.                        |
| Hexachloroethane                                   | 890                              | İ                                                     |                                     | -                                         | No              | j                                       | No criteria avallable to evaluate detection limit.                        |
| Indeno(1,2,3-cd)pyrene                             | 400 to 890                       | 1                                                     | ì                                   | 200                                       | No              | 1                                       | Detection limit greater than criteria in 6/6 samples;                     |
|                                                    | ""                               |                                                       |                                     |                                           | 1               |                                         | source of uncertainty.                                                    |
| Isophorone                                         | 890                              |                                                       | 1                                   |                                           | No              | Ī                                       | No criteria available to evaluate detection limit.                        |
| N-Nitroso-di-n-propylamine                         | 890                              |                                                       | İ                                   |                                           | No              |                                         | No criteria available to evaluate detection limit.                        |
| N-Nitrosodiphenylamine                             | 890                              | Ì                                                     | l                                   | 1                                         | No              | Ì                                       | No criteria available to evaluate detection limit.                        |
| Naphthalene                                        | 400 to 890                       | 176                                                   | 34.6                                |                                           | i No            |                                         | Detection limit greater than criteria in 6/6 samples                      |
| 1                                                  | ,                                |                                                       | I                                   | 1                                         |                 |                                         | source of uncertainty.                                                    |
| Nitrobenzene                                       | 890                              | I                                                     | ] .                                 |                                           | No              |                                         | No criteria available to evaluate detection limit.                        |
| Pentachlorophenol                                  | 4500                             | I                                                     | ]                                   | I                                         | No.             |                                         | No criteria available to evaluate detection limit.                        |
| Phenanthrene                                       | 400 to 890                       | 204                                                   | 86.7                                | 560                                       | No              | 1                                       | Detection limit greater than criteria (TEC, TEL) in                       |
|                                                    | 1                                | L                                                     | <u> </u>                            |                                           | 1               | <b>.</b>                                | 6/6 samples; source of uncertainty.                                       |
| Phenol                                             | 890                              |                                                       | Į                                   |                                           | No              |                                         | No criteria available to evaluate detection limit.                        |
| Pyrene                                             | 400 to 890                       | 195                                                   | 153                                 | 490                                       | No              |                                         | Detection limit greater than criteria (TEC, TEL) in                       |
|                                                    |                                  | <u> </u>                                              | <u> </u>                            | ļ                                         |                 |                                         | 6/6 samples; source of uncertainty.                                       |
| Total PAHs                                         | 890                              | 1610                                                  | 1684                                | 4000                                      | No              |                                         | Detection limit less than criteria.                                       |
| VOCs ug/kg                                         |                                  | L                                                     | <b> </b>                            | ļ                                         |                 |                                         |                                                                           |
| 1,1,1-Trichloroethane                              | 41                               |                                                       | <u> </u>                            |                                           | No              | <b></b>                                 | No criteria available to evaluate detection limit.                        |
| 1,1,2,2-Tetrachloroethane                          | 41                               | 1                                                     | 1                                   |                                           | No              |                                         | No criteria available to evaluate detection limit.                        |

Comparison of Detection Limits to Sediment Quality Guidelines Dead Creek Segment F and Borrow Pit Lake Shallow Sediment Sauget Area I

|                                      | Maximum   | Sediment                |                   |                         | [ <u> </u> |                               | <del>-  </del>                                     |
|--------------------------------------|-----------|-------------------------|-------------------|-------------------------|------------|-------------------------------|----------------------------------------------------|
| •                                    | Detection | Quality                 | Florida           | Ontario                 | A COPC for |                               | ì                                                  |
|                                      | Limit     | Guidelines <sup>1</sup> | SQAG <sup>2</sup> | Guidelines <sup>3</sup> | this       |                               |                                                    |
| Compounds                            | or Range  | TEC                     | TEL               | LEL                     | Medium?    | Why was this a COPC?          | Comment on detection limits.                       |
| 1,1,2-Trichloroethane                | 41        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| 1,1-Dichloroethane                   | 41        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| 1,1-Dichloroethene                   | 38        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| 1,2-Dichloroethane                   | 41        | l                       |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| 1,2-Dichloropropane                  | 41        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| 2-Butanone (MEK)                     | 200       |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| 2-Hexanone                           | 200       | <u> </u>                |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| 4-Methyl-2-pentanone (MIBK)          | 200       | 1                       |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Acetone                              | 410       |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Benzene                              | 41        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Bromodichloromethane                 | 41        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Bromoform                            | 41        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Bromomethane (Methyl bromide)        | 82        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Carbon disulfide                     | 41        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Carbon tetrachloride                 | 41        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Chlorobenzene                        | 41        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Chloroethane                         | 82        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Chloroform                           | 41        |                         |                   |                         | No         | _                             | No criteria available to evaluate detection limit. |
| Chloromethane                        | 82        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| cis-1,3-Dichloropropene              | 33        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Cis/Trans-1,2-Dichloroethene         | 41        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Dibromochloromethane                 | 41        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Ethylbenzene                         | 41        |                         |                   |                         | Yes        | No criteria; ND in background | No criteria available to evaluate detection limit. |
| Methylene chloride (Dichloromethane) | 41        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Styrene                              | 41        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Tetrachloroethene                    | 41        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Toluene                              | 41        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| trans-1,3-Dichloropropene            | 33        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Trichloroethene                      | 41        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Vinyl chloride                       | 82        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Xylenes, Total                       | 41        |                         |                   |                         | No         |                               | No criteria available to evaluate detection limit. |
| Dioxin TEQ (mammal) pg/g             | NA        |                         |                   |                         | Yes        | Greater than reference area.  | NA :                                               |

Notes: Except where noted, concentrations in ug/kg for organic constituens; mg/kg for inorganic constituents.

NA = Not applicable; ND = No detected

NEL = No-Effect Level

<sup>&</sup>lt;sup>1</sup> Threshold Effects Concentration - MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. *Arch. Environ. Contam. Toxicol.* 39:20-31.

<sup>&</sup>lt;sup>2</sup> Sediment Quality Assessment Guidelines - MacDonald Environmental Sciences, Ltd. 1994. Approach to the Assessment of Sediment Quality in Florida Coastal Waters, Volume 1— Development and Evaluation of Sediment Quality Assessment Guidelines. Prepared for FLDEP. November, 1994.

<sup>&</sup>lt;sup>3</sup> Lowest Effects Level - Persaud, D., R. Jaagumagi, and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of Environment and Energy. August 1993.

<sup>\*</sup> Ontario and Sediment Quality Guideline values are for 2,4'-DDT and 4,4'-DDT combined

<sup>\*\*</sup> Florida, Ontario, and Sediment Quality Guideline values are for Chlordane Bold indicates detection limit exceeds screening benchmark.

### Comparison of Detection Limits to Sediment Quality Guidelines Dead Creek Segment F Combined Shallow and "Industry Specific" Sediment Samples Sauget Area I

|                                         | Maximum<br>Detection<br>Limit | Sediment<br>Quality<br>Guidelines <sup>1</sup> | Florida<br>SQAG <sup>2</sup> | Ontario<br>Guidelines <sup>3</sup> | A COPC for |                       |                                                                                            |
|-----------------------------------------|-------------------------------|------------------------------------------------|------------------------------|------------------------------------|------------|-----------------------|--------------------------------------------------------------------------------------------|
| Compounds <sup>4</sup>                  | or Range                      | TEC                                            | TEL                          | LEL                                | 1          | Why was this a COPC?  | Comment on detection limits.                                                               |
| Metals (mg/kg)                          |                               |                                                |                              |                                    |            |                       |                                                                                            |
| Copper                                  | All Detected                  | 31.6                                           | 18.7                         | 16                                 | Yes        | Greater than criteria | Detected in all samples.                                                                   |
| Zinc                                    | All Detected                  | 121                                            | 124                          | 120                                | Yes        | Greater than criteria | Detected in all samples.                                                                   |
| Total Organic Carbon (mg/kg dry weight) | All Detected                  |                                                | I                            |                                    | No         | NA                    | NA                                                                                         |
| PCBs (ug/kg)                            | Ī                             |                                                |                              |                                    | ŀ          |                       |                                                                                            |
| Decachlorobiphenyl                      | 24-310                        |                                                | Ī                            |                                    | No         | I                     | No criteria available to evaluate detection limit.                                         |
| Dichlorobiphenyl                        | 4.8-61                        |                                                | Ţ                            | Ī                                  | No         | I                     | No criteria available to evaluate detection limit.                                         |
| Heptachlorobiphenyl                     | 15-180                        |                                                |                              | j                                  | No         |                       | No criteria available to evaluate detection limit.                                         |
| Hexachlorobiphenyl                      | 9.8-120                       |                                                | 1                            | 1                                  | No         |                       | No criteria available to evaluate detection limit.                                         |
| Monochlorobiphenyl                      | 4.8-61                        |                                                |                              | [                                  | No         |                       | No criteria available to evaluate detection limit.                                         |
| Nonachlorobiphenyl                      | 24-310                        |                                                |                              | l                                  | No         |                       | No criteria available to evaluate detection timit.                                         |
| Octachlorobiphenyl                      | 15-180                        | ŀ                                              | <u> </u>                     |                                    | No         |                       | No criteria available to evaluate detection limit.                                         |
| Pentachlorobiphenyl                     | 9.8-120                       |                                                |                              | 1                                  | No         |                       | No criteria available to evaluate detection limit.                                         |
| Tetrachloroblphenyl                     | 9.8-120                       | Į .                                            |                              | İ                                  | No         |                       | No criteria available to evaluate detection limit.                                         |
| Trichlorobiphenyl                       | 4.8-61                        |                                                | 1                            |                                    | No         | 1                     | No criteria available to evaluate detection limit.                                         |
| Total PCBs                              | 24-310                        | 59.8                                           | 21.6                         | 70                                 | Yes        | Greater than criteria | Detection limit greater than criteria (TEL) in 2/19 samples; slight source of uncertainty. |

Notes: Except where noted, concentrations in ug/kg for organic constituens; mg/kg for inorganic constituents.

<sup>&</sup>lt;sup>1</sup> Threshold Effects Concentration - MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. *Arch. Environ. Contam. Toxicol.* 39:20-31.

<sup>&</sup>lt;sup>2</sup> Sediment Quality Assessment Guidelines - MacDonald Environmental Sciences, Ltd. 1994. Approach to the Assessment of Sediment Quality in Florida Coastal Waters, Volume 1-- Development and Evaluation of Sediment Quality Assessment Guidelines. Prepared for FLDEP. November, 1994.

<sup>&</sup>lt;sup>3</sup> Lowest Effects Level - Persaud, D., R. Jaagumagi, and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of Environment and Energy. August 1993.

<sup>&</sup>lt;sup>4</sup> Evaluation for remaining analytes is the same as for shallow sediments (industry specific sediment samples were analyzed for copper, zinc, TPH, TOC, and PCBs) Bold indicates detection limit exceeds screening benchmark.

#### Comparison of Detection Limits to Sediment Quality Guidelines Borrow Pit Lake "Industry Specific" Sediment Samples Sauget Area I

|                                         | Maximum      | Sediment                |          |                         |            |                       |                                                      |
|-----------------------------------------|--------------|-------------------------|----------|-------------------------|------------|-----------------------|------------------------------------------------------|
|                                         | Detection    | Quality                 | Florida  | Ontario                 | A COPC for |                       |                                                      |
|                                         | Limit        | Guidelines <sup>1</sup> | SQAG2    | Guidelines <sup>3</sup> | this       |                       |                                                      |
| Compounds <sup>4</sup>                  | or Range     | TEC_                    | TEL      | LEL                     | Medium?    | Why was this a COPC?  | Comment on detection limits.                         |
| Metals (mg/kg)                          |              |                         |          |                         |            |                       |                                                      |
| Copper                                  | All Detected | 31.6                    | 18.7     | 16                      | Yes        | Greater than criteria | Detected in all samples.                             |
| Zinc                                    | All Detected | 121                     | 124      | 120                     | Yes        | Greater than criteria | Detected in all samples.                             |
| Total Organic Carbon (mg/kg dry weight) | All Detected |                         |          |                         | No         | NA                    | NA                                                   |
| PCBs (ug/kg)                            |              |                         |          |                         |            |                       |                                                      |
| Decachlorobiphenyl                      | 20-450       |                         |          |                         | No         |                       | No criteria available to evaluate detection limit.   |
| Dichlorobiphenyl                        | 3.9-89       |                         |          |                         | No         |                       | No criteria available to evaluate detection limit.   |
| Heptachlorobiphenyl                     | 12-270       |                         |          |                         | No         |                       | No criteria available to evaluate detection limit.   |
| Hexachlorobiphenyl                      | 7.9-180      |                         |          |                         | No         |                       | No criteria available to evaluate detection limit.   |
| Monochlorobiphenyl                      | 3.9-89       |                         |          |                         | No         |                       | No criteria available to evaluate detection limit.   |
| Nonachlorobiphenyl                      | 20-140       |                         |          |                         | No         |                       | No criteria available to evaluate detection limit.   |
| Octachlorobiphenyl                      | 12-270       |                         | ļ        |                         | No         |                       | No criteria available to evaluate detection limit.   |
| Pentachlorobiphenyl                     | 7.9-57       |                         |          |                         | No         |                       | No criteria available to evaluate detection limit.   |
| Tetrachlorobiphenyl                     | 7.9-180      |                         | ļ        |                         | No         |                       | No criteria available to evaluate detection limit.   |
| Trichlorobiphenyl                       | 3.9-89       |                         |          |                         | No         |                       | No criteria available to evaluate detection limit.   |
| Total PCBs                              | 20-140       | 59.8                    | 21.6     | 70                      | Yes        | Greater than criteria | Detection limit slightly greater than criteria (TEL) |
|                                         |              |                         | <u> </u> |                         | ļ          |                       | in20/24 samples; slight source of uncertainty.       |
| 1                                       | }            |                         | [        |                         | ļ          | 1                     |                                                      |

Notes: Except where noted, concentrations in ug/kg for organic constituents; mg/kg for inorganic constituents.

<sup>&</sup>lt;sup>1</sup> Threshold Effects Concentration - MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. *Arch. Environ. Contam. Toxicol.* 39:20-31.

<sup>&</sup>lt;sup>2</sup> Sediment Quality Assessment Guidelines - MacDonald Environmental Sciences, Ltd. 1994. Approach to the Assessment of Sediment Quality in Florida Coastal Waters, Volume 1-- Development and Evaluation of Sediment Quality Assessment Guidelines. Prepared for FLDEP. November, 1994.

<sup>&</sup>lt;sup>3</sup> Lowest Effects Level - Persaud, D., R. Jaagumagi, and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of Environment and Energy. August 1993.

<sup>&</sup>lt;sup>4</sup> Evaluation for remaining analytes is the same as for shallow sediments (Industry specific sediment samples were analyzed for copper, zinc, TPH, TOC, and PCBs) Bold indicates detection limit exceeds screening benchmark.



### Summary Statistics for Borrow Pit Lake Largemouth Bass Sauget Area I

|                                                            | T        | Γ        | Т            |          | · · · · · · · · · · · · · · · · · · · |               |
|------------------------------------------------------------|----------|----------|--------------|----------|---------------------------------------|---------------|
|                                                            | Number   | Number   | Frequency of | Minimum  | Maximum                               | Average       |
| Compounds                                                  | Analyzed | Detected | Detection    | Detected | Detected                              | Concentration |
| Herbicides, ug/kg<br>2,4,5-T                               | 3        |          | 0%           |          |                                       | 5.00          |
| 2,4,5-TP (Silvex)                                          | 3        |          | 0%           |          |                                       | 5.00          |
| 2,4-D                                                      | 3        |          | 0%           |          |                                       | 5.00          |
| 2,4-DB                                                     | 3        |          | 0%           |          |                                       | 5.00          |
| Dalapon<br>  Dicamba                                       | 3        | 1        | 0%<br>33%    | 1.9      | 1.9                                   | 1000<br>5.63  |
| Dichloroprop                                               | 3        | '        | 0%           | 1.3      | 1.5                                   | 50            |
| Dinoseb                                                    | 3        |          | 0%           |          |                                       | 50            |
| MCPA[(4-chloro-2-methylphenoxy)-acetic a                   | 3 3      | 1        | 33%<br>0%    | 1800     | 1800                                  | 1267<br>1000  |
| MCPP[2-(4-chloro-2-methylphenoxy)-propan Pentachlorophenol | 3        |          | 0%           |          |                                       | 6.67          |
| Metals, mg/kg                                              |          |          |              |          |                                       |               |
| Aluminum                                                   | 3        | 2        | 67%          | 19       | 33                                    | 20            |
| Antimony<br>Arsenic                                        | 3<br>3   |          | 0%<br>0%     |          |                                       | 0.09<br>3.17  |
| Beryllium                                                  | 3        |          | 0%           |          |                                       | 0.47          |
| Cadmium                                                    | 3        |          | 0%           |          |                                       | 0.23          |
| Chromium                                                   | 3        | 3        | 100%         | 0.45     | 0.93                                  | 0.64          |
| Copper Copper                                              | 3        | 3        | 100%         | 0.41     | 0.68                                  | 0.54          |
| Cyanide, Total<br>Lead                                     | 3 3      |          | 0%<br>0%     |          |                                       | 5<br>0.23     |
| Mercury                                                    | 3        | 2        | 67%          | 0.057    | 0.064                                 | 0.04          |
| Nickel                                                     | 3        |          | 0%           |          |                                       | 4.70          |
| Selenium                                                   | 3        | 2        | 67%          | 0.6      | 0.63                                  | 0.49          |
| Silver<br>Zinc                                             | 3 3      | 3        | 0%<br>100%   | 15       | 19                                    | 0.05<br>17    |
|                                                            |          |          | 1            |          |                                       |               |
| % Lipid                                                    | 3        | 3        | 100%         | 1.5      | 1.8                                   | 1.60          |
| PCB, ug/kg<br>Decachlorobiphenyl                           | 3        |          | 0%           |          |                                       | 25            |
| Dichlorobiphenyl                                           | 3 (      | 1        | 0%           |          |                                       | 5.00          |
| Heptachlorobiphenyl                                        | 3        | 2        | 67%          | 16       | 21                                    | 17            |
| Hexachlorobiphenyl                                         | 3        | 3        | 100%         | 44       | 150                                   | 105           |
| Monochlorobiphenyl<br>Nonachlorobiphenyl                   | 3        |          | 0%)<br>0%    | l        |                                       | 5.00<br>25    |
| Octachlorobiphenyl                                         | 3        | 1        | 0%           |          |                                       | 15            |
| Pentachlorobiphenyl                                        | 3        | 3        | 100%         | 30       | 130                                   | 90            |
| Tetrachlorobiphenyl                                        | 3        | 2        | 67%          | 19       | 46                                    | 25            |
| Trichlorobiphenyl                                          | 3        |          | 0%           |          |                                       | 5.00          |
| Total PCBs                                                 | 3        | 3        | 100%         | 99       | 320                                   | 237           |
| Pesticides, ug/kg<br>4.4'-DDD                              | 3        |          | 0%           |          |                                       | 6.50          |
| 4,4'-DDE                                                   | 3 1      | 2        | 67%          | 15       | 21                                    | 14            |
| 4,4'-DDT                                                   | 3        | ľ        | 0%           |          |                                       | 6.50          |
| Total DDT                                                  | 3        | 2        | 67%          | 15       | 21                                    | 14            |
| Aldrin<br>Alpha Chlordane                                  | 3 3      | Í        | 0%<br>0%     | (        |                                       | 3.40<br>3.40  |
| alpha-BHC                                                  | 3        |          | 0%           |          |                                       | 3.40          |
| beta-BHC                                                   | 3        | ľ        | 0%           | 1        |                                       | 3.40          |
| lelta-BHC                                                  | 3        | ŀ        | 0%           |          |                                       | 3.40          |
| Dieldrin<br>Endosulfan I                                   | 3        |          | 0% <br>0%    | - {      |                                       | 6.50<br>3.40  |
| Endosulfan II                                              | 3        | j        | 0%           |          |                                       | 6.50          |
| Endosulfan sulfate                                         | 3 }      | }        | 0%)          | )        |                                       | 6.50          |
| ndrin                                                      | 3        | [        | 0%           |          |                                       | 6.50          |
| Indrin aldehyde<br>Indrin ketorie                          | 3 3      | ì        | 0% <br>0%    | ļ        |                                       | 6.50<br>6.50  |
| Samma Chiordane                                            | 3        | 2        | 67%          | 15       | 19                                    | 12            |
| gamma-BHC (Lindane)                                        | 3        | -        | 0%           |          |                                       | 3.40          |
| leptachlor                                                 | 3        | 1        | 33%          | 1.5      | 1.5                                   | 2.77          |
| leptachlor epoxide                                         | 3 3      |          | 0%           |          |                                       | 3.40          |
| Methoxychlor<br>Toxaphene                                  | 3        | ł        | 0%)<br>0%(   | -        |                                       | 34<br>340     |
| SVOCs, ug/kg                                               |          |          |              |          |                                       |               |
| ,2,4-Trichlorobenzene                                      | 3        | 1        | 0%           | ļ        |                                       | 85            |
| ,2-Dichlorobenzene                                         | 3        |          | 0%           | j        |                                       | 85            |
| ,3-Dichlorobenzene<br>,4-Dichlorobenzene                   | 3 3      | ļ        | 0%<br>0%     |          |                                       | 85<br>85      |
| 2,2'-Oxybis(1-chloropropane)[bis(2-Chlor                   | 3        | Í        | 0%           | {        |                                       | 85            |
| 2,4,5-Trichlorophenol                                      | 3        | ì        | 0%           | ļ        |                                       | 210           |
| ,4,8-Trichlorophenol                                       | 3        | 1        | 0%           |          |                                       | 85            |
| 2,4-Dichlorophenol                                         | 3 3      | j        | 0%           |          |                                       | 85<br>85      |
| 2,4-Dimethylphenol<br>2,4-Dinktrophenol                    | 3        | Ì        | 0% <br>0%    |          |                                       | 85<br>210     |
| 2,4-Dinitrotoluene                                         | 3        | )        | 0%           |          |                                       | 85            |
| ,6-Dinitrotoluene                                          | 3        | ļ        | 0%           | j        |                                       | 85            |
| -Chloronaphthalene                                         | 3        | ļ        | 0%           |          |                                       | 85            |
| -Chlorophenol<br>-Methyl-4,6-dinitrophenol                 | 3        | j        | 0%<br>0%     |          |                                       | 85<br>210     |
| :-Metryn-4,6-diniuophienoi<br>:-Methylnaphthalene          | 3        | ſ        | 0%           | (        | [                                     | 85            |
|                                                            |          |          |              |          |                                       |               |

### Summary Statistics for Borrow Prt Lake Largemouth Bass Sauget Area i

| Compounds                                                     | Number<br>Analyzed | Number<br>Detected | Frequency of<br>Detection | Minimum<br>Detected  | Maximum<br>Detected  | Average<br>Concentration      |
|---------------------------------------------------------------|--------------------|--------------------|---------------------------|----------------------|----------------------|-------------------------------|
| - Muthylphenal (o-cresol)                                     | Analyzed 3         | Democrato          | 0%                        | Uetecas              |                      | 85                            |
| Miroanline                                                    | 3                  |                    | 0%                        |                      |                      | 210                           |
| Mirophenol                                                    | 3                  |                    | 0%                        |                      |                      | 85                            |
| 18.4 Methylphenol (m8.p-cresol)                               | 3                  |                    | 0%<br>0%                  |                      |                      | 85<br>85                      |
| 3.5-Dichlorobenzidine<br>Mitroaniline                         | 3                  |                    | 0%                        |                      |                      | 210                           |
| l-Bromophenylphenyl ether                                     | 3                  |                    | 0%                        |                      |                      | 85                            |
| -Chioro-3-methylphenol                                        | 3                  |                    | 0%                        |                      |                      | 85                            |
| I-Chioroenline                                                | 3                  |                    | 0%                        |                      |                      | 85                            |
| I-Chiorophenylphenyl ether                                    | 3                  |                    | 0%                        |                      |                      | 210                           |
| I-Nitrosniine<br>I-Nitrophenol                                | 3                  |                    | 0%                        |                      |                      | 210                           |
| Acenephthene                                                  | 3                  |                    | 0%                        |                      |                      | 8                             |
| licensphthylene                                               | 3                  |                    | 0%                        |                      |                      | 85                            |
| Auguscieus                                                    | 3                  |                    | 0%                        |                      |                      | 8                             |
| denzo(a)enthracene                                            | 3                  |                    | 0%<br>0%                  |                      |                      | 85<br>85                      |
| Berzo(a)pyrene<br>Berzo(b)fluoranthene                        | 3                  |                    | 0%                        |                      |                      | 8                             |
| Berezo(g.ft.)perylene                                         | 3                  |                    | 0%                        |                      |                      | 8                             |
| Sengo(k)Augranithene                                          | 3                  |                    | 0%                        |                      |                      | 8                             |
| ns(2-Chlorosthoxy)methane                                     | 3                  |                    | 0%                        |                      |                      | 8                             |
| rs(2-Charoshyl)sher                                           | 3                  | j                  | 0%<br>0%                  | J                    |                      | 8<br>90                       |
| re(2-Ethythisyl)phthelate<br>Adylbenzylphthelate              | 3                  |                    | 0%                        |                      |                      | 8                             |
| arbazole                                                      | 3                  |                    | 0%                        |                      |                      | 8:                            |
| Drysene                                                       | 3                  |                    | 0%                        |                      |                      | 8                             |
| h-n-butylphthalate                                            | 3                  | 1                  | 33%                       | 32                   | 32                   | 6                             |
| h-n-octylphthelate                                            | 3                  |                    | 0%<br>0%                  |                      |                      | 8                             |
| Aberzo(a,h)entracene<br>Aberzoturan                           | 3                  |                    | 0%                        |                      |                      | 8                             |
| Aginylphihalate                                               | 3 /                | 1                  | 0%                        |                      |                      | ă                             |
| emptry/chthulate                                              | 3                  |                    | 0%                        |                      |                      | 8                             |
| Vorantiene                                                    | 3                  |                    | 0%                        |                      |                      | 8                             |
| Norme<br>legationsbergere                                     | 3                  |                    | 0%<br>0%                  |                      |                      | 8                             |
| inactionbutations                                             | 3                  | ľ                  | 0%                        | !                    |                      | 8:                            |
| leuachtorocyclopentadiene                                     | 3                  |                    | 0%                        |                      |                      | 8:                            |
| lexactionethene                                               | 3                  |                    | 0%                        |                      |                      | 85                            |
| rdeno(1,2,3-cd)pyrene                                         | 3                  | ł                  | 0%                        |                      |                      | 8                             |
| ophorone                                                      | 3                  | ŀ                  | 0%                        |                      |                      | 85                            |
| Nitrosodi-n-propytemne<br>-Nitrosodiphenylamine/Diphenylamine | 3 3                | İ                  | 0%<br>0%                  |                      |                      | 8                             |
| aphthelene                                                    | 3                  | !                  | 0%                        |                      |                      | 8                             |
| leobenzene                                                    | 3 [                | 1                  | 0%                        |                      |                      | 8                             |
| entachtorophenol                                              | 3                  |                    | 0%                        |                      |                      | 210                           |
| terentivere                                                   | 3                  |                    | 0%                        |                      |                      | 85                            |
| hend<br>yeare                                                 | 3                  | ł                  | 0%<br>0%                  |                      |                      | 85                            |
|                                                               | - 1                |                    | · -                       |                      |                      |                               |
| etal PANs<br>lacins and Furans, up/kg                         | 3                  |                    | 0%                        |                      |                      |                               |
| 23.48.7.8.9-OCDO                                              | 3                  | - 1                | 0%                        |                      |                      | 6.53E-03                      |
| 2348789-OCOF                                                  | 3                  |                    | 0%                        |                      |                      | 1.05E-0                       |
| 2.3.4.6.7.8-HpC00                                             | 3                  |                    | 0%                        |                      |                      | 8.67E-0                       |
| 2.3.4.8.7.8-HpCDF                                             | 3                  |                    | 0%                        |                      |                      | 1.00E-0                       |
| 2.3.4.7.8.9-HpCOF                                             | 3                  |                    | 0%                        |                      |                      | 1.67E-0                       |
| 2,3,4,7,8-HsC00<br>2,3,4,7,8-HsC0F                            | 3                  | 1                  | 0%<br>33%                 | 4.80E-04             | 4.80E-04             | 1.50E-0<br>2.43E-0            |
| 2.3.6.7.8-HiCOO                                               | 3                  | 1                  | 33%                       | 5 40E-04             | 5.40E-04             | 2.93E-0                       |
| 2367.8HECOF                                                   | 3                  | <u>i</u> ]         | 33%                       | 2.30E-04             | 2.30E-04             | 1.43E-0                       |
| 2,3,7,8,9+tsC00                                               | 3                  |                    | 0%                        |                      |                      | 1.33E-0                       |
| 2.3.7.8.9 His COF                                             | 3                  |                    | 0%                        |                      |                      | 1.00E-0                       |
| 2.3.7.6-PeCOO                                                 | 3                  | 1                  | 33%                       | 8.10E-04             | 8.10E-04             | 5.02E-0                       |
| 2,3,7,8-PeCOF<br>3,4,6,7,8-HeCOF                              | 3                  | 1                  | 33%<br>33%                | 1.10E-03<br>3.80E-04 | 1.10E-03             | 3.97E-0                       |
| 147.8-PeCOF                                                   | 3                  | 2                  | 53%<br>67%                | 7.10E-04             | 3.80E-04<br>9.70E-04 | 2.10E-0<br>6.63E-0            |
| 17 J-TCDC                                                     | 3                  | 2                  | 67%                       | 7.50E-04             | 9.00E-04             | 7,33E-0                       |
| 17,8-TCDF                                                     | 3                  | 3                  | 100%                      | 8.10E-03             | 1.14E-02             | 9.27E-0                       |
| eal HpCOO                                                     | 3                  | 2                  | 67%                       | 1.40E-03             | 2.00E-03             | 1.43E-0                       |
| eal HpCOF                                                     | 3                  | 1]                 | 33%                       | 6.70E-03             | 6.70E-03             | 4.37E-0                       |
| tal HsC00                                                     | 3 3                | 1                  | 33%                       | 5.40E-04             | 5.40E-04             | 4.80E-0                       |
|                                                               |                    |                    | 0%                        |                      |                      | 1.68E-0                       |
|                                                               |                    | . 1                |                           | 8 40C A4             | 9 40E A-             | e                             |
| sel HuCOF                                                     | 3 [                | 1                  | 33%                       | 8.10E-04             | 8.10E-04             | 5.02E-0                       |
|                                                               |                    | 1                  |                           | 8.10E-04<br>7.50E-04 | 8.10E-04<br>7.50E-04 | 5.02E-0<br>1.91E-0<br>5.83E-0 |

Note: One-half the detection limit is used to represent non-detects in the calculation of average concentrations.

#### Reference Area Largemouth Bass Data Sauget Area I

|                                                  | 1        | 1        | <del></del>  |          | <del> </del> - | <del></del>   |
|--------------------------------------------------|----------|----------|--------------|----------|----------------|---------------|
|                                                  | Number   | Number   | Frequency of | Minimum  | Maximum        | Average       |
| Compounds                                        | Analyzed | Detected | Detection    | Detected | Detected       | Concentration |
| Herbicides, ug/kg<br>2.4.5-T                     | 4        | ł        | 0%           |          |                | 5.00          |
| 2,4,5-TP (Silvex)                                | 4        |          | 0%           |          |                | 5.00          |
| 2,4-D                                            | 1 4      |          | 0%           |          |                | 5.00          |
| 2,4-DB                                           | 1 4      | 1        | 0%           |          |                | 5.00          |
| Dalapon                                          | 4        |          | 0%           |          |                | 1000          |
| Dicamba                                          | 4        | ļ        | 0%           |          |                | 10            |
| Dichloroprop Dinoseb                             | 1        |          | 0%           |          |                | 50<br>50      |
| MCPA((4-chloro-2-methylphenoxy)-acetic a         | 4        |          | 0%           |          |                | 1000          |
| MCPP[2-(4-chloro-2-methylphenoxy)-propan         | 4        |          | 0%           |          |                | 1000          |
| Pentachlorophenol                                | 4        |          | 0%           |          |                | 6.25          |
| Metals, mg/kg                                    |          |          |              |          |                |               |
| Aluminum                                         | 4        | 4        | 100%         | 22.00    | 81.00          | 41            |
| Antimony<br>Arsenic                              | 4        |          | 0%<br>0%     |          |                | 0.09<br>2.10  |
| Beryllium                                        | 4        |          | 0%           |          | '              | 0.48          |
| Cadmium                                          | 4        |          | 0%           |          |                | 0.23          |
| Chromium                                         | 4        | 4        | 100%         | 0.19     | 0.36           | 0.28          |
| Copper                                           | 4        | 4        | 100%         | 0.36     | 0.84           | 0.52          |
| Cyanide, Total                                   | 4        |          | 0%           |          |                | 5.00          |
| Lead                                             | 4        |          | 0%           | 0.40     |                | 0.23          |
| Mercury<br>Nickel                                | 4        | 4        | 100%<br>0%   | 0.10     | 0.14           | 0.11<br>4.56  |
| Selenium                                         | 4        | 3        | 75%          | 0.53     | 0.86           | 4.56<br>0.60  |
| Silver                                           | 4        |          | 0%           | 5.55     | 0.00           | 0.05          |
| Zinc                                             | 4        | 4        | 100%         | 8.50     | 15.00          | 11            |
| A/ 11-12-                                        | _ [      |          | 4000         | 0.00     | 0.40           | 4.0           |
| % Lipid PCBs and Pesticides, ug/kg               | 4        | 4        | 100%         | 0.66     | 2.40           | 1.19          |
| Decachlorobiphenyl                               | 4        |          | 0%           |          |                | 25            |
| Dichlorobiphenyl                                 | 4        |          | 0%           | J        |                | 5.00          |
| Heptachlorobiphenyl                              | 4        |          | 0%           | į        |                | 15            |
| Hexachlorobiphenyl                               | 4        | 1        | 25%          | 9.30     | 9.30           | 9.83          |
| Monochlorobiphenyl                               | 4        |          | 0%           |          |                | 5.00          |
| Nonachlorobiphenyl                               | 4        |          | 0%           |          |                | 25            |
| Octachlorobiphenyl Pentachlorobiphenyl           | 4        | 1        | 0%<br>25%    | 9.50     | 9.50           | 15<br>9.88    |
| Tetrachiorobiphenyl                              | 41       | ' '      | 0%           | 8.50     | 9.50           | 10            |
| Trichlorobiphenyl                                | 4        |          | 0%           |          |                | 5.00          |
| 4,4'-DDD                                         | 4        | i        | 0%           | ł        |                | 5.54          |
| 4,4'-DDE                                         | 4        | 4        | 100%         | 3.50     | 6.60           | 5.30          |
| 4,4'-DDT                                         | 4        |          | 0%           |          |                | 5.54          |
| Aldrin<br>Alpha Chlordane                        | 4        | ſ        | 0%<br>0%     | ſ        |                | 2.89<br>2.89  |
| alpha-BHC                                        | 71       | - 1      | 0%           | - 1      |                | 2.89          |
| beta-BHC                                         | 4        |          | 0%           |          |                | 2.89          |
| delta-BHC                                        | 4        |          | 0%           |          |                | 2.89          |
| Dieldrin                                         | 4        | 2        | 50%          | 5.30     | 5.60           | 5.01          |
| Endosulfan I                                     | 4        |          | 0%[          |          |                | 2.89          |
| Endosulfan II                                    | - 11     |          | 0%           |          |                | 5.54<br>5.54  |
| Endosulfan sulfate<br>Endrin                     | 4        |          | 0% <br>0%    |          |                | 5.54<br>5.54  |
| Endrin aldehyde                                  | 4        |          | 0%           | 1        |                | 5.54          |
| Endrin ketone                                    | 4        | J        | 0%           | ļ        |                | 5.54          |
| Gamma Chlordane                                  | 4 [      |          | 0%           |          |                | 2.89          |
| gamma-BHC (Lindane)                              | 4        |          | 0%           |          |                | 2.89          |
| Heptachlor                                       | 4        | 1        | 0%           |          |                | 2.89          |
| Heptachlor epoxide                               | 4        |          | 0%<br>0%     |          |                | 2.89          |
| Methoxychlor<br>Toxaphene                        | 4        |          | 0%           | ļ        |                | 29<br>289     |
| SVOCs, ug/kg                                     |          |          | - 0,0        |          |                | 208           |
| 1,2,4-Trichlorobenzene                           | 4        | 1        | 0%           | i        |                | 85            |
| 1,2-Dichlorobenzene                              | 4        |          | 0%           |          |                | 85            |
| 1,3-Dichlorobenzene                              | 4        |          | 0%           |          |                | 85            |
| 1,4-Dichlorobenzene                              | 4 ]      | ļ        | 0%           |          |                | 85            |
| 2,2'-Oxybis(1-chloropropane)[bis(2-Chlor         | 4        | Ì        | 0%           | į        |                | 85            |
| 2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol   | 4 4      |          | 0%<br>0%     |          |                | 210<br>85     |
| 2,4-Dichlorophenol                               | 4        |          | 0%           |          |                | 85            |
| 2,4-Dimethylphenol                               | 41       |          | 0%           |          |                | 85            |
| 2,4-Dinitrophenol                                | 4        | ſ        | 0%           |          |                | 210           |
| 2,4-Dinitrotoluene                               | 4        |          | 0%           |          |                | 85            |
| 2,6-Dinitrotoluene                               | 4        |          | 0%           |          |                | 85            |
| 2-Chloronaphthalene                              | 4        | ļ        | 0%           | ļ        |                | 85            |
| 2-Chlorophenol                                   | 4        |          | 0%[          |          |                | 85            |
| 2-Methyl-4,6-dinitrophenol                       | 4        | j        | 0%<br>0%     | ]        |                | 210           |
| 2-Methylnaphthalene<br>2-Methylphenol (o-cresol) | 4        |          | 0%           |          |                | 85<br>85      |
| 2-Metry/prenor (o-cresor)                        | 4        | 1        | 0%           | }        |                | 210           |
| 2-Nitrophenol                                    | 41       | ļ        | 0%           | 1        |                | 85            |

### Reference Area Largemouth Bass Data Sauget Area I

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number   | Number   | Frequency of | Michel   | Maximum  | Average            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------------|----------|----------|--------------------|
| Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analyzed | Detected | Detection    | Detected | Detected | Concentration      |
| 3&4-Methylphenal (m&p-cresal) 3,3-Dichlarabenzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        |          | 0%<br>0%     |          | ł i      | 8.<br>8.           |
| 3.46boenine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          | 0%           |          | i        | 210                |
| 4-Bromophenylphenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          | 0%           |          |          | 8                  |
| 4-Chioro-3-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          | 0%           |          |          | a s                |
| 4-Chlorosniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 4      |          | 0%           |          |          | 8                  |
| 4-Chiorophenylphenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4        |          | 0%           |          |          | 8                  |
| 4-Nitroaniine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 4      |          | 0%           |          |          | 210                |
| 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 4      |          | 0%           |          |          | 210                |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4        |          | 0%           |          |          | 8.                 |
| Acenephthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 4      |          | 0%           |          | İ        | 85                 |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4        |          | 0%           |          |          | 8.                 |
| Benzo(a)enthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ] 4      |          | 0%           |          |          | 85                 |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4        |          | 0%           |          |          | 85                 |
| Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ] 4]     |          | 0%           |          |          | 8.                 |
| Benzo(g.)u)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4        |          | 0%           |          |          | 8.5                |
| Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 4      |          | 0%           |          |          | 85                 |
| be(2-Chloroethoxy)methene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 4      |          | 0%           |          |          | 8.                 |
| bs(2-Chloroethyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4        |          | 0%           |          |          | 80                 |
| ba(2-Ethythexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4        |          | 0%           |          |          | 8:                 |
| Butylbenzylphtholiate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 4      |          | 0%           |          |          | 86                 |
| Carbazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 4      |          | 0%           |          |          | 8                  |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4        | _        | 0%           |          |          | 8:                 |
| O-n-butylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4        | 2        | 50%          | 19.00    | 20.00    | 5                  |
| Di-m-octylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 7      |          | 0%           |          |          | 8:                 |
| Aberzo(a,h)entivacene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4        |          | 0%           |          |          | 8                  |
| Oberzoluran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4        |          | 0%           |          |          | 8                  |
| hadhylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4        |          | 0%<br>0%     |          |          | 8                  |
| Demothylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1      |          | 0%           |          |          | 8<br>8:            |
| Tuoranthene<br>Tuorane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        |          | 0%           |          |          | 8:                 |
| incertioroberizane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          | 0%           |          |          | 8.                 |
| texactions but advise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |          | 0%           |          |          | 8                  |
| *exactiorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        |          | 0%           |          |          | 85                 |
| texachiorosthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          | 0%           |          |          | 85                 |
| ndeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [ ]      |          | 0%           |          |          | 8                  |
| sophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        |          | 0%           |          |          | 85                 |
| Mitrosod-n-propytamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4        |          | 0%           |          |          | 8:                 |
| l-Nitroeodiphenylamine/Diphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1        |          | 0%           |          |          |                    |
| aphthelene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4        |          | 0%           |          |          | 8                  |
| Brobercene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4        |          | 0%           |          | i i      | 8                  |
| ersactiorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4        |          | 0%           | l        |          | 210                |
| henerdhrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4        |          | 0%           | l        |          | 8:                 |
| hend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4        | i        | 0%           | i        |          | 8:                 |
| ) rene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4        |          | 0%           |          |          | 8:                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          | I            |          |          |                    |
| otal PAHs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          |              |          |          |                    |
| toutes and Furanc, ug/tig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .        | ا ,      | اسما         | ا محمد   |          |                    |
| 2346789-0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4        | 4        | 100%         | 5.50E-03 | 1.23E-02 | 9.73E-0            |
| 2346789-0CDF<br>234678-HpCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4        |          | 0%           |          |          | 5.38E-0            |
| 234878-HpCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | ſ        | 0%           | ſ        | ĺ        | 4.25E-0            |
| 2.3.4.7.8.9.HpCOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4        |          | 0%           |          | İ        | 2.38E-0<br>3.88E-0 |
| 2.3.4.7.8-HiCOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |          | 0%           |          |          | 2.88E-0            |
| 2.3.4.7.6.HACTIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |              | 9.405.04 | 1 105 00 | 7 955 0            |
| 2.3.6.7.8-H±COO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 3        | 75%          | 0.405-04 | 1.102-03 | 7.63E-U            |
| Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contro | 7        | 1        | 0%<br>0%     |          |          | 2.38E-0            |
| 2,3,6,7,8-HiCOF<br>2,3,7,8,9-HiCOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7        |          |              |          | 1        | 1.63E-0            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71       | i        | 0%           | ſ        | ĺ        | 3.13E-0            |
| 2.3.7.8.9.HbCOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1        | 0%           |          |          | 2.38E-0            |
| 2.3.7.8-PeCOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 1        | 0%           |          | - 1      | 3.25E-0            |
| 2.3.7.8-PeCOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |          | 0%           |          |          | 1.88E-0            |
| 3.4.6.7.8-th-COF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          | 0%           |          |          | 2.00E-0            |
| 3.4.7.8-PeCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4        |          | 0%           | ì        | 1        | 1.88E-0            |
| 3.7.4-TCD0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4        | _        | 0%           |          |          | 2.25E-0            |
| 3.7.8-TCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4        | 1        | 25%          | 1.60E-03 | 1.60E-03 | 5.38E-0            |
| жы нуссоо                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4        |          | 0%           | ]        |          | 4.25E-0            |
| sed HpCOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4        |          | 0%           |          |          | 1.86E-0            |
| otal HuCOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4        | ļ        | 0%           |          | ļ        | 2.88E-0            |
| otal HuCOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4        |          | 0%           |          | 1        | 9.61E-0            |
| otal PeCOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4        |          | 0%           | i        |          | 3.25E-0            |
| PeCOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4        |          | 0%           |          |          | 1.61E-0            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |              |          |          |                    |
| ned TCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4        | i        | 0%<br>0%     | - 1      | 1        | 2.25E-0<br>1.96E-0 |

Note:
One-half the detection limit is used to represent non-detects in the calculation of average concentrations.

#### Brown Bullhead Data Summary for Borrow Pit Lake Sauget Area I

| <u> </u>                                                                                                                                                                                                           | Γ                               | <u></u>            |                                  |                     | J                   | J                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------|----------------------------------|---------------------|---------------------|-----------------------------------|
| Compounds                                                                                                                                                                                                          | Number<br>Analyzed              | Number<br>Detected | Frequency of Detection           | Minimum<br>Detected | Maximum<br>Detected | Average<br>Concentration          |
| Herbicides, ug/kg                                                                                                                                                                                                  |                                 |                    |                                  |                     |                     |                                   |
| 2,4,5-T                                                                                                                                                                                                            | 3                               |                    | 0%                               |                     |                     | 5.00                              |
| 2,4,5-TP (Silvex)                                                                                                                                                                                                  | 3                               | }                  | 0%                               |                     | 1                   | 5.00                              |
| 2,4-D                                                                                                                                                                                                              | 3                               |                    | 0%                               |                     |                     | 5.00                              |
| 2,4-DB                                                                                                                                                                                                             | 3                               |                    | 0%                               |                     |                     | 5.00                              |
| Dalapon                                                                                                                                                                                                            | 3                               |                    | 0%                               |                     |                     | 1000                              |
| Dichloroprop                                                                                                                                                                                                       | 3                               | 1                  | 0%<br>33%                        | 6.6                 | 6.6                 | 8.33                              |
| Dinoseb                                                                                                                                                                                                            | 3 3 1                           | ' '                | 0%                               | 0.0                 | 0.0                 | 36<br>50                          |
| MCPA((4-chioro-2-methylphenoxy)-acetic a                                                                                                                                                                           | 3                               |                    | 0%                               |                     |                     | 1000                              |
| MCPP(2-(4-chloro-2-methylphenoxy)-propan                                                                                                                                                                           | . 3                             |                    | 0%                               |                     |                     | 1000                              |
| Pentachlorophenol                                                                                                                                                                                                  | 3                               |                    | 0%                               |                     |                     | 1000                              |
| Metals, mg/kg                                                                                                                                                                                                      |                                 |                    | - 0,78                           |                     |                     |                                   |
| Aluminum                                                                                                                                                                                                           | . з                             | 3                  | 100%                             | 7.7                 | 18                  | 13                                |
| Antimony                                                                                                                                                                                                           | 3 (                             | -                  | 0%[                              |                     |                     | 0.09                              |
| Arsenic                                                                                                                                                                                                            | 3                               |                    | 0%                               |                     |                     | 1.43                              |
| Beryllium                                                                                                                                                                                                          | 3                               |                    | 0%                               |                     |                     | 0.47                              |
| Cadmium                                                                                                                                                                                                            | 3                               |                    | 0%                               |                     |                     | 0.23                              |
| Chromium                                                                                                                                                                                                           | 3                               | 3                  | 100%                             | 0.27                | 0.70                | 0.42                              |
| Copper                                                                                                                                                                                                             | 3 (                             | 3                  | 100%                             | 0.79                | 0.89                | 0.84                              |
| Cyanide, Total                                                                                                                                                                                                     | 3                               |                    | 0%                               |                     |                     | 5.00                              |
| Lead                                                                                                                                                                                                               | 3 ]                             | 1                  | 33%                              | 0.25                | 0.25                | 0.24                              |
| Mercury                                                                                                                                                                                                            | 3                               | 3                  | 100%                             | 0.05                | 0.26                | 0,13                              |
| Nickel                                                                                                                                                                                                             | 3                               |                    | 0%                               |                     |                     | 4.70                              |
| Selenium                                                                                                                                                                                                           | 3 }                             |                    | 0%                               | ļ                   |                     | 0.23                              |
| Silver                                                                                                                                                                                                             | 3                               |                    | 0%                               |                     |                     | 0.05                              |
| Zinc                                                                                                                                                                                                               | 3                               | 3                  | 100%                             | 18                  | 22                  | 20                                |
|                                                                                                                                                                                                                    | Ì                               |                    |                                  |                     |                     |                                   |
| % Lipids                                                                                                                                                                                                           | 3                               | 3                  | 100%                             | 0.30                | 1.70                | 1.13                              |
| PCB, ug/kg                                                                                                                                                                                                         | اما                             |                    | 201                              |                     |                     |                                   |
| Decachlorobiphenyl                                                                                                                                                                                                 | 3                               | (                  | 0%                               | ĺ                   | ĺ                   | 25                                |
| Dichlorobiphenyl                                                                                                                                                                                                   | 3                               | i                  | 0%                               |                     |                     | 5.00                              |
| leptachlorobiphenyl                                                                                                                                                                                                | 3                               |                    | 0%                               | امه                 |                     | 15                                |
| lexachlorobiphenyl                                                                                                                                                                                                 | 3                               | 2                  | 67%                              | 43                  | 52                  | 35                                |
| Monochlorobiphenyl Nonachlorobiphenyl                                                                                                                                                                              | 3                               | İ                  | 0%                               | 1                   |                     | 5.00                              |
| Octachlorobiphenyl                                                                                                                                                                                                 | 3 3                             | - 1                | 0%<br>0%                         | · i                 |                     | 25<br>15                          |
| Pentachlorobiphenyl                                                                                                                                                                                                | 3                               | 2                  | 67%                              | 33                  | 52                  | 32                                |
| etrachlorobiphenyl                                                                                                                                                                                                 | 3                               | -                  | 0%                               | ~                   | 32                  | 10                                |
| richlorobiphenyl                                                                                                                                                                                                   | 3                               |                    | 0%                               |                     | ĺ                   | 5.00                              |
|                                                                                                                                                                                                                    |                                 |                    |                                  |                     | ابمد                |                                   |
| Total PCBs                                                                                                                                                                                                         | 3                               | 2                  | 67%                              | 76                  | 104                 | 63                                |
| esticides, ug/kg<br>.4'-DDD                                                                                                                                                                                        | 3                               |                    | 0%                               |                     |                     | 8.67                              |
| ,4-000<br>,4-00E                                                                                                                                                                                                   | 3                               | 3                  | 100%                             | 3.4                 | 29                  | 18                                |
| ,4-0DT                                                                                                                                                                                                             | 3                               | 31                 | 0%                               | 3.7                 | 20                  | 8.67                              |
| otal DDT                                                                                                                                                                                                           | 3                               | 3                  | 100%                             | 3                   | 29                  | 18                                |
| Vidrin                                                                                                                                                                                                             | 3                               | ٠,                 | 0%                               | ۲                   | -~                  | 4.60                              |
| Joha Chlordane                                                                                                                                                                                                     | 3                               | 1                  | 33%                              | 12                  | 12                  | 7.47                              |
| Ipha-BHC                                                                                                                                                                                                           | 3                               | ,                  | 0%                               | `~                  | ,-                  | 4.60                              |
| eta-BHC                                                                                                                                                                                                            | 3                               | i                  | 0%                               | ł                   |                     | 4.60                              |
| elta-BHC                                                                                                                                                                                                           | 3                               |                    | 0%                               |                     |                     | 4.60                              |
| Dieldrin                                                                                                                                                                                                           | 3                               | ŀ                  | 0%                               |                     |                     | 8.67                              |
| ndosulfan I                                                                                                                                                                                                        | 3                               |                    | 0%                               | i                   | {                   | 4.60                              |
| ndosulfan II                                                                                                                                                                                                       | 3                               |                    | 0%                               |                     | 1                   | 8.67                              |
| ndosulfan sulfate                                                                                                                                                                                                  | 3                               |                    | 0%                               | 1                   |                     | 8.67                              |
| ndrin                                                                                                                                                                                                              | 3                               |                    | 0%                               |                     |                     | 8.67                              |
| ndrin aldehyde                                                                                                                                                                                                     | 3                               | j                  | 0%                               |                     | ŀ                   | 8.67                              |
| ndrin ketone                                                                                                                                                                                                       | 3                               | - 1                | 0%                               | J                   |                     | 8.67                              |
| amma Chlordane                                                                                                                                                                                                     | 3                               | 1                  | 33%                              | 11                  | 11                  | 7.13                              |
| amma-BHC (Lindane)                                                                                                                                                                                                 | 3                               |                    | 0%                               |                     |                     | 4.60                              |
| eptachlor                                                                                                                                                                                                          | 3 (                             | 1 [                | 33%                              | 2.8                 | 2.8                 | 3.20                              |
| eptachlor epoxide                                                                                                                                                                                                  | 3                               |                    | 0%                               |                     | 1                   | 4.60                              |
| lethoxychlor                                                                                                                                                                                                       | 3                               |                    | 0%                               | )                   |                     | 46                                |
| oxaphene                                                                                                                                                                                                           | 3                               |                    | 0%                               |                     |                     | 347                               |
| VOCs, ug/kg                                                                                                                                                                                                        | ام                              |                    | 201                              |                     |                     |                                   |
| 2,4-Trichlorobenzene                                                                                                                                                                                               | 3                               |                    | 0%                               |                     | 1                   | 85                                |
| 2-Dichlorobenzene<br>3-Dichlorobenzene                                                                                                                                                                             | 3                               |                    | 0%                               |                     |                     | 85                                |
|                                                                                                                                                                                                                    | 3                               |                    | 0%                               |                     | 1                   | 85                                |
|                                                                                                                                                                                                                    | 3                               | 1                  | 0% <br>0%                        |                     | j                   | 85<br>85                          |
| 4-Dichlorobenzene                                                                                                                                                                                                  |                                 | i                  | 0%                               | ļ                   |                     |                                   |
| 4-Dichlorobenzene<br>2-Oxybis(1-chloropropane)[bis(2-Chlor                                                                                                                                                         |                                 |                    |                                  | 1                   |                     | 210                               |
| 4-Dichlorobenzene<br>2-Oxybis(1-chloropropane)[bis(2-Chlor<br>4,5-Trichlorophenol                                                                                                                                  | 3                               | }                  |                                  | J                   |                     |                                   |
| 4-Dichlorobenzene<br>2-Oxybls(1-chloropropane)[bis(2-Chlor<br>4,5-Trichlorophenol<br>4,6-Trichlorophenol                                                                                                           | 3 3                             |                    | 0%                               |                     | {                   |                                   |
| 4-Dichlorobenzene<br>2-Oxybis(1-chloropropane)[bis(2-Chlor<br>4,5-Trichlorophenol<br>4,6-Trichlorophenol<br>4-Dichlorophenol                                                                                       | 3<br>3<br>3                     |                    | 0%<br>0%                         | j                   |                     | 85                                |
| 4-Dichlorobenzene 2-Oxybis(1-chloropropane)[bis(2-Chlor 4,5-Trichlorophenol 4-6-Trichlorophenol 4-Dichlorophenol 4-Dimethylphenol                                                                                  | 3<br>3<br>3<br>3                |                    | 0%<br>0%<br>0%                   |                     |                     | 85<br>85                          |
| 4-Dichlorobenzene 2-Oxybis(1-chloropropane)[bis(2-Chlor 4,5-Trichlorophenol 4,6-Trichlorophenol 4-Dichlorophenol 4-Dimethylphenol 4-Dinitrophenol                                                                  | 3<br>3<br>3<br>3                |                    | 0%<br>0%<br>0%<br>0%             | :                   |                     | 85<br>85<br>210                   |
| 4-Dichlorobenzene 2-Oxybls(1-chloropropane)[bis(2-Chlor 4,5-Trichlorophenol 4,6-Trichlorophenol 4-Dichlorophenol 4-Dinitrophenol 4-Dinitrophenol 4-Dinitrophenol 4-Dinitrophenol                                   | 3<br>3<br>3<br>3<br>3           |                    | 0%<br>0%<br>0%<br>0%<br>0%       |                     |                     | 85<br>85<br>210<br>85             |
| 4-Dichlorobenzene 2-Oxybis(1-chloropropane)[bis(2-Chlor 4,5-Trichlorophenol 4,6-Trichlorophenol 4-Dichlorophenol 4-Dinitrophenol 4-Dinitrophenol 4-Dinitrotoluene 6-Dinitrotoluene                                 | 3<br>3<br>3<br>3<br>3           |                    | 0%<br>0%<br>0%<br>0%<br>0%       |                     |                     | 85<br>85<br>85<br>210<br>85       |
| 4-Dichlorobenzene 2-Oxybis(1-chloropropane)[bis(2-Chlor 4,5-Trichlorophenol 4-Dichlorophenol 4-Dichlorophenol 4-Dimethylphenol 4-Dinitrophenol 4-Dinitrotoluene 6-Diritrotoluene 6-Diritrotoluene 6-Diritrotoluene | 3<br>3<br>3<br>3<br>3<br>3<br>3 |                    | 0%<br>0%<br>0%<br>0%<br>0%<br>0% |                     |                     | 85<br>85<br>210<br>85<br>85<br>85 |
| 4-Dichlorobenzene 2-Oxybis(1-chloropropane)[bis(2-Chlor 4,5-Trichlorophenol 4,6-Trichlorophenol 4-Dichlorophenol 4-Dintrophenol 4-Dintrophenol 4-Dintrophenol 6-Dintrotoluene 6-Dintrotoluene                      | 3<br>3<br>3<br>3<br>3           |                    | 0%<br>0%<br>0%<br>0%<br>0%       |                     |                     | 85<br>85<br>210<br>85             |

### Brown Bullhead Data Summary for Borrow Pit Lake Sauget Area I

|                                                                                                                                                       | <del></del>                | <u> </u>                             | ]                                                   |                                                                                              |                                                                                              | <del></del>                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 0                                                                                                                                                     | Number                     | Number                               | Frequency of                                        | Minimum                                                                                      | Maximum                                                                                      | Average                                                                                                              |
| Compounds 2-Methylphenol (o-cresol)                                                                                                                   | Analyzed 3                 | Detected                             | Detection 0%                                        | Detected                                                                                     | Detected                                                                                     | Concentration 85                                                                                                     |
| 2-Mitrogniline                                                                                                                                        | 3                          |                                      | 👸                                                   |                                                                                              |                                                                                              | 210                                                                                                                  |
| 2-Nitrophenol                                                                                                                                         | 3                          |                                      | 0%                                                  |                                                                                              |                                                                                              | 85                                                                                                                   |
| 3&4-Muthylphenal (m&p-cresol)                                                                                                                         | ] 3                        |                                      | 0%                                                  |                                                                                              |                                                                                              | 85                                                                                                                   |
| 3.3'-Octiorobenzidine                                                                                                                                 | 3 3                        |                                      | 0%                                                  |                                                                                              |                                                                                              | 85<br>210                                                                                                            |
| 3-Nitroenline<br>4-Bromophenylphanyl ether                                                                                                            | 3                          |                                      | 0%                                                  |                                                                                              |                                                                                              | 85                                                                                                                   |
| 4-Chicro-3-methylphenol                                                                                                                               | 3                          |                                      | 0%                                                  |                                                                                              |                                                                                              | a se                                                                                                                 |
| 4-Chioroenline                                                                                                                                        | ] 3                        |                                      | 0%                                                  |                                                                                              |                                                                                              | 85                                                                                                                   |
| 4-Chlorophenylphenyl ether                                                                                                                            | 3                          | ,                                    | 0%                                                  |                                                                                              |                                                                                              | 8.5                                                                                                                  |
| 4-Nikoanime<br>4-Nikoahanol                                                                                                                           | 3 3                        |                                      | 0%<br>0%                                            |                                                                                              |                                                                                              | 210<br>210                                                                                                           |
| opranci<br>Acenaphthane                                                                                                                               | 3                          |                                      | 0%                                                  |                                                                                              |                                                                                              | 8                                                                                                                    |
| Aceregnatrylene                                                                                                                                       | 3                          |                                      | 0%                                                  |                                                                                              |                                                                                              | 85                                                                                                                   |
| Arthracene                                                                                                                                            | 3                          |                                      | 0%                                                  |                                                                                              |                                                                                              | 8.                                                                                                                   |
| Bertzo(a)er@vacere                                                                                                                                    | 3                          |                                      | 0%                                                  | j                                                                                            |                                                                                              | 8                                                                                                                    |
| Berzo(a)pyrene                                                                                                                                        | 3 3                        |                                      | 0%<br>0%                                            | }                                                                                            |                                                                                              | 8                                                                                                                    |
| Berzo(b)fluoranthene<br>Berzo(g.hu)perylene                                                                                                           | 3                          |                                      | 0%                                                  | 1                                                                                            |                                                                                              | 8                                                                                                                    |
| Berzo(k)fluoranthene                                                                                                                                  | j 3                        |                                      | 0%                                                  |                                                                                              |                                                                                              | 8.                                                                                                                   |
| bs(2-Chlorosthoxy)methane                                                                                                                             | ] 3                        |                                      | 0%                                                  |                                                                                              |                                                                                              | 8                                                                                                                    |
| bs(2-Criorosthyl)ether                                                                                                                                | ] 3                        |                                      | 0%                                                  |                                                                                              |                                                                                              | 8                                                                                                                    |
| bio(2-Ethylhexyl)phthelate                                                                                                                            | ] 3                        | 1                                    | 33%                                                 | 97                                                                                           | 97                                                                                           | 8                                                                                                                    |
| Butyfberzylphthatate<br>Carbazole                                                                                                                     | 3 3                        |                                      | 0%<br>0%                                            |                                                                                              |                                                                                              | 8:<br>8:                                                                                                             |
| Chrysene                                                                                                                                              | 3                          |                                      | 0%                                                  |                                                                                              |                                                                                              | 8:                                                                                                                   |
| Di-n-burylphthalate                                                                                                                                   | 3                          |                                      | 0%                                                  |                                                                                              |                                                                                              | 84                                                                                                                   |
| D-n-oczylphihalate                                                                                                                                    | ] 3                        |                                      | 0%                                                  |                                                                                              |                                                                                              | 85                                                                                                                   |
| Diperzo(a.h)anthracens                                                                                                                                | 3                          |                                      | 0%                                                  |                                                                                              | ļ                                                                                            | 85                                                                                                                   |
| Dibermiuran                                                                                                                                           | 3 3                        |                                      | 33%                                                 | ••                                                                                           | 18                                                                                           | 84<br>65                                                                                                             |
| Destrykphshakate<br>Desegtrykphshakate                                                                                                                | 3                          | 1                                    | 3376°                                               | 18                                                                                           | 16                                                                                           | 8:                                                                                                                   |
| Puoranthene                                                                                                                                           | ا م                        |                                      | 0%                                                  |                                                                                              |                                                                                              | 8:                                                                                                                   |
| Nome                                                                                                                                                  | 3                          |                                      | 0%                                                  |                                                                                              |                                                                                              | 85                                                                                                                   |
| lexachlorobenzene                                                                                                                                     | 3                          |                                      | 0%                                                  |                                                                                              |                                                                                              | 85                                                                                                                   |
| texachtorobutacione                                                                                                                                   | 3                          |                                      | 0%                                                  |                                                                                              |                                                                                              | 85                                                                                                                   |
| lexactiorocyclopentadiene<br>lexactiorosifiene                                                                                                        | 3                          |                                      | 0%<br>0%                                            |                                                                                              |                                                                                              | 85<br>85                                                                                                             |
| ndeno(1,2,3-cd)pyrene                                                                                                                                 | ا قا                       |                                      | 0%                                                  |                                                                                              |                                                                                              | 85                                                                                                                   |
| sophorone                                                                                                                                             | 3                          |                                      | 0%                                                  |                                                                                              |                                                                                              | 85                                                                                                                   |
| Altrosod-n-propylamins                                                                                                                                | 3                          |                                      | 0%                                                  |                                                                                              |                                                                                              | 85                                                                                                                   |
| 4-Nitroeodiphenykamine/Diphenykamine                                                                                                                  | 3                          |                                      | 0%<br>0%                                            |                                                                                              |                                                                                              | 85<br>85                                                                                                             |
| top/Mulane<br>Novbergane                                                                                                                              | 3                          |                                      | 0%                                                  |                                                                                              |                                                                                              | 127                                                                                                                  |
| Pertachtorophenol                                                                                                                                     | 3                          | - 1                                  | 0%                                                  |                                                                                              |                                                                                              | 168                                                                                                                  |
| Transmittens                                                                                                                                          | 3                          |                                      | 0%                                                  |                                                                                              |                                                                                              | 85                                                                                                                   |
| hend                                                                                                                                                  | 3                          | i                                    | 0%                                                  |                                                                                              |                                                                                              | 85                                                                                                                   |
| years.                                                                                                                                                | 2                          | 1                                    | 0%                                                  |                                                                                              |                                                                                              | 85                                                                                                                   |
| otal PAHs                                                                                                                                             | 3                          |                                      | 0%                                                  |                                                                                              |                                                                                              | 85                                                                                                                   |
| Nocins and Furans, ug/kg<br>2346789-0000                                                                                                              | 3                          | 3                                    | 100%                                                | 1 02E-02                                                                                     | 1.15E-02                                                                                     | 1,09E-02                                                                                                             |
| 2346789-OCDF                                                                                                                                          | 3                          | 3                                    | 100%                                                | 6.55E-04                                                                                     | 1.206-03                                                                                     | 8.72E-04                                                                                                             |
| 23.48.7.8-HpC00                                                                                                                                       | 3                          | 3                                    | 100%                                                | 1.50E-03                                                                                     | 3.00E-03                                                                                     | 2.23E-03                                                                                                             |
| 23.4.6.7.8-HpCDF                                                                                                                                      | 3                          | 1                                    | 33%                                                 | 5.45E-04                                                                                     | 5.45E-04                                                                                     | 3.82E-04                                                                                                             |
| 2.3.4.7.8.9-HpCDF                                                                                                                                     | 3                          |                                      | 0%                                                  | _                                                                                            |                                                                                              | 3.08E-04                                                                                                             |
| 2,3,4,7,8+6c00                                                                                                                                        | 3                          | 1                                    | 33%                                                 | 1.80E-04                                                                                     | 1.80E-04                                                                                     | 2.60E-04                                                                                                             |
| 23.4.7.8-HiCOF<br>23.6.7.8-HiCOO                                                                                                                      | 3                          | 3                                    | 100%<br>100%                                        | 5.90E-04<br>7.80E-04                                                                         | 1.40E-03<br>2.40E-03                                                                         | 9.85E-04<br>1.53E-03                                                                                                 |
| 23678-HiCDF                                                                                                                                           | 3                          | 3 :<br>1                             | 33%                                                 | 2.45E-04                                                                                     | 2.40E-03<br>2.45E-04                                                                         | 1.53E-0                                                                                                              |
| 23789HiC00                                                                                                                                            | 3                          | •                                    | 0%                                                  | C                                                                                            |                                                                                              | 2.50E-0                                                                                                              |
| 23749HiCOF                                                                                                                                            | 3                          | 1                                    | 33%                                                 | 6.90E-04                                                                                     | 6.90E-04                                                                                     | 4.13E-0                                                                                                              |
| 2378-PeC00                                                                                                                                            | 3                          | 3                                    | 100%                                                | 4.20E-04                                                                                     | 1.10E-03                                                                                     | 7.97E-0                                                                                                              |
| 23.7.8-PeCOF                                                                                                                                          |                            |                                      | 0%                                                  |                                                                                              | 2                                                                                            | 1.58E-0                                                                                                              |
|                                                                                                                                                       | 3                          | ~                                    |                                                     | 1.60E-04                                                                                     | 3.20E-04                                                                                     | 2.93E-0                                                                                                              |
| 3.4.6.7.8-HiCDF                                                                                                                                       | 3                          | 2                                    | 67%                                                 | 7 705.04                                                                                     | 1 605.03                                                                                     |                                                                                                                      |
|                                                                                                                                                       | 3                          | 3                                    | 100%                                                | 7.70E-04<br>3.30E-04                                                                         | 1.60E-03<br>8.35E-04                                                                         |                                                                                                                      |
| 34878-HICOF<br>3478-PICOF                                                                                                                             | 3                          |                                      |                                                     | 7.70E-04<br>3.30E-04<br>1.20E-03                                                             | 1.60E-03<br>8.35E-04<br>4.00E-03                                                             | 5.55E-0                                                                                                              |
| 34878-HiCDF<br>3478-PiCOF<br>378-TCDD<br>378-TCDF<br>378-TCDF                                                                                         | 3 3 3 3                    | 3<br>2<br>3<br>3                     | 100%<br>67%<br>100%<br>100%                         | 3.30E-04<br>1.20E-03<br>1.60E-03                                                             | 8.35E-04                                                                                     | 5.55E-0<br>2.83E-0                                                                                                   |
| 3.4.6.7.6.HuCDF<br>3.4.7.6.PuCDF<br>3.7.6.TCDD<br>3.7.6.TCDF<br>3.7.6.TCDF<br>one HpCDD                                                               | 3<br>3<br>3<br>3<br>3      | 3<br>2<br>3<br>3<br>3                | 100%<br>67%<br>100%<br>100%<br>100%                 | 3.30E-04<br>1.20E-03<br>1.60E-03<br>2.00E-03                                                 | 8.35E-04<br>4.00E-03<br>4.10E-03<br>3.00E-03                                                 | 5.55E-0<br>2.83E-0<br>2.98E-0<br>2.52E-0                                                                             |
| 3.4.6.7.6.HuCDF<br>3.4.7.6.PuCDF<br>3.7.6.TCDD<br>3.7.6.TCDF<br>3.7.6.TCDF<br>0tal HpCDD<br>0tal HpCDD                                                | 3<br>3<br>3<br>3<br>3<br>3 | 3<br>2<br>3<br>3<br>3<br>3           | 100%<br>67%<br>100%<br>100%<br>100%<br>100%         | 3.30E-04<br>1.20E-03<br>1.60E-03<br>2.00E-03<br>1.80E-03                                     | 8.35E-04<br>4.00E-03<br>4.10E-03<br>3.00E-03<br>5.10E-03                                     | 5.55E-0<br>2.83E-0<br>2.98E-0<br>2.52E-0<br>3.92E-0                                                                  |
| 3.4.6.7.6-HsCDF<br>3.4.7.6-HsCDF<br>3.7.6-TCDD<br>3.7.6-TCDF<br>3.7.6-TCDF<br>otal HpCDD<br>otal HpCDD<br>otal HsCDD                                  | 3 3 3 3 3                  | 3<br>2<br>3<br>3<br>3<br>3           | 100%<br>67%<br>100%<br>100%<br>100%<br>100%         | 3.30E-04<br>1.20E-03<br>1.60E-03<br>2.00E-03<br>1.80E-03<br>7.80E-04                         | 8.35E-04<br>4.00E-03<br>4.10E-03<br>3.00E-03<br>5.10E-03<br>2.40E-03                         | 5.55E-0<br>2.83E-0<br>2.98E-0<br>2.52E-0<br>3.92E-0<br>1.58E-0                                                       |
| 3.4.6.7.6-HisCDF<br>3.4.7.6-PisCDF<br>3.7.6-TCDD<br>3.7.6-TCDF<br>3.7.6-TCDF<br>otal HisCDC<br>otal HisCDC<br>otal HisCDD<br>otal HisCDD              | 3 3 3 3 3 3 3 3            | 3<br>2<br>3<br>3<br>3<br>3<br>3      | 100%<br>67%<br>100%<br>100%<br>100%<br>100%<br>100% | 3.30E-04<br>1.20E-03<br>1.60E-03<br>2.00E-03<br>1.80E-03<br>7.80E-04<br>1.06E-02             | 8.35E-04<br>4.00E-03<br>4.10E-03<br>3.00E-03<br>5.10E-03<br>2.40E-03<br>3.80E-02             | 5.55E-04<br>2.83E-03<br>2.98E-03<br>2.52E-03<br>3.92E-03<br>1.58E-03<br>2.44E-03                                     |
| 3.4.6.7.6-HsiCDF<br>3.4.7.6-PsiCDF<br>3.7.6-TCDF<br>3.7.6-TCDF<br>3.7.6-TCDF<br>otal HpCDO<br>otal HpCDF<br>otal HsiCDF<br>otal HsiCDF<br>otal PsiCDF | 3 3 3 3 3 3 3              | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3 | 100%<br>67%<br>100%<br>100%<br>100%<br>100%<br>100% | 3.30E-04<br>1.20E-03<br>1.60E-03<br>2.00E-03<br>1.80E-03<br>7.80E-04<br>1.06E-02<br>4.20E-04 | 8.35E-04<br>4.00E-03<br>4.10E-03<br>3.00E-03<br>5.10E-03<br>2.40E-03<br>3.80E-02<br>1.18E-03 | 5.55E-04<br>2.83E-03<br>2.98E-03<br>2.52E-03<br>3.92E-04<br>1.58E-03<br>2.44E-03<br>9.00E-04                         |
| 3.4.6.7.6-HisCDF<br>3.4.7.6-PisCDF<br>3.7.6-TCDD<br>3.7.6-TCDF<br>3.7.6-TCDF<br>otal HisCDC<br>otal HisCDC<br>otal HisCDD<br>otal HisCDD              | 3 3 3 3 3 3 3 3            | 3<br>2<br>3<br>3<br>3<br>3<br>3      | 100%<br>67%<br>100%<br>100%<br>100%<br>100%<br>100% | 3.30E-04<br>1.20E-03<br>1.60E-03<br>2.00E-03<br>1.80E-03<br>7.80E-04<br>1.06E-02             | 8.35E-04<br>4.00E-03<br>4.10E-03<br>3.00E-03<br>5.10E-03<br>2.40E-03<br>3.80E-02             | 1.31E-05<br>5.55E-04<br>2.83E-05<br>2.98E-05<br>3.92E-05<br>1.58E-05<br>2.44E-05<br>9.00E-04<br>3.68E-05<br>6.77E-04 |

Note:

One-half the detection limit is used to represent non-detects in the calculation of average concentrations.

#### Reference Area Brown Bullhead Summary Statistics Sauget Area I

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | T                  |                                                                                          |                     |                     |                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------|------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]                                       | ]                  | _ '                                                                                      |                     |                     |                                                                                                                                                                                                                                                                           |
| Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Number<br>Analyzed                      | Number<br>Detected | Frequency of<br>Detection                                                                | Minimum<br>Detected | Maximum<br>Detected | Average<br>Concentration                                                                                                                                                                                                                                                  |
| Herbicides, ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Autalyzeu                               | Detected           | Detection                                                                                | Detected            | Detected            | Concentiation                                                                                                                                                                                                                                                             |
| 2,4,5-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                       | ĺ                  | 0%                                                                                       | ·                   |                     | 6.67                                                                                                                                                                                                                                                                      |
| 2,4,5-TP (Silvex)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                       |                    | 0%                                                                                       |                     |                     | 6.67                                                                                                                                                                                                                                                                      |
| 2,4-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                       | 1                  | 0%                                                                                       |                     |                     | 6.67                                                                                                                                                                                                                                                                      |
| 2,4-DB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                       | j                  | 0%                                                                                       |                     |                     | 6.67                                                                                                                                                                                                                                                                      |
| Dalapon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                       | ļ                  | 0%                                                                                       |                     |                     | 1333                                                                                                                                                                                                                                                                      |
| Dicamba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                       |                    | 0%                                                                                       |                     |                     | 13                                                                                                                                                                                                                                                                        |
| Dichloroprop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                       | ŀ                  | 0%                                                                                       |                     |                     | 67                                                                                                                                                                                                                                                                        |
| Dinoseb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                       |                    | 0%                                                                                       |                     |                     | 67                                                                                                                                                                                                                                                                        |
| MCPAI(4-chloro-2-methylphenoxy)-acetic a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                       | 1                  | 33%                                                                                      | 8600                | 8600                | 3533                                                                                                                                                                                                                                                                      |
| MCPP[2-(4-chloro-2-methylphenoxy)-propan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                       | j .                | 0%                                                                                       | 5555                |                     | 1333                                                                                                                                                                                                                                                                      |
| Pentachiorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                       |                    | 0%                                                                                       |                     |                     | 13                                                                                                                                                                                                                                                                        |
| Metals, mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                    |                                                                                          |                     |                     | <u></u>                                                                                                                                                                                                                                                                   |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                       | 3                  | 100%                                                                                     | 5,9                 | 66                  | 34                                                                                                                                                                                                                                                                        |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                       | _                  | 0%                                                                                       | 0.0                 | , <b>~</b>          | 0.0                                                                                                                                                                                                                                                                       |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                       |                    | 0%                                                                                       |                     |                     | 1.20                                                                                                                                                                                                                                                                      |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                       | 1                  | 0%                                                                                       |                     |                     | 0.46                                                                                                                                                                                                                                                                      |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                       |                    | 0%                                                                                       |                     | j                   | 0.23                                                                                                                                                                                                                                                                      |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                       | 3                  | 100%                                                                                     | 0.34                | 0.48                | 0.41                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                       | . 3                | 100%                                                                                     | 1.00                |                     | 1.07                                                                                                                                                                                                                                                                      |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                       | ا م                |                                                                                          | 1.00                | 1.10                |                                                                                                                                                                                                                                                                           |
| Cyanide, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                    | 0%                                                                                       | 0.40                |                     | 5.00                                                                                                                                                                                                                                                                      |
| -ead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                       | 2                  | 67%                                                                                      | 0.18                | 0.23                | 0.21                                                                                                                                                                                                                                                                      |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                       | 3                  | 100%                                                                                     | 0.05                | 0.10                | 0.08                                                                                                                                                                                                                                                                      |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                       | _                  | 0%                                                                                       | [                   | (                   | 4.55                                                                                                                                                                                                                                                                      |
| elenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                       | 2                  | 67%                                                                                      | 0.48                | 0.50                | 0.40                                                                                                                                                                                                                                                                      |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                       |                    | 0%                                                                                       | ł                   | 1                   | 0.05                                                                                                                                                                                                                                                                      |
| linc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                       | 3                  | 100%                                                                                     | 16                  | 24                  | 20                                                                                                                                                                                                                                                                        |
| 4 Lipids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                       | 3                  | 100%                                                                                     | 1.00                | 1.40                | 1,13                                                                                                                                                                                                                                                                      |
| CB, ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                       |                    | 100%                                                                                     | 1.00                | 1.40                | 1,13                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                       |                    | 00/                                                                                      | ļ                   |                     | •                                                                                                                                                                                                                                                                         |
| Decachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 1                  | 0%                                                                                       | í                   |                     | 25                                                                                                                                                                                                                                                                        |
| Dichlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                       | í                  | 0%                                                                                       | - (                 | ľ                   | 5.00                                                                                                                                                                                                                                                                      |
| leptachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                       |                    | 0%                                                                                       | i                   | 1                   | 15                                                                                                                                                                                                                                                                        |
| lexachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                       | ĺ                  | 0%                                                                                       |                     | ľ                   | 10                                                                                                                                                                                                                                                                        |
| lonochlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                       |                    | 0%                                                                                       |                     |                     | 5.00                                                                                                                                                                                                                                                                      |
| lonachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 ]                                     |                    | 0%                                                                                       | j                   | j                   | 25                                                                                                                                                                                                                                                                        |
| Octachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                       |                    | 0%                                                                                       |                     |                     | 15                                                                                                                                                                                                                                                                        |
| Pentachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                       | J                  | 0%                                                                                       |                     |                     | 10                                                                                                                                                                                                                                                                        |
| Tetrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 (                                     | ſ                  | 0%                                                                                       | i                   | - {                 | 10                                                                                                                                                                                                                                                                        |
| richlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                       | Į.                 | 0%                                                                                       |                     |                     | 5.00                                                                                                                                                                                                                                                                      |
| - A-I DOD-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ام                                      | J                  | 00/                                                                                      |                     |                     | •                                                                                                                                                                                                                                                                         |
| Total PCBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                       |                    | 0%                                                                                       |                     |                     |                                                                                                                                                                                                                                                                           |
| Pesticides, ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | أم                 |                                                                                          | 4.6                 | _                   |                                                                                                                                                                                                                                                                           |
| ,4'-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                       | 2                  | 67%                                                                                      | 1.2                 | 2                   | 5.33                                                                                                                                                                                                                                                                      |
| ,4'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                       | 3                  | 100%                                                                                     | 4.7                 | 12                  | 8.83                                                                                                                                                                                                                                                                      |
| 4'-DOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                       |                    | 0%                                                                                       | ì                   |                     | 8.67                                                                                                                                                                                                                                                                      |
| Ndrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                       | _                  | 0%                                                                                       | . [                 | _[                  | 4.60                                                                                                                                                                                                                                                                      |
| Ipha Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 (                                     | 3 (                | 100%                                                                                     | 1.1                 | 2.5                 | 1.57                                                                                                                                                                                                                                                                      |
| pha-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                       |                    | 0%                                                                                       |                     | 1                   | 4.60                                                                                                                                                                                                                                                                      |
| eta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                       | ŀ                  | 0%                                                                                       |                     |                     | 4.60                                                                                                                                                                                                                                                                      |
| elta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                       |                    | 0%                                                                                       |                     | Į.                  | 4.60                                                                                                                                                                                                                                                                      |
| ieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                       | 3                  | 100%                                                                                     | 1.7                 | 3.8                 | 2.77                                                                                                                                                                                                                                                                      |
| ndosulfan i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                       |                    | 0%                                                                                       |                     | 1                   | 4.60                                                                                                                                                                                                                                                                      |
| ndosulfan li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 )                                     | J                  | 0%                                                                                       | j                   | 1                   | 6.67                                                                                                                                                                                                                                                                      |
| ndosulfan sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                       | I                  | 0%                                                                                       | 1                   | ĺ                   | 8.67                                                                                                                                                                                                                                                                      |
| ndrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                       | 1                  | 33%                                                                                      | 2.6                 | 2.6                 | 7.37                                                                                                                                                                                                                                                                      |
| ndrin aldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 /                                     | - 1                |                                                                                          |                     | )                   | 8.67                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                    | 0%1                                                                                      | (                   |                     |                                                                                                                                                                                                                                                                           |
| ndrin ketone i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | 1                  | 0%<br>0%                                                                                 | [                   |                     |                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                       | 2                  | 0%                                                                                       | 6 1                 | 6.2                 | 7.63                                                                                                                                                                                                                                                                      |
| amma Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 3                                     | 2                  | 0%<br>67%                                                                                | 6.1<br>0.94         | 6.2<br>1.2          | 7.63<br>6.43                                                                                                                                                                                                                                                              |
| amma Chlordane<br>amma-BHC (Lindane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3<br>3<br>3                             | 2 2                | 0%<br>67%<br>67%                                                                         | 6.1<br>0.94         | 6.2<br>1.2          | 7.63<br>6.43<br>3.05                                                                                                                                                                                                                                                      |
| amma Chlordane<br>amma-BHC (Lindane)<br>eptachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 3 3 3                                 |                    | 0%<br>67%<br>67%<br>0%                                                                   |                     |                     | 7.63<br>6.43<br>3.05<br>4.60                                                                                                                                                                                                                                              |
| amma Chlordane<br>imma-BHC (Lindane)<br>aptachlor<br>aptachlor epoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3<br>3<br>3<br>3                        |                    | 0%<br>67%<br>67%<br>0%<br>0%                                                             |                     |                     | 7.63<br>6.43<br>3.05<br>4.60<br>4.60                                                                                                                                                                                                                                      |
| amma Chlordane amma-BHC (Lindane) eptachlor eptachlor epoxide ethoxychlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3<br>3<br>3<br>3<br>3                   |                    | 0%<br>67%<br>67%<br>0%<br>0%                                                             |                     |                     | 7.63<br>6.43<br>3.05<br>4.60<br>4.60                                                                                                                                                                                                                                      |
| amma Chlordane amma-BHC (Lindane) eptachlor eptachlor epoxide ethoxychlor oxaphene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3<br>3<br>3<br>3                        |                    | 0%<br>67%<br>67%<br>0%<br>0%                                                             |                     |                     | 7.63<br>6.43<br>3.05<br>4.60<br>4.60                                                                                                                                                                                                                                      |
| amma Chlordane amma-BHC (Lindane) eptachlor eptachlor epoxide ethoxychlor oxaphene VOCs, ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3<br>3<br>3<br>3<br>3<br>3              |                    | 0%<br>67%<br>67%<br>0%<br>0%<br>0%                                                       |                     |                     | 7.63<br>6.43<br>3.05<br>4.60<br>4.60<br>48                                                                                                                                                                                                                                |
| emma Chlordane emma-BHC (Lindane) eptachlor eptachlor epoxide ethoxychlor oxaphene VOCs, ug/kg 2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3<br>3<br>3<br>3<br>3<br>3              |                    | 0%<br>67%<br>67%<br>0%<br>0%<br>0%                                                       |                     |                     | 7.63<br>6.43<br>3.05<br>4.60<br>4.60<br>48<br>347                                                                                                                                                                                                                         |
| amma Chlordane amma-BHC (Lindane) eptachlor eptachlor epoxide ethoxychlor oxaphene VOCs, ug/kg 2,4-Trichlorobenzene 2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3    |                    | 0%<br>67%<br>67%<br>0%<br>0%<br>0%<br>0%                                                 |                     |                     | 7.63<br>6.43<br>3.05<br>4.60<br>4.80<br>48<br>347                                                                                                                                                                                                                         |
| amma Chlordane  mma-BHC (Lindane)  aptachlor  aptachlor epoxide  ethoxychlor  oxaphene  VOCs, ug/kg  2-4-Trichlorobenzene  2-Dichlorobenzene  3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3    |                    | 0%<br>67%<br>67%<br>0%<br>0%<br>0%<br>0%                                                 |                     |                     | 7.63<br>6.43<br>3.05<br>4.60<br>4.60<br>46<br>347<br>85<br>85                                                                                                                                                                                                             |
| amma Chlordane imma-BHC (Lindane) eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor eptachlor ep | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                    | 0%<br>67%<br>67%<br>0%<br>0%<br>0%<br>0%                                                 |                     |                     | 7.63<br>6.42<br>3.05<br>4.60<br>4.60<br>46<br>347<br>85<br>85                                                                                                                                                                                                             |
| amma Chlordane amma-BHC (Lindane) eptachlor eptachlor epoxide ethoxychlor oxaphene VOCs, ug/kg 2,4-Trichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 2-Oxybis(1-chloropropane)[bis(2-Chlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                    | 0%<br>67%<br>67%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%                                     |                     |                     | 7.63<br>6.43<br>3.05<br>4.60<br>4.60<br>48<br>347<br>85<br>85<br>85                                                                                                                                                                                                       |
| amma Chlordane mma-BHC (Lindane) eptachior eptachior epoxide ethoxychlor oxaphene VOCs, ug/kg 2,4-Trichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                    | 0%<br>67%<br>67%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%                                     |                     |                     | 7.63<br>6.43<br>3.05<br>4.60<br>4.60<br>46<br>347<br>85<br>85<br>85<br>85                                                                                                                                                                                                 |
| amma Chlordane amma-BHC (Lindane) eptachlor eptachlor epoxide ethoxychlor oxaphene VOCs, ug/kg 2,4-Trichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                    | 0%<br>67%<br>67%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%                               |                     |                     | 7.63<br>6.42<br>3.05<br>4.60<br>4.60<br>4.60<br>347<br>85<br>85<br>85<br>85                                                                                                                                                                                               |
| amma Chlordane amma-BHC (Lindane) eptachlor eptachlor epoxide ethoxychlor oxaphene VOCs, ug/kg 2,4-Trichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                    | 0%<br>67%<br>67%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%                         |                     |                     | 7.63<br>6.42<br>3.05<br>4.60<br>4.60<br>4.60<br>347<br>85<br>85<br>85<br>85                                                                                                                                                                                               |
| amma Chlordane amma-BHC (Lindane) eptachior eptachior eptachior epoxide ethoxychlor oxaphene VOCs, ug/kg 2,4-Trichlorobenzene 2-Dichlorobenzene 4-Dichlorobenzene 2-Oxybis(1-chloroprepane)[bis(2-Chlor 4,5-Trichlorophenol 4-Dichlorophenol 4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                    | 0%<br>67%<br>67%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%                               |                     |                     | 7.63<br>6.44<br>3.05<br>4.60<br>4.60<br>46<br>347<br>85<br>85<br>85<br>85<br>85<br>85                                                                                                                                                                                     |
| amma Chlordane amma-BHC (Lindane) eptachlor eptachlor epoxide ethoxychlor oxaphene VOCs, ug/kg 2,4-Trichlorobenzene 2-Dichlorobenzene 4-Dichlorobenzene 2-Oxybis(1-chloropropane)[bis(2-Chlor 4,5-Trichlorophenol 4-Dichlorophenol 4-Dichlorophenol 4-Dichlorophenol 4-Dimetrylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                    | 0%<br>67%<br>67%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%                         |                     |                     | 7.63<br>6.4;<br>3.05<br>4.66<br>4.66<br>44<br>347<br>85<br>86<br>85<br>86<br>85<br>86<br>88                                                                                                                                                                               |
| amma Chlordane amma-BHC (Lindane) eptachlor eptachlor eptachlor epoxide ethoxychlor oxaphene VOCs, ug/kg 2,4-Trichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorophenol 4-B-Trichlorophenol 4-Dichlorophenol 4-Dichlorophenol 4-Dinitrophenol 4-Dinitrophenol 4-Dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                    | 0%<br>67%<br>67%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%                   |                     |                     | 7.63<br>6.4;<br>3.09;<br>4.66<br>4.66<br>44;<br>34;<br>85;<br>85;<br>81;<br>82;<br>81;<br>82;<br>83;<br>84;<br>84;<br>84;<br>84;<br>84;<br>84;<br>84;<br>84;<br>84;<br>84                                                                                                 |
| amma Chlordane mma-BHC (Lindane) eptachlor eptachlor eptachlor epoxide ethoxychlor oxaphene VOCs, ug/kg 2,4-Trichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorophenol 4-Dichlorophenol 4-Dichlorophenol 4-Dinitrophenol 4-Dinitrophenol 4-Dinitrophenol 4-Dinitrophenol 4-Dinitrophenol 4-Dinitrophenol 4-Dinitrophenol 4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                    | 0%<br>67%<br>67%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%                   |                     |                     | 7.63<br>6.44<br>3.05<br>4.64<br>4.64<br>347<br>85<br>85<br>85<br>85<br>86<br>86<br>86<br>86<br>86<br>87<br>88<br>81<br>88<br>81<br>81<br>82<br>81<br>82<br>83<br>84<br>84<br>84<br>84<br>85<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86 |
| amma Chlordane amma-BHC (Lindane) eptachlor eptachlor eptachlor epoxide ethoxychlor oxaphene VOCs, ug/kg 2,4-Trichlorobenzene 2-Dichlorobenzene 4-Dichlorobenzene 2-Oxybis(1-chloropropane)[bis(2-Chlor 4,5-Trichlorophenol 4-Dichlorophenol 4-Dichlorophenol 4-Dintrophenol 4-Dintrophenol 4-Dintrophenol 4-Dintrophenol 4-Dintrophenol 4-Dintrophenol 4-Dintrophenol 6-Dintrophenol 6-Dintrophenol 6-Dintrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                    | 0%<br>67%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%                    |                     |                     | 7.63<br>6.4;<br>3.0;<br>4.6(<br>4.6(<br>44;<br>34;<br>85<br>85<br>85<br>21(<br>85<br>85<br>21(<br>85<br>85<br>85<br>21(<br>85<br>85<br>85<br>85<br>85<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86                                       |
| amma Chlordane mma-BHC (Lindane) eptachlor eptachlor epoxide ethoxychlor oxaphene VOCs, ug/kg 2,4-Trichlorobenzene 2-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 6-Trichlorophenol 4-Dichlorophenol 4-Dichlorophenol 4-Dimethylphenol 4-Dimethylphenol 4-Dinitrobluene 6-Dinitrobluene 6-Dinitrobluene 6-Dinitrobluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                    | 0% 67% 67% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%                                        |                     |                     | 7.63<br>6.4;<br>3.05<br>4.66<br>4.66<br>44<br>347<br>85<br>86<br>85<br>211<br>85<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86                                                                                                            |
| amma Chlordane amma-BHC (Lindane) eptachlor eptachlor epoxide ethoxychlor oxaphene VOCs, ug/kg 2,4-Trichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorophenol 4-Dichlorophenol 4-Dinitrotoluene 6-Dinitrotoluene 6-Dinitrotoluene 6-Nioronaphthalene 6-Nioronaphthalene 6-Nioronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                    | 0% 67% 67% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%                                        |                     |                     | 7.63<br>6.45<br>3.05<br>4.66<br>4.66<br>46<br>347<br>85<br>85<br>85<br>210<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85                                                                                                                  |
| amma Chlordane mma-BHC (Lindane) eptachlor eptachlor eptachlor epoxide ethoxychlor oxaphene VOCs, ug/kg 2,4-Trichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorophenol 4-Dichlorophenol 4-Dinitrobenol 4-Dinitrobenol 4-Dinitrobenol 4-Dinitrobenol 6-Dinitrobenol 6-Dinitrobenol 6-Dinitrobenol 6-Dinitrobenol 6-Dinitrobenol 6-Dinitrobenol 6-Dinitrobenol 6-Dinitrobenol 6-Dinitrobenol 6-Dinitrobenol 6-Dinitrobenol 6-Dinitrobenol 6-Dinitrobenol 6-Dinitrobenol 6-Dinitrobenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                    | 0%<br>67%<br>67%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%       |                     |                     | 7.63<br>6.45<br>3.05<br>4.60<br>4.60<br>4.60<br>85<br>85<br>85<br>85<br>210<br>85<br>85<br>210<br>85<br>85<br>85<br>210                                                                                                                                                   |
| amma Chlordane amma-BHC (Lindane) eptachior eptachior epoxide lethoxychlor oxaphene VOCs, ug/kg 2,4-Trichlorobenzene 2-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 2-Oxybis(1-chloropropane)[bis(2-Chlor 4,5-Trichlorophenol 4,5-Trichlorophenol 4-Dirintophenol 4-Dinitrophenol 4-Dinitrophenol 4-Dinitrophenol 4-Dinitrotoluene 6-Dinitrotoluene 6-Dinitrotoluene Chlorophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                    | 0%<br>67%<br>67%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0% |                     |                     | 7.63<br>6.43<br>3.05<br>4.60<br>4.60<br>4.60<br>4.60<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85                                                                                                                                        |
| amma Chlordane amma-BHC (Lindane) eptachlor eptachlor epoxide ethoxychlor oxaphene VOCs, ug/kg 2,4-Trichlorobenzene 2-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 2-Oxybis(1-chloropropane)[bis(2-Chlor 4,5-Trichlorophenol 4-Dirhorophenol 4-Dimethylphenol 4-Dinitrophenol 4-Dinitrotoluene 6-Dinitrotoluene 6-Dinitrotoluene 6-Chlorophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol Methyl-4,6-dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                    | 0% 67% 67% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%                                        |                     |                     | 7.63<br>6.43<br>3.05<br>4.60<br>4.60<br>4.60<br>4.60<br>4.60<br>4.60<br>4.60<br>4.60                                                                                                                                                                                      |
| ndrin ketone famma Chlordane amma BHC (Lindane) eptachior eptachior epoxide lethoxychlor oxaphene VOCs, ug/kg 2,4-Trichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 6-Dichlorobenzene 1-Oxybis(1-chloropropane)[bis(2-Chlorobenzene) 1-Oxybis(1-chloropropane)[bis(2-Chlorobenzene) 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol 1-Dirichlorophenol                                                                                                                                                              | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                    | 0%<br>67%<br>67%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0% |                     |                     |                                                                                                                                                                                                                                                                           |

Appendix C-3 4 Reference Area Brown Bullhead Summary Statistics Sauget Area I

|                                                   | <del></del>                                      |          |              |                      |                      |                      |
|---------------------------------------------------|--------------------------------------------------|----------|--------------|----------------------|----------------------|----------------------|
|                                                   |                                                  | ĺ        |              |                      |                      | ĺ                    |
| Community                                         | Number                                           | Number   | Frequency of | Minimum              | Maximum              | Average              |
| Compounds 384-Methylphenol (m&p-cresol)           | Analyzed 3                                       | Detected | Detection 0% | Detected             | Detected             | Concentration<br>85  |
| 3.3-Dichlorobenzidine                             | 3                                                | }        | 0%           |                      |                      | 85                   |
| 3-Nitroeniine                                     | 3                                                |          | 0%           |                      |                      | 210                  |
| 4-Bromophenylphenyl ether                         | 3                                                |          | 0%           |                      |                      | 85<br>85             |
| 4-Chloro-3-methylphenol<br>4-Chloroeniine         | 3 3                                              |          | 0%           |                      |                      | 85                   |
| 4-Chtorophenylphenyl ether                        | 1 3                                              | ĺ        | 0%           |                      |                      | 85                   |
| 4-Niscentine                                      | ] 3                                              |          | 0%           |                      |                      | 210                  |
| 4-Nitrophenol                                     | 3                                                |          | 0%           |                      |                      | 210                  |
| Acensphilhene<br>Acensphilhylene                  | 3 3                                              |          | 0%           |                      |                      | 85<br>85             |
| Anthracene                                        | 1 3                                              |          | 0%           |                      |                      | 85                   |
| Benzo(a)enthracene                                | 3                                                |          | 0%           |                      |                      | 85                   |
| Benzo(a)pyrene                                    | 3 3                                              |          | 0%<br>0%     |                      |                      | 85<br>85             |
| Benzo(b)fluoranthene<br>Benzo(g,hu)perylene       | 3                                                |          | 0%           |                      |                      | 85                   |
| Berzo(k)Buoranthene                               | 3                                                |          | 0%           |                      |                      | 85                   |
| be(2-Chloroethoxy)methene                         | 3                                                |          | 0%           |                      |                      | 85                   |
| be(2-Crioroety/)ether                             | 3                                                | _        | 0%           | امر                  | ,=                   | 85                   |
| bie(2-Ethythexy1)phthatate<br>Butytbercytotratate | 3 3                                              | 2        | 67%<br>0%    | 46                   | 47                   | 59<br>85             |
| Carbazzie                                         | 3                                                |          | 0%           |                      |                      | 85                   |
| Chrysene                                          | j 3                                              |          | 0%           |                      |                      | 85                   |
| Di-n-bulyephilistatio                             | 3                                                |          | 0%           | ļ                    |                      | 85                   |
| Oi-n-octylphthelate<br>Oiberzo(a,hjenthracene     | 3 3                                              |          | 0%<br>0%     |                      |                      | 85<br>85             |
| Diberzokean                                       | 3                                                |          | 0%           |                      |                      | 85                   |
| Destryichthatate                                  | 3                                                | 1        | 33%          | 25                   | 25                   | 65                   |
| Ownethylphthalate                                 | 3                                                |          | 0%           | ł                    |                      | 85                   |
| Ruprarthere<br>Character                          | 3                                                |          | 0%<br>0%     |                      |                      | 85<br>85             |
| Fluorene<br>Histochloroberzane                    | 3                                                |          | 0%           |                      | İ                    | 85                   |
| Herachtorobutadiene                               | 3                                                |          | 0%           |                      |                      | 85                   |
| Herachtorocyclopentadiene                         | 3                                                |          | 0%           | ĺ                    | ĺ                    | 85                   |
| Heractionethene                                   | 3 3                                              |          | 0%<br>0%     |                      |                      | 85<br>85             |
| Indenc(1,2,3-cd)pyrene<br>leaphorone              | 3                                                |          | 0%           |                      |                      | 85                   |
| n-Nileveod-n-propytamine                          | 3                                                |          | 0%           |                      | İ                    | 85                   |
| N-Nitroeodiphenylamine/Diphenylamine              | ] 3                                              |          | 0%           |                      | ļ                    | 85                   |
| Naphthalene                                       | 3                                                |          | 0%<br>0%     |                      |                      | 85                   |
| Nitrobercene<br>Pentachlorophenol                 | 3 3                                              |          | 0%           | Ì                    |                      | 127<br>168           |
| Pharanthrane                                      | ا قا                                             | Ì        | 0%           |                      |                      | 85                   |
| Phenol                                            | 3                                                |          | 0%           |                      |                      | 85                   |
| Pyrane<br>Yeard Balls                             | 2                                                |          | 0%           | !                    |                      | 85                   |
| Total PAHs<br>Disaline and Fernies, ug/kg         | <del>                                     </del> |          |              |                      |                      |                      |
| 12346789-0000                                     | 3                                                | 3        | 100%         | 2.70E-03             | 2.00E-02             | 1.47E-02             |
| 1234A7A9-OCDF                                     | 3                                                | 2        | 67%          | 5.20E-04             | 1.60E-03             | 8.40E-04             |
| 1.2.3.4.6.7.8-HpC00                               | 3                                                | 3        | 100%         | 8.10E-04             | 3.00E-03             | 1.87E-03             |
| 1,2,3,4,6,7,8,HpCOF<br>1,2,3,4,7,8,HpCOF          | 3                                                |          | 0%           |                      |                      | 1.67E-04<br>2.00E-04 |
| 12347.8-HiCOO                                     | 3                                                |          | 0%           |                      |                      | 1.67E-04             |
| 123478HbCDF                                       | 3                                                | 3        | 100%         | 2.60E-04             | 4.90E-04             | 4.10E-04             |
| 1.2.3.6.7.8-HiCOO                                 | 3                                                | 3        | 100%         | 3.90E-04             | 1.20E-03             | 7.37E-04             |
| 1,2,3,6,7,8 HisCOF<br>1,2,3,7,8,9 HisCOO          | 3                                                | İ        | 0%<br>0%     |                      |                      | 1.17E-04<br>1.67E-04 |
| 12378946CDF                                       | 3                                                |          | 0%           |                      |                      | 1.33E-04             |
| 1,2,3,7,8-PeC00                                   | 3                                                |          | 0%           |                      |                      | 1.83E-04             |
| 12378-PeCOF                                       | 3                                                |          | 0%           |                      |                      | 1.17E-04             |
| 23.4,6,7, <del>8,16,</del> CDF<br>2.3,4,7,8-PeCDF | 3                                                | . [      | 0%           | 3 20E 04             | 2 20E 04             | 1.17E-04             |
| 2.3.7.8-TC00                                      | 3 3                                              | 1 2      | 33%<br>67%   | 3.30E-04<br>2.00E-04 | 3.30E-04<br>4.20E-04 | 1.77E-04<br>2.90E-04 |
| 2,3,7,8-TCOF                                      | 3                                                | 1 -      | 33%          | 7.50E-04             | 7.50E-04             | 3.17E-04             |
| Total HpCDD                                       | 3                                                | 3        | 100%         | 8.10E-04             | 3.60E-03             | 3.43E-04             |
| Total HpCDF                                       | 3                                                | 2        | 67%          | 1.30E-03             | 1.40E-03             | 9.33E-04             |
| Total HiCOO<br>Total HiCOF                        | 3 3                                              | 3        | 100%<br>100% | 3.90E-04<br>3.30E-03 | 1.20E-03<br>8.10E-03 | 7.37E-04<br>6.33E-03 |
| Total PeCDD                                       | 3                                                | 3        | 100%         | 3.30E-03             | o. 1UC-U3            | 0.33E-03<br>1.83E-04 |
| Total PeCOF                                       | 3                                                | 3        | 100%         | 9.70E-03             | 1.83E-02             | 1.44E-02             |
| Total TCDC                                        | 3                                                | 3        | 100%         | 2.00E-04             | 9.30E-04             | 6.47E-04             |
| Total TCDF                                        | 3                                                | 3        | 100%         | 8.50E-03             | 2.53E-02             | 1.62E-02             |
|                                                   |                                                  |          |              |                      |                      |                      |

Note:

One-half the detection limit is used to represent non-detects in the calculation of average concentrations.

#### Borrow Pit Lake Forage Fish Data Summary Sauget Area I

| <u></u>                                  | Τ                  |                    | <del>,</del>           |                                       | <del></del>         | <del></del>              |
|------------------------------------------|--------------------|--------------------|------------------------|---------------------------------------|---------------------|--------------------------|
| Compounds                                | Number<br>Analyzed | Number<br>Detected | Frequency of Detection | Minimum<br>Detected                   | Maximum<br>Detected | Average<br>Concentration |
| Herbicides, ug/kg                        | 7,                 |                    |                        |                                       |                     |                          |
| 2,4,5-T (ug/kg)                          | ] 3                |                    | 0%                     |                                       |                     | 6.67                     |
| 2,4,5-TP (Silvex)                        | 3                  |                    | 0%                     |                                       |                     | 6.67                     |
| 2,4-D                                    | 3                  | _                  | 0%                     |                                       |                     | 6.67                     |
| 2,4-DB                                   | 3                  | 2                  | 67%                    | 6.5                                   | 10                  | 8.83                     |
| Dalapon<br>Dicamba                       | 3 3                | 1                  | 0%<br>33%              | 2.6                                   | 2.6                 | 1333<br>11               |
| Dichloroprop                             | 3                  | i                  | 33%                    | 6.7                                   | 6.7                 | 52                       |
| Dinoseb                                  | 1 3                | •                  | 0%                     | 0.7                                   | 0.7                 | 67                       |
| MCPA[(4-chloro-2-methylphenoxy)-acetic a | 3                  | 2                  | 67%                    | 3100                                  | 3300                | 2800                     |
| MCPP[2-(4-chloro-2-methylphenoxy)-propan | 3                  | _                  | 0%                     |                                       |                     | 1333                     |
| Pentachlorophenol                        | [ 3 [              | 2 '                | 67%                    | 1                                     | 2.2                 | 7.73                     |
| Metals, mg/kg                            |                    |                    |                        |                                       |                     |                          |
| Aluminum                                 | ] 3 ]              | 3                  | 100%                   | 24                                    | 52                  | 40                       |
| Antimony                                 | 3                  |                    | 0%                     |                                       |                     | 0.09                     |
| Arsenic                                  | ] 3                |                    | 0%                     |                                       |                     | 1.33                     |
| Beryllium                                | 3                  |                    | 0%                     |                                       |                     | 0.47                     |
| Cadmium<br>Chromium                      | 3 3                | 3                  | 0%<br>100%             | 0.26                                  | 0.33                | 0.23<br>0.29             |
| Copper                                   | 3                  | 3                  | 100%                   | 0.26                                  | 0.32<br>1.7         | 0.29                     |
| Cyanide, Total                           | 3                  | 3                  | 0%                     | 0.5                                   | 1.6                 | 5.00                     |
| Lead                                     | 3                  | 1                  | 33%                    | 0.59                                  | 0.59                | 0.36                     |
| Mercury                                  | 3                  | 2                  | 67%                    | 0.052                                 | 0.6                 | 0.30                     |
| Nickel                                   | 3                  | - [                | 0%                     |                                       |                     | 4.70                     |
| Selenium                                 | 3                  | 2                  | 67%                    | 0.53                                  | 0.54                | 0.44                     |
| Silver                                   | 3                  |                    | 0%                     |                                       |                     | 0.05                     |
| Zinc                                     | 3                  | 3                  | 100%                   | 24                                    | 33                  | 30                       |
| % Lipids                                 | 3                  | 3                  | 100%                   | 1.5                                   | 1.8                 | 1.63                     |
| PCB, ug/kg                               |                    |                    | 10070                  |                                       |                     | 1.00                     |
| Decachlorobiphenyl                       | ∖ 3 l              | i                  | 0%                     |                                       |                     | 42                       |
| Dichlorobiphenyl                         | 3                  |                    | 0%                     | j                                     |                     | 8.33                     |
| Heptachlorobiphenyl                      | 3                  | l                  | 0%                     | )                                     |                     | 25                       |
| Hexachlorobiphenyl                       | 3                  | 2                  | 67%                    | 19                                    | 22                  | 20                       |
| Monochlorobiphenyl                       | 3                  |                    | 0%                     |                                       |                     | 8.33                     |
| Nonachlorobiphenyl                       | 3                  | - 1                | 0%                     | }                                     |                     | 42                       |
| Octachlorobiphenyl                       | 3                  |                    | 0%                     |                                       |                     | 25                       |
| Pentachlorobiphenyl                      | 3                  | 1                  | 33%                    | 8.7                                   | 8.7                 | 16                       |
| Tetrachlorobiphenyl                      | 3                  | 1                  | 0%)<br>0%              | ľ                                     | ľ                   | 17                       |
| Crichlorobiphenyl                        | 3                  | ŀ                  | 076                    |                                       | 1                   | 8.33                     |
| Total PCBs                               | 3                  | 2                  | 67%                    | 31                                    | 39                  | 30                       |
| Pesticides, ug/kg                        | _                  |                    |                        |                                       |                     | [                        |
| I,4'-DDD<br>I,4'-DDE                     | 3 3                | 3                  | 0%<br>100%             | 4.1                                   | 10                  | 8.8<br>7.73              |
| i,4'-DDT                                 | 3                  | 3                  | 0%                     | 4.1                                   | ויי                 | 7.73<br>8.83             |
| Total DDT                                | 3                  | 3                  | 100%                   | 4.1                                   | 10                  | 7.73                     |
| Aldrin                                   | 3                  | ۱ ،                | 0%                     | 7.''                                  |                     | 4.47                     |
| Apha Chlordane                           | 3                  | ì                  | 0%                     | 1                                     | 1                   | 4.47                     |
| ipha-BHC                                 | 3                  | }                  | 0%                     | · · · · · · · · · · · · · · · · · · · |                     | 4.47                     |
| peta-BHC                                 | 3                  | ļ                  | 0%                     | ŀ                                     |                     | 4.47                     |
| lelta-BHC                                | 3 ∫                | ſ                  | 0%                     | ĺ                                     | - (                 | 4.47                     |
| Dieldrin                                 | 3                  |                    | 0%                     | 1                                     |                     | 8.83                     |
| ndosulfan i                              | 3                  | j                  | 0%                     | i                                     |                     | 4.47                     |
| ndosulfan II                             | 3                  | 1                  | 0%                     | 1                                     | [                   | 8.83                     |
| Endosulfan sulfate<br>Endrin             | 3 3                |                    | 0%<br>0%               | 1                                     |                     | 8.83<br>8.83             |
| ndrin aldehyde                           | 3                  | - [                | 0%1                    | J                                     | ſ                   | 8.83                     |
| Indrin ketone                            | 3                  |                    | 0%                     |                                       | l                   | 8.83                     |
| Samma Chlordane                          | 3                  | 1                  | 0%                     | 1                                     | ì                   | 4.47                     |
| amma-BHC (Lindane)                       | 3                  | ł                  | 0%                     | }                                     |                     | 4.47                     |
| leptachlor                               | 3                  | ľ                  | 0%                     | 1                                     |                     | 4.47                     |
| leptachlor epoxide                       | 3                  | 1                  | 0%                     | }                                     | i                   | 4.47                     |
| Methoxychlor                             | 3                  | ï                  | 0%                     | i                                     |                     | 45                       |
| oxaphene                                 | 3                  |                    | 0%                     |                                       |                     | 447                      |
| VOCs, ug/kg                              | _ ]                | J                  | أبمم                   | J                                     | ]                   |                          |
| ,2,4-Trichlorobenzene                    | 3 (                | 1                  | 0%(                    | - 1                                   |                     | 142                      |
| ,2-Dichlorobenzene                       | 3                  |                    | 0%                     | 1                                     |                     | 142                      |
| ,3-Dichlorobenzene<br>.4-Dichlorobenzene | 3                  | ]                  | 0% <br>0%              | j                                     |                     | 142<br>142               |
| .2'-Oxybis(1-chloropropane)[bis(2-Chlor  | 3                  |                    | 0%                     | Ì                                     |                     | 142                      |
| 4,5-Trichiorophenol                      | 3                  | ļ                  | 0%                     | ŀ                                     | ]                   | 350                      |
| 4,8-Trichlorophenol                      | 3                  | ]                  | 0%                     |                                       | Į.                  | 142                      |
| 4-Dichlorophenol                         | 3                  |                    | 0%                     |                                       |                     | 142                      |
| 4-Dimethylphenol                         | 3                  |                    | 0%                     | ļ                                     |                     | 142                      |
| ,4-Dinitrophenoi                         | 3                  | }                  | 0%                     | }                                     | )                   | 350                      |
| 4-Dinitrotoluene                         | 3                  | İ                  | 0%                     | 1                                     |                     | 142                      |
| 6-Dinitrotoluene                         | 3                  |                    | 0%                     | j                                     | ]                   | 142                      |
| -Chloronaphthalene                       | 3                  | i                  | 0%                     |                                       | ł                   | 142                      |
| -Chlorophenol                            | 3                  | [                  | 0%                     |                                       | ]                   | 142                      |
| -Methyl-4,6-dinitrophenol                | 3                  |                    | 0%                     | j                                     |                     | 350                      |
| -Methylnaphthalene                       | 3                  |                    | 0%                     |                                       |                     | 142                      |

### Borrow Pit Lake Forage Fish Data Summary Sauget Area i

|                                                       | Γ        |          |              |                      | _                    | <u> </u>             |
|-------------------------------------------------------|----------|----------|--------------|----------------------|----------------------|----------------------|
| ĺ                                                     | Number   | Number   | Frequency of | Minimum              | Maximum              | Average              |
| Compounds                                             | Analyzed | Detected | Detection    | Detected             | Detected             | Concentration        |
| 2-Methylphenoi (o-cresol)                             | 3        |          | 0%           |                      |                      | 142                  |
| 2-Nitroenline<br>2-Nitrophenal                        | 3        |          | 0%<br>0%     |                      |                      | 350<br>142           |
| 384-Methylphenol (m&p-cresol)                         | 3        |          | 0%           |                      |                      | 142                  |
| 3.3'-Dichlorobenzdine                                 | 3        |          | 0%           |                      |                      | 142                  |
| 3-Narganline                                          | ] 3      |          | 0%           |                      |                      | 350                  |
| 4-Bromopherylpheryl ether                             | 3        |          | 0%           |                      |                      | 142                  |
| 4-Charo-3-methylphenol<br>4-Charoemiline              | 3 3      |          | 0%           |                      |                      | 142<br>142           |
| 4-Chlorophenylphenyl ether                            | 3        |          | 0%           |                      |                      | 142                  |
| 4-Nitrogniine                                         | 3        |          | 0%           |                      |                      | 350                  |
| 4-Narophenol                                          | ] 3      |          | 0%           |                      |                      | 350                  |
| Acerephthene                                          | ] 3      |          | 0%           |                      |                      | 142                  |
| Accreptifylere                                        | 3 3      |          | 0%<br>0%     |                      |                      | 142<br>142           |
| Anthracene<br>Benzo(a)enthracene                      | 3        |          | 0%           |                      |                      | 142                  |
| Serzo(a)pyrene                                        | ا ع      |          | 0%           |                      |                      | 142                  |
| Bergo(b)Augranthene                                   | 3        |          | 0%           |                      |                      | 142                  |
| Benzo(g.tu)perylene                                   | 3        |          | 0%           |                      |                      | 142                  |
| Berzo(k)fluoranthene                                  | 3        |          | 0%           |                      |                      | 142                  |
| bis(2-Chiorosthoxy)methene<br>bis(2-Chiorosthyl)sther | 3 3      |          | 0%<br>0%     |                      |                      | 142<br>142           |
| big(2-Ethythaxyl)phthalate                            | 3        | 2        | 67%          | 150                  | 230                  | 183                  |
| Buly theresylphitheliate                              | 3        | •        | 0%           |                      |                      | 142                  |
| Carbazole                                             | 3        |          | 0%           |                      |                      | 142                  |
| Chrysene                                              | ] 3      | ł        | 0%           |                      |                      | 142                  |
| Di-n-butylphthelate<br>Di-n-ochylphthelate            | 3 3      | i        | 0%<br>0%     |                      |                      | 142<br>142           |
| Diberzo(a.h)antivacene                                | 3 1      | 1        | 33%          | 48                   | 48                   | 101                  |
| Dibenzoluran                                          | 3        | · I      | 0%           | - 1                  | -                    | 142                  |
| Distrylphthatate                                      | 3        | 3        | 100%         | 19                   | 37                   | 31                   |
| Demailty/phthalate                                    | 3        |          | 0%           |                      |                      | 142                  |
| Pluoranhene<br>Common                                 | 3        |          | 0%           |                      |                      | 142                  |
| Pluorene<br>Hexachtorobenzene                         | 3 3      |          | 0%<br>0%     |                      |                      | 142<br>142           |
| Herachtorobutadiene                                   | 3        |          | 0%           |                      |                      | 142                  |
| Hexachlorocyclopentadiene                             | 3        | 1        | 0%           | }                    | Ì                    | 142                  |
| Herachioroethere                                      | 3        |          | 0%           |                      |                      | 142                  |
| Indeno(1,2,3-cd)pyrene                                | 3        | 1        | 33%          | 54                   | 54                   | 103                  |
| Isophorone<br>n-Mitrosodi-n-propylamine               | 3        | ,        | 0%           | ]                    | ļ                    | 142<br>142           |
| N-Nitrosodiphenylamine/Diphenylamine                  | 3        | 1        | 0%           |                      |                      | 142                  |
| Naphdialone                                           | 3        | į.       | 0%           |                      |                      | 142                  |
| Mirobergane                                           | 3        |          | 0%           | İ                    |                      | 142                  |
| Pertachlorophenol                                     | 3        | ì        | 0%           | Ì                    | l                    | 350                  |
| Phananthrene<br>Phanoi                                | 3        |          | 0%<br>0%     |                      |                      | 142<br>142           |
| Pyrane                                                | š        |          | 0%           |                      |                      | 142                  |
| <u> </u>                                              | 1        |          |              | ***                  |                      |                      |
| Total PAHs<br>Dioxins and Furans, ug/kg               | 3        | 1        | 33%          | 102                  | 102                  | 357                  |
| 12.34678.9-0C00                                       | 3        | 3        | 100%         | 8.90E-03             | 2.69E-02             | 1.99E-02             |
| 1.2.3.4.6.7.8.9-OCDF                                  | 3        | 2        | 67%          | 1.30E-03             | 4.40E-03             | 2.08E-03             |
| 1.2.3.4.6.7.8.HgCDO                                   | 3        | 3        | 100%         | 1.20E-03             | 1.80E-03             | 1.53E-03             |
| 234678HgCDF                                           | 3        | !        | 33%          | 1.00E-03             | 1.00E-03             | 4.83E-04             |
| 1.2.3.4.7.8.9-HpCDF<br>1.2.3.4.7.8-HsCDD              | 3        | 1        | 33%<br>0%    | 5.80E-04             | 5.80E-04             | 4.43E-04             |
| 123478HiCDF                                           | 3        | 2        | 67%          | 4.10E-04             | 7.70E-04             | 2.00E-04<br>4.60E-04 |
| 2.3.6.7.8-HaC00                                       | 3 (      | i [      | 33%          | 6 00E-04             | 6.00E-04             | 3.50E-04             |
| 1.2.3.8.7.8.HbCDF                                     | 3        |          | 0%           |                      |                      | 1.17E-04             |
| 2.3.7.8.9-Hsc00                                       | 3        |          | 0%           |                      |                      | 2.17E-04             |
| 1.2.3.7.8.9-HuCDF                                     | 3        | İ        | 0%           |                      |                      | 1.83E-04             |
| 12.3.7.8-PeC00<br>12.3.7.8-PeC0F                      | 3        | 1        | 0%<br>0%     |                      |                      | 2.17E-04<br>1.33E-04 |
| 2.3.4.6.7.8-HisCOF                                    | 3        |          | 0%           |                      |                      | 1.33E-04             |
| 23.4.7.8-PeCOF                                        | 3        | 1        | 33%          | 4 60E-04             | 4.60E-04             | 2.70E-04             |
| 23.7.6-TC00                                           | 3        | 1        | 33%          | 7.20E-04             | 7.20E-04             | 3.90E-04             |
| 37A-TCOF                                              | 3        | 3        | 100%         | 4.00E-03             | 7.25E-03             | 5.22E-03             |
| osal HpCDO                                            | 3        | 3        | 100%         | 1.20E-03             | 2.80E-03             | 2.20E-03             |
| otal HpCDF                                            | 3        | 3        | 100%<br>33%  | 1.80E-03<br>6.00E-04 | 6.70E-03<br>6.00E-04 | 3.50E-03<br>3.67E-04 |
| Total HisCOF                                          | 3        | 3        | 100%         | 7.20E-03             | 1.36E-02             | 9.37E-03             |
| otal PeCDO                                            | 3        | ~        | 0%           |                      |                      | 2.17E-04             |
| otal PeCOF                                            | 3        | 3        | 100%         | 8.50E-03             | 1.89E-02             | 1.27E-02             |
| otal TCDO                                             | 3        | 1        | 33%          | 7.20E-04             | 7.20E-04             | 3.90E-04             |
| foral TCDF                                            | 3        | 3        | 100%         | 1 41E-02             | 2.50E-02             | 1.78E-02             |

Note:

One-half the detection limit is used to represent non-detects in the calculation of average concentrations.

#### Reference Area Forage Fish Sauget Area I

| <u> </u>                                                          |          | Τ        | <del></del> _ |          |          |               |
|-------------------------------------------------------------------|----------|----------|---------------|----------|----------|---------------|
| <b>3</b>                                                          | Number   | Number   | Frequency of  | Minimum  | Maximum  | Average       |
| Compounds Herbicides, ug/kg                                       | Analyzed | Detected | Detection     | Detected | Detected | Concentration |
| 2.4,5-T                                                           | 3        |          | 0%            |          |          | 5.00          |
| 2,4,5-TP (Silvex)                                                 | 3        | ĺ        | 0%            |          |          | 5.00          |
| 2,4-D                                                             | 3        |          | 0%            |          |          | 5.00          |
| 2,4-DB                                                            | 3        | 1 1      | 33%           | 10       | 10       | 6.7           |
| Dalapon<br> Dicamba                                               | 3 3      | l        | 0%<br>0%      |          |          | 1000          |
| Dichloroprop                                                      | 3        | 1        | 33%           | 5.1      | 5.1      | 10<br>35      |
| Dinoseb                                                           | 3        | \        | ~~~           | J. 1     | J. 1     | 50            |
| MCPA[(4-chloro-2-methylphenoxy)-acetic a                          | 3        | 1        | 33%           | 2400     | 2400     | 1467          |
| MCPP[2-(4-chloro-2-methylphenoxy)-propan                          | 3        | ł        | 0%            |          |          | 1000          |
| Pentachiorophenol                                                 | 3        | 1        | 33%           | 2.2      | 2.2      | 5.2           |
| Metals, mg/kg                                                     | _        | _        |               |          |          |               |
| Aluminum<br>Antimony                                              | 3 3      | 3        | 100%<br>0%    | 8.3      | 80       | 34<br>0.09    |
| Arsenic                                                           | 3        | 1        | 0%            |          |          | 1.47          |
| Beryllium                                                         | l š      |          | 0%            |          |          | 0.47          |
| Cadmium                                                           | 3        |          | 0%            |          |          | 0.23          |
| Chromium                                                          | 3        | 3        | 100%          | 0.24     | 1.7      | 0.79          |
| Copper                                                            | 3        | 3        | 100%          | 0.42     | 0.54     | 0.47          |
| Cyanide, Total                                                    | 3        |          | 0%            | i        |          | 5.00          |
| Lead                                                              | 3        |          | 0%            |          |          | 0.23          |
| Mercury<br>Nickel                                                 | 3 3      | 3        | 100%<br>0%    | 0.046    | 0.051    | 0.049<br>4,70 |
| Nickei<br>Selenium                                                | 3        | 1        | 33%           | 0.56     | 0.56     | 4.70<br>0.35  |
| Silver                                                            | 3        | • 1      | 0%            | 0.50     | 0.50     | 0.05          |
| Zinc                                                              | 3        | 3        | 100%          | 17       | 33       | 25            |
| % Lipids                                                          | 3        | 3        | 100%          | 1        | 2.6      | 1.8           |
| PCB, ug/kg                                                        |          |          | 10076         |          | 2,0      |               |
| Decachlorobiphenyl                                                | 3        |          | 0%            |          |          | 42            |
| Dichlorobiphenyl                                                  | 3        |          | 0%            | ļ        |          | 8.33          |
| Heptachlorobiphenyl                                               | 3        |          | 0%            | 1        |          | 25            |
| Hexachlorobiphenyl                                                | 3        |          | 0%            |          |          | 17            |
| Monochlorobiphenyl                                                | 3  <br>3 |          | 0%            |          |          | 8.33          |
| Nonachlorobiphenyl<br>Octachlorobiphenyl                          | 3        |          | 0%<br>0%      |          |          | 42<br>25      |
| Pentachlorobiphenyl                                               | 3        |          | 0%            |          |          | 17            |
| Tetrachlorobiphenyl                                               | 3        |          | 0%            | -        |          | 17            |
| Trichlorobiphenyl                                                 | 3        |          | 0%            |          |          | 8.33          |
| Total PCBs                                                        | ł        |          |               |          |          | 1             |
| Pesticides, ug/kg                                                 |          |          |               |          |          |               |
| 4,4'-DDD                                                          | 2        |          | 0%            |          | ,        | 8.25          |
| 4,4'-DOE                                                          | 2        | 1)       | 50%           | 3.5      | 3.5      | 6.8           |
| 4,4'-DDT<br>Aldrin                                                | 2 2      | - 1      | 0%<br>0%      | 1        |          | 8.25<br>4,20  |
| Alpha Chiordane                                                   | 2        |          | 0%            |          |          | 4.20          |
| alpha-BHC                                                         | 2        |          | 0%            | - 1      |          | 4.20          |
| beta-BHC                                                          | 2 }      | J        | 0%            | j        |          | 4.20          |
| detta-BHC                                                         | 2        |          | 0%            |          |          | 4.20          |
| Dieldrin                                                          | 2        | 1        | 50%           | 4.7      | 4.7      | 7.4           |
| Endosulfan I                                                      | 2        |          | 0%            |          |          | 4.20          |
| Endosulfan II<br>Endosulfan sulfate                               | 2 2      | ł        | 0% <br>0%     |          |          | 8.25<br>8.25  |
| Endrin                                                            | 2        | ĺ        | 0%            | ĺ        | -        | 8.25          |
| Endrin aldehyde                                                   | 2        |          | 0%            |          |          | 8.25          |
| Endrin ketone                                                     | 2 ]      |          | 0%            |          |          | 8.25          |
| Samma Chlordane                                                   | 2        | ľ        | 0%            | ſ        |          | 6.7           |
| gamma-BHC (Lindane)                                               | 2        |          | 0%            |          |          | 4.20          |
| -leptachior                                                       | 2        | ļ        | 0%            | J        |          | 4.20          |
| Heptachlor epoxide<br>Methoxychlor                                | 2 2      |          | 0%<br>0%      | ì        |          | 4.20<br>42    |
| Toxaphene                                                         | 2        | [        | 0%            | [        |          | 420           |
| SVOCs, ug/kg                                                      |          |          |               |          |          | 720           |
| ,2,4-Trichlorobenzene                                             | 3        |          | 0%            |          |          | 85            |
| ,2-Dichlorobenzene                                                | 3        | j        | 0%            | ļ        |          | 85            |
| ,3-Dichlorobenzene                                                | 3        | ł        | 0%            | ł        |          | 85            |
| 1,4-Dichlorobenzene                                               | 3        | ļ        | 0%            |          |          | 85            |
| 2,2'-Oxybis(1-chloropropane)[bis(2-Chlor<br>2,4,5-Trichlorophenol | 3 3      |          | 0% <br>0%     |          |          | 85<br>210     |
| 2,4,5-1 richloropheriol                                           | 3        |          | 0%            | - {      |          | 85            |
| 2,4-Dichlorophenol                                                | 3        |          | 0%            | ļ        |          | 85            |
| 2,4-Dimethylphenol                                                | 3 }      |          | 0%            |          |          | 85            |
| 2,4-Dinitrophenol                                                 | 3 [      | ſ        | 0%            | ĺ        |          | 210           |
| 2,4-Dinitrotoluene                                                | 3        | Ì        | 0%            | ľ        |          | 85            |
| 2,6-Dinitrotoluene                                                | 3        | j        | 0%            | į        |          | 85            |
| 2-Chloronaphthalene                                               | 3        |          | 0%            | į        | [        | 851           |
| 2-Chlorophenol                                                    | 3        |          | 0%            |          |          | 85            |
| -Methyl-4,6-dinitrophenol<br>-Methylnaphthalene                   | 3 3      | 1        | 0% <br>0%     | ſ        | j        | 210<br>85     |
| -Methylphenol (o-cresol)                                          | 3        | ]        | 0%            |          |          | 85<br>85      |
|                                                                   |          |          |               |          |          |               |

### Reference Area Forage Fish Sauget Area I

| Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T           | Γ   |                                        |          |          |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|----------------------------------------|----------|----------|----------------------|
| Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |     | France of                              | Minimum  | Maria    | Average              |
| 2-Niscoprilated   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |     |                                        |          |          | Concentration        |
| SA4-Natingsphannal (mbp-creacis)   3   3.3-Ci-chtonoprisordine   3   0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-Niscentine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del></del> |     |                                        |          |          | 210                  |
| 3.3-Ochronoberocine   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1   |                                        |          |          | 85                   |
| 3-Misconsilve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | l   |                                        |          |          | 85                   |
| 4-Brounophersylphenyl other 4-Chroop-animylphenyl other 4-Chroopanimylphenyl other 4-Chroopanimylphenyl other 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 85                   |
| A-Chicosaminyphrenol A-Chicosaminyphrenol A-Chicosaminyphrenyl ether A-Chicosaminyphrenyl ether A-Chicosaminyphrenyl ether A-Chicosaminyphrenyl ether A-Chicosaminymen A-Chicosaminymen A-Chicosaminymen A-Chicosaminymen A-Chicosaminymen A-Chicosaminymen A-Chicosaminymen A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosaminyphren A-Chicosam |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        | ľ        |          | 210                  |
| A-Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl ether Choopaniny/pharyl e                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 85                   |
| A-Chrosphanylphanyl ether A-Miscophanol A-Miscophanol A-Miscophanol A-Correspitations 3 0% A-Miscophanol A-Correspitations 3 0% Accorrespitations 3 0% Bearco(a)pyrinte 3 0% Bearco(a)pyrinte 3 0% Bearco(a)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 3 0% Bearco(b)pyrinte 4 0% Bearco(b)pyrinte 4 0% Bearco(b)pyrinte 4 0% Bearco(b)pyrinte 4 0% Bearco(b)pyrinte 4 0% Bea |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 85<br>85             |
| ### Afficial Principle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 85                   |
| Additional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 210                  |
| Accinegiffluence   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          | ĺ        | 210                  |
| Activacione   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 85                   |
| Authorizonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     | 0%                                     |          |          | 85                   |
| Berrio(s)   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey   Survey    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3           |     | 0%                                     |          |          | 85                   |
| Bestico(s)   Sucremination   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Berzo(a)entivacene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3           |     | 0%                                     |          |          | 85                   |
| Berroot(s).Pulpreyterne   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3           |     | 0%                                     |          |          | 85                   |
| Berisot/Sucretines   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 85                   |
| Dest2-Crisconstray) prethane   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Beiss(6)n)belyers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |     |                                        |          |          | 85                   |
| bar(2-Chromosthyl) shrar   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 85                   |
| barg2-Ethythroxy(phthetate   3   3   100%   140   280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        | }        |          | 85                   |
| Bulgiteersylphenistee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        | 140      | 200      | 85<br>197            |
| Carbacote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 3   |                                        | 140      | 250      | 197<br>85            |
| Chrystene   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        | 1        |          | 85                   |
| Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphthatate Oxforcytphth |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        | ſ        |          |                      |
| Debarcos(Li)aristracine   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 85                   |
| Disensofar/Allenthracene   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 85                   |
| Description   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   18   37   100%   2.38   2.38   38   38   38   38   38   38   38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3           |     | 0%                                     | 1        | i        | 85                   |
| Description   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diberzoluran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ] 3         |     | 0%                                     |          |          | 85                   |
| Fluoramene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Disthylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ] 3         | 3   | 100%                                   | 18       | 37       | 25                   |
| Place   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 1         |     |                                        | ,        |          | 85                   |
| Hexachtorobinosine Hexachtorobinosine Hexachtorobinosine Hexachtorobinosine Hexachtorobinosine Hexachtorobinosine Hexachtorosine Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Indexo(1,2,3-c)pyrene Ind |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          | :        | 85                   |
| Heischtorobisciene Heischtorocyclopritatiene Heischtorocyclopritatiene Heischtorocyclopritatiene Heischtorocyclopritatiene Heischtorocyclopritatiene Horizothere  3 0% Heischtorocyclopritatiene 3 0% Horizotherocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 3 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 0% Historocyclopritatiene 4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 85                   |
| Hexachtorocyclopentacliene Hexachtorosthorie Hexachtorosthorie Hoderio(1,2,3-cd)pyrene Hoderio(1,2,3-cd)pyrene Hoderio(1,2,3-cd)pyrene Holdrosodi-n-propyternine Holdrosodi-n-propyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphring Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphrinyternine Holdrosodiphring Holdrosodiphring Holdrosodiphring Holdrosodiphring Holdrosodiphring Holdrosodiphring Holdrosodiphring Holdrosodiphring Holdrosodiphring Holdrosodiphring Holdrosodiphring Holdrosodiphring Holdro |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 85                   |
| Hesschtoroeinene   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | [   |                                        |          |          | 85                   |
| Indento(1.2.3-cd)pyreme   3   0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1   |                                        |          |          | 85<br>85             |
| Image: Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Compariso   | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |             |     |                                        |          |          | 85                   |
| n-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine N-Hibrosodiphenylamine |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1   |                                        |          |          | 85                   |
| Naphthalere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1   |                                        |          |          | 85                   |
| Naphshalene   3   0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 85                   |
| Persectionspherol 3 0% Phenol 3 0% Phenol 3 0% Pyrene 3 0% Pyrene 3 0%  Total PANs  Disclars and Furans, upto 12,34,6,7,8-9,000 3 1,805-02 4,7 12,34,6,7,8-9,000 3 2 67% 1,805-03 1,805-02 6,6 12,34,6,7,8-9,000 3 1 33% 1,805-03 1,805-03 3,5 12,34,7,8-9,000 3 1 33% 1,805-03 1,805-03 6,1 12,34,7,8-9,000 3 1 33% 1,805-03 1,805-03 6,1 12,34,7,8-9,000 3 0% 2,9 12,34,7,8-9,000 3 1,805-04 5,705-04 4,0 12,36,7,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 12,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 3 0% 1,8 13,37,8-9,000 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3           | 1   | 0%                                     |          |          | 85                   |
| Premission   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mirobergane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3           |     | 0%                                     |          |          | 85                   |
| Prent 3 0% Pyrene 3 0%  Total PANs  Dischass and Furans, tepts  123.46.7.8-9-0000 3 3 100% 2.23E-02 6.80E-02 4.7  123.46.7.8-9-0000 3 3 100% 1.80E-03 1.80E-02 6.6  1.23.46.7.8-10000 3 3 100% 1.80E-03 1.80E-03 3.5  1.23.47.8-10000 3 1 33% 1.80E-03 1.60E-03 6.1  1.23.47.8-10000 3 0%  1.23.47.8-10000 3 0%  1.23.47.8-10000 3 0%  1.23.47.8-10000 3 0%  1.23.47.8-10000 3 0%  1.23.47.8-10000 3 0%  1.23.47.8-10000 3 0%  1.23.47.8-10000 3 0%  1.23.47.8-10000 3 0%  1.23.47.8-10000 3 0%  1.23.47.8-10000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.000 3 0%  1.23.48.48.0000 3 0%  1.23.48.48.0000 3 0%  1.23.48.48.0000 3 0%  1.23.48.48.0000 3 0%  1.23.48.48.0000 3 0%  1.23.48.48.0000 3 0%  1.23.48.48.0000 3 0%  1.23.48.48.0000 3 0%  1.23.48.48.0000 3 0%  1.23.48.48.0000 3 0%  1.23.48.48.0000 3 0%  1.23.48.48.0000 3 0%  1.23.48.48.0000 3 0%  1.23.48.48.0000 3 0%  1.23.48.48.0000 3 0%  1.23.48.48.0000 3 0%  1.23.48.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.00000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  1.23.48.0000 3 0%  | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |     | 0%                                     |          |          | 210                  |
| Pyrone 3 0%  Total PANs  Disciss and Furans, up/kg 12.34.67.8-9.000 3 3 100% 2.23E-02 6.80E-02 4.7 12.34.67.8-9.000 3 3 100% 2.23E-02 6.80E-02 4.7 12.34.67.8-9.000 3 3 100% 1.80E-03 1.80E-03 3.5 12.34.67.8-9.000 3 1.80E-03 1.80E-03 3.5 12.34.7.8-9.000 3 1 33% 1.80E-03 1.80E-03 6.1 12.34.7.8-9.000 3 0% 2.9 12.34.7.8-9.000 3 100% 2.30E-04 5.70E-04 4.0 12.36.7.8-9.000 3 0% 1.8 12.37.8-9.000 3 0% 1.00% 1.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 85                   |
| Tetal PANs  Disches and Furans, uping  12348789-0000 3 3 100% 2.23E-02 6.80E-02 4.7  12348789-0000 3 3 100% 1.80E-03 1.80E-02 6.6  12348789-0000 3 3 100% 1.80E-03 4.70E-03 3.5  12348789-19000 3 1 33% 1.80E-03 1.80E-03 6.1  1234789-19000 3 0% 1.8  1234789-19000 3 0% 1.8  123678-19000 3 100% 2.30E-04 5.70E-04 4.0  123678-19000 3 0% 1.1  123789-19000 3 0% 1.1  123789-19000 3 0% 1.3  123789-19000 3 0% 1.5  123789-19000 3 0% 1.5  123789-19000 3 0% 1.5  123789-19000 3 0% 1.5  123789-19000 3 0% 1.5  123789-19000 3 0% 1.5  123789-19000 3 0% 1.3  234878-19000 3 0% 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 85                   |
| Disciss and Furans, uploy   12,34,87,89-OCDO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pyrine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3           |     | 0%                                     |          |          | 85                   |
| Disciss and Furans, uploy   12,34,87,89-OCDO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tetal PAHs_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -† I        |     |                                        |          |          |                      |
| 12346749-0000 3 3 100% 223E-02 6.80E-02 4.7 12346749-000F 3 2 67% 1.80E-03 1.80E-02 6.6 12346749-000F 3 3 100% 1.80E-03 1.80E-03 3.5 12346749-000F 3 1 33% 1.80E-03 1.80E-03 6.1 1234749-000F 3 0% 2.9 1234749-000F 3 100% 2.30E-04 5.70E-04 4.0 1236749-000F 3 0% 1.2 123749-000F 3 0% 1.1 123749-000F 3 0% 1.3 123749-000F 3 0% 1.3 123749-000F 3 0% 1.3 123749-000F 3 0% 1.3 123749-000F 3 0% 1.3 123749-000F 3 0% 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |     | ······································ |          |          |                      |
| 123.46.78-HgCDF 3 100% 1.80E-03 4.70E-03 3.5<br>123.47.89-HgCDF 3 1 33% 1.80E-03 1.60E-03 6.1<br>123.47.89-HgCDF 3 0% 2.9<br>123.47.89-HgCDF 3 100% 2.30E-04 5.70E-04 4.0<br>123.67.89-HgCDF 3 100% 2.30E-04 5.70E-04 4.0<br>123.67.89-HgCDF 3 0% 1.1<br>123.7.89-HgCDF 3 0% 1.0<br>123.7.89-HgCDF 3 0% 1.5<br>123.7.89-HgCDF 3 0% 1.5<br>123.7.89-HgCDF 3 0% 1.5<br>123.7.89-HgCDF 3 0% 1.5<br>123.7.89-HgCDF 3 0% 1.5<br>123.7.89-HgCDF 3 0% 1.5<br>123.7.89-HgCDF 3 0% 1.5<br>123.7.89-HgCDF 3 0% 1.5<br>123.7.89-HgCDF 3 0% 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2.3.4.6.7.8.9-OCDO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ] 3         | 3   | 100%                                   | 2.23E-02 | 6.80E-02 | 4.76E-02             |
| 12.3.4.6.7.8-HgCDF 3 1.60E-03 1.60E-03 6.1 12.3.4.7.8-HgCDF 3 0% 1.8 12.3.4.7.8-HgCDF 3 0% 1.8 12.3.4.7.8-HgCDF 3 100% 2.30E-04 5.70E-04 4.0 12.3.4.7.8-HgCDD 3 100% 4.40E-04 6.60E-04 5.6 12.3.6.7.8-HgCDD 3 0% 1.1 12.3.7.8-HgCDD 3 0% 2.0 12.3.7.8-HgCDD 3 0% 1.9 12.3.7.8-HgCDD 3 0% 1.9 12.3.7.8-HgCDD 3 1 33% 9.50E-04 9.50E-04 4.1 12.3.7.8-HgCDD 3 1 33% 9.50E-04 9.50E-04 4.1 12.3.7.8-HgCDD 3 0% 1.3 12.3.7.8-HgCDD 3 0% 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 6.63E-03             |
| 12.3.47.8.9-bcCDF 3 0% 2.5 12.3.47.8-bcCDF 3 0% 1.8 12.3.47.8-bcCDF 3 0% 1.8 12.3.47.8-bcCDF 3 100% 2.30E-04 5.70E-04 4.0 12.3.67.8-bcCDF 3 0% 1.1 12.3.7.8-bcCDF 3 0% 2.0 12.3.7.8-bcCDF 3 0% 1.5 12.3.7.8-bcCDF 3 0% 1.5 12.3.7.8-bcCDF 3 0% 1.5 12.3.7.8-bcCDF 3 0% 1.5 12.3.7.8-bcCDF 3 0% 1.3 12.3.7.8-bcCDF 3 0% 1.3 12.3.7.8-bcCDF 3 0% 1.3 12.3.7.8-bcCDF 3 0% 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | _   |                                        |          |          | 3.57E-03             |
| 12.3.47,8-HsCDD 3 0% 1.8<br>12.3.47,8-HsCDF 3 3 100% 2.30E-04 5.70E-04 4.0<br>12.3.67,8-HsCDD 3 3 100% 4.40E-04 6.60E-04 5.6<br>12.3.67,8-HsCDD 3 0% 1.1<br>12.3.7,8-HsCDD 3 0% 2.0<br>12.3.7,8-HsCDF 3 0% 1.5<br>12.3.7,8-PsCDD 3 1 33% 9.50E-04 9.50E-04 4.1<br>12.3.7,8-PsCDD 3 0% 1.3<br>12.3.7,8-PsCDD 3 0% 1.3<br>12.3.7,8-PsCDF 3 0% 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1 ; |                                        | 1.60E-03 | 1.60E-03 | 6.17E-04             |
| 2.3.47,8-HsCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>    |     | ~~                                     |          |          | 2.506-04             |
| 12.3.67.6-HsCDD 3 3 100% 4.40E-04 6.60E-04 5.8<br>12.3.67.6-HsCDF 3 0% 2.0<br>12.3.7.6-HsCDF 3 0% 2.0<br>12.3.7.6-HsCDF 3 0% 1.5<br>12.3.7.6-HsCDF 3 1 33% 9.50E-04 9.50E-04 4.1<br>12.3.7.6-HsCDF 3 0% 1.3<br>12.3.7.6-HsCDF 3 0% 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | _   |                                        |          |          | 1.836-04             |
| 12.38.76-HsCOF 3 0% 1.1<br>12.37.86-HsCOF 3 0% 20<br>12.37.86-HsCOF 3 0% 1.9<br>12.37.86-HsCOF 3 1 33% 9.50E-04 9.50E-04 4.1<br>12.37.86-HsCOF 3 0% 1.3<br>12.37.86-HsCOF 3 0% 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 4.00E-04             |
| 123789-biCDD 3 0% 20<br>123789-biCDF 3 0% 1.5<br>12378-biCDF 3 1 33% 9.50E-04 9.50E-04 4.1<br>12378-biCDF 3 0% 1.3<br>234878-biCDF 3 0% 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 3   |                                        | 4.40E-04 | 6.6UE-04 | 5.606-04             |
| 1.23.7.6.FHCOF 3 0% 1.9<br>1.23.7.6.FHCOF 3 1 33% 9.50E-04 9.50E-04 4.1<br>1.23.7.6.FHCOF 3 0% 1.3<br>23.4.6.7.6.HHCOF 3 0% 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Transport Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of the Countries of  |             |     |                                        |          |          | 1.17E-04             |
| 2.2.7.6-PeCOD 3 1 33% 9.50E-04 9.50E-04 4.1<br>2.2.7.6-PeCOF 3 0% 1.3<br>2.3.4.6.7.6-PeCOF 3 0% 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 2.006-04             |
| 2.2.7.6-PCOF 3 0% 1.3<br>2.3.6.7.6-PCOF 3 0% 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1   |                                        | 9 50F-04 | 0.505.04 | 1.50E-04<br>4.17E-04 |
| 3 0% 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | •   |                                        |          | J.JUE-04 | 1.336-04             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        |          |          | 1.336-04             |
| Landra and the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro | 23.4.7.8-PeCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3           |     | 0%                                     |          |          | 1.50E-04             |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 3   |                                        | 4.60E-04 | 8.60E-04 | 6.00E-04             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |                                        | _        |          | 3.01E-04             |

Note: One-half the detection limit is used to represent non-detects in the calculation of average concentrations.

#### Combined Summary Statistics for Largemouth Bass and Brown Bullhead Borrow Pit Lake Sauget Area I

| Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Number<br>Analyzed | Number<br>Detected | Frequency of Detection | Minimum<br>Detected | Maximum<br>Detected | Average<br>Concentration |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|------------------------|---------------------|---------------------|--------------------------|
| Herbicides, ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Aliailiten       | PAIGCEG            | Perection              | D-Bracker           | Defected.           | Concentratio             |
| 2,4,5-T (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                  |                    | 0%                     |                     |                     | 5.0                      |
| 2,4,5-TP (Silvex)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                  | i                  | 0%                     |                     |                     | 5.0                      |
| 2,4-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                  | ]                  | 0%                     | İ                   | l i                 | 5.0                      |
| 2.4-DB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                  | }                  | 0%                     |                     | }                   |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                        |                     |                     | 5.0                      |
| Dalapon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                  |                    | 0%                     |                     | 1                   | 10                       |
| Dicamba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                  | 1                  | 17%                    | 1.90                | 1.90                | 6.9                      |
| Dichloroprop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                  | 1 !                | 17%                    | 6.60                | 6.60                |                          |
| Dinoseb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                  |                    | 0%                     |                     | i                   |                          |
| MCPA[(4-chloro-2-methylphenoxy)-acetic a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                  | 1 1                | 17%                    | 1,800.00            | 1,800.00            | 11                       |
| MCPP[2-(4-chloro-2-methylphenoxy)-propan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                  |                    | 0%                     | .,000               | 1,000.00            | . 10                     |
| Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                  |                    | 0%                     |                     |                     | 8.                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    | U761                   |                     |                     | <u>0</u> .               |
| Aetals, mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | _                  | }                      |                     |                     |                          |
| Numinum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                  | 5                  | 83%                    | 7.70                | 33.00               |                          |
| Intimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                  |                    | 0%                     |                     | l i                 | 0.0                      |
| vrsenic (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                  |                    | 0%                     |                     | 1                   | 2.3                      |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                  | į                  | 0%                     | i                   |                     | 0.4                      |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                  |                    | 0%                     | 1                   |                     | 0.2                      |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                  | 6                  | 100%                   | 0.27                | 0.93                | 0.5                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                  |                    | 100%                   | 0.41                |                     | 0.6                      |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | 6                  |                        | 0.41                | 0.89                |                          |
| yanide, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                  | 1                  | 0%                     |                     |                     |                          |
| ead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                  | 1                  | 17%                    | 0.25                | 0.25                | 0.2                      |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6 }                | 5                  | 83%                    | 0.050               | 0.26                | 0.0                      |
| lickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                  | j                  | 0%                     | ł                   |                     |                          |
| elenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6 (                | . 2                | 33%                    | 0.60                | 0.63                | 0.3                      |
| ilver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                  | - }                | 0%                     | 3.50                | 5.00                | 0.0                      |
| and the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control |                    | [                  |                        | اءر                 | امما                | 0.0                      |
| inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                  | 6                  | 100%                   | 15                  | 22                  |                          |
| Lipid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                  | 6                  | 100%                   | 0.30                | 1.8                 |                          |
| CB, ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del>-</del> -     | <del>~</del> *+    | 700 761                |                     | <del></del>         | <del></del>              |
| ecachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                  | <b>§</b>           | 0%                     |                     | 1                   |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | ì                  |                        | j                   | 1                   |                          |
| ichlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                  | _ [                | 0%                     | 4.0                 |                     | !                        |
| eptachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 [                | 2                  | 33%                    | 16                  | 21                  |                          |
| exachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 }                | 5                  | 83%                    | 43                  | 150                 |                          |
| lonochlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 [                | 1                  | 0%                     | 1                   | ì                   |                          |
| onachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                  | · · · · · ·        | 0%                     |                     | i i                 |                          |
| ctachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                  |                    | 0%                     | - 1                 |                     |                          |
| entachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 1                | 5                  | 83%                    | 30                  | 130                 |                          |
| etrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                  | 2                  | 33%                    | 19                  | 46                  |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | - [                |                        | 18(                 |                     |                          |
| richlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 }                | i                  | 0%)                    |                     | 1                   |                          |
| otal PCBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 (                | 5 أ                | 83%                    | 76                  | 320                 | 1                        |
| esticides, ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                    |                        |                     |                     |                          |
| 4'-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                  | ł                  | 0%                     |                     |                     | ;                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                  | أء                 |                        | ا م                 |                     | •                        |
| 4'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | 5                  | 83%                    | 3.4                 | 29                  |                          |
| A'-DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 }                | Į.                 | 0%∤                    |                     |                     |                          |
| otal DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                  | 5                  | 83%                    | 3.4                 | 29                  |                          |
| ldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 }                | j                  | 0%i                    | }                   | i                   |                          |
| lpha Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 (                | 1 }                | 17%                    | 12                  | 12                  |                          |
| pha-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                  | 1                  | 0%                     |                     |                     |                          |
| eta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                  | į                  | 0%                     | 1                   |                     |                          |
| atta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                  | }                  |                        | 1                   |                     | -                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | ł                  | 0%{                    | l                   | j                   |                          |
| ieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                  | į                  | 0%                     | ļ                   | 1                   | •                        |
| ndosulfan (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 {                | 1                  | 0%{                    | ļ                   |                     | •                        |
| ndosulfan li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                  | ŀ                  | 0%[                    | ł                   | Í                   | •                        |
| ndosulfan sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                  | j                  | 0%                     | i                   | 1                   |                          |
| ndrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                  | Į                  | 0%                     | i                   |                     |                          |
| ndrin aldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                  | ł                  | 0%                     |                     | !                   |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | }                  |                        | 1                   | 1                   |                          |
| ndrin ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                  | _ }                | 0%                     |                     |                     |                          |
| amma Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                  | 3 {                | 50%                    | 11                  | 19                  |                          |
| ımma-BHC (Lindane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 }                | 1                  | 0%]                    |                     | ļ ļ                 | ' ·                      |
| eptachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                  | 2                  | 33%                    | 1.5                 | 2.8                 |                          |
| eptachlor epoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                  | - 1                | 0%                     |                     | }                   |                          |
| ethoxychlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                  | ł                  | 0%                     | i                   | 1                   |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | J                  |                        | į                   | 1                   | 9                        |
| oxaphene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                  |                    | 0%                     |                     |                     | 3                        |
| /OCs, ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                  | -1                 | · ·                    | ſ                   | ļ <b>,</b>          |                          |
| 2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                  | 1                  | 0%                     | 1                   | 1                   |                          |
| 2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                  | į                  | 0%                     |                     | l                   |                          |
| 3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                  | į                  | 0%                     | į                   |                     |                          |
| 4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                  | ļ                  | 0%                     |                     |                     |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | ŀ                  |                        |                     |                     |                          |
| 2'-Oxybis(1-chloropropane)[bis(2-Chlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                  | ł                  | 0%                     | 1                   |                     |                          |
| 4,5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                  | ì                  | 0%                     |                     |                     | 1                        |
| 4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                  | Į.                 | 0%                     |                     | 1                   |                          |
| 4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                  |                    | 0%                     |                     |                     |                          |
| 4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                  | ł                  | 0%                     |                     |                     |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                  | ī                  |                        |                     | 1                   |                          |
| 4-Dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | j                  | 0%                     |                     |                     | 2                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6)                 | 1                  | 0%                     | Ì                   | l l                 |                          |
| 4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                    |                        |                     |                     |                          |
| 4-Dinitrotoluene<br>6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 }                | ł                  | 0%                     |                     |                     |                          |
| 4-Dinitrotoluene<br>6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | Ì                  | 0%<br>0%               |                     |                     |                          |
| 4-Dinitrotoluene<br>6-Dinitrotoluene<br>Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6  <br>6           |                    | 0%                     |                     |                     |                          |
| 4-Dinitrotoluene<br>5-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 }                |                    |                        |                     |                     |                          |

# Combined Summary Statistics for Largemouth Bass and Brown Bullhead Borrow Pit Lake Sauget Area I

| ·                                                       | 1        | <del></del> | <u> </u>     |                      |                      |                               |
|---------------------------------------------------------|----------|-------------|--------------|----------------------|----------------------|-------------------------------|
|                                                         | Number   | Number      | Frequency of | Minimum              | Maximum              | Average                       |
| Compounds                                               | Analyzed | Detected    | Detection    | Detected             | Detected             | Concentration                 |
| 2-Methylphenol (o-cresol)<br>2-Methylphenol (o-cresol)  | 6        |             | 0%           |                      |                      | 85<br>210                     |
| 2-Nitrophenol                                           | 6        |             | 0%           |                      |                      | 85                            |
| 384-Methylphenal (m&p-cresal)<br> 3,3-Dictionabenzidine | 5        |             | 0%<br>0%     |                      |                      | 85<br>85                      |
| 3-Nimanine                                              | 6        |             | 0%           |                      |                      | 210                           |
| 4-Bromophenylphenyl ether                               | 6        |             | 0%           |                      |                      | 85                            |
| 4-Chloro-3-methylphenol<br>4-Chloroeniline              | 6        |             | 0%<br>0%     |                      |                      | 85<br>85                      |
| 4-Chlorophenylphenyl ether                              | 6        |             | 0%           |                      |                      | 85                            |
| 4-Miroanline                                            | 6        |             | 0%           |                      |                      | 210                           |
| 4-Mirophenol<br>Acentohihene                            | 6        |             | 0%<br>0%     |                      |                      | 210<br>85                     |
| Acenephenylene                                          | 6        |             | 0%           |                      |                      | 85                            |
| Arithracene                                             | 6        |             | 0%<br>0%     |                      |                      | 85<br>85                      |
| Benzo(a)prene<br>Benzo(a)pyrene                         | 6        |             | 0%           |                      |                      | 85                            |
| Berzo(b)fluoranthene                                    | 6        |             | 0%           |                      |                      | 85                            |
| Berezo(g.h.i)perylene                                   | 6        |             | 0%<br>0%     |                      |                      | 85<br>85                      |
| Berzo(k)fluoranthene<br>bis(2-Chloroethoxy)methene      | 6        |             | 0%           |                      |                      | 85                            |
| bis(2-Chicrosthyl)ather                                 | 6        |             | 0%           |                      |                      | 85                            |
| tio(2-Ethylhexy))phthelate                              | 6        | 1           | 17%          | 97                   | 97                   | 90<br>85                      |
| Butylberzylphthelate<br>Carbszole                       | 6        |             | 0%           |                      |                      | 85                            |
| Chrystene                                               | 6        |             | 0%           |                      |                      | 85                            |
| D-n-busylphthalale D-n-occylphthalale                   | 6        | 1           | 17%<br>0%    | 32                   | 32                   | 76<br>85                      |
| Olbertzo(a,h)enthracene                                 | 6        |             | 0%           |                      |                      | 85<br>85                      |
| Dibereofuran                                            | 6        | _           | 0%           |                      |                      | 85                            |
| Distrytphthelate Distratrytphthelate                    | 6        | 1           | 17%<br>0%    | 18                   | 18                   | 74<br>85                      |
| Pupramere                                               | 6        |             | 0%           |                      |                      | 85                            |
| Ruprene                                                 | 6        |             | 0%           |                      |                      | 85                            |
| Herachtoroberzene<br>Herachtorobetadiene                | 6        |             | 0%<br>0%     |                      |                      | 85<br>85                      |
| Hexachtorocyclopentadiene                               | 6        |             | 0%           |                      |                      | 85                            |
| Herachtoroethene                                        | 6        |             | 0%           |                      |                      | 85                            |
| Indeno(1,2,3-cd)pyrene<br>Isophorone                    | 6        |             | 0%<br>0%     |                      |                      | 85<br>85                      |
| n-Hibrosod-in-propytemine                               | 6        |             | 0%           |                      |                      | 85                            |
| N-Nitrosodiphenytamine/Diphenytamine<br>Naphthelene     | 6        |             | 0%<br>0%     |                      |                      | 85<br>85                      |
| Mirobanzana                                             | 6        |             | 0%           |                      |                      | 106                           |
| Pentachiorophenol                                       | 6        |             | 0%           |                      |                      | 180                           |
| Phenedicuse<br>Phanel                                   | 6        |             | 0%<br>0%     |                      |                      | 85<br>85                      |
| Pyrene                                                  | 5        |             | 0%           |                      |                      | 85                            |
| Total PANs                                              | 6        |             | 0%           |                      |                      | 85                            |
| Diamins and Forens, ugiting                             |          |             |              |                      |                      |                               |
| 12346749-0000                                           | 6        | 3           | 50%          | 1.02E-02             | 1.15E-02             | 8.71E-03                      |
| 1,2,3,4,6,7,8,9-OCDF<br>1,2,3,4,6,7,9-HpCDD             | 6        | 3           | 50%<br>50%   | 6.55E-04<br>1.50E-03 | 1.20E-03<br>3.00E-03 | 9.61E-04<br>1.55E-03          |
| 1,2,3,4,6,7,8-HpCDF                                     | 6        | 1           | 17%          | 5.45E-04             | 5.45E-04             | 2.41E-04                      |
| 1.2.3.4.7.8.9.HpCDF<br>1.2.3.4.7.8.HbCDD                | 6        |             | 0%           | 4 005 04             | 4 205 04             | 2.38E-04                      |
| 1,2,3,4,7,8-HiCDF                                       | 6<br>6   | 1           | 17%<br>67%   | 1.80E-04<br>4.80E-04 | 1.80E-04<br>1.40E-03 | 2.05E-04<br>6.14E-04          |
| 1,2,3,6,7,8-HiCDO                                       | 6        | 4           | 67%          | 5.40E-04             | 2.40E-03             | 9.10E-04                      |
| 1.2.3.6.7.8-Hi-COF                                      | 6<br>6   | 2           | 33%          | 2.30E-04             | 2.45E-04             | 1.88E-04                      |
| 1,2,3,7,8,9+6CD0<br>1,2,3,7,8,9+6COF                    | 6        | 1           | 0%<br>17%    | 6.90E-04             | 6.90E-04             | 1.92E-04<br>2.57E-04          |
| 1.2.3.7.8-PeC00                                         | 6        | 4           | 67%          | 4.20E-04             | 1.10E-03             | 6.49E-04                      |
| 1,2,3,7,8 <del>-Pu</del> CDF<br>2,3,4,8,7,8-HuCDF       | 6        | 3           | 17%<br>50%   | 1.10E-03<br>1.80E-04 | 1.10E-03<br>3.80E-04 | 2.78E-04<br>2.52E-04          |
| 2.3.4.7.8-PeCOF                                         | 6        | 5           | 83%          | 7.10E-04             | 1.60E-03             | 2.52E-04<br>9.85E-04          |
| 2.3.7.6-TCD0                                            | 6        | 4           | 67%          | 3 30E-04             | 9.00E-04             | 6.44E-04                      |
| 2,3,7,8-TCDF<br>Total HgCDD                             | 6        | 6<br>5      | 100%         | 1.20E-03             | 1.14E-02             | 6.05E-03                      |
| Total HgCOF                                             | 6        | 4           | 83%<br>67%   | 1.40E-03<br>1.80E-03 | 3.00E-03<br>6.70E-03 | 1.96E-03<br>4.14E-03          |
| Total HiCDO                                             | 6        | 4           | 67%          | 5 40E-04             | 2.40E-03             | 1.03E-03                      |
| Total HuCDF                                             | 6        | 3           | 50%          | 1.06E-02             | 3.80E-02             | 2.06E-02                      |
| Total PeCDD<br>Total PeCDF                              | 6        | 4 3         | 67%<br>50%   | 4.20E-04<br>1.87E-02 | 1.18E-03<br>4.91E-02 | 7.01E-04<br>2. <b>79E-</b> 02 |
| Total TCDD                                              | 6        | 3           | 50%          | 3.30E-04             | 1.20E-03             | 6.30E-04                      |
| Total TCDF                                              | 6        | 3           | 50%          | 2.20E-02             | 5.30E-02             | 3.56E-02                      |

Note: One-half the detection limit is used to represent non-detects in the calculation of average concentrations.

#### Creek Sector F Plant Tissue Summary Statistics Sauget Area I

|                                                                                            | Number           | Number   | Frequency of   | Minimum  | Maximum  | Average                      |
|--------------------------------------------------------------------------------------------|------------------|----------|----------------|----------|----------|------------------------------|
| Compounds                                                                                  | Analyzed         | Detected | Detection      | Detected | Detected | Concentration                |
| Herbicides, ug/kg                                                                          |                  |          |                |          |          |                              |
| 2,4,5-T (ug/kg)                                                                            | 2                |          | 0%             |          | l        | 5.0                          |
| 2,4,5-TP (Silvex)                                                                          | 2                |          | 0%             |          |          | 5.0                          |
| 2,4-D                                                                                      | 2                |          | 0%             |          |          | 5.0                          |
| 2,4-DB                                                                                     | 2                | i        | 0%             |          |          | 5.0                          |
| Dalapon                                                                                    | 2                |          | 0%             |          |          | 1000                         |
| Dicamba                                                                                    | 2                | ا م      | 0%             | _        | _        | 10                           |
| Dichloroprop                                                                               | 2                | 1        | 50%            | 7        | 7        | 29                           |
| Dinoseb                                                                                    | 2                |          | 0%             |          |          | 50                           |
| MCPA[(4-chloro-2-methylphenoxy)-acetic a                                                   | 2                |          | 0%             |          |          | 1000                         |
| MCPP[2-(4-chloro-2-methylphenoxy)-propan                                                   | 2                |          | 0%             |          |          | 1000                         |
| Pentachlorophenol                                                                          | 2                |          | 0%             |          |          | 10                           |
| Metals, mg/kg<br>Aluminum                                                                  | 2                | 2        | 100%           | 30       | 44       | ] 37                         |
| Antimony                                                                                   | 2                | 1        | 50%            | 0.13     | 0.13     | 0.12                         |
| Arsenic                                                                                    | 2                | 2        | 100%           | 0.13     | 0.13     | 0.12                         |
| Beryllium                                                                                  | 2                | 2        | 0%             | 0.42     | 0.56     | 0.50                         |
| Cadmium                                                                                    | 2                | 1        | 50%            | 0.097    | 0.097    | 0.50                         |
| Chromium                                                                                   | 2                | •        | 0%             | 0.097    | 0.097    |                              |
|                                                                                            |                  | _        |                | 4.0      | 2.4      | 0.25                         |
| Copper                                                                                     | 2                | 2        | 100%           | 1.9      | 2.1      | 2.0                          |
| Cyanide, Total                                                                             | 2                | اہ       | 0%             |          |          | 5.0                          |
| Lead                                                                                       | 2                | 2        | 100%           | 0.44     | 1.2      | 0.82                         |
| Mercury<br>Nickel                                                                          | 2                | 2        | 0%<br>100%     | ا م      |          | 0.0093                       |
| vickei<br>Selenium                                                                         | 2 2              | 4        | 100%           | 1.2      | 2.6      | 1.9                          |
| Silver                                                                                     | 2                |          | 0%             |          |          | 0.25<br>0.044                |
| Zinc                                                                                       | 2                | 2        | 100%           | 20       | 26       | 23                           |
| · · · · · · · · · · · · · · · · · · ·                                                      |                  |          | 100%           | 20       |          |                              |
| PCBs and Pesticides, ug/kg                                                                 |                  |          |                |          |          |                              |
| Decachlorobiphenyl                                                                         | 2                |          | 0%             | i        |          | 25                           |
| Dichlorobiphenyl                                                                           | 2                |          | 0%             |          |          | 5.0                          |
| leptachlorobiphenyl                                                                        | 2                | ì        | 0%             | ì        |          | 15                           |
| lexachlorobiphenyl                                                                         | 2                |          | 0%             |          |          | 10                           |
| Monochlorobiphenyl                                                                         | 2                | 1        | 0%             | Į.       |          | 5.0                          |
| lonachlorobiphenyl                                                                         | 2                |          | 0%             |          |          | 25                           |
| Octachlorobiphenyl                                                                         | 2                | 1        | 0%             | - 1      |          | 15                           |
| Pentachlorobiphenyl                                                                        | 2                | i        | 0%             |          |          | 10                           |
| etrachlorobiphenyl                                                                         | 2                | :        | 0%             |          |          | 10                           |
| richlorobiphenyl                                                                           | 2                | J        | 0%             |          |          | 5.0                          |
| otal PCBs                                                                                  | 2                | J        | 0%[            |          |          | 15                           |
| ,4'-DDD (ug/kg)                                                                            | 2                | 1        | 0%             |          |          | 13                           |
| ,4'-DDE                                                                                    | 2                | ŀ        | 0%             |          |          | 13                           |
| ,4'-DDT                                                                                    | 2                |          | 0%             |          |          | 13                           |
| otal DDT                                                                                   | 2                |          | 0%             | 0.04     | 0.04     | 13                           |
| ldrin                                                                                      | 2                | 1 }      | 50%            | 0.81     | 0.81     | 3.9                          |
| Ipha Chlordane<br>Ipha-BHC                                                                 | 2                |          | 0%<br>0%       |          |          | 7.0                          |
| eta-BHC                                                                                    | 2                |          |                | l        |          | 7.0                          |
| eta-BHC                                                                                    | 2 2              | ŀ        | 0%<br>0%       | ļ        |          | 7.0                          |
| Pieldrin                                                                                   | 2                | 1        | 0%             | ł        |          | 7.0<br>13                    |
| ndosulfan I                                                                                | 2                | i        | 0%             | - (      |          | 7.0                          |
| ndosulfan II                                                                               | 2                |          | 0%             |          |          | 13                           |
| ndosulfan sulfate                                                                          | 2                | i        | 0%             |          |          | 13                           |
| ndrin                                                                                      | 2                | l l      | 0%1            | ļ        |          | 13                           |
| ndrin aldehyde                                                                             | 2                |          | 0%             |          |          | 13                           |
| ndrin ketone                                                                               | 2                | ł        | 0%             | 1        |          | 13                           |
| Samma Chlordane                                                                            | 2                | 1        | 50%            | 3.1      | 3.1      | 5.1                          |
| amma-BHC (Lindane)                                                                         | 2                | ']       | 0%             | ا'.''    | 5.1      | 7.0                          |
| leptachior                                                                                 | 2                | 2        | 100%           | 1.8      | 1.9      | 1.9                          |
| eptachlor epoxide                                                                          | 2                | -        | 0%             |          | 1.0      | 7.0                          |
| lethoxychlor                                                                               | 2                | Į        | 0%{            | (        |          | 70                           |
| oxaphene                                                                                   | 2                |          | 0%             |          |          | 360                          |
| VOCs, ug/kg                                                                                | <del>~</del> †   |          |                |          |          | 300                          |
| ,2,4-Trichlorobenzene                                                                      | 2                |          | 0%             |          |          | 85                           |
| 2-Dichlorobenzene                                                                          | 2                | i        | 0%             |          |          | 85                           |
| 3-Dichlorobenzene                                                                          | 2                | J        | 0%             | ļ        |          | 85                           |
| 4-Dichlorobenzene                                                                          | 2                | ł        | 0%             | ł        |          | 85                           |
| 2'-Oxybis(1-chloropropane)[bis(2-Chlor                                                     | 2                | 1        | 0%             |          |          | 85                           |
| 4,5-Trichlorophenol                                                                        | 2                |          | 0%             |          |          | 210                          |
| 4,6-Trichlorophenol                                                                        | 2                |          | 0%             |          |          | 85                           |
| 4-Dichlorophenol (ug/kg)                                                                   | 2                |          | 0%             |          |          | 85                           |
| 4-Dimethylphenol                                                                           | 2                | 1        | 50%            | 51       | 51       | 68                           |
| 4-Dinitrophenol                                                                            | 2                |          | 0%             | - ' '    | - '      | 210                          |
| 4-Dinitrotoluene                                                                           | 2                |          | 0%             |          |          | 85                           |
| .4~DilkU0l0lu6li6                                                                          | 2                | ,        | 0%             |          | '        | 85                           |
|                                                                                            |                  | ì        | 0%             | ſ        |          | 85                           |
| 6-Dinitrotoluene                                                                           | 2                | ı        |                |          |          |                              |
| 6-Dinitrotoluene<br>-Chloronaphthalene                                                     | 2                |          |                | 1        |          | 85                           |
| 6-Dinitrotoluene<br>-Chloronaphthalene<br>-Chlorophenol                                    | 2 2              |          | 0%             |          |          |                              |
| 6-Dinitrotoluene -Chloronaphthalene -Chlorophenol -Methyl-4,6-dinitrophenol                | 2<br>2<br>2      |          | 0%<br>0%       |          |          | 210                          |
| 6-Dinitrotoluene Chioronaphthalene Chiorophenol Methyl-4,6-dinitrophenol Methylnaphthalene | 2<br>2<br>2<br>2 |          | 0%<br>0%<br>0% |          |          | 210<br>85                    |
| 6-Dinitrotoluene -Chloronaphthalene -Chlorophenol -Methyl-4,6-dinitrophenol                | 2<br>2<br>2      |          | 0%<br>0%       |          |          | 85<br>210<br>85<br>85<br>210 |

### Creek Sector F Plant Tissue Summary Statistics Sauget Area I

|                                         |            | 1                  |                           |                     |                     |                         |
|-----------------------------------------|------------|--------------------|---------------------------|---------------------|---------------------|-------------------------|
| Camananda                               | Number     | Number<br>Detected | Frequency of<br>Detection | Minimum<br>Detected | Maximum<br>Detected | Average<br>Concentratio |
| Compounds 854-Mathylphanol (m&p-cresol) | Analyzed 2 | Description 1      | O%                        |                     | -                   | Concession              |
| (3-Oichtoroberzidine                    |            |                    | 0%                        |                     |                     |                         |
| <del>-</del>                            | 2 2        |                    | 0%                        |                     |                     | 21                      |
| -Nibrogniine                            |            |                    | 0%                        |                     |                     | _                       |
| Bromophenylphenyl ether                 | 2          |                    |                           |                     |                     |                         |
| -Chloro-3-multy/phenol                  | 2          |                    | 0%                        |                     |                     |                         |
| Chloroeniine                            | 2          |                    | 0%                        |                     |                     |                         |
| -Chlorophenylphenyl ether               | 2          |                    | 0%                        |                     |                     |                         |
| Historiine                              | 2          |                    | 0%                        |                     |                     | 21                      |
| -Nisophenoi                             | 2          |                    | 0%                        |                     |                     | 21                      |
| consphilhent                            | ] 2        |                    | 0%                        | 1                   |                     |                         |
| consphilitylane                         | 2          | 1                  | 50%                       | 32                  | 32                  |                         |
| rificacione                             | ] 2        |                    | 0%                        | Í                   |                     |                         |
| lerzo(a)enthracene                      | ] 2        |                    | 0%                        |                     |                     |                         |
| erzo(a)pyrene                           | 2          | 1                  | 50%                       | 140                 | 140                 | 11                      |
| enzo(b)fluoranthene                     | 1 2        | 1                  | 50%                       | 59                  | 59                  | 7                       |
| enzo(g.h.i)perylene                     | 2          | 1                  | 50%                       | 360                 | 360                 | z                       |
|                                         | 2          | 1                  | 50%                       | 52                  | 52                  | ~                       |
| erzo(k)fluoranthene                     |            | •                  |                           | 32                  | 32                  |                         |
| s(2-Chlorothary)methere                 | 2          |                    | 0%                        |                     |                     |                         |
| e(2-Chloroethyl)ether                   | 2          |                    | 0%                        |                     | ı                   |                         |
| a(2-Ethylhexyl)phthalate                | 2          |                    | 0%                        |                     |                     |                         |
| utylbenzylohthalate                     | 2          |                    | 0%                        |                     |                     |                         |
| hrysene                                 | 2          |                    | 0%                        |                     |                     |                         |
| i-n-burylphihalate                      | 2          |                    | 0%                        |                     |                     |                         |
| -n-octylphthulate                       | 1 2        |                    | 0%                        |                     |                     |                         |
| bergo(a,h)trifiracene                   | 2          | 1                  | 50%                       | 76                  | 76                  | i                       |
| bergoluran                              | 2          |                    | 0%                        |                     |                     |                         |
| lathy/phthalate                         | 1 2        |                    | 0%                        |                     |                     | ì                       |
| imadiyilgi direkate                     | 2          |                    | 0%                        |                     |                     | ì                       |
|                                         |            |                    | 0%                        |                     |                     |                         |
| voranifere.                             | 2          |                    |                           |                     |                     |                         |
| uorene                                  | 2          |                    | 0%                        |                     |                     |                         |
| exactionoberosne                        | 2          |                    | 0%                        |                     |                     | 1                       |
| exactionshutadiene                      | 2          |                    | 0%                        |                     |                     |                         |
| exactionocyclopentadiene                | 2          |                    | 0%                        |                     |                     | ł                       |
| stachlorosifiene                        | 2          |                    | 0%                        |                     |                     |                         |
| deno(1,2,3-cd)pyrene                    | 2          | 1                  | 50%                       | 300                 | 300                 | 19                      |
| apharane                                | 2          |                    | 0%                        |                     |                     | 8                       |
| Misosodi-n-propylamine                  | 2          |                    | 0%                        |                     |                     |                         |
| Nisoeodiphenylamine/Diphenylamine       | 2          |                    | 0%                        |                     |                     | ì                       |
| politicalene                            | 2          |                    | 0%                        |                     |                     |                         |
| 4                                       |            |                    | 0%                        |                     |                     |                         |
| boberzene                               | 2          |                    |                           |                     |                     |                         |
| entectiorophenol                        | 2          |                    | 0%                        |                     |                     | 2                       |
| ARIBANA .                               | 2          |                    | 0%                        |                     |                     |                         |
| ₩d į                                    | 2          |                    | 0%                        |                     |                     |                         |
| Mana                                    | . 2        |                    | 0%                        |                     |                     |                         |
| Ital PANs                               | . 2        |                    | 50%                       | 1010                | 1010                |                         |
|                                         |            |                    | 30%                       | 1019                | 1019                |                         |
| eales and Furans, ug/kg                 |            | -                  |                           |                     |                     |                         |
| 2.3.4.6.7.8.9-OCOO                      | 2          | 2                  | 100%                      | 5.69E-02            | 8.33E-02            | 7.01E-                  |
| 23.4.6.7.8.9-OCDF                       | . 2        | 2                  | 100%                      | 2.26E-02            | 3.35E-02            | 281E-                   |
| 2.3.4.6.7.8-HpC00                       | 2          | 2                  | 100%                      | 7.40E-03            | 1.166-02            | 9.50E-                  |
| 2.3.4.6.7.8-HpCDF                       | 2          | 2                  | 100%                      | 5.70E-03            | 7 40E-03            | 6.55E-                  |
| 2.3.4.7.8.9-HpCDF                       | 2          |                    | 0%                        |                     |                     | 3.00E-                  |
| 2.3.4.7.8-HICOO                         | ž          |                    | 0%                        |                     |                     | 2.50E-                  |
| 1478-HICOF                              | 2          |                    | 0%                        |                     |                     | 2.00E-                  |
| 1678HC00                                | 2          |                    | 0%                        |                     |                     | 2 506                   |
| .38.7.8→1±COF                           | 2          |                    | 0%                        |                     |                     | 1.50E-                  |
|                                         |            |                    |                           |                     |                     |                         |
| 1789Hc00                                | 2          |                    | 0%                        |                     |                     | 2.50E-                  |
| 17AS-HICOF                              | 2          |                    | 0%                        |                     |                     | 2.00E-                  |
| 17.8-PeC00                              | 2          |                    | 0%                        |                     |                     | 2.00E-                  |
| ∆7.8-PeCOF                              | 2          |                    | 0%                        |                     |                     | 1.75E-                  |
| 4.6.7.8-HECOF                           | 2          |                    | 0%                        |                     |                     | 1.75E-                  |
| 4.7.8-PeCOF                             | 2          |                    | 0%                        |                     |                     | 1.75E-                  |
| 7.8-TC00                                | 2          |                    | 0%                        |                     |                     | 2.25E-                  |
| 7.4-TCDF                                | 2          |                    | 0%                        |                     |                     | 2.00E                   |
| 7.4-TCOF                                | 2          |                    | U 76                      |                     |                     | 2,000                   |
|                                         | _          | _                  |                           | 4 40=               | 0.465               |                         |
| ы нусоо                                 | 2          | 2                  | 100%                      | 1.40E-02            | 2.11E-02            | 1.76E-                  |
| al HoCOF                                | 2          | 2                  | 100%                      | 1 73E-02            | 2.56€-02            | 2.15E-                  |
| al HaCOO                                | 2          | 2                  | 100%                      | 2.50E-03            | 3.206-03            | 2.85E-                  |
| tal HuCOF                               | 2          | 2                  | 100%                      | 3.00E-03            | 6 406-03            | 4.70E4                  |
| tal PeCDO                               | 2          | _                  | 0%                        |                     |                     | 2.00E-                  |
| N PUCOF                                 | 2          |                    | 0%                        |                     |                     | 1.75E-                  |
|                                         |            |                    |                           |                     |                     |                         |
| at 1COC                                 | 2          | 2                  | 100%                      | 2.80E-03            | 3.106-03            | 2.95E-                  |

Note:
One-half the detection limit is used to represent non-detects in the calculation of average concentrations.

#### Summary Statistics for Reference Plant Tissue Data Sauget Area I

| f                                                                                 | ]                  | Ţ <u> </u>         |                        |                     |                     |                          |
|-----------------------------------------------------------------------------------|--------------------|--------------------|------------------------|---------------------|---------------------|--------------------------|
| Compounds                                                                         | Number<br>Analyzed | Number<br>Detected | Frequency of Detection | Minimum<br>Detected | Maximum<br>Detected | Average<br>Concentration |
| Herbicides, ug/kg                                                                 | Alalyzeu           | Detected           | Detection              | Detected            | Detected            | Concentiaton             |
| 2,4,5-T                                                                           | 2                  |                    | 0%!                    |                     |                     | 5.0                      |
| 2,4,5-TP (Silvex)                                                                 | 2                  |                    | 0%                     | '                   |                     | 5.0                      |
| 2,4-DB                                                                            | 2 2                | ı                  | 0%<br>0%               |                     |                     | 5.0<br>5.0               |
| Dalapon                                                                           | 2                  | }                  | 0%                     | ۱ .                 |                     | 1000                     |
| Dicamba                                                                           | 2                  | 1                  | 50%                    | 1.8                 | 1.8                 | 5.9                      |
| Dichloroprop                                                                      | 2                  | ·                  | 0%                     |                     |                     | 50                       |
| Dinoseb                                                                           | 2                  |                    | 0%                     | ١ .                 |                     | 50                       |
| MCPA[(4-chloro-2-methylphenoxy)-acetic a MCPP[2-(4-chloro-2-methylphenoxy)-propan | 2 2                |                    | 0%<br>50%              | 1300                | 1300                | 1000                     |
| Pentachlorophenol                                                                 | 2                  | 1 1                | 50%                    | 1300                | 1300                | 1150<br>6.0              |
| Metals, mg/kg                                                                     |                    | ·                  | - 50 %                 |                     |                     |                          |
| Aluminum                                                                          | 2                  | 2                  | 100%                   | 160                 | 360                 | 260                      |
| Antimony                                                                          | 2                  |                    | 0%                     |                     |                     | 0.10                     |
| Arsenic                                                                           | 2                  | 1                  | 50%                    | 1.1                 | 1.1                 | 0.78                     |
| Beryllium<br>Cadmium                                                              | 2 2                |                    | 0%<br>0%               |                     |                     | 0.50<br>0.25             |
| Chromium                                                                          | 2                  | 2                  | 100%                   | 0.25                | 0.53                | 0.25                     |
| Copper                                                                            | 2                  | 2                  | 100%                   | 0.25                | 1.3                 | 1.1                      |
| Cyanide, Total                                                                    | 2                  | _                  | 0%                     |                     |                     | 5.0                      |
| Lead                                                                              | 2 (                | 2                  | 100%                   | 0.3                 | 0.64                | 0.47                     |
| Mercury                                                                           | 2                  |                    | 0%                     |                     |                     | 0.01                     |
| Nickel                                                                            | 2                  |                    | 0%                     |                     |                     | 5.0                      |
| Selenium<br>Silver                                                                | 2 2                | 1                  | 0% <br>0%              |                     |                     | 0.25<br>0.048            |
| Silver<br>Zinc                                                                    | 2                  | 2                  | 100%                   | 6.8                 | 8.3                 | 0.048<br>7.6             |
|                                                                                   |                    |                    | 100 /0                 |                     |                     | 7.0                      |
| PCBs and Pesticides, ug/kg<br>Decachlorobiphenyl                                  | 2                  | j                  | 0%                     |                     |                     | 25                       |
| Dichlorobiphenyl                                                                  | 2                  |                    | 0%                     |                     |                     | 5.0                      |
| Heptachlorobiphenyl                                                               | 2                  | i                  | 0%                     |                     |                     | 15                       |
| Hexachlorobiphenyl                                                                | 2                  |                    | 0%                     |                     |                     | 10                       |
| Monochlorobiphenyl                                                                | 2                  |                    | 0%                     |                     |                     | 5.0                      |
| Nonachlorobiphenyl                                                                | 2                  | ĺ                  | 0%(                    | ĺ                   |                     | 25                       |
| Octachlorobiphenyl                                                                | 2 2                | ]                  | 0%                     |                     |                     | 15                       |
| Pentachlorobiphenyl<br>Tetrachlorobiphenyl                                        | 2                  | J                  | 0% <br>0%              |                     |                     | 10<br>10                 |
| Trichlorobiphenyl                                                                 | 2                  | 1                  | 0%                     |                     |                     | 5.00                     |
| 4.4'-DDD                                                                          | 2                  |                    | 0%                     |                     |                     | 13                       |
| 4,4'-DDE                                                                          | 2                  | - 1                | 0%                     |                     |                     | 13                       |
| 4,4'-DDT                                                                          | 2                  | Ĭ                  | 0%                     |                     |                     | 13                       |
| Aldrin                                                                            | 2                  | 1                  | 50%                    | 1                   | 1                   | 4.0                      |
| Alpha Chlordane<br>alpha-BHC                                                      | 2 2                |                    | 0% <br>0%              |                     |                     | 7.0<br>7.0               |
| peta-BHC                                                                          | 2                  |                    | 0%                     |                     |                     | 7.0                      |
| telta-BHC                                                                         | 2                  | j                  | 0%                     |                     |                     | 7.0                      |
| Dieldrin                                                                          | 2                  |                    | 0%                     |                     |                     | 13                       |
| Endosulfan I                                                                      | 2                  | J                  | 0%                     |                     |                     | 7.0                      |
| ndosulfan II                                                                      | 2                  | ł                  | 0%)                    |                     |                     | 13                       |
| Endosulfan sulfate<br>Endrin                                                      | 2 2                | I                  | 0%<br>0%               |                     | Ì                   | 13<br>13                 |
| Endrin aldehyde                                                                   | 2                  |                    | 0%                     |                     |                     | 13                       |
| Endrin ketone                                                                     | 2                  | - 1                | 0%                     | ł                   |                     | 13                       |
| Samma Chlordane                                                                   | ž                  | İ                  | 0%                     |                     | ļ                   | 7.0                      |
| gamma-BHC (Lindane)                                                               | 2                  | l                  | 0%                     |                     |                     | 7.0                      |
| leptachlor                                                                        | 2                  | 1                  | 50%                    | 3.8                 | 3.8                 | 5.4                      |
| leptachlor epoxide<br>Methoxychlor                                                | 2 2                | [                  | 0%[<br>0%]             |                     |                     | 7.0<br>70                |
| Toxaphene                                                                         | 2                  | ŀ                  | 0%                     |                     |                     | 360                      |
| SVOCs, ug/kg                                                                      |                    |                    |                        |                     |                     |                          |
| ,2,4-Trichlorobenzene                                                             | 2                  | ı                  | 0%                     |                     | ĺ                   | 85                       |
| ,2-Dichlorobenzene                                                                | 2                  | ł                  | 0%                     | -                   | - 1                 | 85                       |
| ,3-Dichlorobenzene                                                                | 2                  | ŀ                  | 0%                     |                     |                     | 85                       |
| ,4-Dichlorobenzene                                                                | 2                  | }                  | 0%                     |                     |                     | 85                       |
| ,2'-Oxybis(1-chloropropane)[bis(2-Chlor<br>,4,5-Trichlorophenol                   | 2                  | ĺ                  | 0% <br>0%              | ĺ                   | (                   | 85<br>210                |
| 2,4,6-Trichlorophenol                                                             | 2 2                |                    | 0%                     | Ì                   |                     | 85                       |
| ,4-Dichlorophenol                                                                 | 2                  | ,                  | 0%)                    | j                   |                     | 85                       |
| 4-Dimethylphenol                                                                  | 2                  | j                  | 0%{                    |                     |                     | 85                       |
| ,4-Dinitrophenol                                                                  | 2                  | }                  | 0%                     |                     |                     | 210                      |
| ,4-Dinitrotoluene                                                                 | 2                  | į                  | 0%)                    | }                   |                     | 85                       |
| 2,6-Dinitrotoluene                                                                | 2 2                | 1                  | 0%<br>0%               | 1                   |                     | 85<br>85                 |
| -Chloronaphthalene<br>-Chlorophenol                                               | 2 2                |                    | 0%                     |                     |                     | 85<br>85                 |
| -Chioropherioi<br>-Methyl-4,6-dinitrophenol                                       | 2                  | ł                  | 0%                     | ł                   |                     | 210                      |
| -Methylnaphthalene                                                                | 2                  | -                  | 0%                     |                     |                     | 85                       |
| -Methylphenol (o-cresol)                                                          | 2                  | ĺ                  | 0%                     |                     | 1                   | 85                       |
| -Nitroaniline                                                                     | 2                  |                    | 0%                     |                     | ľ                   | 210                      |
| -Nitrophenol                                                                      | 2                  | ł                  | 0%                     |                     |                     | 85                       |
| &4-Methylphenol (m&p-cresol)                                                      | 2                  | }                  | 0%                     | }                   | ļ                   | 85                       |
| ,3'-Dichlorobenzidine                                                             | 2                  |                    | 0%                     | 1                   |                     | 85                       |

### Summery Statistics for Reference Plant Tissue Data Sauget Area I

|                                                     | Number   | Number   | Frequency of | مسنطا    | Maximum  | Average            |
|-----------------------------------------------------|----------|----------|--------------|----------|----------|--------------------|
| Compounds                                           | Analyzed | Detected | Detection    | Detected | Detected | Concentrato        |
| 3-Nébosniline<br>1-Bromophenylphanyl ether          | 2 2      |          | 0%           |          |          | 21<br>8            |
| i-Coloro-3-methylphenoi                             | 2        |          | 0%           |          |          | 1 8                |
| -Chloroanline                                       | 2        |          | 0%           |          |          | 6                  |
| -Chiorophenylphenyl ether                           | ] 2      | •        | 0%           |          |          |                    |
| -Nirogniine                                         | 2 2      |          | 0%<br>0%     |          |          | 21<br>21           |
| i-Nitrophenol<br>Loursphihene                       | 2        |          | 0%           |          |          | 4                  |
| Conspirity/one                                      | ] 2      |          | 0%           |          |          |                    |
| Vriftracene                                         | ] 2      |          | 0%           |          |          | 1                  |
| Senzo(a)enthracene                                  | 2        |          | 0%           |          | -77      |                    |
| Benzo(a)pyrane<br>Benzo(b)Buorandhane               | 2 2      | 2        | 100%<br>50%  | 15<br>16 | 37<br>16 |                    |
| Senzo(g.hu)perylene                                 | 1 2      | 2        | 100%         | 240      | 390      | 3                  |
| lenzo(k)fluoranthene                                | 2        | 1        | 50%          | 21       | 21       |                    |
| es(2-Chloroethoxy)methene                           | 2        |          | 0%           | ,        |          |                    |
| is(2-Chloroethyl)ether                              | 2        |          | 0%           |          |          |                    |
| us(2-Ethylhexyl)phthelate<br>Lutylbenzylphthalate   | 2 2      |          | 0%<br>0%     |          | 1        | 1 8                |
| Zhysene                                             | 2        |          | 0%           |          |          | ì                  |
| h-n-busylphthelate                                  | ] 2      |          | 0%           |          |          | ě                  |
| i-n-oczytphiliulate                                 | 2        | _        | 0%           |          |          |                    |
| Nberzo(a.h)enthracene<br>Nberzofuran                | 2 2      | 2        | 100%         | 180      | 400      | 25                 |
| hedryfetifielde                                     | 2        |          | 0%           |          |          | 3                  |
| Amen'ny to his halane                               | 2        |          | 0%           |          |          | ì                  |
| Northere                                            | ] 2      |          | 0%           |          |          | 8                  |
| promise                                             | 2        |          | 0%           |          |          |                    |
| lexachiorobenzane                                   | 2        |          | 0%<br>0%     |          |          |                    |
| lexachtorobutadiene<br>lexachtorocyclopertadiene    | 2 2      |          | 0%           |          |          | 8                  |
| lexactions@nene                                     | 2        |          | 0%           |          |          | è                  |
| ndeno(1,2,3-cd)pyrene                               | 2        | 2        | 100%         | 220      | 440      | 33                 |
| ophorone                                            | 2        |          | 0%           |          |          | 8                  |
| -Nitrosod-n-propylamine                             | 2 2      |          | 0%<br>0%     |          |          | 8                  |
| i-Nitrosodiphenykamine/Diphenykamine<br>Isphihatene | 2        |          | 0%           |          |          |                    |
| Nobersene                                           | 2        |          | 0%           |          |          |                    |
| ereactéorophenol                                    | 2        |          | 0%           |          |          | 21                 |
| henenityene<br>henol                                | 2        |          | 0%<br>0%     |          |          | 8                  |
| yeare .                                             | 2        |          | 0%           |          |          |                    |
| factors and Fugrans, up/tg                          |          |          |              |          |          |                    |
| 2348789-0000                                        | 2        | 2        | 100%         | 8.32E-02 | 8.71E-02 | 8.52E-0            |
| 2346789-OCDF                                        | 2        | 2        | 100%         | 6.20E-04 | 8.50E-03 | 4.58E-0            |
| 2.3.4.6.7.8 HpCDO                                   | 2        | 2        | 100%         | 2.10E-03 | 6 10E-03 | 4.10E-0            |
| 2.3.4.6.7.8-HpCDF                                   | 2        | 1        | 50%          | 1.40E-03 | 1.40E-03 | 7.50E-0            |
| 234789HpC0F<br>23478HbC00                           | 2 2      |          | 0%<br>0%     |          |          | 3.00E-0<br>2.75E-0 |
| 2.3.4.7.8-HiCOF                                     | 2        |          | 0%           |          |          | 1.75E-0            |
| 2.3.6.7.6-Hic00                                     | ž        |          | 0%           |          |          | 2.50E-0            |
| 2.3.6.7.8-HiCOF                                     | 2        |          | 0%           |          |          | 1.75E-C            |
| 2.3.7.8.9-HuCOO                                     | 2        |          | 0%           |          |          | 2.50E-0            |
| 2.3.7.8.9 HuCOF                                     | 3        |          | 0%           |          |          | 2.00E-0            |
| 2,3,7,8-PeCDD                                       | 2        |          | 0%<br>0%     |          |          | 2.25E-0<br>1.75E-0 |
| 3.4.6.7.8-HbCOF                                     | ž        |          | 0%           |          |          | 1.75E-0            |
| 3.4.7.6-PeCDF                                       | 2        |          | 0%           |          |          | 1.75E-4            |
| 17.A-TC00                                           | 2        |          | 0%           |          |          | 2.25E-             |
| 17.6-TCOF                                           | 2        |          | 0%           |          |          | 2.00E-             |
| 1.7.6-TCOF<br>sell HpCOO                            | 2        | 2        | 100%         | 5.90E-03 | 1.27E-02 | 9.30E-0            |
| Mai HipCOF                                          | ž        | 1        | 50%          | 5.90E-03 | 5.90E-03 | 3.00E-0            |
| HICOO                                               | 2        | i        | 50%          | 1 40E-03 | 1.40E-03 | 9.00E-0            |
| Rel HuCOF                                           | 2        |          | 0%           |          |          | 1.75E-0            |
| PeCCO                                               | 2        |          | 0%           |          |          | 2.25E-0            |
|                                                     | •        |          | 0%           |          |          | 1.75E-0            |
| rei PeCOF                                           | 2 2      |          | 0%           |          |          | 2.25E-             |

Note: One-half the detection limit is used to represent non-detects in the calculation of average concentrations.

#### Borrow Pit Lake Shrimp Tissue Data Sauget Area I

| <b>6</b>                                                        | Shrimp BP Comp |        |  |  |  |
|-----------------------------------------------------------------|----------------|--------|--|--|--|
| Compounds                                                       | Concentration  | ER Q   |  |  |  |
| Herbicides, ug/kg                                               | ] :            |        |  |  |  |
| 2,4,5-T                                                         | 10             | U      |  |  |  |
| 2,4,5-TP (Silvex)                                               | 10             | U      |  |  |  |
| 2,4-D                                                           | 10             | U      |  |  |  |
| 2,4-DB                                                          | 10             | U      |  |  |  |
| Dalapon                                                         | 2000           | U      |  |  |  |
| Dichloropea                                                     | 20<br>100      | Ü      |  |  |  |
| Dichloroprop<br>Dinoseb                                         | 100            | ŭ      |  |  |  |
| MCPA[(4-chloro-2-methylphenoxy)-acetic a                        | 2000           | ŭ      |  |  |  |
| MCPP[2-(4-chloro-2-methylphenoxy)-propan                        | 2000           | Ū      |  |  |  |
| Pentachlorophenol                                               | 1.8            | j      |  |  |  |
| Aluminum                                                        | 28             |        |  |  |  |
| Antimony                                                        | 0.16           | J      |  |  |  |
| Arsenic                                                         | 2.0            | U      |  |  |  |
| Beryllium                                                       | 1.0            | Ü      |  |  |  |
| Cadmium                                                         | 0.50           | )<br>Ú |  |  |  |
| Chromium<br>Copper                                              | 0.23<br>8.3    | J      |  |  |  |
| Cuanida Total                                                   | 10             | U      |  |  |  |
| Lead                                                            | 0.39           | j      |  |  |  |
| Mercury                                                         | 0.095          | ŭ      |  |  |  |
| Nickel                                                          | 10             | ŭ      |  |  |  |
| Selenium                                                        | 0.50           | Ŭ      |  |  |  |
| Silver                                                          | 0.090          | Ĵ      |  |  |  |
| Zinc                                                            | 16             |        |  |  |  |
| % Lipid                                                         | 0.03           |        |  |  |  |
| PCBs and Pesticides, ug/kg                                      |                |        |  |  |  |
| Decachlorobiphenyl                                              | 100            | U      |  |  |  |
| Dichlorobiphenyl                                                | 20             | ũ      |  |  |  |
| Heptachlorobiphenyl                                             | 60             | U      |  |  |  |
| Hexachlorobiphenyl                                              | 40             | υ      |  |  |  |
| Monochlorobiphenyl                                              | 20             | U      |  |  |  |
| Nonachlorobiphenyl                                              | 100            | U      |  |  |  |
| Octachlorobiphenyl                                              | 60             | U      |  |  |  |
| Pentachlorobiphenyl                                             | 40             | U      |  |  |  |
| Tetrachlorobiphenyl                                             | 40             | U      |  |  |  |
| Trichlorobiphenyl Total PCBs                                    | 20<br>40       | Ü      |  |  |  |
| 4.4'-DDD                                                        | 4.0            | ŭ      |  |  |  |
| 1,4'-DDE                                                        | 4.0            | ŭ      |  |  |  |
| 1,4'-DDT                                                        | 4.0            | ŭ      |  |  |  |
| Total DDT                                                       | 4              | ŭ      |  |  |  |
| Aldrin                                                          | 2.0            | U      |  |  |  |
| Upha Chlordane                                                  | 2.0            | IJ     |  |  |  |
| ipha-BHC                                                        | 2.0            | U      |  |  |  |
| peta-BHC                                                        | 2.0            | U      |  |  |  |
| lelta-BHC                                                       | 2.0            | U      |  |  |  |
| Dieldrin                                                        | 4.0            | Ü      |  |  |  |
| ndosulfan I                                                     | 2.0            | Ü      |  |  |  |
| ndosulfan II                                                    | 4.0            | U      |  |  |  |
| ndosulfan sulfate                                               | 4.0            | U      |  |  |  |
| Endrin<br>Endrin aldehyde                                       | 4.0<br>4.0     | Ü      |  |  |  |
| ndrin kelone                                                    | 4.0            | ŭ      |  |  |  |
| Samma Chlordane                                                 | 2.0            | Ŭ      |  |  |  |
| amma-BHC (Lindane)                                              | 2.0            | ŭ      |  |  |  |
| leptachlor                                                      | 2.0            | ŭ      |  |  |  |
| leptachlor epoxide                                              | 2.0            | Ū      |  |  |  |
| Methoxychior                                                    | 20             | U      |  |  |  |
| oxaphene                                                        | 110            | U      |  |  |  |
| VOCs, ug/kg                                                     |                |        |  |  |  |
| ,2,4-Trichlorobenzene                                           | 340            | U      |  |  |  |
| ,2-Dichlorobenzene                                              | 340            | U      |  |  |  |
| ,3-Dichlorobenzene                                              | 340            | Ų      |  |  |  |
| ,4-Dichlorobenzene                                              | 340            | Ü      |  |  |  |
| ,2'-Oxybis(1-chloropropane)[bis(2-Chlor<br>,4,5-Trichlorophenol | 340<br>840     | U      |  |  |  |
| ,4,5-1 richlorophenol                                           | 340            | Ü      |  |  |  |
| ,4-Dichlorophenol                                               | 340            | ŭ      |  |  |  |
| ,4-Dimethylphenol                                               | 340            | ŭ      |  |  |  |
| ,4-Dinitrophenol                                                | 840            | Ū      |  |  |  |
| ,4-Dinitrotoluene                                               | 340            | Ũ      |  |  |  |
| ,6-Dinitrotoluene                                               | 340            | U      |  |  |  |
| -Chloronaphthalene                                              | 340            | U      |  |  |  |
| -Chlorophenol                                                   | 340            | U      |  |  |  |
| -Methyl-4,6-dinitrophenol                                       | 840            | U      |  |  |  |
| -Methylnaphthalene                                              | 340            | U      |  |  |  |
| -Methylphenol (o-cresol)                                        | 340            | υ      |  |  |  |
| -Nitroaniline                                                   | 840            | U      |  |  |  |
| -Nitrophenol                                                    | 340 :          | Ü      |  |  |  |
| &4-Methylphenol (m&p-cresol)                                    | 340            | U      |  |  |  |
|                                                                 | 340            | U      |  |  |  |
| ,3'-Dichlorobenzidine<br>-Nitroaniline                          | 840            | ŭ      |  |  |  |

### Borrow Pit Lake Shring Tissue Data Sauget Area I

| Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Shrimp BP C<br>Concentration                                                                                                                       | omp<br>ER Q |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 4-Ottoro-3-methylpheno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 340                                                                                                                                                | υ           |
| 4-Chargenline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 340                                                                                                                                                | Ū           |
| 4-Charaphenylphenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 340                                                                                                                                                | U           |
| 4-Nitrosniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 840                                                                                                                                                | U           |
| 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 840                                                                                                                                                | U           |
| Aceneonthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 340<br>340                                                                                                                                         | Ü           |
| Acerachityane Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 340                                                                                                                                                | U           |
| Benzoja jerebracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 340                                                                                                                                                | ŭ           |
| Berzola joyrane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 340                                                                                                                                                | Ü           |
| Benzo(b)Augrandhene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 340                                                                                                                                                | U           |
| Berzo(g/u)peylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 340                                                                                                                                                | U           |
| Berzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 340                                                                                                                                                | U           |
| os(2-Oronethon) methene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 340<br>340                                                                                                                                         | U           |
| bs(2-Citythen) phihalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 340                                                                                                                                                | ŭ           |
| Sury/benzyenthaliste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 340                                                                                                                                                | ŭ           |
| Carbattle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 340                                                                                                                                                | Ū           |
| Ovysere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 340                                                                                                                                                | U           |
| O-n-outylphilhistate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 340                                                                                                                                                | U           |
| O-n-ocytonitalists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 340                                                                                                                                                | U           |
| Operation)ingraceus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 340                                                                                                                                                | Ü           |
| Oberesturan<br>Oethykonheiste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 340<br>44                                                                                                                                          | U           |
| Ornethylphihalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 340                                                                                                                                                | U           |
| - ugranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 340                                                                                                                                                | ŭ           |
| Fuorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 340                                                                                                                                                | Ū           |
| exact combensarie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 340                                                                                                                                                | U           |
| nexachlorobuladiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 340                                                                                                                                                | U           |
| exchargoperadere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 340                                                                                                                                                | U           |
| neschorsehene<br>nesno (123-coloviene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 340<br>340                                                                                                                                         | u           |
| sopone<br>roso(25-capyes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 340                                                                                                                                                | Ü           |
| - Nerosod-in-propytemene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 340                                                                                                                                                | ũ           |
| 4 Narosodphenylamne Diphenylamne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 340                                                                                                                                                | Ü           |
| Nachhelene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 340                                                                                                                                                | U           |
| Next entered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 340                                                                                                                                                | U           |
| Personarphend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 840<br>340                                                                                                                                         | Ü           |
| Phendriftvane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 340                                                                                                                                                | u           |
| 7016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 340                                                                                                                                                | ŭ           |
| Total PANs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 340                                                                                                                                                | U           |
| Noxins and Furans, upling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                    |             |
| 2.1467.89-OCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0198<br>0.0043                                                                                                                                   |             |
| 2.34.67,84bC00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0031                                                                                                                                             |             |
| 2.14.5.7.8-HpCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0015                                                                                                                                             |             |
| 2.14.789HpCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0004                                                                                                                                             | U           |
| 2.3.4.7,8-HiC00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0003                                                                                                                                             | U           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                    | U           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0002                                                                                                                                             |             |
| 2.3.6.7.8-HxC00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0002                                                                                                                                             | U           |
| 2.3.6.7.8-tbC00<br>2.3.6.7.8-tbC0F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0002<br>0.0002                                                                                                                                   | U           |
| 2.3.6.7.8-HiCO0<br>2.3.6.7.8-HiCOF<br>2.3.7.8.9-HiCO0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0002<br>0.0002<br>0.0003                                                                                                                         | Ŋ           |
| 23.67.8+bCO0<br>23.67.8+bCOF<br>237.8+bCO0<br>237.85+bCOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0002<br>0.0002                                                                                                                                   | U           |
| 2.1.6.7.8+hCO0<br>2.1.6.7.8+hCOF<br>2.1.7.8.9+hCO0<br>2.17.8.9+hCOF<br>2.17.8.PhCO0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0002<br>0.0002<br>0.0003<br>0.0002                                                                                                               | n<br>n      |
| 23.67.8-HcCO0<br>23.67.8-HcCOF<br>237.8.9-HcCO0<br>237.8.9-HcCO0<br>237.8-PHCO0<br>237.8-PHCOF<br>24.67.8-HcCOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0002<br>0.0002<br>0.0003<br>0.0003<br>0.0002<br>0.0002                                                                                           | טטטט        |
| 2.3.6.7.8+HcO0<br>2.3.6.7.8+HcO0<br>2.3.7.8.9+HcO0<br>2.3.7.8.9+HcO0<br>2.3.7.8.PHcO0<br>2.3.7.8.PHcO0<br>3.4.6.7.8-HcO0<br>3.4.7.8.PHcO0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0002<br>0.0002<br>0.0003<br>0.0003<br>0.0002<br>0.0002<br>0.0002                                                                                 | טטטטטטט     |
| 2.3.6.7.8+hCO0<br>2.3.6.7.8+hCO0<br>2.3.7.8.9+hCO0<br>2.3.7.8.9+hCO0<br>2.3.7.8.PhCO0<br>2.3.7.8.PhCO0<br>2.3.7.8.PhCO0<br>2.3.4.6.7.8.PhCO0<br>3.4.7.8.PhCO0<br>3.4.7.8.PhCO0<br>3.4.7.8.PhCO0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0002<br>0.0002<br>9.0003<br>0.0002<br>0.0003<br>0.0002<br>0.0002<br>0.0002                                                                       | טטטטטט      |
| 2.1.6.7.8-HcCOO<br>2.1.6.7.8-HcCOF<br>2.17.8.9-HcCOF<br>2.17.8.9-HcCOF<br>2.17.8.PHcCOF<br>2.14.7.8.PHcCOF<br>3.4.7.8.PHcCOF<br>3.4.7.8.PHcCOF<br>3.4.7.8.PHcCOF<br>3.4.7.8.PHcCOF<br>3.4.7.8.PHcCOF<br>3.4.7.8.PHcCOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0002<br>0.0002<br>0.0003<br>0.0003<br>0.0003<br>0.0002<br>0.0002<br>0.0002<br>0.0002                                                             | טטטטטטט     |
| 2.3.6.7.8+hCO0<br>2.3.6.7.8+hCO0<br>2.3.7.8.9+hCO0<br>2.3.7.8.9+hCO0<br>2.3.7.8.9+hCO0<br>2.3.7.8.9+hCO0<br>3.4.6.7.8+hCO0<br>3.4.6.7.8+hCO0<br>3.7.8-TCO0<br>3.7.8-TCO0<br>3.7.8-TCO0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0002<br>0.0002<br>0.0003<br>0.0003<br>0.0003<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002                                                   | טטטטטטט     |
| 237.89-HCD0<br>237.89-HCD0<br>237.8-PeCD0<br>23.7-8-PeCDF<br>.34.67.8-HcCDF<br>.34.7-8-TCD0<br>.37.8-TCD0<br>.37.8-TCD0<br>.37.8-TCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0008<br>0.0016                     | טטטטטטט     |
| 2.3.6.7.8-HsCO0 2.3.6.7.8-HsCO0 2.3.7.8.9-HsCO0 2.3.7.8.9-HsCO0 2.3.7.8.PsCO0 2.3.7.8.PsCO0 2.3.7.8.PsCO0 2.3.7.8.PsCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2.3.7.8.TCO0 2. | 0.0002<br>0.0002<br>0.0003<br>0.0003<br>0.0003<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002                                                   | טטטטטטט     |
| 2.3.6.7.8-HsCO0<br>2.3.6.7.8-HsCO0<br>2.3.7.8.9-HsCO0<br>2.3.7.8.9-HsCO0<br>2.3.7.8.PsCO0<br>2.3.7.8.PsCO0<br>3.4.7.8.PsCO0<br>3.7.8.TCO0<br>3.3.7.8.TCO0<br>600 HsCO0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0002<br>0.0002<br>2.0003<br>0.0003<br>0.0003<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0008<br>0.0008<br>0.0008                     | טטטטטטט     |
| 2.3.6.7.8-HsCO0 2.3.6.7.8-HsCO0 2.3.7.8.9-HsCO0 2.3.7.8.9-HsCO0 2.3.7.8.PsCO0 2.3.7.8.PsCO0 2.3.7.8.PsCO0 2.3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8.TsCO0 3.7.8. | 0.0002<br>0.0002<br>0.0003<br>0.0003<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0016<br>0.0016<br>0.0076<br>0.0046           | טטטטטטט     |
| 2.3.6.7.8+HCOD 2.3.6.7.8+HCOD 2.3.7.8.9+HCOD 2.3.7.8.9+HCOD 2.3.7.8.9+HCOD 2.3.7.8.9+HCOD 3.7.8.7+HCOD 3.4.6.7.8.9+HCOD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD 3.7.8.7COD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0002<br>0.0002<br>0.0003<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0006<br>0.0016<br>0.0016<br>0.0016<br>0.0006<br>0.0006 | טטטטטטט     |

Note: One-half the detection limit is used to represent non-detects in the calculation of average concentrations.

#### Summary Statistics for Reference Shrimp Data Sauget Area I

|                                                                                                                                                                                                        |                                                |                    |                                        |                     |                     | <u> </u>                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------|----------------------------------------|---------------------|---------------------|-----------------------------------------------|
| Compounds                                                                                                                                                                                              | Number<br>Analyzed                             | Number<br>Detected | Frequency of Detection                 | Minimum<br>Detected | Maximum<br>Detected | Average<br>Concentration                      |
| Herbicides, ug/kg                                                                                                                                                                                      | Allalyzed                                      | Detected           | Detection                              | Detected            | Detected            | Concentration                                 |
| 2,4,5-T (ug/kg)                                                                                                                                                                                        | 2                                              |                    | 0%                                     |                     |                     | 5.00                                          |
| 2,4,5-TP (Silvex)                                                                                                                                                                                      | 2                                              | 1                  | 50%                                    | 1.3                 | 1.3                 | 3.15                                          |
| 2,4-D                                                                                                                                                                                                  |                                                | •                  | 0%                                     |                     |                     | 5.00                                          |
| 2,4-DB                                                                                                                                                                                                 | 2                                              |                    | 0%                                     |                     |                     | 5.00                                          |
| Dalapon                                                                                                                                                                                                | 2                                              |                    | 0%                                     |                     |                     | 1000                                          |
| Dicamba                                                                                                                                                                                                | 2                                              |                    | 0%                                     |                     |                     | 10                                            |
| Dichloroprop                                                                                                                                                                                           | 2                                              |                    | 0%                                     |                     |                     | 50                                            |
| Dinoseb                                                                                                                                                                                                | 2                                              |                    | 0%                                     |                     |                     | 50                                            |
| MCPAI(4-chloro-2-methylphenoxy)-acetic a                                                                                                                                                               | 2                                              |                    | 0%                                     |                     |                     | 1000                                          |
| MCPP[2-(4-chloro-2-methylphenoxy)-propan                                                                                                                                                               | 2                                              | 1                  | 50%                                    | 4400                | 4400                | 2700                                          |
| Pentachlorophenol                                                                                                                                                                                      | 2                                              | 2                  | 100%                                   | 1.5                 | 3.9                 | 2.70                                          |
| Metals, mg/kg                                                                                                                                                                                          |                                                |                    |                                        |                     |                     |                                               |
| Aluminum                                                                                                                                                                                               | 2                                              | 2                  | 100%                                   | 60                  | 100                 | 80                                            |
| Antimony                                                                                                                                                                                               | 2                                              |                    | 0%                                     |                     |                     | 0.09                                          |
| Arsenic                                                                                                                                                                                                | 2                                              | 1                  | 50%                                    | 1.2                 | 1.2                 | 1.10                                          |
| Beryllium                                                                                                                                                                                              | 2                                              |                    | 0%                                     |                     |                     | 0.44                                          |
| Cadmium                                                                                                                                                                                                | 2                                              |                    | 0%                                     |                     |                     | 0.22                                          |
| Chromium                                                                                                                                                                                               | 2                                              | 2                  | 100%                                   | 0.26                | 0.28                | 0.27                                          |
| Copper                                                                                                                                                                                                 | 2                                              | 2                  | 100%                                   | 8.5                 | 16                  | 12                                            |
| Cyanide, Total                                                                                                                                                                                         | 2                                              |                    | 0%                                     |                     |                     | 5.00                                          |
| ead                                                                                                                                                                                                    | 2                                              | 2                  | 100%                                   | 0.38                | 0.61                | 0.50                                          |
| Mercury                                                                                                                                                                                                | 2                                              | ,                  | 0%                                     |                     |                     | 0.04                                          |
| Nickel                                                                                                                                                                                                 | 2                                              |                    | 0%                                     |                     |                     | 4.35                                          |
| Selenium                                                                                                                                                                                               | 2 j                                            | 2                  | 100%                                   | 0.47                | 0.61                | 0.54                                          |
| Silver                                                                                                                                                                                                 | 2                                              | 2                  | 100%                                   | 0.059               | 0.062               | 0.06                                          |
| Zinc                                                                                                                                                                                                   | 2                                              | 2                  | 100%                                   | 15                  | 17                  | 16                                            |
| / 11-13                                                                                                                                                                                                | 2                                              | 2                  | 4000                                   |                     |                     |                                               |
| & Lipid                                                                                                                                                                                                |                                                | 2                  | 100%                                   | 0.27                | 0.38                | 0.33                                          |
| CBs and Pesticides, ug/kg                                                                                                                                                                              | اء                                             | ł                  | 60/                                    |                     |                     |                                               |
| Decachlorobiphenyl                                                                                                                                                                                     | 2                                              |                    | 0%                                     |                     |                     | 50                                            |
| Dichlorobiphenyl                                                                                                                                                                                       | 2                                              |                    | 0%                                     |                     |                     | 10                                            |
| leptachlorobiphenyl                                                                                                                                                                                    | 2                                              |                    | 0%                                     |                     |                     | 30                                            |
| lexachlorobiphenyl                                                                                                                                                                                     | 2                                              |                    | 0%                                     |                     |                     | 20                                            |
| Aonochlorobiphenyl                                                                                                                                                                                     | 2                                              |                    | 0%                                     |                     |                     | 10                                            |
| ionachlorobiphenyl                                                                                                                                                                                     | 2                                              | 1                  | 0%                                     |                     |                     | 50                                            |
| Octachlorobiphenyl                                                                                                                                                                                     | 2                                              |                    | 0%                                     |                     |                     | 30                                            |
| Pentachlorobiphenyl                                                                                                                                                                                    | 2                                              | 1                  | 50%                                    | 22                  | 22                  | 21                                            |
| etrachlorobiphenyl                                                                                                                                                                                     | 2                                              |                    | 0%                                     |                     |                     | 20                                            |
| richlorobiphenyl                                                                                                                                                                                       | 2                                              | 1                  | 0%                                     |                     |                     | 10                                            |
| ,4'-DDD (ug/kg)                                                                                                                                                                                        | 2                                              |                    | 0%                                     |                     |                     | 2.00                                          |
| 4'-DDE                                                                                                                                                                                                 | 2                                              |                    | 0%                                     |                     |                     | 2.00                                          |
| ,4'-DDT                                                                                                                                                                                                | 2                                              |                    | 0%                                     |                     |                     | 2.00                                          |
| ldrin                                                                                                                                                                                                  | 2                                              |                    | 0%                                     |                     |                     | 1.00                                          |
| Ipha Chlordane                                                                                                                                                                                         | 2                                              |                    | 0%                                     |                     |                     | 1.00                                          |
| Ipha-BHC                                                                                                                                                                                               | 2                                              |                    | 0%                                     |                     |                     | 1.00                                          |
| eta-BHC                                                                                                                                                                                                | 2                                              |                    | 0%                                     |                     |                     | 1.00                                          |
| elta-BHC<br>Jieldrin                                                                                                                                                                                   | 2                                              |                    | 0%                                     |                     |                     | 1.00                                          |
|                                                                                                                                                                                                        | 2                                              | ľ                  | 0%                                     | į                   | i                   | 2.00                                          |
| ndosulfan I                                                                                                                                                                                            | 2                                              |                    | 0%                                     | 1                   |                     | 1.00                                          |
| ndosulfan li                                                                                                                                                                                           | 2                                              |                    | 0%                                     |                     |                     | 2.00                                          |
| ndosulfan sulfate                                                                                                                                                                                      | 2                                              | l                  | 0%                                     |                     | l                   | 2.00                                          |
| ndrin                                                                                                                                                                                                  | 2 2                                            | Į                  | 0%                                     |                     | l                   | 2.00                                          |
| ndrin aldehyde                                                                                                                                                                                         |                                                | į                  | 0%                                     |                     |                     | . 2.00                                        |
| ndrin ketone                                                                                                                                                                                           | 2                                              | l                  | 0%                                     |                     | 1                   | 2.00                                          |
| iamma Chlordane                                                                                                                                                                                        | 2 2                                            | l                  | 0%<br>0%                               | ]                   |                     | 1.00                                          |
| amma-BHC (Lindane)                                                                                                                                                                                     |                                                |                    | 0%                                     |                     |                     | 1.00<br>1.00                                  |
| eptachlor<br>eptachlor epoxide                                                                                                                                                                         | 2                                              | l                  |                                        | 1                   |                     |                                               |
|                                                                                                                                                                                                        | 2                                              |                    | 0%                                     |                     |                     | 1.00                                          |
| ethoxychlor                                                                                                                                                                                            | 2 2                                            |                    | 0%<br>0%                               |                     |                     | 10<br>55                                      |
| oxaphene<br>VOC= up/kg                                                                                                                                                                                 |                                                |                    | U76                                    |                     |                     | 55                                            |
| VOCs, ug/kg<br>2,4-Trichlorobenzene                                                                                                                                                                    | 2                                              | 1                  | 0%                                     |                     |                     | 170                                           |
| 2-Dichlorobenzene                                                                                                                                                                                      | 2                                              | l                  | 0%                                     |                     |                     | 170                                           |
| 2-Dichlorobenzene 3-Dichlorobenzene                                                                                                                                                                    | 2                                              |                    | 0%                                     |                     |                     | 170                                           |
| 4-Dichlorobenzene                                                                                                                                                                                      | 2                                              | Į.                 | 0%                                     | ]                   |                     |                                               |
|                                                                                                                                                                                                        | 2                                              | ĺ                  |                                        |                     |                     | 170                                           |
| 2'-Oxybis(1-chloropropane)[bis(2-Chlor                                                                                                                                                                 |                                                | 1                  | 0%                                     |                     |                     | 170                                           |
| 4,5-Trichiorophenol 4.6-Trichiorophenol                                                                                                                                                                | 2 2                                            |                    | 0%                                     |                     |                     | 420<br>170                                    |
|                                                                                                                                                                                                        | 2                                              | I                  | 0%                                     |                     | i                   | 170                                           |
|                                                                                                                                                                                                        |                                                |                    | 0%<br>0%                               |                     | į                   | 170                                           |
| 4-Dichlorophenol                                                                                                                                                                                       |                                                |                    | U%                                     | 1                   |                     | 170                                           |
| 4-Dichlorophenol<br>4-Dimethylphenol                                                                                                                                                                   | 2                                              | I                  |                                        |                     |                     |                                               |
| 4-Dichlorophenol<br>4-Dimethylphenol<br>4-Dinitrophenol                                                                                                                                                | 2 2                                            |                    | 0%                                     |                     |                     |                                               |
| 4-Dichlorophenol<br>4-Dimethylphenol<br>4-Dinitrophenol<br>4-Dinitrotoluene                                                                                                                            | 2<br>2<br>2                                    |                    | 0%<br>0%                               |                     |                     | 170                                           |
| 4-Dichlorophenol 4-Dimethylphenol 4-Dinitrophenol 4-Dinitrotoluene 6-Dinitrotoluene                                                                                                                    | 2 2 2 2                                        |                    | 0%<br>0%<br>0%                         |                     |                     | 170<br>170                                    |
| 4-Dichlorophenol 4-Dimethylphenol 4-Dinitrophenol 4-Dinitrotoluene 6-Dinitrotoluene Chloronaphthalene                                                                                                  | 2 2 2 2 2                                      |                    | 0%<br>0%<br>0%<br>0%                   |                     |                     | 170                                           |
| 4-Dichlorophenol 4-Dintertylphenol 4-Dintrophenol 4-Dintrotoluene 6-Dintrotoluene Chloronaphthalene Chloronaphthalene                                                                                  | 2 2 2 2 2                                      |                    | 0%<br>0%<br>0%<br>0%<br>0%             |                     |                     | 170<br>170<br>170<br>170                      |
| 4-Dichlorophenol 4-Dinitrophenol 4-Dinitrophenol 4-Dinitrotoluene 6-Dinitrotoluene 6-Dinitrotoluene Chloronaphthalene Chlorophenol Methyl-4,6-dinitrophenol                                            | 2 2 2 2 2 2                                    |                    | 0%<br>0%<br>0%<br>0%<br>0%             |                     |                     | 170<br>170<br>170<br>170<br>420               |
| 4-Dichlorophenol 4-Dinimethylphenol 4-Dinitrophenol 4-Dinitrotoluene 6-Dinitrotoluene 6-Dinitrotoluene Chioronaphthalene Chlorophenol Methyl-4,8-dinitrophenol Methyl-1,8-dinitrophenol                | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      |                    | 0%<br>0%<br>0%<br>0%<br>0%<br>0%       |                     |                     | 170<br>170<br>170<br>170<br>170<br>420<br>170 |
| 4-Dichlorophenol 4-Dinitrophenol 4-Dinitrophenol 4-Dinitrotoluene 6-Dinitrotoluene Chloronaphthalene Chlorophenol Methyl-4,6-dinitrophenol Methylnaphthalene Methylnaphthalene Methylphenol (o-cresol) | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |                    | 0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>0% |                     |                     | 170<br>170<br>170<br>170<br>170<br>420<br>170 |
| 4-Dichlorophenol 4-Dinitrylphenol 4-Dinitrotoluene 6-Dinitrotoluene 6-Dinitrotoluene Chloronaphthalene Chlorophenol Methyl-4,6-dinitrophenol                                                           | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      |                    | 0%<br>0%<br>0%<br>0%<br>0%<br>0%       |                     |                     | 170<br>170<br>170<br>170<br>420               |

#### Appendix C-3 11

### Summary Statistics for Reference Shrimp Data Sauget Area I

|                                                                                                                                                                                                                 | Number                                  | Number                     | Frequency of                                       | Minimum                                      | Maximum                                      |                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------|
| Compounds                                                                                                                                                                                                       | Analyzed                                | Detected                   | Detection                                          | Detected                                     | Detected                                     | Average<br>Concentration                                                                         |
| 3&4-Methylphenol (m&p-cresol)                                                                                                                                                                                   | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| 3,3-Dichlorobenzoline                                                                                                                                                                                           | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| 3-Nitroaniine                                                                                                                                                                                                   | 2                                       |                            | 0%                                                 |                                              |                                              | 4                                                                                                |
| l-Bromophenylphenyl ether<br>I-Chloro-3-melhylphenol                                                                                                                                                            | 2 2                                     |                            | 0%<br>0%                                           |                                              |                                              | 1 1                                                                                              |
| -Chioroeniine                                                                                                                                                                                                   | 2                                       |                            | 0%                                                 |                                              |                                              | ,                                                                                                |
| -Chlorophenylphenyl ether                                                                                                                                                                                       | 2                                       |                            | 0%                                                 |                                              |                                              | ĺ                                                                                                |
| l-Nitroenline                                                                                                                                                                                                   | 2                                       |                            | 0%                                                 |                                              |                                              | 4                                                                                                |
| l-Nibophenol                                                                                                                                                                                                    | 2                                       |                            | 0%                                                 |                                              |                                              | 4:                                                                                               |
| lærephthene                                                                                                                                                                                                     | 2                                       |                            | 0%                                                 |                                              |                                              | 11                                                                                               |
| Aconophibylane                                                                                                                                                                                                  | 2                                       |                            | 0%                                                 |                                              |                                              | ] 1                                                                                              |
| Anthracene                                                                                                                                                                                                      | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| Senzo(a)enthracene                                                                                                                                                                                              | 2 2                                     |                            | 0%<br>0%                                           |                                              |                                              | 1                                                                                                |
| Berzo(a)pyrene<br>Berzo(b)fluoranthene                                                                                                                                                                          | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| Berzo(g/tu)perylane                                                                                                                                                                                             | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| Senzo(k)fluoranthene                                                                                                                                                                                            | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| se(2-Chlorosthoxy)methane                                                                                                                                                                                       | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| xe(2-Chloroethyl)ether                                                                                                                                                                                          | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| us(2-Ethylhexyl)phthelate                                                                                                                                                                                       | 2                                       | 2                          | 100%                                               | 92                                           | 96                                           | _                                                                                                |
| Autylberusylphilitelese                                                                                                                                                                                         | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| arbazole                                                                                                                                                                                                        | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| Drysene                                                                                                                                                                                                         | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| h-n-butylphdhafale<br>X-n-oczylphdhafale                                                                                                                                                                        | . 2                                     |                            | 0%<br>0%                                           |                                              |                                              | 1                                                                                                |
| Nereo(a,h)entracene                                                                                                                                                                                             | . 2                                     |                            | 0%                                                 |                                              |                                              | i                                                                                                |
| Denzauran                                                                                                                                                                                                       | 2                                       |                            | 0%                                                 |                                              |                                              | i                                                                                                |
| hathylphthalaile                                                                                                                                                                                                | Ž                                       | 2                          | 100%                                               | 57                                           | 59                                           | •                                                                                                |
| Amen'nylof thetate                                                                                                                                                                                              | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| lucranthere                                                                                                                                                                                                     | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| Juorene                                                                                                                                                                                                         | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| exactionobereans                                                                                                                                                                                                | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| exactionbutadiene                                                                                                                                                                                               | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| exactionocyclopertadiene                                                                                                                                                                                        | 2                                       |                            | 0%<br>0%                                           |                                              |                                              | 1                                                                                                |
| exachtoroethene<br>ideno(1,2,3-od)pyrene                                                                                                                                                                        | 2                                       |                            | 0%                                                 |                                              |                                              | 1<br>1                                                                                           |
| icoporane                                                                                                                                                                                                       | 2                                       |                            | 0%                                                 |                                              |                                              | · i                                                                                              |
| Nitrosod-n-propytamine                                                                                                                                                                                          | ž                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| Nisceodphenylamine/Diphenylamine                                                                                                                                                                                | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| aphthalone                                                                                                                                                                                                      | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| laroberteane                                                                                                                                                                                                    | 2                                       |                            | 0%                                                 |                                              |                                              | 1                                                                                                |
| entachiorophenol                                                                                                                                                                                                | 2                                       |                            | 0%                                                 |                                              |                                              | 4                                                                                                |
| henorithrene<br>henol                                                                                                                                                                                           | 2                                       |                            | 0%<br>0%                                           |                                              |                                              | 1                                                                                                |
| years                                                                                                                                                                                                           | 2                                       |                            | 0%                                                 |                                              |                                              | i                                                                                                |
| forths and Furans, up/kg                                                                                                                                                                                        |                                         |                            |                                                    |                                              |                                              |                                                                                                  |
| 2346789-0C00                                                                                                                                                                                                    | 2                                       | 2                          | 100%                                               | 1.66E-02                                     | 2.99E-02                                     | 2.336-                                                                                           |
| 2348789-OCDF                                                                                                                                                                                                    | 2                                       | 1                          | 50%                                                | 1.10E-03                                     | 1.10E-03                                     | 6.75E                                                                                            |
| 2.3.4.6.7.8-HpCDO                                                                                                                                                                                               | 2                                       | 2                          | 100%                                               | 1.10E-03                                     | 2.40E-03                                     | 1.75E-                                                                                           |
| 2.3.4.6.7.8-HpCDF                                                                                                                                                                                               | 2                                       |                            | 0%                                                 |                                              |                                              | 1.25E-                                                                                           |
| 2.3.4.7.8.9-HpCDF                                                                                                                                                                                               | 2                                       |                            | 0%                                                 |                                              |                                              | 2.00E                                                                                            |
| 2.3.4.7.8-HicOO                                                                                                                                                                                                 | 2                                       |                            | 0%                                                 |                                              |                                              | 1.75E-                                                                                           |
| 2.3.4.7.8.HLCDF                                                                                                                                                                                                 | 2                                       |                            | 0%                                                 |                                              |                                              | 1.006-                                                                                           |
| 2,3,6,7,8-HuCOO<br>2,3,6,7,8-HuCOF                                                                                                                                                                              | -                                       |                            | 0%<br>0%                                           |                                              |                                              | 1.506-                                                                                           |
| Augustus AFT Milester                                                                                                                                                                                           | 2                                       | 1                          | 50%                                                | 6.90E-04                                     | 6.90E-04                                     | 1.00E-<br>4.45E-                                                                                 |
|                                                                                                                                                                                                                 | 2                                       |                            |                                                    | J. 302-104                                   | J. 500-104                                   | 1.256                                                                                            |
| 2.3.7.8.9 HiCOO                                                                                                                                                                                                 | 2                                       | ,                          | 1,70                                               |                                              |                                              |                                                                                                  |
| 2.3.7.8.9.HiCOO<br>2.3.7.8.9.HiCOF                                                                                                                                                                              | 2                                       | ·                          | 0%<br>0%                                           |                                              |                                              | 1 75=-                                                                                           |
| 23.7.8.9HiC00<br>23.7.8.9HiC0F<br>23.7.8.PHIC00                                                                                                                                                                 |                                         | ·                          | 0%<br>0%                                           |                                              |                                              |                                                                                                  |
| 23.7.89-HiCOD<br>23.7.89-HiCOF<br>23.7.8-PiCOD<br>23.7.8-PiCOF                                                                                                                                                  | 2 2                                     | ·                          | 0%                                                 |                                              |                                              | 1. <b>25</b> E-                                                                                  |
| 23.7 & S-HiCOO<br>23.7 & S-HiCOF<br>23.7 & PiCOO<br>23.7 & PiCOF<br>34.6.7 & HiCOF                                                                                                                              | 2<br>2<br>2<br>2<br>2                   | ·                          | 0%<br>0%                                           |                                              |                                              | 1.25E-<br>1.00E-                                                                                 |
| 23.7 A S-HICOD<br>23.7 A S-HICOF<br>23.7 A PHICOD<br>23.7 A PHICOD<br>3.4 A 7 A PHICOF<br>3.4 7 A PHICOF<br>3.4 7 A PHICOD                                                                                      | 2<br>2<br>2<br>2<br>2<br>2              | ·                          | 0%<br>0%<br>0%<br>0%                               |                                              |                                              | 1.25E-<br>1.00E-<br>1.25E-<br>1.50E-                                                             |
| 23.7 # 8-HiCOD<br>23.7 # 9-HiCOF<br>23.7 # P-HICOF<br>3.4 # 7 # HICOF<br>3.7 # TCOD<br>3.7 # TCOD                                                                                                               | 2<br>2<br>2<br>2<br>2                   | ·                          | 0%<br>0%<br>0%<br>0%                               |                                              |                                              | 1.25E-<br>1.00E-<br>1.25E-<br>1.50E-                                                             |
| 23.7 A S-HiCOD<br>23.7 A S-HiCOF<br>23.7 A PHICOF<br>3.4 A 7 A PHICOF<br>3.4 7 A PHICOF<br>3.7 A PICOF<br>3.7 A TCOF                                                                                            | 2 2 2 2 2 2                             |                            | 0%<br>0%<br>0%<br>0%<br>0%<br>0%                   |                                              |                                              | 1.25E-<br>1.00E-<br>1.25E-<br>1.50E-<br>1.00E-                                                   |
| 23.7 A S-HiCOD<br>23.7 A S-HiCOF<br>23.7 A PiCOD<br>23.7 A PiCOF<br>3.4 A 7 A HICOF<br>3.4 A 7 A HICOF<br>3.7 A TCOD<br>3.7 A TCOD<br>3.7 A TCOF<br>SAI HICOD                                                   | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2                          | 0%<br>0%<br>0%<br>0%<br>0%<br>0%                   | 3.50E-03                                     | 9.80E-03                                     | 1.25E-<br>1.00E-<br>1.25E-<br>1.50E-<br>1.00E-                                                   |
| 23.7 A S-HiCOD<br>23.7 A S-HiCOF<br>23.7 A PHICOD<br>23.7 A PHICOF<br>3.4 A 7 A PHICOF<br>3.7 A TCOD<br>3.7 A TCOD<br>3.7 A TCOD<br>3.7 A TCOD<br>3.7 A TCOD<br>3.1 HiCOD<br>501 HiCOD                          | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2<br>2                     | 0%<br>0%<br>0%<br>0%<br>0%<br>0%<br>100%           | 3.70E-04                                     | 1.00E-03                                     | 1.25E-<br>1.00E-<br>1.25E-<br>1.50E-<br>1.00E-<br>6.65E-<br>6.85E-                               |
| 2.3.7.8.9-HiCOD<br>2.3.7.8.9-HiCOF<br>2.3.7.8.7-9-COF<br>3.4.7.8.7-9-COF<br>3.4.7.8.7-9-COF<br>3.7.8.7-COD<br>3.7.8.7-COF<br>3.7.8.7-COF<br>3.8.1 HiCOD<br>3.8.1 HiCOD                                          | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2<br>2<br>2<br>2           | 0%<br>0%<br>0%<br>0%<br>0%<br>100%<br>100%         | 3.70E-04<br>2.30E-03                         | 1.00E-03<br>7.10E-03                         | 1.25E-<br>1.00E-<br>1.25E-<br>1.50E-<br>1.00E-<br>6.65E-<br>6.85E-<br>4.70E-                     |
| 2.3.7.8.9-HiCOD<br>2.3.7.8.9-HiCOF<br>2.3.7.8.9-HiCOF<br>3.4.8.7.8-HiCOF<br>3.4.7.8-HiCOF<br>3.7.8-TCOD<br>3.7.8-TCOD<br>3.7.8-TCOF<br>3.7.8-TCOF<br>3.8.1 HiCOD<br>5.8.1 HiCOD<br>5.8.1 HiCOD                  | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2<br>2<br>2<br>2<br>2      | 0%<br>0%<br>0%<br>0%<br>0%<br>100%<br>100%<br>100% | 3.70E-04<br>2.30E-03<br>6.20E-04             | 1.00E-03<br>7.10E-03<br>1.10E-03             | 1.75E-<br>1.25E-<br>1.00E-<br>1.50E-<br>1.50E-<br>1.00E-<br>6.65E-<br>6.85E-<br>4.70E-<br>8.60E- |
| 2.3.7 # S-HiCOD 2.3.7 # S-HiCOD 2.3.7 # PiCOD 2.3.7 # PiCOD 3.4 # 7 # HiCOF 3.4 # 7 # HiCOF 3.7 # TCOD 3.7 # TCOD 3.7 # TCOD 3.7 # TCOF 3.8 # HiCOD 3.8 # HiCOD 3.8 # HiCOF 3.8 # HiCOF 3.8 # HiCOF 3.8 # HiCOF | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2<br>2<br>2<br>2<br>2<br>2 | 0%<br>0%<br>0%<br>0%<br>0%<br>100%<br>100%<br>100% | 3.70E-04<br>2.30E-03<br>6.20E-04<br>2.00E-03 | 1.00E-03<br>7.10E-03<br>1.10E-03<br>4.20E-03 | 1.25E-<br>1.00E-<br>1.25E-<br>1.50E-<br>1.00E-<br>6.65E-<br>6.85E-<br>4.70E-<br>8.60E-<br>3.10E- |
| 23.7 A S-HiCOD 23.7 A S-HiCOD 23.7 A S-HiCOF 23.7 A S-HiCOF 34.7 A S-HiCOF 34.7 A S-HICOF 34.7 A S-TCOD 37.7 A TCOD 37.7 A TCOD 37.7 A TCOD 381 HiCCOF 381 HiCCOD 381 HiCCOD                                    | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2<br>2<br>2<br>2<br>2      | 0%<br>0%<br>0%<br>0%<br>0%<br>100%<br>100%<br>100% | 3.70E-04<br>2.30E-03<br>6.20E-04             | 1.00E-03<br>7.10E-03<br>1.10E-03             | 1.25E-<br>1.00E-<br>1.25E-<br>1.50E-<br>1.00E-<br>6.65E-<br>6.85E-<br>4.70E-<br>8.60E-           |

Note:

One-half the detection limit is used to represent non-detects in the calculation of average concentrations.

#### Borrow Pit Lake Clarn Summary Statistics Sauget Area I

|                                                            | Number   | Number   | Frequency of | Minimum                                 | Maximum  | Average         |
|------------------------------------------------------------|----------|----------|--------------|-----------------------------------------|----------|-----------------|
| Compounds                                                  | Analyzed | Detected | Detection    | Detected                                | Detected | Concentratio    |
| Herbicides, ug/kg                                          |          |          |              |                                         |          |                 |
| 2,4,5-T<br>2,4,5-TP (Silvex)                               | 3<br>3   |          | 0%<br>0%     |                                         |          |                 |
| 2,4-D                                                      | 3        |          | 0%           |                                         |          |                 |
| 2,4-DB                                                     | 3        | ł i      | 0%           |                                         |          |                 |
| Dalapon                                                    | 3        |          | 0%           | ľ                                       |          | 433             |
| Dicamba                                                    | 3        |          | 0%           |                                         |          |                 |
| Dichloroprop                                               | 3        | 3        | 100%         | 3.2                                     | 32       | -               |
| Dinoseb                                                    | 3        |          | 0%           |                                         |          | 21              |
| MCPA[(4-chloro-2-methylphenoxy)-acetic a                   | 3        |          | 0%           |                                         |          | 433             |
| MCPP[2-(4-chloro-2-methylphenoxy)-propan Pentachlorophenol | 3        | 1        | 33%<br>0%    | 4000                                    | 4000     | 500             |
| Metals, mg/kg                                              |          |          | U76          |                                         |          |                 |
| Numinum                                                    | 3        | 3        | 100%         | 7.5                                     | 13       | 10              |
| Antimony                                                   | 3        | , o      | 0%           | ,                                       |          | 0.0             |
| <b>Vsenic</b>                                              | 3        | 1        | 33%          | 0.96                                    | 0.96     | 1.8             |
| Beryllium                                                  | 3        |          | 0%           |                                         |          | 0.45            |
| Cadmium                                                    | 3        | 2        | 67%          | 0.074                                   | 0.12     | 0.1             |
| Chromium                                                   | 3 [      | 3        | 100%         | 0.22                                    | 1.1      | 0.6             |
| >opper                                                     | 3        | 3        | 100%         | 0.6                                     | 0.99     | 0.8             |
| Cyanide, Total                                             | 3        |          | 0%           | ا ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ |          |                 |
| ead                                                        | 3        | 1        | 33%          | 0.25                                    | 0.25     | 0.2             |
| Aercury<br>lickel                                          | 3 3      |          | 0%<br>0%     |                                         |          | 0.0<br>4.5      |
| Selenium                                                   | 3        |          | 0%           | [                                       |          | 0.2             |
| ilver                                                      | 3        | 1        | 33%          | 0.015                                   | 0.015    | 0.0             |
| inc                                                        | 3        | 3        | 100%         | 8.9                                     | 22       | 14.9            |
| / 1 - 1 - 1                                                |          | J        | 4008         |                                         |          |                 |
| 6 Lipid<br>PCB, ug/kg                                      | 3        | 3        | 100%         | 0.05                                    | 0.23     | 0.1             |
| Decachlorobiphenyl                                         | 3        |          | 0%           | -                                       |          | 33.:            |
| Dichlorobiphenyl                                           | 3 )      | 1        | 0%           |                                         |          | 6.0             |
| leptachlorobiphenyl                                        | 3        | ſ        | 0%           | [                                       |          | 20.0            |
| lexachlorobiphenyl                                         | 3        |          | 0%           |                                         |          | 13.3            |
| lonochlorobiphenyl                                         | 3        |          | 0%           |                                         |          |                 |
| lonachlorobiphenyl                                         | 3 {      | }        | 0%           |                                         |          | 33.             |
| Octachlorobiphenyl                                         | 3        |          | 0%           |                                         |          | 20.0            |
| entachlorobiphenyl                                         | 3        |          | 0%           |                                         |          | 13.3            |
| etrachlorobiphenyl                                         | 3        |          | 0%           |                                         |          | 13.3            |
| richlorobiphenyl                                           | 3        | - 1      | 0%           | 1                                       |          |                 |
| otal PCBs                                                  | 3        |          | _0%          |                                         |          | 13.0            |
| esticides, ug/kg                                           |          | _        |              |                                         |          |                 |
| ,4'-DDD                                                    | 3        | - 1      | 0%           | - 1                                     |          | 1               |
| 4'-DDE<br>4'-DDT                                           | 3        |          | 0% <br>0%    |                                         |          | 1               |
| otal DDT                                                   | 3        |          | 0%           |                                         |          | 1               |
| Idrin                                                      | 3        | l l      | 0%           | 1                                       |          | 6.1             |
| lpha Chlordane                                             | 3        | Í        | 0%           | - 1                                     | İ        | 6.1             |
| pha-BHC                                                    | 3        |          | 0%           |                                         |          | 6.              |
| eta-BHC                                                    | 3        |          | 0%           |                                         |          | 6.              |
| elta-BHC                                                   | 3        |          | 0%           | }                                       |          | 6.1             |
| ieldrin                                                    | 3        |          | 0%           |                                         |          | . 1             |
| ndosulfan I                                                | 3        |          | 0%           |                                         |          | 6.              |
| ndosulfan li                                               | 3        | ĺ        | 0%           |                                         |          |                 |
| ndosulfan sulfate                                          | 3        | ļ        | 0%           | 1                                       | ł        | •               |
| ndrin                                                      | 3        | į        | 0%           | l                                       |          |                 |
| ndrin aldehyde                                             | 3        | 1        | 0%           |                                         |          |                 |
| ndrin ketone<br>amma Chlordane                             | 3   3    | j        | 0%<br>0%     |                                         |          | R               |
| amma Chiordane<br>amma-BHC (Lindane)                       | 3 3      | [        | 0%           | 1                                       |          | 6. <sup>-</sup> |
| eptachlor                                                  | 3        | 1        | 33%          | 2.3                                     | 2.3      | 3.              |
| eptachior epoxide                                          | 3        | '        | 0%           | 2.0                                     | 2.5      | 6.              |
| ethoxychlor                                                | 3        | 1        | 33%          | 5.4                                     | 5.4      | J               |
| oxaphene                                                   | 3        | .        | 0%           | • • •                                   |          | 32              |
| VOCs, ug/kg                                                |          |          |              |                                         |          |                 |
| 2,4-Trichlorobenzene                                       | 3        |          | 0%           | 1                                       |          | 1               |
| 2-Dichlorobenzene                                          | 3        |          | 0%           | ľ                                       |          | 1               |
| 3-Dichlorobenzene                                          | 3        | 1        | 0%           |                                         |          | 1               |
| 4-Dichlorobenzene                                          | 3        |          | 0%           |                                         |          | 1.              |
| 2'-Oxybis(1-chloropropane)[bis(2-Chlor                     | 3        | ļ        | 0%           |                                         |          | 1               |
| 4,5-Trichlorophenol                                        | 3        |          | 0%           |                                         |          | 20              |
| 4,6-Trichlorophenol                                        | 3        | ļ        | 0%           |                                         |          | 1:              |
| 4-Dichlorophenol                                           | 3        | į        | 0%           |                                         |          | 1               |
| 4-Dimethylphenol                                           | 3        | 1        | 0%           | J                                       |          | 1               |
| 4-Dinitrophenol                                            | 3        |          | 0%           |                                         | 1        | 21              |
| 4-Dinitrotoluene                                           | 3        |          | 0%           |                                         |          | 1               |
| 6-Dinitrotoluene                                           | 3        |          | 0%           |                                         |          | 1               |
| Chloronaphthalene                                          | 3        | ł        | 0%           |                                         |          | 1               |
| Chlorophenol                                               | 3        | l l      | 0%           |                                         |          | 1               |
| Methyl-4,6-dinitrophenol                                   | 3        |          | 0%           |                                         |          | 2               |

#### Appendix C-3 12

### Borrow Pit Lake Clarn Summary Statistics Sauget Area !

|                                                      |          |          |              |          | •                 |                      |
|------------------------------------------------------|----------|----------|--------------|----------|-------------------|----------------------|
|                                                      | Number   | Number   | Frequency of | مسجيد    | Marine            | Average              |
| Compounds                                            | Analyzed | Detected | Detection    | Detected | Detected          | Concentration        |
| 2-Methylphenal (o-cresol)                            | 3 3      |          | 0%<br>0%     | :        | l                 | 11.<br>28            |
| 2-Nitroaniline<br>2-Nitrophenol                      | 3        |          | 0%           |          |                   | 113                  |
| 3&4-Methylphenol (m&p-cresol)                        | 3        |          | 0%           |          |                   | 113                  |
| 3,3-Oichloroberzidine                                | 3        |          | 0%           |          |                   | 11:                  |
| 3-Nitroanline                                        | 3        |          | 0%           |          |                   | 28                   |
| 4-Bromophenylphenyl ether<br>4-Chioro-3-methylphenol | 3 3      |          | 0%           |          |                   | 11;<br>11;           |
| 4-Chioroeniline                                      | 1 3      |          | 0%           |          |                   | 113                  |
| 4-Chlorophenylphenyl ether                           | 3        |          | 0%           |          |                   | 11:                  |
| 4-Miroenline                                         | 3        |          | 0%           |          |                   | 28                   |
| 4-Nitrophenol<br>Acunephthene                        | 3 3      |          | 0%<br>0%     |          |                   | 28<br>11:            |
| Acensphilhylene                                      | 3        |          | 0%           |          |                   | 11:                  |
| Anthracone                                           | 3        |          | 0%           |          |                   | 11                   |
| Benzo(a)anthracene                                   | j 3      |          | 0%           |          |                   | 11                   |
| Berzo(a)pyrene                                       | 3        |          | 0%           |          |                   | 11:                  |
| Berzo(b)fluoranthene<br>Berzo(g.hu)perylene          | 3 3      |          | 0%<br>0%     |          |                   | 11:<br>11:           |
| Berzo(t) Nuoranthene                                 | 3        |          | 0%           |          |                   | 11:                  |
| be(2-Chloroethoxy)methane                            | 3        |          | 0%           |          |                   | 113                  |
| be(2-Choroethyl)ether                                | 3        | ا ـ      | 0%           |          |                   | 113                  |
| tre(2-Ethythexyl)phthelate<br>Burylbenzylphthalate   | 3        | 3        | 100%<br>0%   | 55       | 170               | 90<br>11:            |
| Carbazole                                            | 3        |          | 0%           | '        |                   | 113                  |
| Chrysene                                             | 3        |          | 0%           |          |                   | 113                  |
| On-in-bully/pht/hallate                              | 3        |          | 0%           |          |                   | 113                  |
| D-n-octylphthalate                                   | 3        |          | 0%           |          |                   | 113                  |
| Oibenzo(auh)enthracene<br>Oibenzofuran               | 3 3      |          | 0%<br>0%     |          |                   | 113<br>113           |
| O-est-y/phth-plate                                   | 3 /      | 3        | 100%         | 53       | 120               | 7:                   |
| Demotrylphshalate                                    | 3        |          | 0%           |          |                   | 113                  |
| Rucarthere                                           | 3        |          | 0%           |          |                   | 113                  |
| Fluorene<br>Hexachiorobenzene                        | 3 3      |          | 0%<br>0%     |          |                   | 113<br>113           |
| Hexactionbutadene                                    | 3        |          | 0%           |          |                   | 113                  |
| Hexachlorocyclopentadiene                            | 3        |          | 0%           |          |                   | 113                  |
| Herachloroethene                                     | 3        |          | 0%           |          |                   | 113                  |
| indeno(1,2,3-cd)pyrene                               | 3        |          | 0%           |          |                   | 113                  |
| tsophorone<br>n-Hibrosodi-n-propytemine              | 3 3      |          | 0%<br>0%     |          |                   | 113<br>113           |
| N-Nitrosodiphenylamine/Diphenylamine                 | 3        |          | 0%           |          |                   | 113                  |
| Naphthalane                                          | 3        | 1        | 0%           | 1        |                   | 113                  |
| Misobenzene                                          | 3 3      |          | 0%<br>0%     |          |                   | 113                  |
| Pertachtorophenol<br>Phananthrene                    | 3        |          | 0%           |          |                   | 280<br>113           |
| Phenol                                               | 3        |          | 0%           |          |                   | 113                  |
| Pyrame                                               | 3        |          | 0%           |          |                   | 113                  |
| Total PAHs                                           | 3        | ł        | 0%           | ł        |                   | 113                  |
| Noxine and Furanc, ug/kg                             |          |          |              |          |                   |                      |
| 2346789-0C00                                         | 3        | 3        | 100%         | 3.40E-03 | 1.51E-02          | 8.07E-03             |
| 23467A9-000F                                         | 3 3      | ا.       | 0%<br>33%    |          |                   | 3.67E-04             |
| 1 <u>23467,8-Hp</u> C00<br>12346,7,8-HpCDF           | 3        | 1        | 33%          | 1.40E-03 | 1.40E-03          | 6.17E-04<br>1.67E-04 |
| 234789+9COF                                          | 3        | ł        | 0%           |          |                   | 2.50E-0              |
| 23.4.7.6+ti-C00                                      | 3        | - 1      | 0%           |          |                   | 2.00E-04             |
| 23478-H-COF                                          | 3        |          | 0%           |          |                   | 1.17E-0              |
| 2.3.6.7.8-H-CDD<br>2.3.6.7.8-H-CDF                   | 3        |          | 0%<br>0%     |          |                   | 1.67E-0              |
| 23789HiC00                                           | 3        |          | 0%           |          |                   | 1.00E-0-<br>2.00E-0- |
| 2.3.7.8.9+HCDF                                       | 3        |          | 0%           |          |                   | 1.33E-0              |
| 23.7.8-PeC00                                         | 3        |          | 0%           |          |                   | 1.33E-0              |
| 2378-PcC0F                                           | 3        |          | 0%           |          |                   | 1.00E-0              |
| 23.4.6.7.8-HsCOF                                     | 3 3      |          | 0%<br>0%     |          | +                 | 1.006-0              |
| 3.7.8-TC00                                           | 3        | 1        | 0%           |          |                   | 1.00E-04<br>1.00E-04 |
| 13.7.6-TCOF                                          | 1        | 1        | 100%         | 1.00E-03 | 1.00E-03          | 1.00E-0              |
| 3.7.4-TCOF                                           | 3        | 3        | 100%         | 3.10E-04 | 1.50E-03          | 8.23E-0              |
| osal HpCDD                                           | 3        | 1        | 33%          | 3 40E-03 | 3.40E-03          | 1.28E-03             |
| osal HpCDF                                           | 3        | .        | 0%           | 5 60E 04 | 6 60E 04          | 2.00E-04             |
| otal HuCOF                                           | 3        | 1        | 33%<br>0%    | 5.50E-04 | 5. <b>50E-</b> 04 | 2.83E-04<br>1.17E-04 |
| otal PeCOO                                           | 3        |          | 0%           |          |                   | 1.33E-0              |
| otal PeCOF                                           | 3        | 2        | 67%          | 1.30E-03 | 1.40E-03          | 9.17E-04             |
| otal TCOO                                            | 3        | 3        | 100%         | 1.70E-04 | 1.40E-03          | 8.90E-0              |
| otal TCOF                                            | 3        | 3        | 100%         | 9.30E-04 | 8.00E-03          | 4.51E-0              |

Note:

One-half the detection limit is used to represent non-detects in the calculation of average concentrations.

#### Reference Area Clam Summary Statistics Sauget Area I

|                                                               | Number   | Number   | Frequency of | Minimum  | Maximum  | Average       |
|---------------------------------------------------------------|----------|----------|--------------|----------|----------|---------------|
| Compounds                                                     | Analyzed | Detected | Detection    | Detected | Detected | Concentration |
| Herbicides, ug/kg                                             |          |          |              |          |          |               |
| 2,4,5-T<br>2,4,5-TP (Silvex)                                  | 3        |          | 0%<br>0%     |          |          | 2<br>2        |
| 2,4,5-1P (Silvex)<br>2,4-D                                    | 3        |          | 0%           | •        |          | 2             |
| 2,4-0<br>2,4-DB                                               | 3        |          | 0%           |          |          | 2             |
| Dalapon                                                       | 3        |          | 0%           |          |          | 400           |
| Dicamba                                                       | 3        |          | 0%           |          |          | 4             |
| Dichloroprop                                                  | 3        | 3        | 100%         | 6.5      | 87       | 3             |
| Dinoseb                                                       | 3        |          | 0%           |          |          | 20            |
| MCPA[(4-chloro-2-methylphenoxy)-acetic a                      | 3        | 1        | 33%          | 1400     | 1400     | 746           |
| MCPP[2-(4-chloro-2-methylphenoxy)-propan                      | 3        |          | 0%           |          |          | 733           |
| Pentachlorophenol                                             | 3        |          | 0%           |          |          | 4             |
| Metals, mg/kg<br>Aluminum                                     | 3        | 3        | 100%         | 14       | 26       | 1             |
| Antimony                                                      | 3        | 3        | 0%           | 14       | 20       | 0.09          |
| Arsenic                                                       | 3        | 1        | 33%          | 0.65     | 0.65     | 1.            |
| Beryllium                                                     | 3        |          | 0%           | 0.00     | 0.00     | 0.47          |
| Cadmium                                                       | 3        | 3        | 100%         | 0.16     | 0.61     | 0.43          |
| Chromium                                                      | 3        | 3        | 100%         | 0.79     | 2.2      | 1.            |
| Copper                                                        | 3        | 3        | 100%         | 1.6      | 2.4      | 2.            |
| Cyanide, Total                                                | 3        |          | 0%           |          |          | 5.            |
| .ead                                                          | 3        | 2        | 67%          | 0.44     | 0.59     | 0.42          |
| dercury                                                       | 3        | i        | 0%           | ł        | l        | 0.04          |
| lickel                                                        | 3        | ,        | 0%           |          |          | 4.            |
| Selenium                                                      | 3        | 1        | 33%          | 0.48     | 0.48     | 0.31          |
| Silver<br>Linc                                                | 3 3      | ا        | 0%<br>100%   |          |          | 0.04          |
|                                                               | 3        | 3        | 100%         | 21       | 52       | 3             |
| 6 Lipid                                                       | 3        | 3        | 100%         | 0.090    | 0.12     | 0.11          |
| CB, ug/kg                                                     |          |          |              |          |          |               |
| Decachlorobiphenyl                                            | 3        |          | 0%           | ŀ        | ļ        | 2             |
| Dichlorobiphenyl                                              | 3        | -        | 0%           | }        | }        |               |
| leptachlorobiphenyl                                           | 3        |          | 0%           |          |          | 1             |
| lexachlorobiphenyl                                            | 3        | í        | 0%           | 1        |          | 1             |
| /onochlorobiphenyl                                            | 3        |          | 0%           |          |          |               |
| lonachlorobiphenyl<br>Octachlorobiphenyl                      | 3        | ł        | 0% <br>0%    | ł        | ł        | 2             |
| entachlorobiphenyl                                            | 3        | 1        | 0%           | 1        | i        | 1             |
| etrachlorobiphenyl                                            | 3        | :        | 0%           |          |          | i             |
| richlorobiphenyl                                              | 3        | - 1      | 0%           | - 1      | 1        | į             |
|                                                               | ٦        |          | • • •        | i        |          | · ·           |
| otal PCBs                                                     |          |          | 0%           |          |          |               |
| esticides, ug/kg<br>,4'-DDD                                   | 3        | l        | 0%           |          |          | 9.<br>9.      |
| 4'-DDE                                                        | 3        |          | 0%           |          |          | 9.            |
| 4'-DDT                                                        | 3        |          | 0%           |          |          | 5.            |
| drin                                                          | 3        |          | 0%           |          |          | 5.            |
| ipha Chlordane                                                | 3        | ĺ        | 0%           | 1        |          | 5.            |
| pha-BHC                                                       | 3        |          | 0%           |          |          | 5.            |
| eta-BHC                                                       | 3        |          | 0%           | i        | ì        | 5,            |
| elta-BHC                                                      | 3        | ł        | 0%           | - 1      | ł        | 9.            |
| ieldrin                                                       | 3        |          | 0%           |          |          | 5.            |
| ndosulfan I<br>ndosulfan Ii                                   | 3        | 1        | 0%           | l        | ŀ        | 9.            |
| ndosulfan ili<br>ndosulfan sulfate                            | 3        | ļ        | 0%)<br>0%)   | l        | j        | 9.<br>9.      |
| ndosultan suttate                                             | 3        | ĺ        | 0%           | 1        |          | 9.<br>9.      |
| ndrin aldehyde                                                | 3        |          | 0%           | ŀ        | İ        | 9.            |
| ndrin ketone                                                  | 3        |          | ŏ%           | !        |          | 5.<br>5.      |
| amma Chlordane                                                | 3        |          | 0%           |          |          | 5.            |
| amma-BHC (Lindane)                                            | 3        |          | 0%           |          |          | 5.            |
| eptachlor                                                     | 3        |          | 0%           | 1        |          | 5.            |
| eptachlor epoxide                                             | 3        | j        | 0%           | ļ        | j        | 5             |
| ethoxychlor                                                   | 3        | 1        | 0%           | ł        | 1        | 26            |
| oxaphene                                                      | 3        |          | 0%           |          |          | 8             |
| VOCs, ug/kg                                                   |          |          |              |          |          |               |
| 2,4-Trichlorobenzene                                          | 3        |          | 0%           |          | İ        | 8             |
| 2-Dichlorobenzene                                             | 3        | }        | 0%           | ļ        | ļ        | 8             |
| 3-Dichlorobenzene                                             | 3        | ,        | 0%           |          |          | 8             |
| 4-Dichlorobenzene 2-Ovybie/1-chloroppmpape)lbie/2-Chlor       | 3 3      |          | 0% <br>0%    | 1        | ļ        | 8<br>21       |
| 2'-Oxybis(1-chloropropane)[bis(2-Chlor<br>4,5-Trichlorophenol | 3        | ļ        | 0%           | Į        |          | 21<br>8       |
| 4,6-Trichlorophenol                                           | 3        | ŀ        | 0%           |          |          | 8             |
| 4-Dichlorophenol                                              | 3        |          | 0%           | 1        |          | 8             |
| 4-Diamorophenol                                               | 3        |          | 0%           |          |          | 21            |
| 4-Dinitrophenol                                               | 3        |          | 0%           |          | ļ        | 8             |
| 4-Dinitrotoluene                                              | 3        | ļ        | 0%           | ļ        | ]        | 6             |
| 6-Dinitrotoluene                                              | 3        | -        | 0%           | J        | 1        | 8             |
| Chloronaphthalene                                             | 3        | İ        | 0%           | l        |          | 8             |
| Chlorophenol                                                  | 3        | ļ        | 0%           | ŀ        | j        | 21            |
| Methyl-4,8-dinitrophenol                                      | 3        | i        | 0%           | 1        | 1        |               |
| Methylnaphthalene                                             | 3        |          | 0%           | į        |          | 8             |
| Methylphenol (o-cresol)                                       | 3        |          | 0%           | ı        |          | 21            |

#### Appendix C-3 13

### Reference Area Clam Summary Statistics Sauget Area !

|                                                                                                                                   | Number                               | Number      | Frequency of                         | Ministra                         | Maximum                          | Average                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------------------------------------|
| Compounds                                                                                                                         | Analyzed                             | Detected    | Detection                            | Detected                         | Detected                         | Concentration                                                  |
| 2-Mitrophine                                                                                                                      | 3                                    |             | 0%<br>0%                             |                                  |                                  | 8                                                              |
| 2-Nitrophenol<br>384-Methylphenol (m5p-cresol)                                                                                    | 3                                    |             | 0%                                   |                                  |                                  | 8                                                              |
| 3.3-Dichlorobenzidine                                                                                                             | j š                                  |             | 0%                                   | ľ                                |                                  | 21                                                             |
| 3-Mitroaniline                                                                                                                    | 3                                    |             | 0%                                   |                                  |                                  |                                                                |
| 4-Bromophenylphenyl ether                                                                                                         | 3                                    | ľ           | 0%                                   |                                  |                                  | 8                                                              |
| 4-Chloro-3-methylphenol                                                                                                           | ] 3                                  |             | 0%                                   |                                  |                                  | 8                                                              |
| 4-Chlorosniine                                                                                                                    | 3                                    |             | 0%                                   |                                  |                                  | 8                                                              |
| 4-Chlorophenylphenyl ether                                                                                                        | 3                                    |             | 0%                                   |                                  |                                  | 21                                                             |
| 4-Nitroenline<br>4-Nitroenland                                                                                                    | 3 3                                  |             | 0%<br>0%                             |                                  |                                  | 21<br>8                                                        |
| Acenephinane                                                                                                                      | 3                                    |             | 0%                                   |                                  |                                  | ì                                                              |
| Acenaphthylene                                                                                                                    | <b>1</b> 3                           |             | 0%                                   |                                  |                                  |                                                                |
| Anthracene                                                                                                                        | 3                                    |             | 0%                                   |                                  |                                  | 8                                                              |
| Benzo(a)anthracene                                                                                                                | 3                                    |             | 0%                                   |                                  |                                  | 8                                                              |
| Benzo(a)pyrene                                                                                                                    | ] 3                                  |             | 0%                                   | J                                | ļ                                | 8                                                              |
| Berzo(b)fluoranthene                                                                                                              | ] 3                                  |             | 0%                                   |                                  |                                  | 8                                                              |
| Benzo(g.lv)perylans                                                                                                               | 3                                    |             | 0%                                   |                                  |                                  | 8                                                              |
| Berzo(k)fluoranthene                                                                                                              | 3                                    |             | 0%                                   |                                  |                                  | 8                                                              |
| be(2-Chloroethoxy)methane                                                                                                         | 3 3                                  | _           | 0%<br>100%                           | 47                               | 9-0                              | 8                                                              |
| be(2-Chloroethyl)ether<br>be(2-Ethylhexyl)phthelete                                                                               | 3 3                                  | 3           | 100%                                 | 47                               | 73                               |                                                                |
| outer-compression provinces                                                                                                       | 3                                    |             | 0%                                   | ;                                |                                  | 8                                                              |
| Carbazole                                                                                                                         | 1 3                                  |             | 0%                                   |                                  |                                  |                                                                |
| Chrysene                                                                                                                          | 3                                    |             | 0%                                   |                                  |                                  | ě                                                              |
| D- n-bulg-philhalate                                                                                                              | ] 3                                  |             | 0%                                   |                                  |                                  | ē                                                              |
| Di-n-octylphthaliste                                                                                                              | 3                                    | 1           | 0%                                   |                                  |                                  | 8                                                              |
| Diberzo(a,h)entivacene                                                                                                            | 3                                    |             | 0%                                   |                                  |                                  | 8                                                              |
| Oberzouran                                                                                                                        | 3                                    | 3           | 100%                                 | 49                               | 59                               | 5                                                              |
| Destriyantalis                                                                                                                    | 3                                    |             | 0%'                                  |                                  |                                  | 8                                                              |
| Demailtylphilhalate                                                                                                               | 3 3                                  | 1           | 0%<br>~~                             |                                  |                                  | 8                                                              |
| Ruoranthere<br>Ruorane                                                                                                            | 3                                    | 1           | 0%<br>0%                             |                                  |                                  | 8                                                              |
| teuschiorobersene                                                                                                                 | 3                                    |             | 0%                                   |                                  |                                  | 8                                                              |
| teractionbutadene                                                                                                                 | 3                                    |             | 0%                                   |                                  |                                  | 8                                                              |
| lexachtorocyclopentatione                                                                                                         | 3                                    |             | 0%                                   |                                  |                                  | ě                                                              |
| lexactiorositiane                                                                                                                 | 3                                    |             | 0%                                   |                                  |                                  | 8                                                              |
| ndeno(1,2,3-cd)pyrene                                                                                                             | 3                                    |             | 0%                                   |                                  |                                  | 8                                                              |
| sophorone                                                                                                                         | 3                                    |             | 0%                                   |                                  |                                  | 8                                                              |
| -Narosod-n-propylamine                                                                                                            | 3                                    |             | 0%                                   |                                  |                                  | 8                                                              |
| l-Naceodphenylamine/Diphenylamine                                                                                                 | 3                                    |             | 0%                                   |                                  |                                  | 8                                                              |
| taphihatene<br>disoberzane                                                                                                        | 3                                    |             | 0%<br>0%                             |                                  |                                  | 8<br>21                                                        |
| Pertachlorophenol                                                                                                                 | 3                                    |             | 0%                                   |                                  |                                  | 8                                                              |
| The residence                                                                                                                     | 3                                    |             | 0%                                   |                                  |                                  | ě                                                              |
| 740                                                                                                                               | 3                                    |             | 0%                                   |                                  |                                  | ě                                                              |
| ) reve                                                                                                                            | 3                                    | 3           | 100%                                 | 8300.0                           | 0.012                            | 0.009                                                          |
|                                                                                                                                   |                                      |             |                                      |                                  |                                  |                                                                |
| Ideal PAHs<br>Heater and Furses, water                                                                                            |                                      |             |                                      |                                  |                                  |                                                                |
| 23487AB-0000                                                                                                                      | 3                                    | 3           | 100%                                 | 6.80E-03                         | 1.24E-02                         | 9.80E-0                                                        |
| 23487890CDF                                                                                                                       | 3                                    | 1           | 33%                                  | 1.80E-03                         | 1.24E-02<br>1.80E-03             | 8.50E-0                                                        |
| 2.3.4.6.7.8-HpC00                                                                                                                 | 3                                    | 2           | 67%                                  | 5.90E-04                         | 1.00E-03                         | 6.63E-0                                                        |
| 234678HbCDF                                                                                                                       | 3                                    | •           | 0%                                   |                                  |                                  | 1.67E-0                                                        |
| 23.4.7.8.9-HpCOF                                                                                                                  | 3                                    |             | 0%                                   |                                  |                                  | 2.50E-0                                                        |
| 23478HbC00                                                                                                                        | 3                                    |             | 0%                                   |                                  |                                  | 1.67E-0                                                        |
| 2.3.4.7.8+bCDF                                                                                                                    | 3                                    |             | 0%                                   |                                  |                                  | 1.00E-0                                                        |
| 2387.8HbC00                                                                                                                       | 3                                    |             | 0%                                   |                                  |                                  | 1.67E-0                                                        |
| 2367.8HbCOF                                                                                                                       | 3                                    |             | 0%                                   |                                  |                                  | 1.00E-0                                                        |
| 2.3.7.8.9-HuCDO                                                                                                                   | 3                                    |             | 0%                                   |                                  |                                  | 2.00E-0                                                        |
| 2.3.7.8.9-ts-CDF                                                                                                                  | 3                                    |             | 0%                                   |                                  |                                  | 1.50E-0                                                        |
| 2378-Pc00<br>2378-Pc0F                                                                                                            | 3<br>3                               |             | 0%<br>0%                             |                                  |                                  | 1.50E-0                                                        |
|                                                                                                                                   |                                      |             | 0%                                   |                                  |                                  | 1,00E-0<br>1,00E-0                                             |
| 14678MCTE                                                                                                                         | -                                    |             | 0%                                   |                                  |                                  | 1,00E-0                                                        |
| 1467846CDF                                                                                                                        | 3                                    |             |                                      |                                  |                                  | 1.00E-0                                                        |
| 34.7.8-PeCDF                                                                                                                      | 3                                    |             | n≪                                   |                                  |                                  |                                                                |
| 34.7.8-PeCOF<br>3.7.8-TCOO                                                                                                        |                                      |             | 0%                                   |                                  |                                  |                                                                |
| 3.4.7.8-PeCOF<br>3.7.8-TCO6<br>3.7.8-TCOF                                                                                         | 3<br>3                               | 1           |                                      | 2.50E-04                         | 2.50E-04                         |                                                                |
| 3.7.5-PCOF<br>3.7.5-TCOF<br>3.7.5-TCOF<br>3.7.5-TCOF                                                                              | 3                                    | 1<br>2      | 33%                                  | 2.50E-04<br>1.10E-03             | 2.50E-04<br>2.40E-03             | 1.67E-0                                                        |
| 3.47.6-PeCOF<br>3.7.6-TCOF<br>3.7.6-TCOF<br>3.7.6-TCOF<br>088 HIPCOO                                                              | 3<br>3<br>3                          | 1 2         |                                      |                                  | 2.50E-04<br>2.40E-03             | 1,67E-0<br>1,30E-0                                             |
| 3.4.7.6-PeCOF<br>3.7.6-TCOF<br>3.7.6-TCOF<br>0ail HpCOO<br>0ail HpCOOF                                                            | 3<br>3<br>3<br>3                     |             | 33%<br>67%                           |                                  |                                  | 1.67E-0<br>1.30E-0<br>2.00E-0                                  |
| 3.4.7.6-PeCOF<br>3.7.6-TCOF<br>3.7.6-TCOF<br>cast HpCOF<br>cast HpCOF<br>cast HpCOF                                               | 3<br>3<br>3<br>3<br>3                | 2           | 33%<br>67%<br>0%                     | 1.10E-03                         | 2.40E-03                         | 1.67E-0<br>1.30E-0<br>2.00E-0<br>2.20E-0                       |
| 3.4.6.7.8-HacOF 3.4.7.8-PacOF 3.7.8-PacOF 3.7.8-TCOF 3.7.8-TCOF cast HpCOO cast HpCOO cast HacCOO cast HacCOF cast PacCOO         | 3<br>3<br>3<br>3<br>3<br>3<br>3      | 2           | 33%<br>67%<br>0%<br>33%              | 1.10E-03                         | 2.40E-03                         | 1.67E-0<br>1.30E-0<br>2.00E-0<br>2.20E-0<br>1.00E-0<br>1.50E-0 |
| 3.4.7.6-PeCOF 3.7.6-TCOF 3.7.6-TCOF 3.7.6-TCOF otal HgCOO otal HgCOOF otal HgCOOF otal HgCOOF otal PeCOF otal PeCOF otal PeCOF    | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 2<br>1<br>2 | 33%<br>67%<br>0%<br>33%<br>0%<br>67% | 1.10E-03<br>2.60E-04<br>2.50E-04 | 2.40E-03<br>2.60E-04<br>2.10E-03 | 1.67E-0<br>1.30E-0<br>2.00E-0<br>2.20E-0<br>1.00E-0<br>1.50E-0 |
| 3,47,6-PoCOF 3,7,6-TCOF 3,7,6-TCOF 3,7,6-TCOF  dail HpCOO  dail HpCOO  dail HpCOO  dail HpCOO  dail HpCOO  dail PpCOO  dail PpCOO | 3<br>3<br>3<br>3<br>3<br>3<br>3      | 1           | 33%<br>67%<br>0%<br>33%<br>0%        | 1.10E-03<br>2.60E-04             | 2.40E-03<br>2.60E-04             | 1.67E-0<br>1.30E-0<br>2.00E-0<br>2.20E-0<br>1.00E-0            |

Note:

One-half the detection limit is used to represent non-detects in the calculation of average concentrations.

Table C-3.14
Snail Summary Statistics From Dead Creek Sections B, C, D and Reference Areas
Sauget Area I

|                                   | Number                                           | Number      | Detection     | Minimum      | Maximum     |             |
|-----------------------------------|--------------------------------------------------|-------------|---------------|--------------|-------------|-------------|
|                                   | Analyzed                                         | Detected    | Frequency (%) | Detected     | Detected    | Average     |
| Herbicides (ug/kg)                | _ ا                                              | ]           | ]             |              |             | 5.0         |
| 2,4-D                             | 5                                                | 1           |               | 1            |             | 5.0         |
| 2,4-DB                            | 5                                                |             | 00            |              | 0.4         | 5.0         |
| Dicamba                           | 5                                                | ] 1         | 20            | 8.4          | 8.4         | 9.7         |
| Dichloroprop                      | 5                                                | 1.          |               | 6400         | 6400        | 50          |
| MCPA                              | 5                                                | 1           | 20            | 6400         | 6400        | 2080        |
| MCPP                              | 5<br>5                                           | 2           | 40            | 2600         | 3300        | 1780        |
| Pentachlorophenol  Metals (mg/kg) |                                                  | 3           | 60            | 1.1          | 15          | 8.4         |
| Aluminum                          | 5                                                | 5           | 100           | 320          | 710         | 504         |
|                                   | 5                                                | 1 1         | 20            | 0.12         | 0.12        | 0.10        |
| Antimony<br>Arsenic               | 5                                                | 5           | 100           | 1.5          | 2.0         | 1.7         |
|                                   | 5                                                | °           | 100           | 1.5          | 2.0         | 0.46        |
| Beryllium                         |                                                  | ,           | 90            | 0.07         | 0.67        |             |
| Cadmium<br>Chromium               | 5<br>5                                           | 4<br>5      | 80<br>100     | 0.07<br>0.89 | 0.67<br>3.1 | 0.34<br>1.9 |
|                                   | 5                                                | 5           | 100           |              | 3.1<br>120  | 1.9<br>49   |
| Copper                            | 5                                                | 5<br>5      | 100           | 10<br>2.3    | 120         | 5.2         |
| Lead<br>Mercury                   | 5                                                | 5           | 100           | 2.3          | 11          | 0.04        |
| Nickel                            | 5                                                | 5           | 100           | 1.7          | 21          | 7.5         |
| Selenium                          | 5                                                | 1           | 20            | 0.49         | 0.49        | 0.28        |
| Silver                            | 5                                                | 5           | 100           | 0.49         | 0.49        | 0.28        |
| Zinc                              | 5                                                | 5           | 100           | 12           | 110         | 48          |
| % Lipids                          | 5                                                | 5<br>5      | 100           | 0.090        | 0.26        | 0.16        |
| PCBs (ug/kg)                      |                                                  | 5           | 100           | 0.090        | 0.26        | 0.16        |
| Monochlorobiphenyl                | 5                                                |             |               |              |             | 6.0         |
| Dichlorobiphenyl                  | 5                                                |             |               | ]            |             | 6.0         |
| Trichlorobiphenyl                 | 5                                                | 1           | 20            | 22           | 22          | 9.4         |
| Tetrachlorobiphenyl               | 5                                                |             | 40            | 76           | 200         | 63          |
| Pentachlorobiphenyl               | 5                                                | 2           | 60            | 51           | 250         | 100         |
| Hexachlorobiphenyl                | 5                                                | 2<br>3<br>3 | 60            | 26           | 110         | 49          |
| Heptachlorobiphenyl               | 5                                                | 3           | 00            | 20           | 110         | 18          |
| Octachlorobiphenyl                | 5                                                |             |               |              |             | 18          |
| Nonachlorobiphenyl                | 5                                                |             |               |              |             | 30          |
| Decachlorobiphenyl                | 5                                                |             |               |              |             | 30          |
| Pesticides (ug/kg)                | <del>                                     </del> |             |               |              |             |             |
| 4,4'-DDD                          | 5                                                |             |               |              |             | 9.1         |
| 4,4'-DDE                          | 5                                                | 2           | 40            | 29           | 30          | 16          |
| 4,4'-DDT                          | 5                                                | -           | 70            | -            | 30          | 9.1         |
| Aldrin                            | 5                                                |             |               |              |             | 4.9         |
| Alpha Chlordane                   | 5                                                | 1           |               |              |             | 4.9         |
| delta-BHC                         | 5                                                |             |               |              | [           | 4.9         |
| Dieldrin                          | 5                                                |             |               |              |             | 9.1         |
| Endosulfan I                      | 5                                                |             |               |              |             | 4.9         |
| Endosulfan II                     | 5                                                |             |               |              |             | 9.1         |
| Endosulfan sulfate                | 5                                                | 1           | 20            | 3.7          | 3.7         | 9.1         |
| Endrin aldehyde                   | 5                                                | -           |               | •.,          | - · · ·     | 9.1         |
| Endrin ketone                     | 5                                                | 1           | 20            | 7.1          | 7.1         | 7.9         |
| Gamma Chlordane                   | 5                                                | 3           | 60            | 9.5          | 41          | 15          |
| gamma-BHC (Lindane)               | 5                                                | 9           |               | [ ]          | •           | 4.9         |
| Heptachlor                        | 5                                                |             |               |              |             | 4.9         |
| Heptachlor epoxide                | 5                                                | 2           | 40            | 24           | 66          | 20          |
| Methoxychlor                      | 5                                                | -           | -10           | -            | "           | 49          |

Table C-3.14

Snail Summary Statistics From Dead Creek Sections B, C, D and Reference Areas

Sauget Area I

| <del></del>                | <del></del> |          |               | т            | <del></del> | <del></del> |
|----------------------------|-------------|----------|---------------|--------------|-------------|-------------|
|                            | Number      | Number   | Detection     | Minimum      | Maximum     | ]           |
| SVOCs (ug/kg)              | Analyzed    | Detected | Frequency (%) | Detected     | Detected    | Average     |
| Acenaphthylene             | 5           |          |               | [            |             | 102         |
| Benzo(a)pyrene             | 5           | 1 1      | 20            | 31           | 31          | 91          |
| Benzo(b)fluoranthene       | 5           | li       | 20            | 79           | 79          | 101         |
| Benzo(g,h.i)perylene       | 5           | •        | 20            | 1 13         | , ,         | 101         |
| Benzo(k)Augranthene        | 5           |          |               |              |             | 102         |
| bis(2-Ethylhexyl)phthalate | 5           | 5        | 100           | 78           | 230         | 133         |
| Di-n-butylohthalate        | 5           |          | 100           | , ,          | 250         | 102         |
| Dibenzo(a,h)anthracene     | 5           |          |               |              | !           | 102         |
| Diethytohthalate           | 5           | 5        | 100           | 54           | 63          | 59          |
| Fluoranthene               | 5           | 3        | 100           | <b>5</b> -   | <b>63</b>   | 102         |
| Indeno(1,2,3-cd)pyrene     | 5           |          |               |              |             | 102         |
| Dioxins/Furans (ug/kg)     | ╅──┷        |          |               | <del> </del> |             |             |
| 1,2,3,4,6,7,8,9-OCDD       | 5           | 5        | 100           | 0.29         | 13          | 3.7         |
| 1.2.3.4.6.7.8.9-OCDF       | 5           | 5        | 100           | 0.0014       | 6.0         | 1.5         |
| 1,2,3,4,6,7,8-HoCDD        | 5           | 5        | 100           | 0.0077       | 1.6         | 0.44        |
| 1,2,3,4,6,7,8-HoCDF        | 5           | 3        | 60            | 0.084        | 1.1         | 0.28        |
| 1.2.3.4.7.8.9-HoCDF        | 5           | 3        | 60            | 0.0054       | 0.073       | 0.018       |
| 1.2.3.4.7.8-HxC00          | 5           | 3        | 60            | 0.0022       | 0.0071      | 0.0028      |
| 1.2.3.4.7.8-Hb:CDF         | 5           | 3        | 60            | 0.0043       | 0.029       | 0.00824     |
| 1.2.3.6.7.8-HxCDD          | 5           | 3        | 60            | 0.0085       | 0.0599      | 0.01718     |
| 1.2.3.6.7.8-HxCDF          | 5           | 3        | 60            | 0.0015       | 0.0121      | 0.00362     |
| 1.2.3.7.8.9-HxCDD          | 5           | 3        | 60            | 0.0066       | 0.0239      | 0.0085      |
| 1.2.3.7.8.9-HxCDF          | 5           | ī        | 20            | 0.0012       | 0.0012      | 0.00032     |
| 1,2,3,7,8-PeCDO            | 5           | 3        | 60            | 0.0026       | 0.006       | 0.00236     |
| 1,2,3,7,8-PeCDF            | 5           | 3        | 60            | 0.0006       | 0.0023      | 0.00082     |
| 2,3,4,6,7,8-Hb:CDF         | 5           | 3        | 60            | 0.0028       | 0.0207      | 0.00646     |
| 2,3,4,7,8-PeCDF            | 5           | 3        | 60            | 0.0021       | 0.0109      | 0.00353     |
| 2.3,7,8-TCDO               | 5           | 3        | 60            | 0.00061      | 0.0014      | 0.000672    |
| 2,3,7,8-TCDF (avg)         | 5           | 3        | 60            | 0.00385      | 0.01695     | 0.00562     |
| Total HpCDD                | 5           | 5        | 100           | 0.0204       | 2.84        | 0.8091      |
| Total HpCDF                | 5           | 5        | 100           | 0.00097      | 4.16        | 1.057034    |
| Total HxCDD                | 5           | 5        | 100           | 0.0021       | 0.368       | 0.11636     |
| Total HxCDF                | 5           | 4        | 80            | 0.00039      | 0.635       | 0.179188    |
| Total PeCDO                | 5           | 3        | 60            | 0.0353       | 0.138       | 0.04508     |
| Total PeCDF                | 5           | 3        | 60            | 0.0351       | 0.192       | 0.06381     |
| Total TCOO                 | 5           | 4        | 80            | 0.00035      | 0.526       | 0.13329     |
| Total TCDF                 | 5           | 3        | _60           | 0.0533       | 0.231       | 0.08108     |

#### Note

One-half the detection limit is used to represent non-detects in the calculation of average concentrations,



Appendix C-4.1 Summary Statistics for Background Surface Soll Sauget Area I

|        |                                          |          | ·                                |                      |                           |                          | Shapiro-Wilke's Test<br>for Normality(a) | Sun      | imary Statistic | <b>.</b> | 95% Upper<br>Confidence Limit |                        |
|--------|------------------------------------------|----------|----------------------------------|----------------------|---------------------------|--------------------------|------------------------------------------|----------|-----------------|----------|-------------------------------|------------------------|
| Method | Constituent                              | Units    | Number of<br>Samples<br>Analyzed | Number of<br>Detects | Frequency of<br>Detection | Number of<br>Samples for | Dataset Distribution                     | Minimum  | Méan            | Maximum  | UCL (b)                       | Site Concentration (c) |
| 8280A  | 1998 Total TEQ w/ EMPC as ND             | ppb      | 3                                | 3                    | 100%                      | Statistics<br>3          | Lognormal                                | 4.72E-03 | 6.19E-02        | 1.72E-01 | 9.55E+13                      | 1.72E-01               |
| HERB   | MCPP[2-(4-chloro-2-methylphenoxy)-propan | ug/kg dw | 3                                | 3                    | 100%                      | 3                        | Normal                                   | 2.50E+03 | 4.98E+03        | 6.55E+03 | 8,65E+03                      | 1.72E-01<br>6.55E+03   |
| HERB   | 2.4.5-TP (Silvex)                        | ug/kg dw | 3                                | 3                    | 100%                      | 3                        | Normal                                   | 5.60E+00 | 8.68E+00        | 1.10E+01 | 1.31E+01                      | 1.10E+01               |
| HERB   | MCPA[(4-chloro-2-methylphenoxy)-acetic a | ug/kg dw | 3                                | ] 3                  | 100%                      | ) 3                      | Lognormal                                | 4.30E+03 | 7.25E+03        | 1.10E+01 | 2.93E+05                      | 1.30E+04               |
| METALS | Aluminum                                 | mg/kg dw | 3                                | 3                    | 100%                      | 3                        | Lognormal                                | 6.10E+03 | 1.27E+04        | 1.90E+04 | 7,29E+04                      | 1.90E+04               |
| METALS | Iron                                     | mg/kg dw | 3                                | j 3                  | 100%                      | 3                        | Lognormal                                | 1.50E+04 | 1.90E+04        | 2.50E+04 | 3.95E+04                      | 2.50E+04               |
| METALS | Lead                                     | mg/kg dw | 3                                | 3                    | 100%                      | l š                      | Lognormal                                | 2.40E+01 | 9.25E+01        | 1.80E+02 | 1,38E+06                      | 1.80E+02               |
| METALS | Magnesium                                | mg/kg dw | 3                                | ] 3                  | 100%                      | ] 3                      | Lognormal                                | 3,20E+03 | 8.62E+03        | 1.70E+04 | 7,47E+06                      | 1.70E+04               |
| METALS | Manganese                                | mg/kg dw | 3                                | 3                    | 100%                      | ] 3                      | Lognormal                                | 3,90E+02 | 4.42E+02        | 5.35E+02 | 6.57E+02                      | 5.35E+02               |
| METALS | Mercury                                  | mg/kg dw | 3                                | 3                    | 100%                      | 3                        | Lognormal                                | 4.40E-02 | 8.87E-02        | 1.40E-01 | 2.08E+00                      | 1.40E-01               |
| METALS | Molybdenum                               | mg/kg dw | 3                                | 3                    | 100%                      | 3                        | Lognormal                                | 7.20E-01 | 1.01E+00        | 1.40E+00 | 3.02E+00                      | 1.40E+00               |
| METALS | Nickel                                   | mg/kg dw | 3                                | 3                    | 100%                      | 3                        | Nomal                                    | 1.50E+01 | 2.13E+01        | 2.80E+01 | 3.23E+01                      | 2.80E+01               |
| METALS | Potassium                                | mg/kg dw | 3                                | 3                    | 100%                      | 3                        | Normal                                   | 1,30E+03 | 2.37E+03        | 3.50E+03 | 4.22E+03                      | 3.50E+03               |
| METALS | Silver                                   | mg/kg dw | 3                                | 2                    | 67%                       | 3                        | Lognormal                                | 3.25E-01 | 8.75E-01        | 1.10E+00 | 2,20E+01                      | 1.10E+00               |
| METALS | Sodium                                   | mg/kg dw | 3                                | 1                    | 33%                       | 3                        | Lognormal                                | 5,00E+01 | 2.88E+02        | 7.50E+02 | 3.67E+11                      | 7.50E+02               |
| METALS | Antimony                                 | mg/kg dw | 1                                | 1                    | 100%                      | 1 1                      | NC                                       | 1.90E+00 | 1.90E+00        | 1.90E+00 | NC                            | 1.90E+00               |
| METALS | Arsenic                                  | mg/kg dw | 3                                | 3                    | 100%                      | 3                        | Lognormal                                | 6,60E+00 | 9.57E+00        | 1.30E+01 | 2.90E+01                      | 1.30E+01               |
| METALS | Barium                                   | mg/kg dw | 3                                | l 3                  | 100%                      | l 3                      | Normal                                   | 1.10E+02 | 1.82E+02        | 2.35E+02 | 2.90E+02                      | 2.35E+02               |
| METALS | Beryllium                                | mg/kg dw | 3                                | 1 3                  | 100%                      | 3                        | Lognormal                                | 4,50E-01 | 7.53E-01        | 1.10E+00 | 4.90E+00                      | 1.10E+00               |
| METALS | Cadmium                                  | mg/kg dw | 3                                | 3                    | 100%                      | 3                        | Lognormal                                | 5.20E-01 | 4.32E+00        | 9.40E+00 | 2.50E+09                      | 9.40E+00               |
| METALS | Chromium                                 | mg/kg dw | 3                                | 3                    | 100%                      | 3                        | Lognormal                                | 1.70E+01 | 1.97E+01        | 2.50E+01 | 3.43E+01                      | 2.50E+01               |
| METALS | Cobalt                                   | mg/kg dw | 3                                | 3                    | 100%                      | 3                        | Lognormal                                | 5.50E+00 | 7.77E+00        | 1.04E+01 | 2,09E+01                      | 1.04E+01               |
| METALS | Copper                                   | mg/kg dw | 3                                | ] 3                  | 100%                      | 3                        | Lognormal                                | 3.50E+01 | 1.05E+02        | 1.90E+02 | 8.98E+04                      | 1.90E+02               |
| METALS | Vanadium                                 | mg/kg dw | ] з                              | 3                    | 100%                      | 3                        | Lognormal                                | 2.80E+01 | 3.45E+01        | 4.45E+01 | 8.53E+01                      | 4.45E+01               |
| METALS | Zinc                                     | mg/kg dw | 3                                | 3                    | 100%                      | 3                        | Lognormal                                | 8.20E+01 | 4.04E+02        | 8.20E+02 | 1,23E+08                      | 8.20E+02               |
| METALS | Calcium                                  | mg/kg dw | Ìз                               | 3                    | 100%                      | 3                        | Lognormal                                | 4.00E+03 | 1.68E+04        | 4.00E+04 | 1.95E+10                      | 4,00E+04               |
| PCB    | Total PCBs                               | ug/kg dw | 1 3                              | 2                    | 67%                       | 3                        | Lognormal                                | 1.00E+01 | 6.00E+02        | 1.71E+03 | 1.91E+30                      | 1.71E+03               |
| PEST   | 4.4'-DDT                                 | ug/kg dw | 3                                | 1 1                  | 33%                       | 3                        | Lognormal                                | 2.00E+00 | 7.08E+00        | 1.70E+01 | 6.84E+06                      | 1.70E+01               |
| PEST   | 4.4'-DDE                                 | ug/kg dw | 3                                | 1 1                  | 33%                       | 3                        | Lognormal                                | 2.00E+00 | 8.06E+00        | 2.00E+01 | 7,22E+07                      | 2.00E+01               |
| SVOA   | bis(2-Ethylhexyl)phthalate               | ug/kg dw | 3                                | 1 2                  | 67%                       | 3                        | Lognormal                                | 1.05E+02 | 1.61E+02        | 2.68E+02 | 2.15E+03                      | 2.68E+02               |
| SVOA   | Anthracene                               | ug/kg dw | 3                                | 1 1                  | 33%                       | 1 1                      | NC                                       | 8.00E+01 | 8.00E+01        | 8.00E+01 | NC NC                         | 8.00E+01               |
| SVOA   | Pyrene                                   | ug/kg dw | 3                                | 1 2                  | 67%                       | 3                        | Lognormal                                | 1,13E+02 | 2.18E+02        | 3.60E+02 | 5.37E+03                      | 3.60€+02               |
| SVOA   | Benzo(g.h.i)perylene                     | ug/kg dw | 3                                | 2                    | 67%                       | 2                        | Lognomal                                 | 4.50E+01 | 6.35E+01        | 8.20E+01 | NC NC                         | 8.20E+01               |
| SVOA   | Benzo(b)fluoranthene                     | ug/kg dw | 3                                | 2                    | 67%                       | 2                        | Lognormat                                | 6.90E+01 | 8.95E+01        | 1.10E+02 | NC NC                         | 1.10E+02               |
| SVOA   | Fluoranthene                             | ug/kg dw | 3                                | 2                    | 67%                       | 3                        | Lognormal                                | 1.13E+02 | 2.51E+02        | 4.40E+02 | 2.04E+04                      | 4.40E+02               |
| SVOA   | Benzo(k)fluoranthene                     | ug/kg dw | 3                                | 2                    | 67%                       | 3                        | Normal                                   | 6.00E+01 | 1.04E+02        | 1.40E+02 | 1.73E+02                      | 1.40E+02               |
| SVOA   | Chrysene                                 | ug/kg dw | 3                                | 2                    | 67%                       | 3                        | Lognormal                                | 9.70E+01 | 1.37E+02        | 2.00E+02 | 5.42E+02                      | 2.00E+02               |
| SVOA   | Benzo(a)pyrene                           | ug/kg dw | 3                                | 2                    | 67%                       | 3                        | Lognormal                                | 6.00E+01 | 9.33E+01        | 1.50E+02 | 8.83E+02                      | 1.50E+02               |
| SVOA   | Benzo(a)anthracene                       | ug/kg dw | 3                                | 2                    | 67%                       | 3                        | Lognomal                                 | 7.70E+01 | 1.29E+02        | 1.70E+02 | 5.25E+02                      | 1,70E+02               |
| SVOA   | Diethylphthalate                         | ug/kg dw | 3                                | 3                    | 100%                      | 3                        | Normal                                   | 6.00E+01 | 9.33E+01        | 1.10E+02 | 1.42E+02                      | 1.10E+02               |
| SVOA   | Di-n-butylphthalate                      | ug/kg dw | 3                                | 2                    | 67%                       | 3                        | Lognormal                                | 1.05E+02 | 1.56E+02        | 2.40E+02 | 9.51E+02                      | 2.40E+02               |
| SVOA   | Phenanthrene                             | ug/kg dw | 3                                | 2                    | 67%                       | 3                        | Lognormal                                | 1.00E+02 | 1.68E+02        | 2.90E+02 | 4.04E+03                      | 2.90E+02               |
| SVOA   | Carbazole                                | ug/kg dw | 3                                | 1 1                  | 33%                       | 1 1                      | NC                                       | 3.20E+01 | 3.20E+01        | 3.20E+01 | , NC                          | 3.20E+01               |
| SVOA   | Pentachlorophenol                        | ug/kg dw | 3                                | 2                    | 67%                       | 3                        | Lognormal                                | 2.55E+02 | 3.71E+02        | 5.61E+02 | 1.90E+03                      | 5.61E+02               |
| VOA    | 2-Hexanone                               | ug/kg dw | 3                                | 1 1                  | 33%                       | 3                        | Normal                                   | 1.45E+01 | 1.65E+01        | 1.80E+01 | 1.95E+01                      | 1,80E+01               |
| VOA    | Methylene chloride (Dichloromethane)     | ug/kg dw | 3                                | 2                    | 67%                       | 3                        | Lognormal                                | 1.70E+00 | 5.69E+00        | 1.20E+01 | 5.83E+04                      | 1,20E+01               |

#### Appendix C-4.2 Summary Statistics for Floodplain Surface Soil Sauget Area I

|        |                              |              |                      | ļ         |                        |                                        | Shapiro-Willia's Tool<br>for Hormshty(e) | Burgmack Statistics |            | :         | 98% Upper<br>Contidence Limit |                        |
|--------|------------------------------|--------------|----------------------|-----------|------------------------|----------------------------------------|------------------------------------------|---------------------|------------|-----------|-------------------------------|------------------------|
| Mothad | Conothuerd                   | Units        | Surreion<br>Applymen | Number of | Frequency of Detection | Humber of<br>Samples for<br>Statistics | Detacet Distribution                     | Minimum             | Mean       | Meximum   | uar (m)                       | Site Consentration (s) |
| 8280A  | 1996 Total TEQ w/ EMPC as NO | up/ng dw     | 20                   | 29        | 100%                   | 20                                     | Lognamii                                 | 1 43E-03            | 8 32E-03   | 6 24E-02  | 1 07E-02                      | 1 07E-02               |
| HERR   | Dicamba                      | ug/ng dw     | 66                   | 18        | 23%                    | 16                                     | Lagnarméi                                | 1.30E+00            | 3 62E+00   | 2 30E+01  | 4 90E+00                      | 4 90E+00               |
| HERD   | MCPP                         | ug/ng dw     | 66                   | 10        | 15%                    | 66                                     | Lagnormal                                | 1 00E+03            | 1.74E+03   | 7 70E+03  | 1 AGE+03                      | 1 80E+03               |
| HERB   | MCPA                         | ug/ng dw     | 66                   | 13        | 20%                    | 66                                     | Lognormal                                | 1 00E+03            | 1 dot:+03  | 7 40E+03  | 1 78E+03                      | 1 78E +0 1             |
| HFRB   | 2 4 D                        | LIGHTING INV | 66                   | ١ ١       | 3%                     | } >                                    | 1 coprormus                              | 1 100 100           | n nort+no  | U NOF HOD | NC                            | บ mot- +เหย            |
| HERB   | 2,4 DB                       | ug/kg dw     | 66                   | 4         | 6%                     | 06                                     | Lispiscimul                              | 4 266:400           | 0.40f+00   | 4 10E+01  | n n2t +00                     | n n./f +00             |
| MITALS | Akameum                      | mg/kg dw     | 66                   | 60        | 100%                   | 65                                     | Logicumus                                | 1 WF +01            | U 101 101  | 1 POE+04  | 1 01F+04                      | 1.016+04               |
| METAL5 | Mean                         | mg/kg dw     | 66                   | 66        | 100%                   | 66                                     | Lagramai                                 | 4 100 +03           | 1.516+04   | 2 h0f+04  | 1.035+04                      | 1 n 11: +04            |
| METALS | Load                         | wti gifum    | 66                   | 00        | 100%                   | 66                                     | Lognomyil                                | 2 406+01            | 7.00E+01   | 2 not +02 | / MOF +01                     | / NUE+01               |
| METALS | Magnoskym                    | mg/kg r/w    | 66                   | 86        | 100%                   | .00                                    | l ogramiti                               | 2 MOR +03           | 6 956 + G3 | 2 10k+04  | n 46E+03                      | 6.4661403              |
| METALS | Manganese                    | mg/kg dw     | 66                   | 66        | 100%                   | 66                                     | Lognormal                                | 1 206 +02           | 1 UM: +02  | 1 20k+03  | 4 200:+02                     | 4 200 +02              |
| METALS | Morcury                      | mg/kg dw     | 66                   | 66        | 100%                   | 66                                     | Lagnormal                                | 2.70k-02            | 7 not: 02  | 6 70E 01  | n 09£ 02                      | 8 OUF 02               |
| METALS | Michyladonum                 | mg/kg dw     | 66                   | 64        | SH1%                   | 66                                     | Lingnormal                               | 2 20h-01            | 7.32f. 01  | 3 20E+00  | B 14F 01                      | B 14P 01               |
| METALS | Nickel                       | mg/kg dw     | 96                   | 100       | 100%                   | 5 66                                   | Lognomial                                | 1 206 +01           | 1016.01    | 6 60F+01  | 2 00€+01                      | 2 001 +01              |
| METALS | Polanskim                    | mg/kg dw     | 66                   | 66        | 100%                   | 66                                     | Lognomial                                | 1 20E+03            | 2 02E+03   | 3 NOE+03  | 2 14E+03                      | 2 146+03               |
| METALS | Silver                       | mg/kg dw     | 66                   | 32        | 49%                    | 66                                     | Lognormal                                | 2 00€-01            | 4 50E-01   | 0.00F-01  | 4 MAF-01                      | 4 MME 01               |
| METALS | Thailten                     | mg/tg dw     | 66                   | 17        | 26%                    | 65                                     | Logocomusi                               | 4 856-01            | 6.44F-01   | 1 40€ +00 | 6.77E-01                      | n //l: 01              |
| METALS | Antimony                     | mp/vp dw     | 66                   | 27        | 42%                    | 65                                     | Lognomal                                 | 3 166 01            | 1.150-00   | 2 406 +00 | 1 24E+00                      | 1 241 +00              |
| METALS | Arsanic;                     | wh gu/gm     | 66                   | 66        | 100%                   | 66                                     | Lingmormal                               | 2 00E+00            | 7.41E+00   | 3 408 +01 | 7 BBE +00                     | 7 MAE+00               |
| METALS | Bartem                       | mg/kg dw     | 60                   | 66        | 100%                   | 65                                     | Lognormal                                | 4 00E+01            | 1.80€ +02  | 1.20E+03  | 1 98E ±02                     | 1.086+02               |
| METALS | Baryllum                     | mg/kg dw     | 06                   | 55        | 86%                    | 65                                     | Lognormal                                | 1.70€-01            | 5 63E 01   | 1 10E+00  | 6.19€-01                      | กเด€ถเ                 |
| METALS | Cadmium                      | mg/kg dw     | 66                   | 66        | 100%                   | 65                                     | Lingnormal                               | 4 MOE-01            | 2 44E+00   | 8 40E+00  | 2 77E+00                      | 7.77E+00               |
| METALS | Chromium                     | mg/kg dw     | 95                   | 66        | 100%                   | 65                                     | Lognormal                                | 1 10E+01            | 1 89E+01   | 4 90E+01  | 1 79E+01                      | 1.70E+01               |
| METALS | Cohalt                       | mg/kg dw     | 66                   | 66        | 100%                   | 66                                     | Lagnormal                                | 7 NOE+00            | n n2E+00   | 1.10€+01  | 7 01E+00                      | 7.01E+00               |
| METALS | Copper                       | mg/kg dw     | 65                   | 66        | 100%                   | 65                                     | Lingnormal                               | 1 MOE +() 1         | 4 00E+01   | 2 30E+02  | 8 09E+01                      | # 00F +01              |
| METALS | Vanadium                     | mg/kg rlw    | 66                   | 66        | 100%                   | 86                                     | Lognomusi                                | 1.30E+01            | 2 M2E+01   | 1 20E+02  | 2 99E+01                      | 2 99E+01               |
| METALS | Zinc                         | mg/kg dw     | ØÐ.                  | 56        | 100%                   | 86                                     | Lagnomal                                 | 1 FINE +01          | 2 94E+02   | 1 40€+03  | 3 35E • OS                    | 3 32E +05              |
| METALS | Calcium                      | mg/kg dw     | 66                   | 66        | 100%                   | 66                                     | Logonrinal                               | 1 50E+03            | 2 81E+04   | 2 50€+06  | 3 04E+04                      | 3 04E+04               |
| METALS | Belenkum                     | mg/kg dw     | 66                   | 18        | 28%                    | 88                                     | Lognormal                                | 4 ROE-01            | n 38E-01   | 3 50€+00  | ##E-01                        | 8 41E-01               |
| PCB    | Total PC8s                   | ug/kg dw     | 66                   | 63        | 82%                    | 66                                     | ( ngnormal                               | 1 50E+00            | 6 38E+01   | 3 886+02  | 9 04E+01                      | 9.04E+01               |
| PEST   | Herptachior apparitie        | ug/kg dw     | 66                   | 16        | 28%                    | 66                                     | Lognormal                                | n uu€∙05            | 1.748+00   | 3.006+01  | 2 04E+00                      | 2 04E+00               |
| PEST   | Endoulian sulfate            | ug/kg dw     | 66                   | 12        | 18%                    | 40                                     | Normal                                   | 0.30E-05            | 1 426+00   | 1 906+00  | 1 806+00                      | 1 BDE +00              |
| PEST   | Aidrin                       | ug/ug dw     | 66                   | 1         | 2%                     | 66                                     | l ognormål                               | u 00€:01            | 1 726+00   | 2 30E+01  | 1 886 +00                     | 1.086 +00              |
| PEST   | alcoha: BHC                  | wayna dw     | 66                   | 1 1       | 2%                     | 1 1                                    | NC                                       | 2 20E-01            | 2 20€ 01   | 2 20€-01  | NC NC                         | 2 20E-01               |
| PEST   | beta-BHC                     | ug/tg dw     | 65                   | 7         | 11%                    | 65                                     | Lognormal                                | 1 00E-01            | 6 03E-01   | 3 HOE+00  | 5 426-01                      | 6.42E/01               |
| PEST   | clette-BHC                   | ug/ig dw     | 66                   | 6         | 8%                     | 6                                      | Normal                                   | 8 20E-02            | 1 88E-01   | 2 40程-01  | 2 16€:01                      | 2 INE-01               |
| PEST   | findonulfan II               | ug/ng dw     | 68                   | 1         | 2%                     | 1                                      | NC NC                                    | 1 00E+00            | 1 00億+00   | 1 00E+00  | NC                            | 1 00億+00               |
| PEST   | 4,4'-DOT                     | ug/ng dw     | 66                   | 31        | 48%                    | 65                                     | Lognormal                                | 1 20€-01            | 8 81E+00   | 1 400+02  | 7 96E+00                      | 7 96E+00               |
| PEST   | Alpha Chlordane              | ug/kg dw     | 66                   | 13        | 20%                    | 66                                     | Lognormal                                | 1 00€-01            | 2 745+00   | 5 40E+01  | 2 55E+00                      | 2.66€+00               |
| PEST   | Gamma Chlordane              | up/up dw     | 66                   | 14        | 22%                    | 65                                     | Lognomal                                 | 1 00€-01            | 4 09€+00   | 7 40E+01  | 3 20€+00                      | 3 26€+00               |
| PEST   | Endrin kelone                | ug/kg dw     | 65                   | 24        | 37%                    | 61                                     | Lognormal                                | 1 205-01            | 1 61E+00   | 4 95€+00  | 2 502+00                      | 2 MOE+00               |
| PEST   | gamma-BHC (Lindans)          | ug/kg dw     | 65                   | 2         | 3%                     | 2                                      | Lognorm#                                 | 8 70E-02            | 1 09€-01   | 1.30E-01  | NC                            | 1 30E-01               |
| PEST   | Dieldrin                     | ug/lig dw    | 65                   | 19        | 29%                    | 66                                     | Lognormal                                | 8 90E-02            | 4 25E+00   | 1.20E+02  | 3 86E+00                      | 3 MdE+00               |
| PEST   | Endrin                       | ug/kg dw     | 65                   | 4         | 6%                     | 60                                     | Lognormal                                | 1 00E-01            | 1 98E+00   | 6 10E+00  | 2 31E+00                      | 2 31E+00               |
| PEST   | Methoxychlor                 | ug/kg dw     | 65                   | 24        | 37%                    | 62                                     | Lognormal                                | 9 30E-01            | 8 67E+00   | 3 80E+01  | 1.16E+01                      | 1 16E+01               |
| PEST   | 4.4'-DDD                     | ug/kg dw     | 65                   | 5         | 8%                     | 65                                     | Lognormal                                | 5 60E-01            | 2 98E+00   | 3.60E+01  | 3 01E+00                      | 3 01E+00               |
| PEST   | 4.4 DOE                      | ug/ig dw     | 65                   | 35        | 54%                    | 65                                     | Lognormal                                | 8.60E-02            | 3 21E+00   | 5.40E+01  | 4 04E+00                      | 4 04E+00               |

#### Appendix C-4.2 Summary Statistics for Floodplain Surface Soil Sauget Area I

|            |                                              |                      |                      |           |              |                          | Shapiro-Wilke's Test<br>for Normality(a) | Sun      | mary Statistic | :5        | 95% Upper<br>Confidence Limit |                        |
|------------|----------------------------------------------|----------------------|----------------------|-----------|--------------|--------------------------|------------------------------------------|----------|----------------|-----------|-------------------------------|------------------------|
|            |                                              | i                    | Number of<br>Samples | Number of | Frequency of | Number of<br>Samples for |                                          |          |                |           | 1 1                           |                        |
| Method     | Constituent                                  | Units                | Analyzed.            | Detecta   | Detection    | Statistics               | Dataset Distribution                     | Minimum. | Mean           | Maximum : | UCL (b)                       | Site Concentration (c) |
| PEST       | Endrin aldehyde                              | ug/kg dw             | 65                   | 3         | 5%           | 60                       | Lognormal                                | 2.40E-01 | 1.97E+00       | 5.06E+00  | 2.16E+00                      | 2.16E+00               |
| PEST       | Heptachlor                                   | ug/kg dw             | 65                   | 4         | 6%           | 65                       | Lognormal                                | 3.40E-01 | 2.79E+00       | 9.10E+01  | 1.98E+00                      | 1.98E+00               |
| SVOA       | bis(2-Ethylhexyl)phthalate                   | ug/kg dw             | 65                   | 19        | 29%          | 65                       | Lognormal                                | 2.90E+01 | 1.04E+02       | 4.30E+02  | 1.11E+02                      | 1.11E+02               |
| SVOA       | Anthracene                                   | ug/kg dw             | 65                   | 15        | 23%          | 65                       | Lognormal                                | 2.60E+01 | 1.58E+02       | 2.30E+03  | 1.52E+02                      | 1.52E+02               |
| SVOA       | Pyrane                                       | ug/kg dw             | 65                   | 32        | 49%          | 65                       | Lognormal                                | 7.20E+01 | 5.33E+02       | 8.50E+03  | 4.43E+02                      | 4,43E+02               |
| SVOA       | Dibenzofuran                                 | ug/kg dw             | 65                   | 5         | 8%           | 65                       | Lognormal                                | 4.50E+01 | 1.09E+02       | 7.70E+02  | 1.12E+02                      | 1.12E+02               |
| SVOA       | Benzo(g,h,i)perylene                         | ug/kg dw             | 65                   | 24        | 37%          | 65                       | Lognormat                                | 3.80E+01 | 1.97E+02       | 2.20E+03  | 2.01E+02                      | 2.01E+02               |
| SVOA       | Indeno(1,2,3-cd)pyrene                       | ug/kg dw             | 65                   | 18        | 28%          | 65                       | Lognormal                                | 5.10E+01 | 1.92E+02       | 2.00E+03  | 1.95E+02                      | 1.95E+02               |
| SVOA       | Benzo(b)fluoranthene                         | ug/kg dw             | 65                   | 36        | 55%          | 65                       | Lognormal                                | 2.70E+01 | 3.03E+02       | 4.40E+03  | 2.82E+02                      | 2.82E+02               |
| SVOA       | Fluoranthene                                 | ug/kg dw             | 65                   | 39        | 60%          | 65                       | Lognormal                                | 3.70E+01 | 6.48E+02       | 1.00E+04  | 5.58E+02                      | 5.58E+02               |
| SVOA       | Benzo(k)fluoranthene                         | ug/kg dw             | 65                   | 26        | 40%          | 65                       | Lognormal                                | 3.70E+01 | 2.72E+02       | 3.40E+03  | 2.49E+02                      | 2.49E+02               |
| SVOA       | Acenaphthylene                               | ug/kg dw             | 65                   | 4         | 6%           | 4                        | Lognormal                                | 2.40E+01 | 4.55E+01       | 7.50E+01  | 1.74E+02                      | 7.50E+01               |
| SVOA       | Chrysene                                     | ug/kg dw             | 65                   | 41        | 63%          | 65                       | Lognormal                                | 2.80E+01 | 3.40E+02       | 4.90E+03  | 3.19E+02                      | 3.19E+02               |
| SVOA       | Benzo(a)pyrene                               | ug/kg dw             | 65                   | 26        | 40%          | 65                       | Lognormal                                | 4.30E+01 | 2.61E+02       | 3.60E+03  | 2.26E+02                      | 2.26E+02               |
| SVOA       | Dibenzo(a,h)anthracene                       | ug/kg dw             | 65                   | 12        | 18%          | 65                       | Lognormal                                | 2.60E+01 | 8.91E+01       | 8.10E+02  | 9.03E+01                      | 9.03E+01               |
| SVOA       | Benzo(a)anthracene                           | ug/kg dw             | 65                   | 37        | 57%          | 65                       | Lognormal                                | 2.30E+01 | 2.93E+02       | 4.30E+03  | 2.66E+02                      | 2.66E+02               |
| SVOA       | Acenaphthene                                 | ug/kg dw             | 65                   | 9         | 14%          | 65                       | Lognormal                                | 1.60E+01 | 1.19E+02       | 1.20E+03  | 1.24E+02                      | 1.24E+02               |
| SVOA       | Diethylphthalate                             | ug/kg dw             | 65                   | 1 1       | 2%           | 1                        | NC                                       | 3.90E+01 | 3.90E+01       | 3.90E+01  | NC NC                         | 3.90E+01               |
| SVOA       | Di-n-butylphthalate                          | ug/kg dw             | 65                   | 10        | 15%          | 65                       | Lognormal                                | 3.20E+01 | 9.46E+01       | 1.70E+02  | 1.00E+02                      | 1.00E+02               |
| SVOA       | Phenanthrene                                 | ug/kg dw             | 65                   | 34        | 52%          | 65                       | Lognormal                                | 2.20E+01 | 4.61E+02       | 9.20E+03  | 3.66E+02                      | 3.66E+02               |
| SVOA       | Butylbenzylphthalate                         | ug/kg dw             | 65                   | 3         | 5%           | 65                       | Lognormal                                | 5.70E+01 | 9.97E+01       | 3.40E+02  | 1.03E+02                      | 1.03E+02               |
| SVOA       | Fluorene                                     | ug/kg dw             | 65                   | 7         | 11%          | 65                       | Lognormal                                | 4.40E+01 | 1.26E+02       | 1.40E+03  | 1.26E+02                      | 1.26E+02               |
| SVOA       | Carbazole                                    | ug/kg dw             | 65                   | 11        | 17%          | 65                       | Lognormal                                | 5.80E+01 | 1.25E+02       | 1.00E+03  | 1.27E+02                      | 1.27E+02               |
| SVOA       | Pentachlorophenol                            | ug/kg dw             | 65                   | 36        | 55%          | 65                       | Lognormal                                | 2.21E+02 | 2.67E+02       | 7.40E+02  | 2.78E+02                      | 2.78E+02               |
| SVOA       | Naphthalene                                  | ug/kg dw             | 65                   | 2         | 3%           | 2                        | Normal                                   | 4.10E+01 | 6.00E+01       | 7.90E+01  | 1.80E+02                      | 7.90E+01               |
| SVOA       | 2-Methylnaphthalene                          | ug/kg dw             | 65                   | 3         | 5%           | 3                        | Lognormal                                | 6.15E+01 | 6.62E+01       | 7.20E+01  | NC                            | 7.20E+01               |
| VOA        | Ethylbenzene                                 | ug/kg dw             | 65                   | 1 1       | 2%           | 47                       | Normat                                   | 2.05E+00 | 2.73E+00       | 3.00E+00  | 2.78E+00                      | 2.78E+00               |
| VOA        | Tokuene                                      | ug/kg dw             | 85                   | 13        | 20%          | 65                       | Lognormal                                | 2.05E+00 | 3.19E+00       | 1.20E+01  | 3.34E+00                      | 3.34E+00               |
|            | Chlorobenzene                                | ugkg dw              | 65                   | 1         | 2%           | 64                       | Lognormal                                | 2.05E+00 | 2.88E+00       | 4.00E+00  | 2.95E+00                      | 2.95E+00               |
| VOA        | Xvienes, Total                               | ug/kg dw             | 65                   | ;         | 2%           | 65                       | Lognormal                                | 2.05E+00 | 2.91E+00       | 4.20E+00  | 2.99E+00                      | 2.99E+00               |
| VOA        | 1                                            | ug/kg dw             | 65                   | 3         | 5%           | 3                        | Normal                                   | 4.80E+00 | 6.10E+00       | 6.90E+00  | 8.01E+00                      | 6.90E+00               |
| VOA        | 2-Hexanone                                   |                      | 65                   | 32        | 49%          | 65                       | Lognormal                                | 2.05E+01 | 1.77E+02       | 6.70E+02  | 2.83E+02                      | 2.83E+02               |
| VOA        | Acetone                                      | ug/kg dw             | 65                   | 5         | 8%           | 65                       | Lognormal                                | 1.80E+00 | 2.88E+00       | 4.80E+00  | 2.97E+00                      | 2.97E+00               |
| VOA        | Benzene Methylene chloride (Dichloromethane) | ug/kg dw<br>ug/kg dw | 65                   | 3         | 5%           | 6                        | Normal                                   | 1.80E+00 | 2.16E+00       | 2.40E+00  | 2,36E+00                      | 2.36E+00               |
| VOA<br>VOA | Carbon disulfide                             | ug/kg dw             | 65                   | 3         | 5%           | 65                       | Lognormal                                | 2.05E+00 | 2.90E+00       | 4.30E+00  | 2.98E+00                      | 2.98E+00               |
| VOA        | 2-Butanone (MEK)                             | ug/kg dw             | 65                   | 23        | 35%          | 65                       | Lognormal                                | 9.10E+00 | 1.93E+01       | 4.70E+01  | 2.09E+01                      | 2.09E+01               |
| VOA        | Trichloroethene                              | ug/kg dw             | 65                   | 1 4       | 6%           | 65                       | Lognormal                                | 2.05E+00 | 2.97E+00       | 6.20E+00  | 3,07E+00                      | 3.07E+00               |

Appendix C-4.3 Summary Statistics for Site G Surface Soil Sauget Area I

|         |                             |            |                                  |                      |              |                                        | Shapiro-Milia's York<br>for Normality(2) | Rur        | nmacı Statistic |           | 88% Upper<br>Cardidense Limit |                        |
|---------|-----------------------------|------------|----------------------------------|----------------------|--------------|----------------------------------------|------------------------------------------|------------|-----------------|-----------|-------------------------------|------------------------|
| Method  | Constituent                 | Units      | Number of<br>Semples<br>Analysis | Number of<br>Detects | Frequency of | Humber of<br>Samples for<br>Statistics | Dutacet Distribution                     | Minimum    | Mean            | Maximum   | UCL (M                        | Site Consentration (c) |
| A2NOA   | I SUA TOUR TEQ W EMPC AS NO | He/te      | 1                                |                      | 100%         | 4                                      | Lagnormal                                | # 13E-04   | 3 05E-03        | 8 35E-03  | 1.32E+00                      | <b>8 36€-03</b>        |
| METALS  | Aluminum                    | mg/kg dw   | 4                                | 4                    | 100%         |                                        | Normal                                   | 9 30E+03   | 1.30E+04        | 1 50E+04  | 1 50E +04                     | 1 50E+04               |
| METALS  | Iron                        | mg/kg dw   | 4                                | 4                    | 100%         | 4                                      | Normal                                   | 1 80E+04   | 1 84E+04        | 2 00E+04  | 2 06E+04                      | 2 00E+04               |
| METALS  | Lead                        | mg/kg dw   |                                  | 4                    | 100%         | ۱ ،                                    | Lognormal                                | 1 10E+01   | 1.36E+01        | 1 60E+01  | 1 83E +01                     | 1 AOE +01              |
| METALB  | Magnesium                   | mg/kg dw   | 1 4                              | 4                    | 100%         | 4                                      | Lognormal                                | 3 30E • 03 | 4 09£+03        | 4 90E +03 | 5 52E +03                     | 4 96E+03               |
| METALS  | Manganasa                   | mu/kg dw   | 4                                | 4                    | 100%         | 4                                      | Normal                                   | 2 doe+02   | 5 44E+02        | 7.40E+02  | 7 866-+02                     | 7.40E+02               |
| METAL B | Marcury                     | mu/sg dw   | 4                                | 4                    | 100%         | 1 4                                    | Numal                                    | I SOE OZ   | 2 45E-02        | 2 GOE -02 | 3 /3E Q/                      | 2 NOE 02               |
| METALB  | Molybdenum                  | mysty dw   | 4                                | 4                    | 100%         |                                        | Logenormal                               | 1 800 01   | 5 tut of        | 7 80F 01  | 10 461 0                      | / MOF 101              |
| METALB  | Nichal                      | HINDAU ON  | 4                                | 4                    | 100%         | 4                                      | Logramus                                 | 1 /00 +01  | 1 800 +01       | 2 19E •01 | J 17€+01                      | 2 15€±01               |
| METALS  | Polassium                   | mg/kg dw   | 4                                | 4                    | 100%         | 1 4                                    | Lognormal                                | 1 20€+03   | 1.455.+01       | 1.70E+03  | 1876+01                       | 1 /01:03               |
| METAL B | Antimony                    | mp/p dw    | ١ ،                              | ,                    | 2006         | ) ,                                    | Normal                                   | a pot of   | 0.85E-01        | 7 20E 01  | 0.000-01                      | 7 206 01               |
| METALS  | Arsenic                     | mp/kg dw   | 4                                | 4                    | 100%         | 1 4                                    | Normal                                   | 6 50E +00  | 7 19E+00        | 8 06F +00 | # 14E+00                      | H (186:+00)            |
| METALB  | Burken                      | mp/kg dw   | 4                                | 4                    | 100%         | 4                                      | Normal                                   | 7 保庫+01    | 1.1/6.407       | 1 401 +02 | 1 400:+02                     | 1 40€+02               |
| METALB  | tieryllum                   | mg/kg dw   | 4                                | 4                    | 100%         | 4                                      | Normal                                   | 5 10E 01   | 5 89E 01        | 6.401-01  | 6 57F 01                      | B 40€ Q1               |
| METALS  | Cadmium                     | mg/kg dw   | 1 4                              |                      | 100%         | [ 4                                    | Lognormal                                | 1 805 01   | 2 606 01        | 3 901:01  | 5 04F 01                      | 1 90£ 01               |
| METALS  | Chromium                    | mu/va dw   | 4                                | 4                    | 100%         | 4                                      | Normal                                   | 1 502 +01  | 1.036+01        | 2 201 +01 | 2 2M2 +01                     | 2.206+01               |
| ME TALS | Cobell                      | mg/kg dw   | 4                                | 4                    | 100%         | 4                                      | Normal                                   | 00+90B d   | 7.33E+00        | 8 60F +00 | N 199° +00                    | N 001 100 N            |
| METALS  | Copper                      | mg/kg dw   | 1 4                              | 4                    | 100%         | 4                                      | Lagnormal                                | 1 006+02   | 1 836 +02       | 7 UMF +07 | 0.000.02                      | 2 90€+02               |
| METALS  | Variatium                   | mg/kp dw   |                                  |                      | 100%         | 1                                      | Normal                                   | 3.20€+01   | 3 588 +01       | 4.008+01  | 4 000 401                     | 4 000:+01              |
| METALS  | Zinc                        | mp/kg dw   |                                  | ) a                  | 100%         | ۱ .                                    | Lagnormai                                | 10+3011 6  | 6.098.+01       | 6 958 +01 | NC NC                         | 6.968+01               |
| ME TALS | Galctum                     | mp/kg dw   |                                  | ] .                  | 100%         | 4                                      | Normal                                   | 5.10(5.403 | 9738+03         | 1.40F+04  | 1.406.404                     | 1.400+04               |
| PCB     | Total PCBs                  | up/kg dw   | 4                                | 2                    | 50%          | 4                                      | Lognomel                                 | 7 UOE+00   | 1.812.01        | 4 895+01  | 7 70F +02                     | 4 050 +01              |
| PEST    | Philippe softmation (       | ug/kg dw   | 1 4                              | 1                    | 25%          | 1 1                                    | NC                                       | 2.20F.01   | 2.70E-01        | 2.20F-01  | NC.                           | 2 20F 01               |
| PEST    | Fridmeulten sulfate         | ug/ng dw   | 4                                | 1 2                  | 90%          | 1 2                                    | Normal                                   | 1.206.01   | 1.50E-01        | 1 BOE 01  | 3.39E-01                      | 1 80E-01               |
| PEST    | dette-BHC                   | ug/kg the  | 4                                | 1 3                  | 75%          | 1 3                                    | Lognormal                                | 5 NOE-02   | 1.03E-01        | 1 AZE-01  | 3 40€ •00                     | 1 MZE-01               |
| PEST    | Freimudian II               | ug/kg the  | ۱ 4                              | 1                    | 25%          | 1 1                                    | NC NC                                    | 3 40E-01   | 3 40E-01        | 1.40E-01  | NC NC                         | 3 40E-01               |
| PEST    | 4.4' 001                    | wh putpu   | 4                                | 3                    | 75%          | 3                                      | Lognormal                                | 8 45E-02   | 1.15E-01        | 1 80E-01  | 3316.01                       | 1 80E-01               |
| PEST    | Alutus Chlordane            | (49/kg the | 1 4                              | 2                    | 50%          | 7                                      | Normal                                   | 1 206-01   | 1 90E-01        | Z 60E-01  | 6.32€-01                      | 2 00E-01               |
| PEST    | Garring Chlordane           | wh parker  | 1 4                              | 3                    | 75%          | ) 5                                    | Normal                                   | 7.70E-02   | 2 02E-01        | 3 10€-01  | 4 00E-01                      | 3 10E-01               |
| PEST    | Freirin kelpne              | wb gafus   | 1                                | 2                    | 50%          | 1 2                                    | Normal                                   | 7 DOE-01   | 9 10E-01        | 1 03E+00  | 1 87E+00                      | 1 03E 400              |
| PEST    | Diekirin                    | ug/lig the |                                  | 1 1                  | 20%          | 1 1                                    | NC NC                                    | 6 20E-02   | 6 20€-02        | 6 208-02  | NC NC                         | 6 20E-02               |
| PEST    | Endon                       | IID/NO dw  | 1 4                              | ,                    | 90%          | 1 2                                    | Normal                                   | 1 40E-01   | 1 4ME-01        | 1 886-01  | 1 96E-01                      | 1 85E-01               |
| PEST    | Methoxychini                | ug/kg dw   | 1 4                              | l i                  | 25%          | l i                                    | NC                                       | 9 40E-01   | 9.40E-01        | 9 40€-01  | NC                            | 9 40E-01               |
| PEST    | Fruitin aldehyde            | up/kg dw   | 1 4                              | 1 2                  | 80%          | ,                                      | Lognormal                                | 1 20€ 01   | 3 95E-01        | 6.70€-01  | NC NC                         | 6.70E-01               |
| PEST    | Endoulian I                 | ug/kg dw   | 1 1                              | 1 :                  | 26%          | 1 ;                                    | NC                                       | 2 20€-01   | 2 20E-01        | 2 20E-01  | l NC                          | 2 20€ 01               |

Appendix C-4.4 Summary Statistics for Site H Surface Soil Sauget Area I

|         |                              |          |                      | Γ          |              |                          |                      |          |                |          | <del>                                     </del> | <del></del>               |
|---------|------------------------------|----------|----------------------|------------|--------------|--------------------------|----------------------|----------|----------------|----------|--------------------------------------------------|---------------------------|
| (       | · '                          |          |                      |            |              |                          | Shapiro-Wilke's Test |          |                |          | 95% Upper                                        |                           |
|         | e Salara da a                |          |                      |            | ji           |                          | for Normality(a)     | Sum      | mary Statistic | 8        | Confidence Limit                                 | ]                         |
| 1       |                              |          | Number of<br>Samples | Norther of | Frequency of | Number of<br>Samples for |                      |          | 1              |          |                                                  |                           |
| Method  | Constitueng                  | Unite    | Analyzed             | Detects    | Detection    | Statistics               | Dataset Distribution | Minlinum | Mean           | Maximum  | UCL (b)                                          | :: Sita Concentration (c) |
| 8280A   | 1998 Total TEQ w/ EMPC as ND | ug/kg    | 4                    | 4          | 100%         | 4                        | Lognormal            | 3.45E-02 | 5.33E-01       | 1.29E+00 | 1.77E+06                                         | 1.29E+00                  |
| HERB    | 2,4-DB                       | ug/kg dw | 4                    | 2          | 50%          | 4                        | Normal               | 4,30E+00 | 6.74E+00       | 9.70E+00 | 9.94E+00                                         | 9.70E+00                  |
| METALS  | Aluminum                     | mg/kg dw | 4                    | 4          | 100%         | 4                        | Lognormal            | 4.30E+03 | 7.95E+03       | 1.40E+04 | 3.92E+04                                         | 1.40E+04                  |
| METALS  | kon                          | mg/kg dw | 4                    | 4          | 100%         | 4                        | Normal               | 1.40E+04 | 1.63E+04       | 1.80E+04 | 1.83E+04                                         | 1.80E+04                  |
| METALS  | Lead                         | mg/kg dw | 4                    | 4          | 100%         | 4                        | Normal               | 5.30E+01 | 1.48E+02       | 2.30E+02 | 2.44E+02                                         | 2.30E+02                  |
| METALS  | Magnesium                    | mg/kg dw | 4                    | 4          | 100%         | 4                        | Normai               | 8.90E+02 | 2.02E+03       | 2.50E+03 | 3,07E+03                                         | 2.50E+03                  |
| METALS  | Manganese                    | mg/kg dw | 4                    | 4          | 100%         | 4                        | Normal               | 9,80E+01 | 4.37E+02       | 7.20E+02 | 7.39E+02                                         | 7.20E+02                  |
| METALS  | Mercury                      | mg/kg dw | 4                    | 4          | 100%         | 4                        | Lognormal            | 6.40E-02 | 2.84E-01       | 7.70E-01 | 1.42E+02                                         | 7.70E-01                  |
| METALS  | Molybdenum                   | mg/kg dw | 4                    | 4          | 100%         | 4                        | Lognormal            | 9.80E-01 | 4.95E+00       | 1.10E+01 | 9.82E+02                                         | 1.10E+Q1                  |
| METALS  | Nickel                       | mg/kg dw | 4                    | 4          | 100%         | } 4                      | Lognormal            | 2.00E+01 | 3.40E+01       | 7.00E+01 | 2.15E+02                                         | 7.00E+01                  |
| METALS  | Potassium                    | mg/kg dw | 4                    | 4          | 100%         | 4                        | Lognormal            | 8.30E+02 | 1.16E+03       | 1.60E+03 | 1.89E+03                                         | 1.60E+03                  |
| METALS  | Silver                       | mg/kg dw | 4                    | Į 3        | 75%          | 4                        | Normal               | 5.10E-01 | 1.39E+00       | 2.70E+00 | 2.64E+00                                         | 2.64E+00                  |
| METALS  | Sodium                       | mg/kg dw | 4                    | 4          | 100%         | <b>1</b> 4               | Normal               | 1.10E+02 | 2.48E+02       | 3.90E+02 | 3.96E+02                                         | 3.90€+02                  |
| METALS  | Thallium                     | mg/kg dw | 4                    | 1          | 25%          | 4                        | Lognormal            | 4.70E-01 | 1.01E+00       | 2.50E+00 | 3.00E+01                                         | 2.50E+00                  |
| METALS  | Antimony                     | mg/kg dw | 4                    | 4          | 100%         | [ 4                      | Normal               | 6.90E-01 | 1.57E+00       | 2.30E+00 | 2.37E+00                                         | 2.30E+00                  |
| METALS  | Arsenic                      | mg/kg dw | 4                    | 1 4        | 100%         | 1 4                      | Lognormal            | 8.50E+00 | 2.28E+01       | 6.40E+01 | 7.22E+03                                         | 6.40E+01                  |
| METALS  | Barlum                       | mg/kg dw | 4                    | 4          | 100%         | 4                        | Normal               | 9.90E+01 | 1.12E+02       | 1.20E+02 | 1.24E+02                                         | 1.20E+02                  |
| METALS  | Beryllium                    | mg/kg dw | 4                    | 4          | 100%         | ] 4                      | Lognormal            | 7.30E-01 | 1.52E+00       | 3.80E+00 | 4.69E+01                                         | 3.80E+00                  |
| METALS  | Cadmium                      | mg/kg dw | 4                    | 4          | 100%         | 4                        | Lognormal            | 2.70E+00 | 9.03E+00       | 2.20E+01 | 2.17E+03                                         | 2.20E+01                  |
| METALS  | Chromium                     | mg/kg dw | 4                    | 4          | 100%         | 4                        | Normal               | 1.50E+01 | 1.95E+01       | 2.30E+01 | 2.34E+01                                         | 2.30E+01                  |
| METALS  | Cobalt                       | mg/kg dw | 4                    | 4          | 100%         | 4                        | Lognormal            | 5.20E+00 | 1.00E+01       | 2.00E+01 | 8.61E+01                                         | 2.00E+01                  |
| METALS  | Copper                       | mg/kg dw | l 4                  | 4          | 100%         | 1 4                      | Normal               | 2.00E+02 | 3.75E+02       | 4.80E+02 | 5.33E+02                                         | 4.80E+02                  |
| METAL\$ | Vanadium                     | mg/kg dw | 4                    | 4          | 100%         | 4                        | Lognormal            | 2.00E+01 | 3.00E+01       | 4.50E+01 | 6.90E+01                                         | 4.50E+01                  |
| METALS  | Zinc                         | mg/kg dw | 4                    | 4          | 100%         | 4                        | Lognormal            | 3.50E+02 | 1.28E+03       | 3.60E+03 | 6.29E+05                                         | 3.60E+03                  |
| METALS  | Calcium                      | mg/kg dw | 4                    | 4          | 100%         | 4                        | Lognormal            | 5.90E+03 | 1.76E+04       | 4.20E+04 | 1.07E+06                                         | 4.20E+04                  |
| METALS  | Selenium                     | mg/kg dw | 1 4                  | 3          | 75%          | 1 4                      | Lognormal            | 4.20E-01 | 1.58E+00       | 4.70E+00 | 9.42E+02                                         | 4.70E+00                  |
| PCB     | Total PCBs                   | ug/kg dw | 4                    | 3          | 75%          | 4                        | Normal               | 8.50E+00 | 6.60E+02       | 1.52E+03 | 1.56E+03                                         | 1.52E+03                  |
| PEST    | Heptachlor epoxide           | ug/kg dw | 1 4                  | 3          | 75%          | . 4                      | Lognormal            | 5.90E-01 | 1.84E+01       | 4.40E+01 | 1.11E+12                                         | 4.40E+01                  |
| PEST    | Aldrin                       | ug/kg dw | 4                    | 2          | 50%          | 4                        | Normal               | 9.00E-01 | 8.21E+00       | 2.10E+01 | 1.94E+01                                         | 1.94E+01                  |
| PEST    | Endosulfan II                | ug/kg dw | 4                    | 1 1        | 25%          | 3                        | Lognormal            | 1,70E+00 | 3.57E+00       | 7.20E+00 | 1.85E+03                                         | 7.20E+00                  |
| PEST    | 4,4'-DDT                     | ug/kg dw | 4                    | 3          | 75%          | 1 4                      | Lognormal            | 1.70E+00 | 4,51E+01       | 1.10E+02 | 1.17E+10                                         | 1.10E+02                  |
| PEST    | Gamma Chlordane              | ug/kg dw | 4                    | 2          | 50%          | 4                        | Normal               | 9.00E-01 | 1.47E+01       | 3.00E+01 | 3.35E+01                                         | 3.00E+01                  |
| PEST    | Endrin ketone                | ug/kg dw | 4                    | 3          | 75%          | ( 4                      | Lognormal            | 1.40E+00 | 2.50E+01       | 8.20E+01 | 1.02E+10                                         | 8.20€+01                  |
| PEST    | Methoxychlor                 | ug/kg dw | 4                    | 2          | 50%          | 4                        | Lognormal            | 9.00E+00 | 4.54E+01       | 1.30E+02 | 2.00E+05                                         | 1.30E+02                  |
| PEST    | 4.4'-DDE                     | ug/kg dw | 4                    | į 3        | 75%          | [ 4                      | Lognormal            | 1.70E+00 | 3.44E+01       | 8.60E+01 | 8.00E+08                                         | 8.60E+01                  |
| PEST    | Heptachior                   | ug/kg dw | 4                    | 1 1        | 25%          | 3                        | Lognormal            | 9.00E-01 | 1.28E+00       | 2.00E+00 | 8.26E+00                                         | 2.00E+00                  |
| SVOA    | bis(2-Ethylhexyl)phthalate   | ug/kg dw | 1 4                  | 2          | 50%          | 4                        | Lognormal            | 9.00E+01 | 1.04E+02       | 1.20E+02 | 1.26E+02                                         | 1.20E+02                  |
| SVOA    | Pyrene                       | ug/kg dw | 4                    | 3          | 75%          | 4                        | Normal               | 9.00E+01 | 1.58E+02       | 1.90E+02 | 2.13E+02                                         | 1.90E+02                  |
| SVOA    | Benzo(g,h,i)perytene         | ug/kg dw | 1 4                  | 1 1        | 25%          | 4                        | Lognormai            | 9.00E+01 | 1.81E+02       | 3.70E+02 | 2.17E+03                                         | 3.70E+02                  |
| SVOA    | Indeno(1,2,3-cd)pyrene       | ug/kg dw | 4                    | 2          | 50%          | 4                        | Lognormal            | 8.70E+01 | 9.18E+01       | 1.00E+02 | NC                                               | 1.00E+02                  |
| SVOA    | Benzo(b)fluoranthene         | ug/kg dw | . 4                  | 3          | 75%          | ) 4                      | Lognormal            | 9.00E+01 | 1.13E+02       | 1.40E+02 | 1.54E+02                                         | 1.40E+02                  |
| SVOA    | Fluoranthene                 | ug/kg dw | 4                    | 3          | 75%          | 4                        | Normal               | 9.00E+01 | 1.70E+02       | 2.40E+02 | 2.50E+02                                         | 2.40E+02                  |
| SVOA    | Benzo(k)fluoranthene         | ug/kg dw | 4                    | 3          | 75%          | 4                        | Lognormal            | 8.20E+01 | 9.68E+01       | 1.30E+02 | 1.37E+02                                         | 1,30€+02                  |
| SVOA    | Chrysene                     | ug/kg dw | 4                    | 3          | 75%          | 1 4                      | Lognormal            | 9.00E+01 | 1.58E+02       | 3.00E+02 | 7.34E+02                                         | 3.00E+02                  |
| SVOA    | Benzo(a)pyrene               | ug/kg dw | 4                    | 3          | 75%          | 1 4                      | Normal               | 4.70E+01 | 9.93E+01       | 1.40E+02 | 1.45E+02                                         | 1.40E+02                  |
| SVOA    | Benzo(a)anthracens           | ug/kg dw | 4                    | 3          | 75%          | 4                        | Lognormal            | 9.00E+01 | 1.04E+02       | 1.30E+02 | 1.33E+02                                         | 1.30E+02                  |
| SVOA    | Phenanthrene                 | ug/kg dw | 4                    | 1          | 25%          | 1 4                      | Lognormal            | 9.00E+01 | 9.63E+01       | 1.10E+02 | NC                                               | 1.10E+02                  |
| SVOA    | Pentachlorophenol            | ug/kg dw | 4                    | 1          | 25%          | 4                        | Normal               | 2.25E+02 | 2.32E+02       | 2.41E+02 | 2.41E+02                                         | 2.41E+02                  |
| VOA     | Tetrachloroethene            | ug/kg dw | 4                    | 1 1        | 25%          | 1 4                      | Lognormal            | 2.55E+00 | 6.73E+00       | 1.70E+01 | 2.98E+02                                         | 1.70E+01                  |
| VOA     | 2-Hexanone                   | ug/kg dw | 4                    | 1 1        | 25%          | 1                        | NC                   | 5,70E+00 | 5.70E+00       | 5.70E+00 | NC                                               | 5.70E+00                  |
| VOA     | Carbon disuffide             | ug/kg dw | 4                    | 1_1        | 25%          | 3                        | Normal               | 2.55E+00 | 3.42E+00       | 4.30E+00 | 4.89E+00                                         | 4.30E+00                  |

#### Appendix C-4.5 Summary Statistics for Site I Surface Soll Sauget Area I

| ł            |                                 |                      |                                  |                      |              |                                        | Shapire-Willie's Yest<br>for Hermathy(s) | Survey States        |                      |                      | 00% Upper<br>Genfidense Limit |                         |
|--------------|---------------------------------|----------------------|----------------------------------|----------------------|--------------|----------------------------------------|------------------------------------------|----------------------|----------------------|----------------------|-------------------------------|-------------------------|
| Method       | Constituent                     | Unito                | Number of<br>Samples<br>Applying | Number of<br>Detects | Proquency of | Humber of<br>Samples for<br>Statistics | Catacot Distribution                     | Minimum              | Mean                 | Manheum              | UCL (b)                       | Bite Consentration (s)  |
| AZBOA        | THE TOTAL TEQ W/ EMPC IN NO     | uehe                 | 4                                | 4                    | 100%         | 4                                      | Lagranmal                                | 7 734 -02            | 3 34E+00             | 1 276+01             | 5 ASE - 13                    | 1 2/E + 01              |
| HERB         | 2,4 DB                          | ug/tig dw            | 4                                | •                    | 76%          | , ,                                    | Lognormal                                | 4 36€ +00            | 1 27E+01             | 2 81E+01             | 8 37E+06                      | 2 01E +01               |
| METALS       | Aluminum                        | mg/kg dw             |                                  | 4                    | 100%         | 4                                      | Lagnormal                                | 3 766 + 03           | 5 64E+03             | 8 00E+03             | 1 04E+04                      | # ODE + 03              |
| METALS       | Man                             | mg/kg dw             | 1 4                              | •                    | 100%         | 4                                      | Normal                                   | 6 346 +03            | 1086+04              | 1 606+04             | 1 600:+04                     | 1 60E +04               |
| METALS       | Lead                            | mg/kg dw             | •                                | •                    | 100%         | 4                                      | Normal                                   | 3 306 • 03           | 9 80E + 03           | 1 806 +03            | 1 418+03                      | 1 416+03                |
| METALB       | Magnestum                       | mg/ng dw             | 1                                | 1                    | 100%         | •                                      | Lognormal                                | 7 606 +03            | 1.24E+04             | 1 905+04             | 2 876+04                      | 1 SOE + 04              |
| METALS       | Marganasa                       | rng/kg dw            | i :                              | <b>!</b> •           | 100%         | 4                                      | Lagranmus                                | 1 600:+02            | 7 03E+02             | 3 008 + 02           | 3 60£ +03                     | 1 00£ +02               |
| METALB       | Marcury<br>Melyledenum          | mg/kg dw<br>mg/kg dw | :                                | :                    | 100%         |                                        | ( ognormal<br>Normal                     | 4 /66 02             | 0.048-01             | 2 00k+00             | 5.71E+06                      | 3 OOF +00               |
| METALE       | Nichel                          | mg/kg dw             | ;                                | :                    | 100%         | ;                                      |                                          | 2 /0F+00<br>1 456+01 | 1 ME +00             | A 60E+00             | N 107 (t + (3t)               | B A(10 + (10)           |
| METAL B      | Politicium                      | mg/ng dw             |                                  |                      | 100%         | 1 7                                    | i Ognomal<br>Lognomal                    | 1 496 - 63           | 1 24E + 03           | 6 506 -01            | 4 40E+02                      | a but +u1               |
| METALS       | Street                          | make on              | 1 .                              |                      | 100%         | 1 2                                    | Lagramai                                 | 1782+00              | # /16 -00            | 1 608 403            | 8 / 18 • 03                   | 1 50(:+0)<br>1 (40(:+0) |
| METALB       | Nodum                           | mana aw              | 1                                | 1                    | 100%         | [ ]                                    | Normal                                   | 4 408 • 02           | 0.304 - 02           | 8 /OE+02             | B 80£+02                      | # /at + 02              |
| METALS       | Antimony                        | mohe dw              |                                  | i i                  | 100%         | l i                                    | 1 agracmust                              | 2 80k (00            | 1) Unit +00          | 8 40£ • 00           | 2 (18 - 01                    | 6. 4UE + UC             |
| METALB       | Americ                          | mutu av              |                                  |                      | 100%         | ) ;                                    | Normal                                   | 4 562 - 00           | //wE+00              | 1 200:01             | 1 218-01                      | 1 200:+01               |
| METALS       | Barrum                          | mg/kg dw             | 4                                | 4                    | 100%         | 4                                      | Lagrarmai                                | N 308 +01            | 2 818 -02            | 7 408 + 02           | 4 078+04                      | / 40# +0J               |
| METALS       | Herymun                         | mg/kg dw             |                                  | ] 4                  | 100%         |                                        | Logranial                                | 4 MOP -01            | U 10#-01             | 1 708 +00            | 4 000 = 00                    | 1 70£ +00               |
| METALS       | Cadmium                         | mg/kg dw             | 4                                | 4                    | 100%         | 4                                      | Lagnormal                                | 2 206 +00            | 1 127 -01            | 3 102 401            | 4 578+04                      | 3 100:01                |
| METALS       | Chromium                        | mg/kg dw             | 4                                | 4                    | 100%         | 4                                      | Lognormal                                | 1.302 +01            | 1 336 • 01           | 8 508 401            | 6 678 - 07                    | 6 506 +01               |
| ME TALS      | Coball                          | mg/kg dw             | •                                | 4                    | 100%         | 4                                      | Lingnormal                               | 2 008 +00            | 1216+01              | 3 300 + 01           | 1 808 104                     | 3 30E+01                |
| METALS       | Copper                          | mg/ng dw             | 1 •                              | 4                    | 100%         | 4                                      | Normal                                   | 1 658 + 03           | 0.00(:+03            | 1.302+04             | 1.348 +04                     | 1 3GR+04                |
| METALS       | Vanadium                        | mg/lig riw           |                                  | 4                    | 100%         | } 4                                    | Normal                                   | 1.078.+01            | 1478-01              | 2 600 +01            | 2 fi30 (0)                    | 2 fior +01              |
| METALS       | 7 inc                           | mortig dw            | 1 •                              | 1                    | 100%         | 1 1                                    | f adustable                              | 4 068+02             | 1.438+03             | 2 ROF+03             | 4.33(1+04                     | 2 MOF +05               |
| MF TAL B     | Calcium                         | mg/kg dw             | 1 1                              | 4                    | 100%         |                                        | Logocomal                                | 0 70F +04            | 1 1/E • 06           | 2 358 +05            | 4 NOF + OA                    | 7.15E+05                |
| METALS       | Selenium                        | mg/kg dw             | ! !                              | 3                    | 76%          |                                        | Lognormal                                | 5 500 01             | 1 100 +00            | 1 906 +00            | 6 R9F + 00                    | 1.00(+00                |
| PCB          | Total PCBs                      | ug/lig dw            | ;                                | 1 ;                  | 78%<br>100%  | 4 3                                    | Lognomal                                 | 6.102.401            | 1 178+04             | 1 218+05             | A 78E + 28                    | 1 215 +05               |
| PEST         | Hertachter grouide              | ug/tg dw             | , ,                              | 1 :                  | 33%          | , ,                                    | Lognormal                                | 9.40E-01<br>8.60E+00 | 4 85E+01<br>8 95E+00 | 1 40E+02<br>8 BOF+00 | 1 51E • 26<br>9 60E • 00      | 1 40E • 07              |
| PEST<br>PEST | Fransullan autale<br>Aldrin     | rightig dw           | ( ;                              | ( ;                  | 100%         | 1 ;                                    | Normal<br>Logrormal                      | # 20E-01             | H 4RF+D1             | 7 50E+02             | 2 17E+38                      | # #DE+(X)<br>2 50E+02   |
| PEST         | Findosaffan II                  | up/kg dw             | 1 ;                              | 1 ;                  | 100%         | ;                                      | Lighternia                               | 2 28E+00             | 2 DME+02             | 6 00E+02             | 3 878 +35                     | 0.000                   |
| PEST         | 4.4'-001                        | USAS ON              |                                  | l ž                  | 67%          | \ ;                                    | Lagagemai                                | 3 90E • 00           | 1 178+02             | 4 60€+02             | 1 986 - 12                    | 4 HOF+02                |
| PEST         | Alpha Chlordane                 | up/kg dw             | 1 ;                              | 1 7                  | 22%          | 1 1                                    | NC NC                                    | 2 86E • 90           | 7 95F+00             | 2 8AF + 00           | NC.                           | 7 85E+00                |
| PEST         | Gamma Chlordana                 | up/up dw             | 1 3                              | 1 3                  | 100%         |                                        | Immongo                                  | 5 56E+00             | 1 32E+02             | 3 808:+02            | 1 186+24                      | 3 MOE+02                |
| PERI         | Freide katone                   | ug/kg dw             | 1                                | 5                    | 100%         | ذ ا                                    | Lagnormal                                | 3 20€+00             | 7 426 +02            | 7 00E • 02           | 1 29E+33                      | 7 One • 02              |
| PEBT         | Dieldrin                        | HO/NG OW             | ,                                | 1                    | 100%         | 3                                      | Lognormal                                | 1 70E • 00           | 7 04E+01             | 2 006 • 02           | 6 676 + 25                    | 2 DDE+02                |
| PE81         | Endrin                          | up/kg dw             |                                  | 1                    | 100%         | ,                                      | Lognormal                                | B 10E 01             | N 22E+01             | 2 406 • 02           | 1 446 + 35                    | 2 40E • 02              |
| PEST         | Methoxychior                    | ug/ng dw             | ) ,                              | ٠,                   | 100%         | 3                                      | l ognomal                                | 1 806+01             | 1 036 • 03           | 3 006+03             | 1 3/8 - 55                    | 3 ONE +03               |
| PEST         | 4,4'-000                        | ug/ng dw             |                                  | 3                    | 100%         | ,                                      | Logopomal                                | 3 10€±01             | 10+399.0             | 2 00E+02             | 6 19E+66                      | 2 00€+02                |
| PEST         | 4,4'-DOE                        | ug/kg dw             | 3                                | 3                    | 100%         | ,                                      | Lognormal                                | 1 684 - 00           | 1 036 • 02           | 3 006 • 02           | 1 366 + 32                    | 3 00€+02                |
| PEST         | Fridrin aldehyde                | ug/tig dw            | ) ,                              | ) ,                  | 100%         | ) )                                    | Lagnormal                                | 4 706+00             | 9 186+03             | 1 600 +03            | A 90€ • 37                    | 1 606+03                |
| PEST         | Heptachior                      | ug/kg dw             | 1 2                              | 2                    | 67%          | , ,                                    | Logoormal                                | A 96E-01             | 2 496+01             | 6 906 + 01           | 3 916 - 21                    | 0 00E+01                |
| PEST         | Endosulfan I                    | ug/kg dw             | 3                                | ,                    | 100%         | 3                                      | Lagnormul                                | 7 206-01             | # BBE+01             | 2 60E+02             | 6.218+36                      | 2 80#+02                |
| SVOA         | 1,4:Dichlorobenzene             | ug/ng dw             | 1 4                              | ! !                  | 25%          | ! !                                    | NC NC                                    | 4 606+01             | 4 602 • 01           | 4 806 •01            | NC                            | 4 60€+01                |
| BVOA         | 4-Chlorganitine                 | ug/lig dw            | ! !                              | 2                    | 60%          | 4                                      | Lognormal                                | 1 656+03             | 4 646 • 03           | 1 80€+04             | 3 36€ + 16                    | 1 60€+04                |
| SVOA         | bis(2-Ethythaxyt)phthalate      | ug/kg dw             | !                                | 1 !                  | 26%          | 1 1                                    | NC<br>Language                           | 8 75E+01<br>3 83E+01 | 8 75E+01<br>5 48E+01 | 8 75E+01<br>1 10E+02 | NC<br>2 925 + 02              | N 76E+01<br>1 10E+02    |
| SVOA<br>SVOA | Hexachlorobanzana<br>Anthracena | ug/kg dw             | 1 :                              | ;                    | 80%          | 1 :                                    | Lognormal<br>Lognormal                   | 2 86E+01             | 2 366+02             | 7 308 +02            | 3 376+06                      | 7 30€+02                |
| SVOA         | f.2.4-Trichtorobenzens          | ug/kg dw             | 1 7                              | 1 :                  | 26%          | 1 2                                    | Lognormai                                | 6 50E+01             | 1 116+02             | 1 605 + 02           | 2 365+02                      | 1 80€+02                |
| SVOA         | 2,4-Dichlorophenol              | ug/kg dw             | 1 7                              | 1 i                  | 25%          | 1 1                                    | NC NC                                    | 8 200 +01            | 8 208+01             | 8 20E + 01           | NC NC                         | 8 20E+01                |
| SVOA         | Pyrene                          | up/kg dw             | 1 7                              | 1 4                  | 100%         | 1 4                                    | Lognormal                                | 1 40€+02             | 1 35E+03             | 4.70E+03             | 1 145 +00                     | 4 70€+03                |
| SVOA         | Dibenzoluran                    | up/ng dw             |                                  | 1 ,                  | 25%          | 4                                      | Normal                                   | 8 60E+01             | 9 25E+01             | 1 005+02             | 1 00E+02                      | 1 00€+02                |
| SVOA         | Benzo(g,h,i)perylene            | up/kg dw             | 1                                | 1                    | 75%          | ı Ă                                    | Lognormal                                | 9 000 +01            | 4 66E+02             | 1 60E+03             | 5 62E+06                      | 1.60E+03                |
| BVOA         | indeno(1,2,3-ad)pyrene          | ug/kg dw             | 1                                | 2                    | 50%          | 1                                      | Lognormal                                | 9 005+01             | 4 64E+02             | 1 60E+03             | 7 84E+06                      | 1.60€+03                |
| SVOA         | Benzo(b)fluoranthene            | ug/kg dw             | 1 4                              | 3                    | 75%          | 1                                      | Lognomial                                | 9 50E+01             | 8 14E+02             | 2.80E+03             | 4.06E+06                      | 2.80€+03                |
| SVOA         | Fluoranthene                    | ug/kg dw             | 4                                | 4                    | 100%         | 4                                      | Lognormal                                | 1 20E+02             | 1.66E+03             | 6 00E+03             | 2 32E+10                      | 6 00E+03                |
| SVOA         | Benzo(k)fluoranthene            | ug/kg dw             | 4                                | 3                    | 75%          | 4                                      | Lognormal                                | 5.50E+01             | 3.10E+02             | 9.50E+02             | 1 05E+06                      | 9 60E+02                |
| SVOA         | Chrysene                        | ug/ig dw             | 4                                | ) 3                  | 75%          | 1 4                                    | Lognormal                                | 9.50E+01             | 6.62E+02             | 2.20E+03             | 5.53E+07                      | 2.20E+03                |
| SVOA         | Senzo(a)pyrane                  | ug/lig dw            | 1 4                              | 3                    | 75%          | 1 4                                    | Lognormal                                | 4.95E+01             | 6 29€+02             | 2 20€+03             | 2 97E+09                      | 2 20E+03                |
| SVOA         | Dibenzo(a,h)enthracene          | ug/kg dw             | 14                               | 2                    | 50%          | 4                                      | Lognormal                                | 3.66E+01             | 1.23E+02             | 3.60E+02             | 4.44E+04                      | 3.60E+02                |

#### Appendix C-4.5 Summary Statistics for Site I Surface Soll Sauget Area I

|        |                     |          |                                  |     |                           |                                        | Shapiro-Wilke's Test<br>for Normality(a) | Summary Statistics |          |          | 95% Upper<br>Confidence Limit | ٠.                     |
|--------|---------------------|----------|----------------------------------|-----|---------------------------|----------------------------------------|------------------------------------------|--------------------|----------|----------|-------------------------------|------------------------|
| Method | Constituent         | Units .  | Number of<br>Samples<br>Analyzed |     | Frequency of<br>Detection | Number of<br>Samples for<br>Statistics | Dataset Distribution                     | Minimum            | Mean     | Maximum  | UCL (b)                       | Site Concentration (c) |
| SVOA   | Benzo(a)anthracene  | ug/kg dw | 4                                | 3   | 75%                       | 4                                      | Lognormal                                | 7.80E+01           | 6.53E+02 | 2.20E+03 | 1.36E+08                      | 2.20E+03               |
| SVOA   | Di-n-butylphthalate | ug/kg dw | 4                                | 1   | 25%                       | 1                                      | NC                                       | 5.20E+01           | 5.20E+01 | 5.20E+01 | NC                            | 5.20E+01               |
| SVOA   | Phenanthrene        | ug/kg dw | 4                                | 4   | 100%                      | 4                                      | Lognormal                                | 5.00E+01           | 8.80E+02 | 3.30E+03 | 3.21E+11                      | 3.30E+03               |
| SVOA   | Fluorene            | ug/kg dw | 4                                | 1   | 25%                       | 4                                      | Lognormal                                | 8.50E+01           | 1.25E+02 | 2.30E+02 | 4.33E+02                      | 2.30E+02               |
| SVOA   | Carbazole           | ug/kg dw | 4                                | 1   | 25%                       | 4                                      | Lognormal                                | 8.50E+01           | 1.48E+02 | 3.20E+02 | 1.30E+03                      | 3.20E+02               |
| SVOA   | Pentachlorophenol   | ug/kg dw | 4                                | 4   | 100%                      | 4                                      | Lognormal                                | 2.20E+02           | 6.34E+02 | 1.65E+03 | 6.33E+04                      | 1.65E+03               |
| SVOA   | 2-Nitroaniline      | ug/kg dw | 4                                | 1   | 25%                       | 1                                      | NC NC                                    | 1.60E+02           | 1.60E+02 | 1.60E+02 | NC                            | 1.60E+02               |
| VOA    | Toluene             | ug/kg dw | 4                                | 1 1 | 25%                       | 4                                      | Normal                                   | 2.35E+00           | 2.89E+00 | 3.30E+00 | 3.39E+00                      | 3.30E+00               |

Appendix C-4.8 Summary Statistics for SNe L Surface Soll Sauget Area I

|                  |                                   |                      |                     |           |              |              | Shapire-Willie's Tool<br>for Hormality(a) |                          | mery Bretterin       | ·                        | 90% Upper<br>Confidence Limb |                       |
|------------------|-----------------------------------|----------------------|---------------------|-----------|--------------|--------------|-------------------------------------------|--------------------------|----------------------|--------------------------|------------------------------|-----------------------|
| Method           | Genetituess                       | Unite                | Tompton<br>American | Number of | Proguency of | Complete for | Dotabut Distribution                      | Meimum                   | Moon                 | Mandanga ;               | UOL (M)                      | Min Concentration (4) |
| AZROA            | 1666 TOLN TEQ W EMPC M NO         | ughg                 | 4                   | 4         | 100%         | 4            | Lagnormal                                 | 9 32E 02                 | 3 60E 01             | # 21E-01                 | 1 26E+02                     | 6.21E-01              |
| METALB           | Cyanada, Total                    | mo/ng dw             | •                   | 1         | 25%          | 4            | Lognormal                                 | 2 70€-01                 | 6 06E-01             | 1 005+00                 | 3 006 +01                    | 1 40E+00              |
| METALS           | Aluminum                          | mg/hg dw             | 4                   | 4         | 100%         | 4            | Normal                                    | 3 60£ +03                | 6 76E+03             | 7 606 + 03               | 7 465 - 03                   | 7 60€ +03             |
| METALS           | Iran                              | mg/ng dw             | ۱ ،                 | •         | 100%         | •            | Nomal                                     | 7 10€+03                 | 2 10E+04             | 3 205 + 04               | 3 616+04                     | 3 20E +04             |
| METALS           | Lead                              | mg/kg dw             | ٠ .                 | •         | 100%         |              | Lognormal                                 | 8 40E +01                | 3 NuE+02             | 9 40E+02                 | 2 64€ +06                    | 9 40E + 02            |
| METALB           | Magnesium                         | mg/ng ow             | •                   | 4         | 100%         | 4            | Normal                                    | 3 40£+02                 | 2 49E+03             | 4 20E+Q3                 | 4 466 +03                    | 4 20€ +03             |
| METALS           | Marganese                         | mg/ng dw             | •                   | 4         | 100%         | 4            | Nomat                                     | 2 XXF +01                | 3 h18 +02            | 6 50E+02                 | 6 766 • 02                   | 4 htt: +02            |
| METALE           | Mercury                           | waye an              | •                   | •         | 100%         | ◆            | Numbel                                    | 3 MOE (12                | 37/E 01              | 5 BUE OI                 | 1 /4E 01                     | function of           |
| METAL 8          | Aleightillanum                    | marks the            | 1 1                 | ( •       | 100%         | 4            | Lognomal                                  | W 3K3E+00                | 1400-01              | 2 MF+01                  | 4 2MÉ + 01                   | 7 30E+01              |
| METALE           | Nichal                            | wayes an             | ١ •                 | 4         | 100%         | •            | Normal                                    | 1 86年 + 01               | 4 nmt +01            | 5 50E+01                 | ስ የሐር • በነ                   | 5 bat +01             |
| METALE           | Polaeeum                          | mang aw              | ٠ .                 | 4         | 100%         | 4            | Normal                                    | 6 (KOR + CL)             | 1.09001-03           | 1 /00:+03                | 1 686 +03                    | 1 666 + 03            |
| METALB           | liaver                            | mg/tig dw            |                     |           | 76%          | 4            | Lognomial                                 | 6 60¢ 01                 | # 13¢ Q1             | 1 202+00                 | 1 57€+00                     | 1 200: 00             |
| METALE           | Nexthurn                          | mohe dw              | •                   | •         | 100%         | •            | 1 agnormal                                | ) int+0)                 | 3 400=103            | 6 40E+02                 | 1 (Neft + (2))               | 5 40E+02              |
| METALE           | Ehallium<br>Antimony              | mg/ng dw             | 1 :                 | 1 :       | 100%         |              | Neumal                                    | 1 60€ +00                | ) #/\t =00           | 2 106 +00                | 2 046 +00                    | 2 00E +00             |
|                  |                                   | mg/kg dw             | :                   | 1 :       | 100%         | 4            | (Lagrama)                                 | 7 ONE+00                 | 1 2MF+00             | 6.400 +00                | R 8AR+00                     | ñ.40#:+002            |
| METALS<br>METALS | Artenio<br>Natum                  | mg/ng dw             | :                   |           | 100%         | 1 ~          | Lagnormal                                 | 3 000 +01                | 1 135 101            | 3 700 (0)                | NC .                         | 3 700:+01             |
| METALB           | Herytigen                         | mg/kg dw<br>mg/kg dw | ;                   |           | 100%         | :            | Normal                                    | 6 300: ±01<br>1 400: ±00 | 1 /11:02             | 7 500 107                | 2 HMB +02                    | 3 608 (03             |
| METALS           | Cadmium                           | mo/ng ow             | ;                   | 1 :       | 100%         |              | Lagnormal                                 |                          | 1 480 +(00)          | 1 60#+00                 | NC .                         | 1 400 +00             |
| METALS           | Chromium                          | maye aw              | 1 :                 | 1 :       | 100%         | 1 :          | Normal                                    | 7 10F 01<br>1 70F • 01   | 1 100 100            | 1.007+01                 | 1 02#+01                     | 100#+01               |
| METALB           | Cobat                             | make ow              | } :                 |           | 100%         | ١ :          | Lognomal                                  | 1 100 01                 | 1 387 - 01           | 7 902 + 01<br>1 700 + 01 | 4 498 +02                    | 7 90/ +01             |
| METALS           | Copper                            | mo/hg dw             | ;                   | 1 :       | 100%         | ;            | Lagnannel<br>Lagnannel                    | 1 90F + 02               | 1 707 - 03           | 4 702 • 03               | 1 00F+01<br>7 41E+07         | 1 700 +01             |
| METALS           | Vanidium                          | mg/kg dw             | 1 :                 | 1 7       | 100%         | 1 7          | Lognomai                                  | 1 907 +01                | 4 4 17 + 01          | 4 907 101                | 7 10E+01                     | 4 702 +03             |
| METALS           | Zinc                              | me/he dw             |                     |           | 100%         | l :          | Normal                                    | 1 606 +02                | 5 10F + 02           | 8 70P + 02               | # #1E+02                     | 4 90F +01             |
| MF TALS          | Calcium                           | me/he dw             |                     |           | 100%         | ٠.           | Normal                                    | 7 MOF + 03               | 2 00F +04            | 2 005 • 04               | 1428+04                      | # 61€+02<br>2 90€+04  |
| METALS           | Selenturn                         | mg/hg dw             | 1                   | 1 .       | 100%         | 1 7          | Logramal                                  | 1 80€ 100                | 1001:00              | 4 TOE + 00               | 9.008+00                     | 4 30E+00              |
| PCB              | Total PCBs                        | ing/hg dw            | 1                   | ] ;       | 50%          |              | Normal                                    | 9.00€ • 00               | 4 90F + 02           | 1 1/8 • 03               | 1 07F • 03                   | 1 070 +03             |
| PEST             | Heepfactition apposition          | HQ/NG dw             | 1 4                 |           | 75%          | 1 7          | Normal                                    | 0.006.01                 | 5 85E+00             | 9.20€+00                 | 1 058 • 01                   | 9.20€+00              |
| PEST             | Aitin                             | up/lig dw            | 1                   | i         | 25%          | 1 4          | Normal                                    | 9.00E-01                 | 1 83E • 00           | 5 50E+00                 | 6 19E+00                     | 1 50€ ±00             |
| PEST             | bets MAC                          | HD/ND dw             | 4                   | l ,       | 25%          | 4            | Lognomal                                  | 2 50E-01                 | 1 BAE + 00           | 3 70E+00                 | 1 308 + 03                   | 1 /DE+00              |
| PEBT             | 4.4'-DD1                          | HD/ND (NV            | ( •                 | ( )       | 29%          | (            | Normal                                    | 1 ROE +00                | R WE LOO             | 1 90€ • 01               | 1 5ME+01                     | 1 NRE+01              |
| PEBI             | Gamma Chlordane                   | up/to the            |                     | ,         | 78%          | 1 4          | Acceptable                                | 9.00E-01                 | 1 155 - 01           | 2 10€+01                 | 2 13E+01                     | 2 10E+01              |
| PEST             | Emilin kelone                     | HD/ND dw             | 4                   | 1         | 75%          | 4            | Immorago J                                | I NOE + OO               | 1.23E+01             | 2 80E+01                 | 1 236+04                     | 2 80E+01              |
| PEST             | Dieldrin                          | אים פאימנו           | 4                   | 1         | 26%          | 4            | Normal                                    | 1 HOE + 00               | 7 M3E+00             | 1 20€+01                 | 1 296 + 01                   | 1 206 • 01            |
| PEST             | Methos yohige                     | ug/kg dw             | 4                   | 2         | 90%          | ,            | Normal                                    | # DOE +OD                | 2 83E+01             | 4 NOE+01                 | 6 77E+01                     | 4 RDE+01              |
| PEST             | 4,41,008                          | HOMO dw              | 4                   | 3         | 75%          | 4            | Normal                                    | / MUE +00                | 1.10€+01             | 3 00E+01                 | 1 978+01                     | 1 076 • 01            |
| BVOA             | tila (2- F thythex yt) philippide | ug/kg ow             | 4                   | 2         | 80%          | 4            | Lognormal                                 | 9 00E+01                 | 1 00E+02             | 3 10E+02                 | 1 00E+02                     | 3 10E+02              |
| BVOA             | Anthracene                        | ug/kg dw             | 4                   | 3         | 75%          | 4            | Lagnormal                                 | 9 00E+01                 | 1 0AE+03             | 3 60£+03                 | P 95E+08                     | 7 80€ +00             |
| BVOA             | Pyrane                            | ug/hg dw             | 4                   | 3         | 78%          | 4            | Lognormal                                 | 9 00E+01                 | 4 27E + 03           | 1 306 +04                | 4 MBE • 13                   | 1 308+04              |
| SVOA             | pheniofuran                       | ug/ng dw             | 4                   | ١ ١       | 25%          | 4            | Lognormal                                 | B-006+01                 | 2 86E+02             | 7 606+02                 | # 24E+04                     | 7 80E +02             |
| BVOA             | Bento(g.h.i)perylene              | שלי קוליקנו          |                     | ,         | 75%          | } •          | Lognormal                                 | 9 000 • 01               | י כסי שנני ו         | 3 NOE +03                | 1 14E+00                     | 2 MOE + 03            |
| SVOA             | indunn(1,2,3-cd)pyrana            | ug/ng dw             | 4                   | 1         | 75%          | 4            | Lognormal                                 | 9 00E+01                 | 1 88E + 03           | 4 805 +03                | 7 51E+09                     | 4 806 +03             |
| SVOA             | Senzo(b)fluoranthene              | ug/ng dw             | 4                   | ,         | 76%          | 4            | Lognormal                                 | # 00€+01                 | 2 19€+03             | 6 60E+03                 | 7 028 + 10                   | 6 60€ • 03            |
| SVOA             | f kinfanthene                     | ug/tg dw             | 4                   | 3         | 76%          | 4            | lagnomal                                  | 9 00E+01                 | 8 77E+03             | 1 NOE+04                 | 1 676+15                     | 1 805+04              |
| SVQA             | (kenzo(k)fixoranthene             | Hg/fig dw            | 4                   |           | 75%          | 4            | Lognormal                                 | 9 00€+01                 | 2 29E+03             | 6 405 +03                | 2 12E+11                     | 4 NOE+03              |
| SVOA             | Chrysens                          | ug/ng dw             | 1 1                 | 3         | 76%          | 4            | Lognormal                                 | 9 005+01                 | 2 64E+03             | 7 806 +03                | 3 67E+11                     | 7 806+03              |
| BVOA             | Bonzo(a)pyrene                    | ug/to dw             | 1 1                 | ;         | 76%          | 1 1          | Lognormal                                 | 4 90€+01                 | 2 306 +03            | 7 00E+03                 | 3 488+13                     | 7 00€+03              |
| SVOA             | Diberzo(A,h)anthracene            | ug/lig dw            | 1 !                 | 2         | 50%          | 1 1          | Lagnormal                                 | 4 906+01                 | 4 66E+02             | 1 30E+03                 | 5 84E+08                     | 1 30€+03              |
| BVOA             | Benzo(a)anthracene                | ug/lg dw             | 1 !                 | 1 3       | 76%          | 1 :          | Lognormal                                 | 9.002+01                 | 2 56E+03             | 7 80E+03                 | 3 265+11                     | 7 80€+03              |
| 8VOA             | Acenaphthene                      | ug/kg dw             | 4                   | 2         | 50%          | 1 :          | Lognormal                                 | 9 002 • 01               | 4 816+02             | 1 60E+03                 | 8 49E+08                     | 1 60E+03              |
| SVOA             | Phenanthrene                      | ug/lig dw            | ! !                 | !         | 75%          | ! !          | Lognormal                                 | 9 002+01                 | 3 62E+03             | 1 20E+04                 | 7 19E+12                     | 1.20E+04              |
| 8VOA             | Fluorene                          | ug/kg dw             | ( :                 | 1 3       | 50%          | ( :          | Lagnormal                                 | 9.00E+01                 | 4 21E+02<br>4 80E+02 | 1 40E+03                 | 8 22E+08<br>1 62E+08         | 1 40E+03<br>1 50E+03  |
| SVOA             | Carbazole                         | ug/kg dw             | ! !                 | 3         | 76%          | 1 :          | Lognormal                                 |                          |                      |                          |                              |                       |
| SVOA             | Pertachiorophenoi                 | ug/kg dw             | ! !                 | 1 !       | 25%<br>25%   | 3            | Nomal                                     | 2.35E+02<br>9.00E+01     | 2 38E+02<br>1 49E+02 | 2 40E+02<br>3.20E+02     | 2.43E+02<br>1.22E+03         | 2 40E+02<br>3 20E+02  |
| SVOA             | Naphthalene                       | ug/kg dw             | :                   | :         | 25%          | :            | Lognormal                                 | 9.00E+01                 | 1 04E+02             | 1.40E+02                 | 1 22E+03<br>1 47E+02         | 1 40E+02              |
| SVOA             | 2-Methylnaphthalene<br>Toluene    | ug/kg dw<br>ug/kg dw | 1 :                 | 1 :       | 25%          | 1 :          | Lognormai<br>Lognormai                    | 3 15E+00                 | 6 08E+00             | 1.30E+01                 | 6 23E+01                     | 1 40E+02<br>1 30E+01  |

### Appendix C-4.7 Summary Statistics for Site N Surface Soil Sauget Area I

|        |                              |          | 1                                |                      |                        |                                        |                                          |          |                 |          | ·                             | <del></del> -          |
|--------|------------------------------|----------|----------------------------------|----------------------|------------------------|----------------------------------------|------------------------------------------|----------|-----------------|----------|-------------------------------|------------------------|
|        |                              |          |                                  |                      | ļ                      |                                        | Shapiro-Wilke's Test<br>for Normality(a) | Sun      | wnary Statistic | :6       | 95% Upper<br>Confidence Limit |                        |
| Method | Constituent                  | Units    | Number of<br>Samples<br>Analyzed | Number of<br>Detects | Frequency of Detection | Number of<br>Samples for<br>Statistics | Dataset Distribution                     | Minimum  | Miran           | Maximum  | UCL (b)                       | Site Concentration (c) |
| 8280A  | 1998 Total TEQ w/ EMPC as ND | ug/kg    | 4                                | 4                    | 100%                   | 4                                      | Lognormal                                | 3.90E-03 | 9.76E-02        | 3.45E-01 | 2.91E+07                      | 3.45E-01               |
| METALS | Aluminum                     | mg/kg dw | 4                                | 4                    | 100%                   | 4                                      | Lognormal                                | 7.50E+03 | 8.75E+03        | 1.10E+04 | 1.14E+04                      | 1,10E+04               |
| METALS | Iron                         | mg/kg dw | 4                                | 4                    | 100%                   | 4                                      | Normal                                   | 1.30E+04 | 1.43E+04        | 1.50E+04 | 1.54E+04                      | 1.50E+04               |
| METALS | Lead                         | mg/kg dw | 4                                | 4                    | 100%                   | 4                                      | Lognormal                                | 1.90E+01 | 1.38E+02        | 4.10E+02 | 5.63E+06                      | 4.10E+02               |
| METALS | Magnesium                    | mg/kg dw | } 4                              | 4                    | 100%                   | 4                                      | Lognormal                                | 5.20E+03 | 7.18E+03        | 1.15E+04 | 1.59E+04                      | 1.15E+04               |
| METALS | Manganese                    | mg/kg dw | 4                                | 4                    | 100%                   | 4                                      | Normal                                   | 2.80E+02 | 3.74E+02        | 4.10E+02 | 4.47E+02                      | 4.10E+02               |
| METALS | Mercury                      | mg/kg dw | 4                                | 4                    | 100%                   | 4                                      | Lognormal                                | 3.10E-02 | 6.78E-02        | 9.50E-02 | 3.52E-01                      | 9.50E-02               |
| METALS | Molybdenum                   | mg/kg dw | 4                                | 4                    | 100%                   | 4                                      | Lognormal                                | 7.00E-01 | 1.03E+00        | 1.45E+00 | 1.82E+00                      | 1.45E+00               |
| METALS | Nickel                       | mg/kg dw | 4                                | 4                    | 100%                   | 4                                      | Normal                                   | 1.50E+01 | 1.61E+01        | 1.70E+01 | 1.71E+01                      | 1.70E+01               |
| METALS | Potassium                    | mg/kg dw | 4                                | 4                    | 100%                   | 4                                      | Normal                                   | 1.20E+03 | 1.40E+03        | 1.60E+03 | 1.61E+03                      | 1.60E+03               |
| METALS | Antimony                     | mg/kg dw | 4                                | ] 1                  | 25%                    | 1 1                                    | NC .                                     | 7.10E-01 | 7.10E-01        | 7.10E-01 | NC                            | 7.10E-01               |
| METALS | Arsenic                      | mg/kg dw | 4                                | 4                    | 100%                   | 4                                      | Lognormal                                | 5.50E+00 | 6.33E+00        | 7.30E+00 | 7.47E+00                      | 7.30E+00               |
| METALS | Barlum                       | mg/kg dw | 4                                | 4                    | 100%                   | 4                                      | Normal                                   | 1.40E+02 | 5.93E+02        | 1.20E+03 | 1.21E+03                      | 1,20E+03               |
| METALS | Cadmium                      | mg/kg dw | 4                                | 4                    | 100%                   | j 4                                    | Lognormal                                | 3.00E-01 | 8.46E-01        | 1.50E+00 | 1.18E+01                      | 1.50E+00               |
| METALS | Chromium                     | mg/kg dw | 4                                | 4                    | 100%                   | 4                                      | Lognormal                                | 1.20E+01 | 1.65E+01        | 1.80E+01 | 2.29E+01                      | 1.80E+01               |
| METALS | Cobaft                       | mg/kg dw | 4                                | 4                    | 100%                   | 4                                      | Lognormal                                | 5.60E+00 | 5.84E+00        | 6.15E+00 | NC I                          | 6.15E+00               |
| METALS | Copper                       | mg/kg dw | 4                                | 4                    | 100%                   | 4                                      | Lognormal                                | 1.60E+01 | 5.01E+01        | 1.10E+02 | 2.28E+03                      | 1.10E+02               |
| METALS | Vanadium                     | mg/kg dw | 4                                | 4                    | 100%                   | 4                                      | Lognormal                                | 2.10E+01 | 2.38E+01        | 2.90E+01 | 2.94E+01                      | 2.90E+01               |
| METALS | Zinc                         | mg/kg dw | 4                                | 4                    | 100%                   | 4                                      | Normal                                   | 6.20E+01 | 1.49E+02        | 2.50E+02 | 2.61E+02                      | 2.50E+02               |
| METALS | Calcium                      | mg/kg dw | . 4                              | 4                    | 100%                   | 4                                      | Lognormal                                | 1.60E+04 | 5.73E+04        | 1.09E+05 | 1.99E+06                      | 1.09E+05               |
| METALS | Selenium                     | mg/kg dw | 4                                | 1                    | 25%                    | 4                                      | Lognormal                                | 4.95E-01 | 5.69E-01        | 6.80E-01 | 6,91E-01                      | 6.80E-01               |
| PCB    | Total PCBs                   | ug/kg dw | 4                                | 1 1                  | 25%                    | 4                                      | Lognormal                                | 9.00E+00 | 5.13E+01        | 1.78E+02 | 5.08E+08                      | 1.78E+02               |
| PEST   | Aldrin                       | ug/kg dw | 4                                | 1                    | 25%                    | 3                                      | Normal                                   | 9.00E-01 | 1.03E+00        | 1.28E+00 | 1.39E+00                      | 1.28E+00               |
| PEST   | beta-BHC                     | ug/kg dw | 4                                | 1                    | 25%                    | 3                                      | Lognormal                                | 2.70E-01 | 2.93E-01        | 3.38E-01 | 3.82E-01                      | 3.38E-01               |
| PEST   | 4.4'-DDT                     | ug/kg dw | 4                                | 1                    | 25%                    | 4                                      | Lognormal                                | 1.75E+00 | 2.02E+00        | 2.70E+00 | 2.82E+00                      | 2.70E+00               |
| PEST   | Alpha Chlordane              | ug/kg dw | 4                                | 1                    | 25%                    | 3                                      | Normal                                   | 9.00E-01 | 9.67E-01        | 1.10E+00 | 1.16E+00                      | 1.10E+00               |
| PEST   | Gamma Chlordane              | ug/kg dw | 4                                | 1                    | 25%                    | 4                                      | Lognormal                                | 9.00E-01 | 1,38E+00        | 1.85E+00 | 3.73E+00                      | 1.85E+00               |
| PEST   | Dieldrin                     | ug/kg dw | 1 4                              | 1 1                  | 25%                    | 3                                      | Lognormal                                | 1.75E+00 | 1.89E+00        | 2.13E+00 | 2.33E+00                      | 2.13E+00               |
| PEST   | Methoxychlor                 | ug/kg dw | 4                                | 1                    | 25%                    | 4                                      | Lognormal                                | 9.00E+00 | 2.08E+01        | 5.50E+01 | 1.40E+03                      | 5.50E+01               |
| SVOA   | bis(2-Ethylhexyl)phthalate   | ug/kg dw | 4                                | 1                    | 25%                    | 1 4                                    | Lognormal                                | 9.00E+01 | 1.01E+02        | 1,30E+02 | 1.33E+02                      | 1.30E+02               |
| SVOA   | Anthracene                   | ug/kg dw | 4                                | 3                    | 75%                    | 3                                      | Normal                                   | 3.60E+01 | 4.70E+01        | 5.80E+01 | 6.55E+01                      | 5.80E+01               |
| SVOA   | Pyrene                       | ug/kg dw | 4                                | 4                    | 100%                   | 4                                      | Normal                                   | 1.50E+02 | 3.41E+02        | 5.50E+02 | 5.51E+02                      | 5.50E+02               |
| SVOA   | Benzo(g,h,l)perylene         | ug/kg dw | 4                                | 1                    | 25%                    | 4                                      | Lognormal                                | 9.00E+01 | 1.44E+02        | 3.00E+02 | 9.66E+02                      | 3.00E+02               |
| SVOA   | Indeno(1,2,3-cd)pyrene       | ug/kg dw | 4                                | 3                    | 75%                    | 4                                      | Lognormal                                | 8.75E+01 | 1,44E+02        | 2.50E+02 | 5.70E+02                      | 2.50E+02               |
| SVOA   | Benzo(b)fluoranthene         | ug/kg dw | 4                                | 4                    | 100%                   | 4                                      | Lognormal                                | 5.90E+01 | 1.65E+02        | 3.20E+02 | 3,55E+03                      | 3.20E+02               |
| SVOA   | Fluoranthene                 | ug/kg dw | 4                                | 4                    | 100%                   | 4                                      | Normal                                   | 1.70E+02 | 3.93E+02        | 6.10E+02 | 6.27E+02                      | 6.10E+02               |
| SVOA   | Benzo(k)fluoranthene         | ug/kg dw | 4                                | 4                    | 100%                   | 4                                      | Normal                                   | 8.00E+01 | 2.18E+02        | 3.80E+02 | 3.70€+02                      | 3.80E+02               |
| SVOA   | Chrysene                     | ug/kg dw | 4                                | 4                    | 100%                   | 4                                      | Lognormal                                | 8.80E+01 | 2.00E+02        | 3.10E+02 | 1.43E+03                      | 3.10E+02               |
| SVOA   | Benzo(a)pyrene               | ug/kg dw | 4                                | 4                    | 100%                   | 4                                      | Lognormal                                | 7.20E+01 | 1.87E+02        | 3.30E+02 | 2.74E+03                      | 3.30E+02               |
| SVOA   | Dibenzo(a,h)anthracene       | ug/kg dw | 1 4                              | 2                    | 50%                    | 4                                      | Normal                                   | 4.90E+01 | 7.25E+01        | 1.10E+02 | 1.07E+02                      | 1,07E+02               |
| SVOA   | Benzo(a)anthracene           | ug/kg dw | 1 4                              | 4                    | 100%                   | 4                                      | Normal                                   | 7.00E+01 | 1.68E+02        | 2.70E+02 | 2.77E+02                      | 2.70E+02               |
| SVOA   | Phenanthrene                 | ug/kg dw | 4                                | 4                    | 100%                   | 1 4                                    | Normal                                   | 8.00E+01 | 1.78E+02        | 2.60E+02 | 2.63E+02                      | 2.60E+02               |
| SVOA   | Pentachlorophenol            | ug/kg dw | 1 4                              | 1 4                  | 100%                   | 4                                      | Lognormal                                | 2.32E+02 | 3.07E+02        | 4.74E+02 | 6.13E+02                      | 4.74E+02               |

#### Appendix C-4.8 Summary Statistics for Site G Subsurface Soil Sauget Area I

|                                                     |                | <b>1 da</b>                  |                      |                          |                      |                      |                      |
|-----------------------------------------------------|----------------|------------------------------|----------------------|--------------------------|----------------------|----------------------|----------------------|
|                                                     |                | Shapiro-Willia's<br>Test for |                      |                          |                      | 99% UCL              |                      |
|                                                     |                | Hormality                    | Sure                 | y Statistics             | (mp/lgg)             | (mg/kg)              |                      |
| •                                                   |                |                              |                      |                          |                      |                      |                      |
|                                                     |                |                              |                      |                          |                      | 1                    |                      |
|                                                     | Number of      |                              |                      |                          |                      |                      |                      |
|                                                     | Samples for    | Dataset                      |                      |                          | NO                   | l                    | Site Concentration   |
| Constituted                                         | Statistics (a) | Distribution                 | Minimum              | Mean                     | 5 81E-01             | ucı_                 | Portal               |
| 1,1,2,2-Tetrachloroshane<br>1,2,4-Trichlorobertzene | 4              | NC<br>Lognome                | 5.81E-01<br>7.87E+00 | 5.81E-01<br>6.16E+01     | 1.20E+02             | NC<br>2.19E+05       | 5.81E-01<br>1.20E+02 |
| 12-Octionerane                                      | •              | NC                           | 4.35E-11             | 4.35E-01                 | 4.35E-01             | NC                   | 4.35E-01             |
| 1,4-Octionobercane                                  | 2              | Lognormal                    | 2.38E+00             | 2 97E+00                 | 3.56E+00             | NC                   | 3.56E+00             |
| 2.4 6-Tinchloropherol<br>2.4-Octrioropherol         | 3              | NC<br>Lognormal              | 4 95E+01 :           | 4 95E+01<br>6 45E+01     | 4.95E+01<br>1.41E+02 | NC<br>517E+07        | 4.95E+01<br>1.41E+02 |
| 2.4-Ombropheral                                     |                | NC                           | 140E-01              | 1.40E+01                 | 1 40E+01             | NC                   | 1 40E+01             |
| 2-Butanone (MEX)                                    | 7.             | Nome                         | 2.20E-02             | 7 39E+00                 | 1 78E+01             | 1.08E+01             | 1.08E+01             |
| 2-Oniorophenol<br>2-Methylnephalene                 | 4              | NC                           | 8.76E+00<br>8.71E+00 | 8.76E+00<br>1.84E+01     | 8.75E+00<br>3.71E+01 | NC<br>1.04E+02       | 8.76E+00<br>3.71E+01 |
| 2-Methylphenolio-cresol)                            | ;              | Lognormal<br>NC              | 3 56E+00             | 3 56€+00                 | 3.56E+00             | NC NC                | 3.56E+00             |
| 4 4-00E                                             | 4              | Lognarmer                    | 3 C7E+00             | 4 50E+01                 | 1.35E+02             | 1.85E+08             | 1.35E+02             |
| 4-Ontoroamline                                      |                | Lograme                      | 5 97E-00             | 8.16E+01                 | 2.31E+02             | 4 20E+22             | 2.31E+02             |
| 4-Methyl-2-pantanone<br>Acanaphane                  | :              | Lognormal<br>NC              | 6.35E-01<br>2.67E+00 | 2 99E+00<br>2 67E+00     | 6 00E+00<br>2 57E+00 | 5.54E+02<br>NC       | 6.00E+00<br>2.67E+00 |
| Acetore                                             |                | Nome                         | 3.20E-02             | 5 66E+00                 | 1 54E+01             | 8 44E+00             | 8.44E+00             |
| Alluminum                                           |                | Nome                         | 9 66E+02             | 8 17E+03                 | 1 87E+04             | 1.08E+04             | 1.08E+04             |
| Amthracene<br>Americ                                | 5              | MC<br>Lagrames               | 8 49E+00<br>2 50E+00 | 8 49E+00<br>5 52E+00     | 8 49E+00<br>1 11E+01 | NC<br>1.37E+01       | 8.49E+00<br>1.11E+01 |
| Banum                                               |                | Lognorma                     | 1 17E+02             | 5 00E+03                 | 4.59E+04             | 4.18E-04             | 4.18E+04             |
| Benzare                                             |                | Nome                         | 3 00E-03             | 1 53E+01                 | 4 53E+01             | 2.55E+01             | 4.53E+01             |
| Berzy acord                                         |                | NC<br>NC                     | 6 10E+00<br>2.33E+01 | 6 10E+00  <br>2 338E+01  | 6 10E+00<br>2.33E+01 | NC<br>NC             | 6 10E+00<br>2.33E+01 |
| Bully benzy chthelate Pentachloropheno(PCP)         | 5              | Lograme                      | 2.35E+01             | 32E+03                   | 4 77E+03             | 3.34E+07             | 4 77E+03             |
| Сазтил                                              | 3              | Dan.a                        | 2 30E+00             | 7 00E+00                 | 1.40E+01             | 6 65E+04             | 1 40E+01             |
| Calcum                                              | _ 1            | Lognomei                     | * 61E+34             | 173E+04                  | 1.85E+04             | NC                   | 1.85E+04             |
| Onlorobenzene<br>Onloroberri                        |                | Lognormal<br>NC              | 1 07E-01             | 1.08E+02                 | 5.38E+02<br>1.16E+01 | 1 18E+06             | 5.38E+02<br>1 16E+01 |
| Chomun                                              |                | Logramei                     | 5 00E+00             | 9.36E+01                 | 9.85E+02             | 2.28E+02             | 2.29E+02             |
| Omysene                                             | _ 1            | NC                           | 2.29E+01             | 2.29E+01                 | 2.29E+01             | NC .                 | 2.29E+01             |
| Cobst<br>Copper                                     | 6              | Lagnorme                     | 8 00E+00             | 2 05E+01 :<br>1 73E+02 i | 5 60E+01<br>2.22E+03 | 5.25E+01<br>3.24E+02 | 5.60E+01<br>3.24E+02 |
| D-N-outy or treate                                  |                | Lognome<br>Lognome           | 2.79E-01             | 8 92E-00                 | 1 75E+01             | 2 10E+11             | 1.76E+01             |
| Dipenduran                                          | 2 [1           | Nome                         | 4 30E-00             | 1.91E+01                 | 3.38E+01             | 1 12E+02             | 3.38E+01             |
| Delhybritaliste<br>Ethyberisme                      |                | MC<br>Lognormal              | 2.29E+0*<br>1 64E-01 | 2.29E+01  <br>6.80E+00   | 2.29E+01<br>1.69E+01 | NC<br>7.35E+03       | 2.29E+01<br>1.69E+01 |
| Fluorentere                                         |                | NC                           | 6.59E+00             | 6.59E+00                 | 5.59E+00             | NC NC                | 6.59E+00             |
| Fluore                                              | . )            | NC .                         | 1 13E+01             | 1 13E+01                 | 1 13E+01             | NC                   | 1.13E+01             |
| Helachlorobenzene                                   |                | Lognarme                     | 2.79E+01             | 3.43E+01                 | 4 DSE+01             | NC                   | 4.06E+01             |
| Lead                                                | _ 1            | Lognormal<br>Lognormal       | 4 06E+03<br>3 00E+00 | 1.35E+04  <br>2.41E+02   | 5.37E+04<br>3.12E+03 | 1.73E+04<br>7.30E+02 | 1.73E+04<br>7.30E+02 |
| Magnesum                                            |                |                              | 7 16E+03             | 7.31E+03                 | 7 46E+03             | NC                   | 7 46E+G3             |
| Manganese                                           | i              | Normai                       | 4.30E+01             | 2 09E+02                 | 4 51E+02             | 2.75E+02             | 2.75E+02             |
| Mercury<br>Methylene chloride                       |                | Lograme                      | 2.00E-02<br>3.00E-03 | 8 66E+00                 | 3.43E+01<br>7.11E+00 | 3.78E+21<br>4.29E+03 | 3.43E+01<br>7.11E+00 |
| N Nicosodiphenylemne                                |                | Lognomes<br>NC               | 178E+02              | 1 78E+02                 | 1 78E+02             | NC NC                | 1.78E+02             |
| Naphalane                                           | 7              | Lognomei                     | 4.83E+00             | 8 93E+02                 | 5 43E+03             | 9.78E+06             | 5.43E+03             |
| McHai                                               | . 5            | ogramer                      | 6 00E+00             | 5 13E+01                 | 3 99€+02             | 7.96E+01             | 7.98E+01             |
| Physicistrane<br>Phanci                             |                | Lognormal<br>NC              | 1.29E+0*<br>1.78E+02 | 2 84E+01<br>1 78E+02     | 5 14E+01<br>1 78E+02 | 1 18E+02<br>NC       | 5.14E+01<br>1.78E+02 |
| Proprova                                            | . )            | Lognome                      | 1 83E+C2             | 5 37E+02                 | 1.34E+03             | 1.98E+02             | 8.98E+02             |
| Pozassum                                            | Z              | Nome                         | 1 47E+03             | 1 59E+03                 | 1 70E+03             | 2.31E+03             | 1 70E+03             |
| Pyrene<br>Silver                                    |                | Logromei                     | 7.56E+00             | 1 33E+01                 | 1.91E+01<br>1.20E+01 | NC<br>NC             | 1.91E+01<br>1.20E+01 |
| Total PCbs                                          |                | NC<br>Lagnormei              | 1.20E+01<br>1.30E-01 | 1.20E+01<br>9.08E+02     | 4 43E+03             | NC<br>6.93E+16       | 1.20E+01<br>4.43E+03 |
| Testachiorosthene                                   | 8 1            | Nomel                        | 9 00E-03             | 1.88E+01                 | 5.86E+01             | 3.30E+01             | 3.30E+01             |
| Tun                                                 |                | Lognomei                     | 2 60E +01            | 5.30E+01                 | 8 00E+01             | NC                   | 8.00E+01             |
| Total Tylenes                                       |                | *********                    | 4 06E-01<br>9 20E-02 | 4 85E+01<br>1 64E+01     | 1 18E+02<br>4 15E+01 | 8.71E+01<br>1.36E+06 | 1 18E-02<br>4 15E-01 |
| Inchiorathere                                       | 1              | .ograme                      | 7 62E-0*             | 1 94E+00                 | 3.85E-00             | 1.85E+C1             | 3.85E+00             |
| Variedum                                            |                | agrome                       | 40E+C:               | 1.49E+02                 | 1 32E+03             | 4 44E+02             | 4 44E+02             |
| Zinc                                                |                | ograme                       | 2 70E-C1             | 4 75E+02                 | 4.25E+03             | 1 02E+03             | 1 02E+03             |
| trans-1,2-Ochioroshene                              |                | to the interaction we        | 7 00E-01             | 7 00E-01                 | 7.00E-01             | NC_                  | 7 00E-01             |

ta) - Only concentrations reported as detected by the laboratory were used in this calculation of statistics for subsurface soil.

#### Appendix C-4.9 Summary Statistics for Site H Subsurface Soll Sauget Area I

|                                           |                                            | Shapiro-Wilke's<br>Test for<br>Normality | Summ                 | ary Statistics       | (mg/kg)              | 95% UCL<br>(mg/kg)   |                            |
|-------------------------------------------|--------------------------------------------|------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------------|
|                                           |                                            |                                          |                      |                      |                      |                      | ·                          |
|                                           | ·                                          |                                          | i .                  | i i                  | 1                    |                      |                            |
| Constituent                               | Number of<br>Samples for<br>Statistics (a) |                                          | Minimum              | Mean                 | Maximum              | UCL                  | Site Concentration (mg/kg) |
| 1,2,4-Trichlorobenzene                    | 6                                          | Lognormal                                | 6.10E-02             | 1.33E+03             | 7.58E+03             | 4.42E+22             | 7.58E+03                   |
| 1,2-Dichlorobenzene<br>1,2-Dichloroethane | 3<br>1                                     | Lognormal<br>NC                          | 5.48E-01             | 6.48E+03<br>1.20E-02 | 1.94E+04<br>1.20E-02 | 1.38E+134<br>NC      | 1.94E+04<br>1.20E-02       |
| 1,3-Dichlorobenzene                       | 3                                          | Lognormal                                | 1.20E-02<br>7.65E+00 | 8.76E+01             | 2.42E+02             | 1.28E+17             | 1.20E-02<br>2.42E+02       |
| 1.4-Dichlorobenzene                       | 5                                          | Lognormal                                | 6.20E-02             | 6.32E+03             | 3.06E+04             | 8.14E+38             | 3.06E+04                   |
| 2,4,6-Trichlorophenol                     | 2                                          | NC                                       | 1.79E-01             | 3.07E+02             | 6.13E+02             | NC                   | 6.13E+02                   |
| 2,4-Dichlorophenol                        | 5                                          | Lognormai                                | 1.67E-01             | 1.50E+02             | 7.42E+02             | 2.30E+17             | 7.42E+02                   |
| 2,4-Dimethylphenol                        | 1                                          | NC                                       | 9.20E-02             | 9.20E-02             | 9.20E-02             | NC                   | 9.20E-02                   |
| 2-Butanone (MEK)                          | 5<br>3                                     | Normal                                   | 3.30E-02             | 1.26E+01             | 2.72E+01             | 2.51E+01             | 2.72E+01                   |
| 2-Methylnapthalene<br>4,4'-DDE            | 2                                          | Lognormal<br>Normal                      | 1.56E-01<br>5.04E-01 | 1.16E+02<br>6.42E-01 | 3.47E+02<br>7.80E-01 | 1.00E+82<br>1.51E+00 | 3.47E+02<br>7.80E-01       |
| 4,4'-DDE<br>4,4'-DDT                      | 2                                          | Nomal                                    | 7.80E-01             | 8.52E-01             | 9.23E-01             | 1.30E+00             | 9.23E-01                   |
| 4-4'-DDD                                  | 1                                          | NC                                       | 4.31E-01             | 4.31E-01             | 4.31E-01             | NC NC                | 4.31E-01                   |
| 4-Methyl-2-pentanone                      | 4                                          | Lognormat                                | 9.00E-03             | 2.33E+00             | 7.85E+00             | 1.90E+15             | 7.85E+00                   |
| 4-Methylphenol                            | 1                                          | NC                                       | 1.72E-01             | 1.72E-01             | 1.72E-01             | NC                   | 1.72E-01                   |
| 4-Nitroaniline                            | 1                                          | NC                                       | 1.83E+03             | 1.83E+03             | 1.83E+03             | NC                   | 1.83E+03                   |
| Acenapthylene                             | 3                                          | Lognormal                                | 1.30E-01             | 1.26E+02             | 3.78E+02             | 4.03E+84             | 3.78E+02                   |
| Acetone                                   | 11                                         | Lognormal                                | 1.50E-02             | 4.85E+00             | 2.11E+01             | 1.58E+03             | 2.11E+01                   |
| Aluminum<br>Anthracene                    | 11                                         | Lognormal                                | 4.50E+02             | 3.85E+03             | 1.21E+04             | 1.08E+04             | 1.08E+04                   |
| Anthracene<br>Arsenic                     | 4 2                                        | Lognormal<br>NC                          | 1.29E-01<br>3.00E+00 | 1.70E+02<br>1.45E+01 | 6.80E+02<br>2.60E+01 | 1.80E+34  <br>NC     | 6.80E+02<br>2.60E+01       |
| Barium                                    | 11                                         | Lognormal                                | 3.80E+01             | 6.05E+02             | 3.24E+03             | 5.87E+03             | 3.24E+03                   |
| Benzene                                   | 7                                          | Lognormal                                | 4.00E-03             | 1.52E+01             | 6.13E+01             | 1.27E+12             | 6.13E+01                   |
| Benzo(a)anthracene                        | 3                                          | Lognormal                                | 5.54E-01             | 1.26E+02             | 3.78E+02             | 9.26E+60             | 3.78E+02                   |
| Benzo(a)pyrene                            | 2                                          | NC                                       | 7.80E-01             | 1.36E+02             | 2.72E+02             | NC                   | 2.72E+02                   |
| Benzo(b)fluoranthene                      |                                            | Lognormal                                | 4.42E-01             | 7.10E+01             | 2.11E+02             | 1.37E+50             | 2.11E+02                   |
| Benzo(g,h,l)perylene                      |                                            | NC                                       | 4.94E-01             | 5.69E+01             | 1.13E+02             | NC .                 | 1.13E+02                   |
| Benzoic acid                              |                                            | Lognormal                                | 1.41E+00             | 2.02E+00             | 2.64E+00             | NC                   | 2.64E+00                   |
| Benzyl alcohol                            |                                            | NC                                       | 7.92E+00             | 7.92E+00             | 7.92E+00             | NC NC                | 7.92E+00                   |
| Cadmium<br>Chlorobenzene                  | 4                                          | Normal                                   | 5.00E+00<br>2.40E-02 | 1.88E+02<br>9.76E+01 | 2.94E+02<br>4.52E+02 | 3.36E+02<br>2.94E+17 | 2.94E+02<br>4.52E+02       |
| Chloroform                                |                                            | Lognormal<br>Normal                      | 5.30E-02             | 1.23E-01             | 1.92E-01             | 5.61E-01             | 1.92E-01                   |
| Chromium                                  |                                            | Lognormal                                | 4.00E+00             | 4.21E+01             | 1.00E+02             | 6.37E+02             | 1.00E+02                   |
| Chrysene                                  | 1                                          | Lognormal                                | 7.50E-01             | 1.12E+02             | 3.32E+02             | 5.95E+47             | 3.32E+02                   |
| Cobalt                                    |                                            | Lognormal                                | 3.00E+00             | 3.64E+01             | 1.05E+02             | 7.44E+03             | 1.05E+02                   |
| Copper                                    |                                            | Lognormal                                | 3.00E+00             | 5.36E+02             | 2.44E+03             | 1.74E+06             | 2.44E+03                   |
| Cyanide                                   |                                            | NC                                       | 2.00E+00             | 2.00E+00             | 2.00E+00             | NC ,                 | 2.00E+00                   |
| Di-N-butyl phthalate                      |                                            | Lognormal                                | 3.43E-01             | 4.03E+00             | 2.57E+01             | 2.84E+01             | 2.57E+01                   |
| Dibenofuran                               |                                            | Lognormal                                | 1.43E-01             | 1.55E+01             | 6.04E+01             | 2.26E+15             | 6.04E+01                   |
| Dibenzo(a,h)anthracene                    |                                            | NC                                       | 3.17E+01             | 3.17E+01             | 3.17E+01             | NC<br>4 SPE - C4     | 3.17E+01                   |
| Ethylbenzene<br>Fluoranthene              |                                            | Normal<br>Loonormal                      | 4.38E+00<br>1.45E-01 | 9.06E+00<br>3.33E+02 | 1.28E+01<br>1.33E+03 | 1.63E+01<br>8.60E+34 | 1.28E+01<br>1.33E+03       |
| Fluorantnene                              |                                            | Lognormal<br>Lognormal                   | 2.47E-01             | 1.61E+02             | 1.33E+03<br>4.83E+02 | 7.75E+78             | 4.83E+02                   |
| lexachlorobenzene                         |                                            | NC                                       | 7.14E-01             | 7.14E-01             | 7.14E-01             | NC NC                | 7.14E-01                   |
| deno(1,2,3-cd)pyrene                      |                                            | NC I                                     | 1.36E+02             | 1,36E+02             | 1.36E+02             | NC                   | 1.36E+02                   |
| ron i i i i i i i i i i i i i i i i i i i | 11                                         | Lognormal                                | 5.10E+02             | 2.32E+04             | 8.45E+04             | 4.98E+05             | 8.45E+04                   |
| ead                                       |                                            | NC                                       | 4.00E+00             | 5.77E+02             | 1.15E+03             | NC                   | 1.15E+03                   |
| Manganese                                 |                                            | Lognormai                                | 7.00E+00             | 3.86E+03             | 3.65E+04             | 2.74E+06             | 3.65E+04                   |
| Mercury                                   |                                            | Lognormal                                | 8.00E-01             | 2.03E+00             | 3.90E+00             | 1.78E+03             | 3.90E+00                   |
| Methylene chloride                        |                                            | Lognormal                                | 6.00E-03             | 6.34E+00             | 5.56E+01             | 8.47E+03             | 5.56E+01                   |
| I-Nitrosodiphenylamine<br>lapthalene      |                                            | NC                                       | 1.00E-07             | 1.00E-07             | 1.00E-07             | NC<br>1.59E+44       | 1.00E-07<br>2.27E+03       |
| lickel                                    |                                            | Lognormal<br>Lognormal                   | 4.40E-02<br>4.00E+00 | 5.67E+02<br>1.77E+03 | 2.27E+03<br>1.51E+04 | 3.57E+06             | 1.51E+04                   |
| Phenanthrene                              |                                            | Lognormal                                | 4.70E-02             | 3.53E+02             | 2.11E+03             | 3.01E+14             | 2.11E+03                   |
| Phenol                                    |                                            | NC I                                     | 4.22E-01             | 4.22E-01             | 4.22E-01             | NC                   | 4.22E-01                   |
| ryrene                                    |                                            | Lognormal                                | 9.35E-01             | 2.22E+02             | 6.64E+02             | 5.05E+63             | 6.64E+02                   |
| Selenium                                  | 1 (1                                       | NC                                       | 2.00E+00             | 2.00E+00             | 2.00E+00             | NC                   | 2.00E+00                   |
| lilver                                    |                                            | Lognormal                                | 9.00E+00             | 2.65E+01             | 4.40E+01             | NC                   | 4.40E+01                   |
| otal PCBs                                 |                                            | Lognormal                                | 2.51E-01             | 2.73E+03             | 1.80E+04             | 5.45E+15             | 1.80E+04                   |
| etrachloroethene                          |                                            | NC                                       | 5.65E+00             | 5.65E+00             | 5.6SE+00             | NC<br>NC             | 5.65E+00                   |
| hallium                                   | 1                                          | NC<br>conomal                            | 1.00E+00             | 1.00E+00<br>5.50E+01 | 1.00E+00             | NC<br>1.05E+07       | 1.00E+00                   |
| în<br>foluene                             |                                            | Lognormal<br>Lognormal                   | 1.40E+01<br>1.45E-01 | 2.28E+01             | 1.11E+02<br>7.65E+01 | 2.05E+07             | 1.11E+02<br>7.65E+01       |
| otal Xylenes                              |                                            | Normal                                   | 1.45E-01<br>1.51E+00 | 1.48E+01             | 2.36E+01             | 3.46E+01             | 2.36E+01                   |
| richloroethene                            | I                                          | NC                                       | 1.00E-02             | 1.00E-02             | 1.00E-02             | NC                   | 1.00E-02                   |
| anadium                                   | I                                          | Lognormal                                | 7.00E+00             | 3.23E+01             | 9.50E+01             | 1.97E+02             | 9.50E+01                   |
|                                           | 1                                          | Lognormal                                | 8.00E+00             | 4.74E+03             | 3.95E+04             | 1.61E+07             | 3.95E+04                   |
| linc                                      | ,, ,,                                      |                                          |                      |                      |                      |                      |                            |

<sup>(</sup>a) - Only concentrations reported as detected by the laboratory were used in the calculation of statistics for subsurface soil.

#### Appendix C-4.10 Summary Statistics for Site I Subsurface Soil Sauget Area i

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | Shapko-Willer's<br>Test for<br>Normally                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | ary Statistics       |                      | 95% UCL               |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|----------------------|-----------------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                    | y 84                 |                      |                       |                      |
| Constitute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Humber of<br>Samples for<br>Statistics to | Detaset<br>Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                      | Makaa                | UCL                   | Site Concentration   |
| f. f. fi-Trichtorgethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                         | Logrames                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 32E-C1             | 1.06E+00             | 1.69E+00             | NC                    | 1.69E+00             |
| 1.2.4-Trichlorobergene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i                                         | Logiona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 671E+00              | 140E+03              | 8.26E+03             | 1 17E+06              | 8.26E+03             |
| 1.2-Dichloroberosme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                         | Lognome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.686-00             | 8.29E+01             | 3.24E+02             | 7.93E+04              | 3.24E+02             |
| 1.3-Dichloroberzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Z                                         | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 89E+0.             | 4 45E+01             | 7.01E+01             | NC                    | 7.01E+01             |
| : 4-Dc/Noroberzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | Lognome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 60E+00             | 2 55E+02             | 1 84E+03             | 1.25E+05              | 1.84E+03             |
| 2.4-Ochlorophend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9 00E+00             | 9 00E+00             | 5 00E+00             | NC .                  | 9.00E+00             |
| 2-Butanone (MEX)<br>2-Methylnapthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • •                                       | Norrei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | : 20E-02<br>: 70E+00 | 6.86E+00<br>3.85E+01 | 1 69E+01<br>1 69E+02 | 9.51E-00<br>2.54E-03  | 9.61E+00<br>1.69E+02 |
| 4 4:001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 ,                                       | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.31E+00             | 4 31E+00             | 4 31E+00             | NC NC                 | 4.31E+00             |
| 44.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.64E+0C             | 82E+01               | 2.97E+01             | NC NC                 | 2.97E+01             |
| 4-Chiorografine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 32E+0*             | 4 32E+01             | 4.32E+D1             | NC.                   | 4.32E+01             |
| 4-Methyl-2-pentatione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                         | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 00E-03             | 2 08E+00             | 4 16E+00             | NC                    | 4.16E+00             |
| Aceneothere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 40E+3"             | 140E+01              | 1.40E+01             | NC                    | 1.40E+01             |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | Lognomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.49E-01             | 6 66E+00             | 1 69E+01             | 2.17E+01              | 1.69E+01             |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           | Logranus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 01E+03             | 4 17E+03             | 1.35E+04             | 7.52E+03              | 7.92E+03             |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.31E+0*             | 1.13E+02             | 2.03E+02             | NC .                  | 2.03E+02             |
| Antimony<br>Assenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | Lognorius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 40E+01             | 2.23E+03             | 6.96E+03             | 5.75E+53              | 6.66E+03             |
| Actionic<br>Bantum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 :                                       | Lognomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 00E+00<br>8 00E+00 | 6 565E+00            | 1 40E+01<br>3 50E+03 | 2.05E+01<br>4.82E+04  | 1.40E+01<br>3.60E+03 |
| Berzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                         | Logrome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.30E-02             | 3 81E+00             | 2.41E+01             | 2.34E+02              | 2.41E+Gt             |
| Benzotalanthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 :                                       | Lograme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.47E+00             | 4 59E+00             | € 72E+00             | NC                    | 6.72E+00             |
| Berzojajpyere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                         | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 47E+00             | 247E+00              | 2 47E+00             | NC                    | 2.47E+00             |
| Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                         | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.51E+00             | 1 70E+01             | 3.24E+01             | NC                    | 3.24E+01             |
| Berzoc aod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                         | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.21E-01             | 6.21E+01             | 6.21E+01             | NC                    | 6.21E+01             |
| Beryllum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : 53E+03             | 1 53E+03             | 1 53E+03             | NC                    | 1.53E+03             |
| Butly benzy phihelete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                         | MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 39E+02             | 1.39E+02             | 1.39E+02<br>1.92E+02 | NC                    | 1.39E+02             |
| Pentachtologhend(PCP)<br>Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . ;                                       | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.92E+02<br>2.00E+00 | 1 92E+02<br>5 57E+00 | 1.30E+01             | NC<br>1.84E+01        | 1.92E+02<br>1.30E+01 |
| Chicroberosene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                         | Lognomes<br>Lognomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200E-02              | 347E+01              | 1.27E+02             | 7 1 <del>SE+</del> 04 | 1.27E+02             |
| Опольст                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - :                                       | LOOPOTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 00E+00             | 7 61E+01             | 7.31E+02             | 3.60E+02              | 3.60E+02             |
| Otrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l F                                       | Nome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 57E+00             | 4 78E+00             | 5.59E+00             | 9.88E+00              | 5.59E+00             |
| Cobat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 1                                       | שריטיקט.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.30E+0*             | 3.89E+01             | 1 40E+02             | 1.05E+02              | 1.40E+02             |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | Lagnames                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.30E+01             | 2 98E+02             | 6.30E+02             | 2.10E+03              | 6.30E+02             |
| Cyamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                         | Lognomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.00E+00             | 1 06E+03             | 3 18E+03             | 1 14E+60              | 3.18E+03             |
| Ch-Ni-busyl philheliate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | Lognomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : 34E-0:             | 3.71E+01             | 2.03E+02             | 3 15E+04              | 2.03E+02             |
| Diberolutan<br>Osabsitatibaran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                         | NC<br>NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.59E+01             | 5 59E+00 1           | 5.59E+00<br>1.69E+01 | NC<br>NC              | 5.59E+00<br>1.69E+01 |
| Oledhyliphshelete<br>Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | Lagrame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 60E-02             | 4 6SE+00             | 1 51E+01             | 1 14E+02              | 1.51E+01             |
| Ruggerthane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                         | Logrania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 91E+00             | 7 69E+01             | 2.03E+02             | 3.81E+13              | 2.03E+02             |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           | Lognome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.08E+00             | 1 49E+01             | 3.54E+01             | 7.33E+08              | 3.54E+01             |
| Herachic robenzane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [ * i                                     | Lognome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.23E+C*             | 2 58E+02             | 1.27E+03             | 2 10E+03              | 1.27E+03             |
| Helachloraethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                         | NC 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.01E+00             | 3 01E+00             | 3 D1E+00             | NC                    | 3.01E+00             |
| h <del>or</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | Lognome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 43E+02             | 1 17E+04             | 4 152+04             | 3 11E+04              | 3 11E+04             |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                         | Lognomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 00E+00             | 2 06E+03             | 2.33E+04             | 3.08E+05              | 2.33E+04             |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                         | NC :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.80E+C1             | 9 80E+01             | 9.50E+01             | NC an                 | 9.80E+01             |
| Marcury<br>Mathylane chlonde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                         | Normal<br>Lognomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00E-01<br>7.00E-03 | 1 70E+00<br>1 52E+00 | 3.20E+00<br>6.77E+00 | 2.69E+00<br>1.64E+02  | 3.20E+00<br>6.77E+00 |
| N-Mitrosodiphenylemne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | NC I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 59E+01             | 7 31E+01             | 1.00E+02             | NC NC                 | 1.00E+02             |
| Nacifalizie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           | Lognome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 10E -00            | 9.81E+01             | 5 15E+02             | 5.75E-05              | 5.15E+02             |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | ognome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 00E-01             | 3 35E+02             | 241E+03              | 2.50E+04              | 2.41E+03             |
| name to the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the co |                                           | ogrania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 32E+00             | 3 43E+01             | 1.02E+02             | 6.24E+04              | 1.02E+02             |
| Phend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 1                                       | NC i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.52E+01             | 2 11E+01             | 2.70E+01             | NC                    | 2.70E+01             |
| - Juans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | Lognomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.21E+00             | 1 96E+01             | 4.93E+01             | 8 42E+05              | 4.93E+01             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 32E+03             | 1 32E+03             | 1.32E+03             | NC                    | 1.32E+03             |
| Total PCBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | Nomel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.04E+C1             | 1.81E+02             | 3 43E+02             | 3.06E+02              | 3.43E+02             |
| l'elrachionselhene<br>l'im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                         | Logranie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 12E-01             | 2.57E+00             | 5.27E+00             | 1.51E+01              | 5.27E+00<br>5.50E+01 |
| ion<br>Io <del>liane</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | בייסיוש                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.00E+00<br>4.80E-02 | 1 92E+01<br>1 13E+01 | 5.50E+01<br>7.79E+01 | 1 15E+02<br>4 10E+02  | 5.50E+01<br>7.79E+01 |
| rocere<br>Total Xylanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1                                       | שרסיטים                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 00E-02             | 4 96E+00             | 1.92E+01             | 2.70E+02              | 1.92E+01             |
| Conceptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           | NC .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 93E-C2             | 4 93E+02             | 4 93E+02             | NC                    | 4.93E+02             |
| inchioroethere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | Normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.48E-01             | 2.23E+00             | 3.81E+00             | 1.22E+01              | 3.81E+00             |
| /anadum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1                                       | .ognomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.80E+01             | 1 D7E+02             | 5.53E+02             | 8.22E+02              | 5.53E+02             |
| žnc .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | DOMESTIC OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF TH | 1.30E+01             | 6.24E+02             | 6.33E+03             | 5.00E+03              | 5.00E+03             |
| osC-etry/hexy/phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | ograme!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.36E+00             | 3 49E+01             | 1.31E+02             | 7.45E+02              | 1.31E+02             |
| rans-1,2-Okhloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                                  | MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 00E-03             | 3 00E-03             | 3.00E-03             | NC NC                 | 3.00E-03             |

| 3 ODE-23 | 3 ODE-23 | 3 ODE-23 | 3 ODE-23 | MC |
|(ii) - Only concentrations recorded as detected by the aboratory were used in the calculation of statistics for subsurface soil.

#### Appendix C-4.11 Summary Statistics for Site L Subsurface Soil Sauget Area I

| Number of Samples for Dataset   Summary Statistics (mg/kg)   Site Concentral (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [- <del></del>     | Т   | Shapiro-Wilke's | <del></del> | - 3            | <del></del> |          | T                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|-----------------|-------------|----------------|-------------|----------|--------------------|
| Number of Samples for Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   Dataset Statistics (s)   | 1 .                | 1   |                 | 1           |                | ٠.          |          |                    |
| Number of Samples for   Dataset   Statistics (a)   Dataset   Statistics (b)   Dataset   Distribution   Minimum   Mean   Maximum   UCL   Sits Concentrat   (mg/kg)   1,2,4-Thichirocherizane   3   Normal   1,00-C9   3,50E+00   7,70E+00   7,70E+00   1,3-Dichioroberizane   1   NC   4,30E+00   4,30E+00   4,30E+00   4,30E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+00   1,00E+   |                    | 1   | Normality       | Summ        | ary Statistics | (mg/kg)     | (mg/kg)  |                    |
| Number of Samples for   Dataset   Statistics (a)   Dataset   Statistics (b)   Dataset   Distribution   Minimum   Mean   Maximum   UCL   Sits Concentrat   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)   (mg/kg)      | •                  | 1   |                 |             |                |             |          |                    |
| Constituent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 1   |                 |             |                |             |          |                    |
| Constituent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ĺ                  |     | Datamet         | 1           | :              |             | 1        | Site Compositorium |
| 1.2.4-Introloroberozene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Constituent        |     |                 | Minimum     | Mean           | Maximum     | UCL      |                    |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |                 |             |                |             |          |                    |
| 1.4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |                 | 1.00E-02    |                |             | 7.23E+00 | 7.70E+00           |
| 2.4.Fichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |     |                 | I .         |                |             |          | í                  |
| 2.4-Dichlorophenol   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                  |     |                 |             |                |             |          |                    |
| 2-Chicrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |     |                 | 1           |                |             |          |                    |
| 2-Methy/naphalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |     |                 |             |                |             |          | 1                  |
| 4-Chioraniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |     | 1               |             |                |             |          |                    |
| 4-Methylx-2-pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |     |                 |             |                | 1           | 1        |                    |
| Accesaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |     |                 |             |                |             |          |                    |
| Acetanphylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |     |                 |             |                |             |          |                    |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |     |                 |             |                |             |          |                    |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |     |                 |             |                |             |          |                    |
| Animony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |     |                 | 1           |                |             |          |                    |
| Assentic   10   Lognormal   4.90E+00   5.36E+01   1.72E+02   5.47E+04   1.42E+03   6.77E+13   5.70E+00   9.50E+00   1.44E+03   5.47E+04   1.42E+03   5.70E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.50E+00   9.5   |                    |     | Lognormal       | 2.80E-02    | 1.46E+00       | 4,20E+00    |          | 4.20E+00           |
| Bantum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |     | 1 -             |             |                |             |          |                    |
| Benzzo(a) parthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |     |                 |             |                | 1           |          |                    |
| Benzz(a)pn/tracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · ·                |     |                 | ,           |                |             |          |                    |
| Benzo(g)/hiloranthene   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Benzo(a)anthracene |     |                 | 7.50E-02    | 2.46E+00       | 8.60E+00    |          | 8.60E+00           |
| Benzo(g), h)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |     |                 |             |                |             |          |                    |
| Benzzik) Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |     |                 |             |                |             |          |                    |
| Butyl benzyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                 |     |                 |             |                |             |          |                    |
| Corrosivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |     |                 |             |                |             |          |                    |
| Pentachlorophenol(PCP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |     |                 |             |                |             |          |                    |
| Reactivity-Suffide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |     |                 |             |                |             |          |                    |
| Cadmium         6         Lognormal         1.90E-02         8.03E+00         4.20E+01         1.32E+10         4.20E+01           Calcium         6         Lognormal         1.55E+04         2.81E+04         7.55E+04         6.01E+04         7.55E+04           Chloroform         3         Lognormal         1.20E-02         1.25E+00         5.30E+00         2.41E+03         5.30E+00           Chrornium         10         Lognormal         4.90E-02         6.80E+00         2.03E+01         2.36E+01         2.36E+01           Chrornium         10         Lognormal         7.60E-02         2.20E+00         7.34E+08         8.20E+00         7.36E+08         2.06E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         2.36E+01         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |     |                 |             | 1              |             |          |                    |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cadmium            | 6   |                 |             |                |             |          |                    |
| Chloroform   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |     |                 |             |                |             |          |                    |
| Chromium         10         Lognormal         3.00E+00         1.16E+01         2.70E+01         2.38E+01         2.38E+01           Chysene         4         Lognormal         7.60E-02         2.20E+00         8.20E+00         7.34E+08         8.20E+00           Cobalt         7         Normal         5.90E+00         7.70E+00         9.00E+00         8.67E+00         9.00E+00           Copper         10         Lognormal         9.70E+00         9.27E+01         3.08E+02         4.33E+02         3.06E+02           Cresol(m,p)         4         Lognormal         1.00E-01         1.43E-01         1.90E-01         2.58E-01         1.90E-01           Cyanide         1         NC         4.60E-01         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         3.10E-01         6.55E-01         1.00E+00         NC         1.00E+00         NC         1.00E+00         NC         1.00E+00         NC         1.00E+00         NC         4.00E-02         4.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |     |                 | ,           |                |             |          |                    |
| Chrysene         4         Lognormal Normal         7.60E-02         2.20E+00         8.20E+00         7.34E+08         8.20E+00           Cobalt         7         Normal         5.90E+00         7.70E+00         9.00E+00         8.67E+00         9.00E+00           Copper         10         Lognormal         9.70E+00         9.27E+01         3.08E+02         4.33E+02         3.08E+02           Cresol(m,p)         4         Lognormal         1.00E-01         1.43E-01         1.90E-01         2.58E-01         1.90E-01           Cyanide         1         NC         4.60E-01         4.60E-01         NC         4.60E-01           Di-N-butyl phthalate         4         Lognormal         1.71E-01         1.28E+00         3.10E+03         3.15E+03         2.78E+00           Dibenofuran         2         NC         4.20E-02         1.52E+00         3.00E+00         NC         4.60E-01           Dibenofuran         2         NC         4.00E-02         4.00E-02         4.00E-02         NC         1.00E+00         NC         4.00E-02         NC         1.00E+00         NC         4.00E-02         NC         1.00E+00         NC         4.00E-02         NC         4.00E-02         NC         4.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |     |                 |             |                |             |          |                    |
| Copper         10         Lognormal         9.70E+00         9.27E+01         3.08E+02         4.33E+02         3.08E+02           Creso((m.p.)         4         Lognormal         1.00E-01         1.43E-01         1.90E-01         2.58E-01         1.90E-01           Cyanide         1         NC         4.60E-01         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         3.00E+00         NC         3.00E+00         NC         3.00E+00         NC         3.00E+00         NC         1.00E+00         NC         1.00E+00         NC         1.00E+00         NC         1.00E+00         NC         1.00E+00         NC         1.00E+00         NC         4.00E-02         NC         4.00E-02         NC         4.00E-02         NC         4.00E-02         NC         1.60E+01         NC         1.60E+01         1.60E+01         NC         4.00E-02         2.54E+00         NC         4.00E-02 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7.34E+08</td> <td>8.20E+00</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |     |                 |             |                |             | 7.34E+08 | 8.20E+00           |
| Cresol(m,p)         4         Lognormal         1.00E-01         1.43E-01         1.90E-01         2.58E-01         1.90E-01           Cyanide         1         NC         4.60E-01         4.60E-01         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         4.60E-01         NC         3.15E+03         3.76E+00         3.00E+00         NC         3.00E+00         NC         3.00E+00         NC         3.00E+00         NC         3.00E+00         NC         3.00E+00         NC         3.00E+00         NC         3.00E+00         NC         3.00E+00         NC         3.00E+00         NC         3.00E+00         NC         4.00E-02         4.00E-02         4.00E-02         NC         4.00E-02         NC         4.00E-02         NC         4.00E-02         NC         4.00E-02         NC         4.00E-02         NC         4.00E-02         NC         4.00E-02         NC         5.00E+09         NC         4.00E-02         NC         4.00E-02         NC         4.00E-02         NC         4.00E-02         4.00E-02         4.00E-02         NC         4.00E-02<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |     |                 | l           |                |             |          |                    |
| Cyanide         1         NC         4.60E-01         4.60E-01         4.60E-01         NC         4.60E-01           Di-N-butyl phthalate         4         Lognormal         1.71E-01         1.28E+00         2.78E+00         3.15E+03         2.78E+00           Dibenofuran         2         NC         4.20E-02         1.52E+00         3.00E+00         NC         3.00E+00           Diethylphthalate         2         Lognormal         3.10E-01         6.55E-01         1.00E+00         NC         1.00E+00           Ethylbenzene         1         NC         4.00E-02         4.00E-02         4.00E-02         NC         4.00E-02           Fluoranthene         4         Lognormal         1.30E-01         4.27E+00         1.60E+01         2.05E+09         1.60E+01           Fluoranthene         2         NC         7.90E-02         2.54E+00         1.60E+01         2.05E+09         1.60E+01           Fluoranthene         1         NC         4.80E+00         4.80E+00         NC         5.00E+00           Hevachlorobenzene         1         NC         4.90E-02         4.90E-02         NC         1.60E+01           Hevachlorobenzene         1         NC         4.90E-02         4.90E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |     |                 |             |                |             |          |                    |
| Di-N-butyl phthalate         4         Lognormal         1.71E-01         1.28E+00         2.78E+00         3.15E+03         2.78E+00           Dibenofuran         2         NC         4.20E-02         1.52E+00         3.00E+00         NC         3.00E+00           Diethylphthalate         2         Lognormal         3.10E-01         6.55E-01         1.00E+00         NC         1.00E+00           Ethylbenzene         1         NC         4.00E-02         4.00E-02         NC         4.00E-02           Fluoranthene         4         Lognormal         1.30E-01         4.27E+00         1.60E+01         2.05E+09         1.60E+01           Fluoranthene         2         NC         7.90E-02         2.54E+00         5.00E+00         NC         5.00E+01           Hexachlorobenzene         1         NC         4.80E+00         4.80E+00         NC         5.00E+00           Hexachloroethane         1         NC         4.90E-02         4.90E-02         NC         4.90E-02           Ideno(1,2,3-cd)pyrene         2         NC         1.10E-01         1.51E+00         2.90E+00         NC         2.90E+00           Iron         11         Normal         1.40E+03         9.96E+03         2.40E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |     |                 |             |                |             |          |                    |
| Diethylphthalate         2         Lognormal         3.10E-01         6.55E-01         1.00E+00         NC         1.00E+00           Ethylbenzene         1         NC         4.00E-02         4.00E-02         4.00E-02         NC         4.00E-02         NC         4.00E-02         NC         4.00E-02         NC         4.00E-02         NC         4.00E-02         NC         4.00E-02         NC         4.00E-02         1.60E+01         NC         5.00E+00         NC         5.00E+00         NC         5.00E+00         NC         5.00E+00         NC         5.00E+00         NC         4.80E+00         NC         4.80E+00         NC         4.80E+00         NC         4.80E+00         NC         4.80E+00         NC         4.80E+00         NC         4.80E+00         NC         4.80E+00         NC         4.80E+00         NC         4.90E-02         NC         4.90E-02         NC         4.90E-02         NC         4.90E-02         NC         4.90E-02         NC         4.90E-02         NC         4.90E-02         NC         4.90E-02         NC         4.90E-02         NC         4.90E-02         NC         4.90E-02         NC         4.90E-02         NC         4.90E-02         NC         4.90E-02         NC         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | 4   | -               |             |                |             |          |                    |
| Ethylbenzene   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |     | _               |             |                |             |          |                    |
| Fluoranthene         4         Lognormal         1.30E-01         4.27E+00         1.60E+01         2.05E+09         1.60E+01           Fluorene         2         NC         7.90E-02         2.54E+00         5.00E+00         NC         5.00E+00           Hexachlorobenzene         1         NC         4.80E+00         4.80E+00         NC         4.80E+00           Hexachloroethane         1         NC         4.90E-02         4.90E-02         NC         4.90E-02           Ideno(1,2,3-cd)pyrene         2         NC         1.10E-01         1.51E+00         2.90E+00         NC         2.90E+00           Iron         11         Normal         1.40E+03         9.96E+03         2.40E+04         1.45E+04         1.45E+04           Lead         13         Lognormal         2.20E-01         7.46E+01         6.64E+02         5.83E+03         6.64E+02           Magnesium         6         Normal         3.84E+02         4.91E+03         9.44E+03         7.92E+03         9.44E+03           Mercury         7         Lognormal         1.00E+01         2.19E+02         7.82E+02         3.68E+03         7.82E+02           Methylene chloride         5         Lognormal         5.00E-03         4.89E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |     |                 |             |                |             |          |                    |
| Fluorene         2         NC         7.90E-02         2.54E+00         5.00E+00         NC         5.00E+00           Hexachlorobenzene         1         NC         4.80E+00         4.80E+00         NC         4.80E+00         NC         4.80E+00         NC         4.80E+00         NC         4.80E+00         NC         4.80E+00         NC         4.90E-02         NC         4.90E-02         NC         4.90E-02         NC         4.90E-02         NC         4.90E-02         NC         4.90E-02         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         4.90E-02         NC         4.90E-02         3.68E+02         3.84E+02         A.90E-02         2.90E+00         7.82E+02         3.68E+03         7.82E+02         3.68E+02         7.82E+02<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |     |                 |             |                |             |          |                    |
| Hexachloroethane         1         NC         4.90E-02 1.10E-01         4.90E-02 2.90E+00         NC         4.90E-02 2.90E+00         NC         4.90E-02 2.90E+00         NC         4.90E-02 2.90E+00         NC         4.90E-02 2.90E+00         NC         4.90E-02 2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         NC         2.90E+00         1.45E+04         1.45E+04         1.45E+04         1.45E+04         1.45E+04         1.45E+04         1.45E+04         1.45E+04         1.45E+04         1.45E+04         1.45E+04         1.45E+04         1.45E+04         1.45E+04         1.45E+04         1.45E+03         3.68E+03         7.92E+03         6.64E+02         7.92E+03         7.82E+02         1.80E+03         7.82E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fluorene           |     |                 |             |                |             |          |                    |
| Ideno(1,2,3-cd)pyrene   2 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | ,   |                 |             |                |             |          |                    |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |     |                 |             |                |             |          |                    |
| Lead         13         Lognormal Normal         2.20E-01         7.46E+01         6.64E+02         5.83E+03         6.64E+02           Magnesium         6         Normal         3.84E+02         4.91E+03         9.44E+03         7.92E+03         9.44E+03           Manganese         11         Lognormal         1.00E+01         2.19E+02         7.82E+02         3.68E+03         7.82E+02           Mercury         7         Lognormal         1.00E-02         3.09E-01         1.80E+00         6.02E+01         1.80E+00           Methylene chloride         5         Lognormal         5.00E-03         4.89E-01         2.28E+00         5.92E+07         2.22E+00           Napthalene         4         Lognormal         9.60E-02         2.02E+00         7.30E+00         7.72E+06         7.30E+00           Nickel         10         Lognormal         2.10E+01         3.78E+02         2.39E+03         2.67E+03         2.39E+03           Phenol         5         Normal         3.46E-01         8.77E+00         1.60E+01         1.57E+01         1.60E+01           Potassium         6         Lognormal         9.75E+02         1.31E+03         2.28E+03         2.28E+03         2.28E+03         2.28E+03 <t< td=""><td></td><td></td><td></td><td> —</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |     |                 | —           |                |             |          |                    |
| Manganese         11         Lognormal Lognormal         1.00E+01         2.19E+02         7.82E+02         3.68E+03         7.82E+02           Mercury         7         Lognormal         1.00E-02         3.09E-01         1.80E+00         6.02E+01         1.80E+00           Methylene chloride         5         Lognormal         5.00E-03         4.89E-01         2.28E+00         5.92E+07         2.28E+00           Napthalene         4         Lognormal         9.60E-02         2.02E+00         7.30E+00         7.72E+06         7.30E+00           Nickel         10         Lognormal         2.10E+01         3.78E+02         2.39E+03         2.67E+03         2.39E+03           Phenal         5         Lognormal         9.10E-02         5.18E+00         2.30E+01         1.33E+06         2.30E+01           Potassium         6         Lognormal         9.75E+02         1.31E+03         2.28E+03         1.86E+03         2.28E+03           Pyrene         4         Lognormal         1.30E-01         5.96E+00         2.30E+01         3.48E+10         2.30E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |     |                 |             |                |             |          |                    |
| Mercury         7         Lognormal Lognormal         1.00E-02         3.09E-01         1.80E+00         6.02E+01         1.80E+00           Methylene chloride         5         Lognormal         5.00E-03         4.89E-01         2.28E+00         5.92E+07         2.28E+00           Nickel         10         Lognormal         2.10E+01         7.30E+00         7.72E+06         7.30E+00           Phenanthrene         5         Lognormal         9.10E-02         5.18E+00         2.30E+01         1.33E+06         2.30E+01           Phenol         5         Normal         3.46E-01         8.77E+00         1.60E+01         1.57E+01         1.60E+01           Potassium         6         Lognormal         9.75E+02         1.31E+03         2.28E+03         2.28E+03           Pyrene         4         Lognormal         1.30E-01         5.96E+00         2.30E+01         1.34E+10         2.30E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |     |                 |             |                |             |          |                    |
| Methylene chloride         5         Lognormal         5.00E-03         4.89E-01         2.28E+00         5.92E+07         2.28E+00           Napthalene         4         Lognormal         9.60E-02         2.02E+00         7.30E+00         7.72E+06         7.30E+00           Nickel         10         Lognormal         2.10E+01         3.78E+02         2.39E+03         2.67E+03         2.39E+03           Phenanthrene         5         Lognormal         9.10E-02         5.18E+00         2.30E+01         1.33E+06         2.30E+01           Phenol         5         Normal         3.46E-01         8.77E+00         1.60E+01         1.57E+01         1.60E+01           Potassium         6         Lognormal         9.75E+02         1.31E+03         2.28E+03         1.86E+03         2.28E+03           Pyrene         4         Lognormal         1.30E-01         5.96E+00         2.30E+01         3.48E+10         2.30E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |     |                 |             |                |             |          |                    |
| Napthalene         4         Lognormal Lognormal         9.60E-02 2.02E+00         7.30E+00 7.30E+00         7.72E+06 7.30E+00           Nickel         10         Lognormal 2.10E+01 3.78E+02 2.39E+03 2.67E+03 2.39E+03         2.39E+03 2.39E+03 2.39E+03           Phenanthrene         5         Lognormal Normal 3.46E-01 8.77E+00 1.60E+01 1.57E+01 1.60E+01         1.60E+01 1.57E+01 1.60E+01           Potassium         6         Lognormal Lognormal 1.30E-01 5.96E+00 2.30E+01 3.48E+10 2.30E+01         1.34E+10 2.30E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 1 1 |                 |             |                |             |          |                    |
| Nickel         10         Lognormal Lognormal         2.10E+01         3.78E+02         2.39E+03         2.67E+03         2.39E+03           Phenanthrene         5         Lognormal         9.10E-02         5.18E+00         2.30E+01         1.33E+06         2.30E+01           Phenol         5         Normal         3.46E-01         8.77E+00         1.60E+01         1.57E+01         1.60E+01           Pyrene         4         Lognormal         1.30E+02         5.96E+00         2.30E+01         3.48E+10         2.30E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | , , |                 |             |                |             |          |                    |
| Phenol         5         Normal         3.46E-01         8.77E+00         1.60E+01         1.57E+01         1.60E+01           Potassium         6         Lognormal         9.75E+02         1.31E+03         2.28E+03         1.86E+03         2.28E+03           Pyrene         4         Lognormal         1.30E-01         5.96E+00         2.30E+01         3.48E+10         2.30E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 10  | Lognormal       | 2.10E+01    | 3.78E+02       | 2.39E+03    | 2.67E+03 |                    |
| Potassium         6         Lognormal         9.75E+02         1.31E+03         2.28E+03         1.86E+03         2.28E+03           Pyrene         4         Lognormal         1.30E-01         5.96E+00         2.30E+01         3.48E+10         2.30E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |     |                 |             |                |             |          |                    |
| Pyrene 4 Lognormal 1.30E-01 5.96E+00 2.30E+01 3.48E+10 2.30E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |     |                 |             |                |             |          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |     |                 |             |                |             |          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total PCBs         | 2 [ | NC              | 1.60E+01    | 2.58E+02       | 5,00E+02    | NC       | 5.00E+02           |
| Toluene 7 Lognomal 5.00E-02 6.65E+01 4.00E+02 3.21E+09 4.00E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |     |                 |             |                |             |          |                    |
| Total Xylenes         4         Lognormal         1.79E-01         3.10E+00         1.10E+01         2.48E+06         1.10E+01           Vanadium         9         Lognormal         7.70E+00         3.23E+01         1.31E+02         7.51E+01         7.51E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | i i |                 |             |                |             |          |                    |
| Variabiliti 5   Lognormal   7.70E+00   5.23E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E+01   7.51E |                    |     |                 |             |                |             |          |                    |
| bis(2-ethylhexyl)phthalate 6 Normal 1.70E-02 9.21E-01 2.20E+00 1.61E+00 2.20E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | 1   |                 |             |                |             |          |                    |

<sup>(</sup>a) - Only concentrations reported as detected by the laboratory were used in the calculation of statistics for subsurface soil.

Appendix C 4.12

Comparison of Surface Soil Detection Limits to Ecological Benchmarks

Floodplain Soils

Sauget Area I

| Compounds           | Maxiumum<br>Detection<br>Limit or<br>Range | Soil Benchmark | Conments on detection limits         |
|---------------------|--------------------------------------------|----------------|--------------------------------------|
| Herbicides (ug/kg)  |                                            |                |                                      |
| 2,4,5-T             | 9.9                                        | :              |                                      |
| 2,4,5-TP (Silvex)   | 9.9                                        |                | 1                                    |
| 2,4-D               | 9.9                                        |                |                                      |
| 2,4-DB              | 9.9                                        |                |                                      |
| Dalapon             | 85                                         |                |                                      |
| Dicamba             | 47                                         |                |                                      |
| Dichloroprop        | 230                                        |                |                                      |
| Dinoseb             | 230                                        |                |                                      |
| MCPA                | 2500                                       | ,              |                                      |
| MCPP                | 4700                                       | İ              |                                      |
| Metals (mg/kg)      |                                            | _              |                                      |
| Antimony            | 2.5<br>0.75                                | 5<br>10        |                                      |
| Beryllium           | 1                                          | 10             |                                      |
| Cyanide, Total      | 0.66<br>0.68                               |                |                                      |
| Molybdenum          | 0.00                                       | 2              | Detection limit exceeds benchmark in |
| Selenium            | 0.97 to 1.3                                | 0.21           | 56/56 samples for floodplain soil    |
|                     | 1.2                                        | 2              | 50750 samples for modiplain son      |
| Silver              | 260                                        |                |                                      |
| Sodium              | 200                                        |                | Detection limit exceeds benchmark in |
| Thallium            | 0.97 to 1.3                                | 1              | 42/55 samples for floodplain soil    |
| PCBs (ug/kg)        | 0.57 to 1.3                                | '              | 427 55 samples for noodplain son     |
| Decachlorobiphenyl  | 91                                         | 371"           |                                      |
| • •                 | 35                                         | 371"           | }                                    |
| Dichlorobiphenyl    | 100                                        | 371*           |                                      |
| Heptschlorobiphenyl |                                            | 371*           |                                      |
| Hexachlorobiphenyi  | 70<br>35                                   | 371"           |                                      |
| Monochlorobiphenyl  | 1                                          |                |                                      |
| Nonachloroblphenyl  | 180                                        | 371"           |                                      |
| Octachlorobiphenyl  | 100                                        | 371*           |                                      |
| Pentachlorobiphenyl | 70                                         | 371*           |                                      |
| Tetrachlorobiphenyl | 70                                         | 371*           |                                      |
| Trichlorobiphenyl   | 35                                         | 371*           |                                      |
| Pesticides (ug/kg)  |                                            |                |                                      |

|                              | Maxiumum Detection Limit or |                             |                                         |
|------------------------------|-----------------------------|-----------------------------|-----------------------------------------|
| Compounds                    | Range                       | Soil Benchmark <sup>1</sup> | Comments on detection limits            |
| 4,4'-DDD                     | 7.8                         | Con Seneralian              | Comments on detection innits            |
| 4,4'-DDE                     | 7.2                         |                             | · ·                                     |
| 4,4'-DDT                     | 7.4                         |                             |                                         |
| Aldrin                       | 18                          | ·                           |                                         |
| Alpha Chlordane              | 18                          | }·                          |                                         |
| alpha-BHC                    | 5.4                         |                             | · ·                                     |
| beta-BHC                     | 5.4                         | · ·                         |                                         |
| delta-BHC                    | 5.4                         |                             | *                                       |
| Dieldrin                     | 36                          | ļ                           |                                         |
| Endosulfan I                 | 18                          | 1                           |                                         |
| Endosulfan II                | 36                          |                             |                                         |
| Endosulfan sulfate           | 36                          |                             | • • • • • • • • • • • • • • • • • • • • |
| Endrin                       | 36                          |                             |                                         |
| Endrin aldehyde              | 36                          | <u> </u>                    | İ                                       |
| Endrin ketone                | 36                          | · ·                         | <u> </u>                                |
| Gamma Chlordane              | 18                          |                             |                                         |
| gamma-BHC (Lindane)          | 18                          |                             | •                                       |
| Heptachlor                   | 18                          | ļ                           | i                                       |
| Heptachlor epoxide           | 18                          |                             |                                         |
| Methoxychlor                 | 180                         |                             |                                         |
| Toxaphene                    | 1800                        |                             | ·                                       |
| SVOCs (ug/kg)                | 1000                        |                             |                                         |
| 1,2,4-Trichlorobenzene       | 220                         | 20000                       |                                         |
| 1,2-Dichlorobenzene          | 220                         |                             | • •                                     |
| 1,3-Dichlorobenzene          | 220                         |                             |                                         |
| 1,4-Dichlorobenzene          | 220                         | 20000                       |                                         |
| 2,2'-Oxybis(1-Chloropropane) | 210                         | 20000                       |                                         |
|                              | 220                         | 9000                        | ••                                      |
| 2,4,5-Trichlorophenol        | 220                         | 4000                        |                                         |
| 2,4,6-Trichlorophenol        | 220                         | 4000                        |                                         |
| 2,4-Dichlorophenol           | 990                         | 20000                       |                                         |
| 2,4-Dinitrophenol            | 220                         | 20000                       |                                         |
| 2,4-Dinitrotoluene           | 220                         | }                           |                                         |
| 2,6-Dinitrotoluene           |                             |                             |                                         |
| 2-Chloronaphthalene          | 220                         |                             |                                         |
| 2-Chlorophenol               | 220                         |                             |                                         |
| 2-Methylnaphthalene          | 220                         | <u> </u>                    | <u> </u>                                |

|                               | Maxiumum<br>Detection<br>Limit or |                |                              |
|-------------------------------|-----------------------------------|----------------|------------------------------|
| Compounds                     | Range                             | Soil Benchmark | Comments on detection limits |
| 2-Methylphenol (o-cresol)     | 220                               | ł              | }                            |
| 2-Nitroaniline                | 990                               |                |                              |
| 2-Nitrophenol                 | 220                               |                | 1                            |
| 3,3'-Dichlorobenzidine        | 430                               |                |                              |
| 3-Methylphenol/4-Methylphenol | 410                               | 1              |                              |
| 3 Nitroaniline                | 990                               |                |                              |
| 4,6-Dinitro-2-methylphenol    | 1100                              |                |                              |
| 4-Bromophenylphenyl ether     | 220                               |                |                              |
| 4-Chioro-3-mathylphanol       | 220                               |                |                              |
| 4-Chloroaniline               | 430                               |                | ]                            |
| 4-Chlorophenylphenyl ether    | 220                               |                |                              |
| 4-Nitroaniline                | 1100                              |                |                              |
| 4-Nitrophenol                 | 1100                              | 7000           |                              |
| Acenaphthene                  | 220                               | 20000          |                              |
| Acenaphthylene                | 220                               |                |                              |
| Anthracene                    | 220                               |                |                              |
| Benzo(a)anthracene            | 220                               |                |                              |
| Benzo(a)pyrene                | 180                               |                |                              |
| Benzo(b)fluoranthene          | 210                               |                |                              |
| Benzo(g,h,i)perylene          | 220                               |                |                              |
| Benzo(k)fluoranthene          | 220                               |                |                              |
| bis(2-Chioroethoxy)methane    | 220                               |                |                              |
| bis(2-Chloroethyl)ether       | 220                               |                |                              |
| bis(2-Ethylhexyl)phthalate    | 220                               | 1              |                              |
| Butylbenzylphthalate          | 220                               |                |                              |
| Carbazole                     | 220                               | İ              |                              |
| Chrysene                      | 210                               |                |                              |
| Di-n-butylphthalate           | 210                               | 200000         |                              |
| Di-n-octylphthalate           | 210                               |                |                              |
| Dibenzo(a,h)anthracene        | 99                                |                |                              |
| Dibenzofuran                  | 220                               |                |                              |
| Diethylphthalate              | 220                               | 100000         |                              |
| Dimethylphthalate             | 220                               | 1              | }                            |
| Fluoranthene                  | 220                               |                |                              |
| Fluorene                      | 220                               |                |                              |
| Hexachlorobenzene             | 92                                |                |                              |

|                                      | Maxiumum  | <del> </del>                |                              |
|--------------------------------------|-----------|-----------------------------|------------------------------|
|                                      | Detection |                             |                              |
|                                      | Limit or  |                             |                              |
| Compounds                            | Range     | Soil Benchmark <sup>1</sup> | Comments on detection limits |
| Hexachlorobutadiene                  | 220       |                             |                              |
| Hexachlorocyclopentadiene            | 220       | 10000                       |                              |
| Hexachloroethane                     | 220       |                             |                              |
| Indeno(1,2,3-cd)pyrene               | 220       | }                           | ·                            |
| Isophorone                           | 220       |                             |                              |
| N-Nitroso-di-n-propylamine           | 220       | } ·                         |                              |
| N-Nitrosodiphenylamine               | 210       |                             | · - ]                        |
| N-Nitrosodiphenylamine/Diphenylamine | 220       | -                           |                              |
| Naphthalene                          | 220       | }                           |                              |
| Nitrobenzene                         | 220       |                             | ••                           |
| Pentachlorophenol                    | 1100      | 3000                        |                              |
| Phenanthrene                         | 220       |                             |                              |
| Phenol                               | 220       | 30000                       |                              |
| Pyrene                               | 220       |                             |                              |
| trans-1,3-Dichloropropene            | 6.7       | ł                           | ·                            |
| VOCs (ug/kg)                         |           | 1                           |                              |
| 1,1,1-Trichloroethane                | 8.3       | }                           |                              |
| 1,1,2,2-Tetrachloroethane            | 8.3       |                             |                              |
| 1,1,2-Trichloroethane                | 8.3       | 1                           | <u> </u>                     |
| 1,1-Dichloroethane                   | 8.3       | 1                           |                              |
| 1,1-Dichloroethene                   | 7.7       | ]                           | 1                            |
| 1,2-Dichloroethane                   | 8.3       |                             |                              |
| 1,2-Dichloropropane                  | 8.3       | ,                           |                              |
| 2-Butanone (MEK)                     | 56        |                             |                              |
| 2-Hexanone                           | 42        | 1                           | ·                            |
| 4-Methyl-2-pentanone (MIBK)          | 42        | [                           | Í                            |
| Acetone                              | 83        |                             |                              |
| Benzene                              | 8.3       | ( )                         |                              |
| Bromodichloromethane                 | 8.3       |                             | ļ                            |
| Bromoform                            | 8.3       | ł                           |                              |
| Bromomethane (Methyl bromide)        | 17        |                             |                              |
| Carbon disulfide                     | 8.3       |                             |                              |
| Carbon tetrachloride                 | 8.3       |                             |                              |
| Chlorobenzene                        | 8.3       | 40000                       |                              |
| Chloroethane                         | 17        | 40000                       |                              |
| <b>.</b>                             | 8.3       |                             |                              |
| Chloroform                           | 0.3       | <u> </u>                    | <u> </u>                     |

Appendix C 4.12

| Compounds                            | Maxiumum Detection Limit or Range | Soll Benchmark <sup>1</sup> | Comments on detection limits |
|--------------------------------------|-----------------------------------|-----------------------------|------------------------------|
| Chloromethane                        | 17                                |                             |                              |
| Cis/Trans-1,2-Dichloroethene         | 8.3                               |                             |                              |
| cis-1,3-Dichloropropene              | 6.7                               |                             |                              |
| Dibromochloromethane                 | 8.3                               |                             |                              |
| Ethylbenzene                         | 8.3                               |                             |                              |
| Methylene chloride (Dichloromethane) | 8.3                               |                             |                              |
| Styrene                              | 8.3                               | 300000                      |                              |
| Tetrachloroethene                    | 8.3                               |                             |                              |
| Toluene                              | 8.3                               | 200000                      |                              |
| Trichloroethene                      | 8.3                               |                             |                              |
| Vinyl chloride                       | 17                                |                             |                              |
| Xylenes, Total                       | 8.3                               |                             |                              |
| Dioxins (ug/kg)                      |                                   |                             |                              |
| 2,3,7,8-TCDD TEQ (mammals)           |                                   | 3.15E-06                    |                              |

<sup>&</sup>lt;sup>1</sup> Effroymson et al., 1997. Preliminary Goals for Ecological Endpoints.

<sup>\*</sup> Benchmark for PCBs.

#### Comparison of Surface Soil Detection Limits to Ecological Benchmarks Sites G, H, I, L, and N Sauget Area (

| [                   | Maximum     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|-------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| }                   | Detection   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | Limit or    | Soil                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Compounds           | Range       | Benchmark <sup>1</sup>                         | Comments on detection limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Herbicides (ug/kg)  | <u> </u>    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,4,5-T             | 180         |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,4,5-TP (Silvex)   | 180         |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,4-D               | 180         |                                                | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |
| 2,4-DB              | 180         |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dalapon             | 1400        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dicamba             | 440         |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dichloroprop        | 2200        | ,                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dinoseb             | 2200        | ı                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MCPA                | 44000       |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MCPP                | 44000       | na na mana ang ang ang ang ang ang ang ang ang |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Metals (mg/kg)      |             |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Antimony            | 2.4         | 5<br>10                                        | The second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of  |
| Beryllium           | 0.59        | 10                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cyanide, Total      | 0.6         |                                                | Personal and a common color to the Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control o |
| Selenium            | 0.99 to 1.2 | 0.21                                           | Detection limit exceeds benchmark in: 4/4 samples for Site G; 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |             |                                                | samples for Site H; 1/4 samples for Site I; 3/4 samples for Site N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     |             |                                                | Detected in all samples for L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Silver              | 1.2         | 2                                              | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
| Sodium              | 220         |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thallium            | 0.62 to 1.2 | 1                                              | Detection limit exceeds benchmark in: 4/4 samples for Site G; 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |             |                                                | samples for Site H; 1/4 samples for Site I; 2/4 samples for Site N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     |             |                                                | Detected in all samples for L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PCBs (ug/kg)        |             |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Decachlorobiphenyl  | 17 to 930   | 371 <sup>2</sup>                               | Maximum detection limit exceeds Total PCB benchmark.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Dichlorobiphenyl    | 170         | 371 <sup>a</sup>                               | A CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR |
| Heptachlorobiphenyl | 10 to 530   | 371 <sup>a</sup>                               | Maximum detection limit exceeds Total PCB benchmark.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Hexachlorobiphenyl  | 350         | 371 <sup>a</sup>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Monochlorobiphenyl  | 170         | 371 <sup>a</sup>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Nonachlorobiphenyl  | 17 to 880   | 371 <sup>a</sup>                               | Maximum detection limit exceeds Total PCB benchmark.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Octachlorobiphenyl  | 10 to 530   | 371 <sup>a</sup>                               | Maximum detection limit exceeds Total PCB benchmark.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Pentachlorobiphenyl | 350         | 371 <sup>a</sup>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 350         | 371 <sup>a</sup>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tetrachlorobiphenyl | 1 777       | 371 <sup>a</sup>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trichlorobiphenyl   | 170         | 3/1                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pesticides (ug/kg)  | 40          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4,4'-DDD            | 18          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4,4'-DDE            | 7.1<br>18   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4,4'-DDT            |             |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Alcho Chlordone     | 9.1         |                                                | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |
| Alpha Chlordane     | 380         | <u>t                                    </u>   | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

## Comparison of Surface Soil Detection Limits to Ecological Benchmarks Sites G, H, I, L, and N Sauget Area I

|                                          |           | Sauge                  | N Area I                     |
|------------------------------------------|-----------|------------------------|------------------------------|
|                                          | Maximum   |                        |                              |
|                                          | Detection | }                      |                              |
|                                          | Limit or  | Soil                   |                              |
| Compounds                                | Range     | Benchmark <sup>1</sup> | Comments on detection limits |
| alpha-BHC                                | 110       |                        |                              |
| bota-BHC                                 | 110       |                        |                              |
| delta-BHC                                | 110       | 1                      |                              |
| Dieldrin                                 | 18        |                        |                              |
| Endosulfan I                             | 9.4       |                        |                              |
| Endosulfan II                            | 18        |                        |                              |
| Endosulfan sulfate                       | 730       |                        |                              |
| Endrin                                   | 18        |                        |                              |
| Endrin aldehyde                          | 18        |                        |                              |
| Endrin ketone                            | 7.1       |                        |                              |
| Gamma Chlordane                          | 3.7       |                        |                              |
| gamma-BHC (Lindane)                      | 380       |                        |                              |
| Heptachlor                               | 9.4       | Ī                      |                              |
| Heptachlor epoxide                       | 3.7       |                        |                              |
| Methoxychlor                             | 94        | ļ                      |                              |
| Toxaphene                                | 38000     |                        |                              |
| SVOCs (ug/kg)                            |           |                        |                              |
| 1,2,4-Trichlorobenzene                   | 360       | 20000                  |                              |
| 1.2-Dichlorobenzene                      | 360       |                        |                              |
| 1.3-Dichlorobenzene                      | 360       |                        |                              |
| 1.4-Dichlorobenzene                      | 360       | 20000                  |                              |
| 2,2'-Oxybis(1-Chloropropane)             | 360       | 1                      |                              |
| 2,4,5-Trichlorophenol                    | 360       | 9000                   |                              |
| 2,4,6-Trichlorophenol                    | 360       | 4000                   |                              |
| 2,4-Dichlorophenol                       | 360       |                        | ļ                            |
| 2,4-Dinitrophenol                        | 1800      | 20000                  |                              |
| 2,4-Dinitrotoluene                       | 360       |                        |                              |
| 2,6-Dinitrotoluene                       | 360       | i                      |                              |
| 2-Chloronaphthalene                      | 360       |                        |                              |
| 2-Chlorophenol                           | 360       |                        |                              |
| 2-Methylnaphthalene                      | 200       | Ì                      |                              |
| 2-Methylphenol (o-cresol)                | 360       | }                      |                              |
| 2-Nitroaniline                           | 1800      | 1                      |                              |
| 2-Nitrophenol                            | 360       | 1                      |                              |
| 2-Nitropheriol<br>3,3'-Dichlorobenzidine | 710       |                        |                              |
| 3-Methylphenol/4-Methylphenol            | 360       |                        |                              |
| 3-Nitroaniline                           | 1800      |                        |                              |
| 4,6-Dinitro-2-methylphenol               | 1800      |                        |                              |
| 4-Bromophenylphenyl ether                | 360       | }                      |                              |
| 4-Chloro-3-methylphenol                  | 360       | l                      |                              |
| 4-Chloroanlline                          | 710       | ]                      |                              |
| 4-CHIOCOMINIO                            | 1 / 10    | J                      | <u></u>                      |

# Comparison of Surface Soil Detection Limits to Ecological Benchmarks Sites G, H, I, L, and N Sauget Area I

|                            | Maximum   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------|-----------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | Detection | l                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | Limit or  | Soil                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Compounds                  | Range     | Benchmark <sup>1</sup> | Comments on detection limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4-Chlorophenylphenyl ether | 360       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4-Nitroaniline             | 1800      | l                      | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4-Nitrophenol              | 1800      | 7000                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acenaphthene               | 200       | 20000                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Acenaphthylene             | 360       |                        | A the same and same and an area of the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same  |
| Anthracene                 | 200       | ł <sup>"</sup>         | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Benzo(a)anthracene         | 200       |                        | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Benzo(a)pyrene             | 110       |                        | The first the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same |
| Benzo(b)fluoranthene       | 200       |                        | 10 A 17 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Benzo(g,h,i)perylene       | 200       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Benzo(k)fluoranthene       | 200       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| bis(2-Chloroethoxy)methane | 360       |                        | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |
| bis(2-Chloroethyl)ether    | 360       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| bis(2-Ethylhexyl)phthalate | 360       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Butylbenzylphthalate       | 360       | ].                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Carbazole                  | 200       |                        | AN MALIANCE CO. C. C. C. C. C. C. C. C. C. C. C. C. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Chrysene                   | 200       | · ·                    | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
| Di-n-butylphthalate        | 360       | 200000                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Di-n-octylphthalate        | 360       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dibenzo(a,h)anthracene     | 110       | 1                      | appear to a second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the seco |
| Dibenzofuran               | 200       |                        | Topics American Committee of Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committ |
| Diethylphthalate           | 360       | 100000                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dimethylphthalate          | 360       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fluoranthene               | 200       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fluorene                   | 200       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hexachlorobenzene          | 150       | l                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hexachlorobutadiene        | 360       | l                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hexachlorocyclopentadiene  | 360       | 10000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hexachloroethane           | 360       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Indeno(1,2,3-cd)pyrene     | 200       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Isophorone                 | 360       | [                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N-Nitroso-di-n-propylamine | 360       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N-Nitrosodiphenylamine     | 360       | _                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Naphthalene                | 200       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Nitrobenzene               | 360       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pentachlorophenol          | 1800      | 3000                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Phenanthrene               | 200       | <b>.</b>               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Phenol                     | 360       | 30000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pyrene                     | 200       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VOCs (ug/kg)               |           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1,1-Trichloroethane      | 9.7       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## Comparison of Surface Soil Detection Limits to Ecological Benchmarks Sites G, H, I, L, and N Sauget Area I

| •                                    |           |                        | TO THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF TH |
|--------------------------------------|-----------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | Maximum   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      | Detection | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      | Limit or  | Soil                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Compounds                            | Range     | Benchmark <sup>1</sup> | Comments on detection limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1,1,2,2-Tetrachloroethane            | 9.7       | ĺ                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1,2-Trichloroethane                | 9.7       | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1-Dichloroethane                   | 9.7       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1-Dichloroethene                   | 8.9       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dichloroethane                   | 9.7       | (                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dichloropropane                  | 9.7       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-Butanone (MEK)                     | 48        | ļ                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-Hexanone                           | 48        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4-Methyl-2-pentanone (MIBK)          | 48        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acetone                              | 97        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Benzene                              | 9.7       | l                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bromodichloromethane                 | 9.7       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bromoform                            | 9.7       | l                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bromomethane (Methyl bromide)        | 19        |                        | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Carbon disulfide                     | 9.7       |                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Carbon tetrachioride                 | 9.7       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chlorobenzene                        | 9.7       | 40000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chloroethane                         | 19        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chloroform                           | 9.7       | ļ                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chloromethane                        | 19        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| cis-1,3-Dichloropropene              | 7.8       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cis/Trans-1,2-Dichloroethene         | 9.7       | 1                      | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Dibromochloromethane                 | 9.7       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ethylbenzene                         | 9.7       | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Methylene chloride (Dichloromethane) | 9.7       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Styrene                              | 9.7       | 300000                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tetrachloroethene                    | 9.7       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Toluene                              | 9.7       | 200000                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| trans-1,3-Dichloropropene            | 7.8       | J                      | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Trichloroethene                      | 9.7       | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vinyl chloride                       | 19        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Xylenes, Total                       | 9.7       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dioxins (ug/kg)                      | 1         | l .                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,3,7,8-TCDD TEQ (mammals)           |           | 3.15E-06               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

<sup>&</sup>lt;sup>1</sup>Efroymson et al., 1997. Preliminary Remediation Goals for Ecological Endpoints.

Bold indicates detection limit exceeds benchmark.

<sup>\*</sup>Benchmark for PCBs.



Appendix D

Benthic Macroinvertebrate Data for Dead Creek Sector F, the Borrow Pit Lake, and Reference Areas

Sauget Area!

| et year of | ali<br>di saya d       |             |                                  |                            |                                                  |                                       |                          |                                       | Number of      |                  | 1.5    |                      |
|------------|------------------------|-------------|----------------------------------|----------------------------|--------------------------------------------------|---------------------------------------|--------------------------|---------------------------------------|----------------|------------------|--------|----------------------|
| Station ID | Dhadam                 | Class       | Order                            | Family                     | Sub-Family                                       | Tribe                                 | Genus                    | Casalas                               | Organisms      | Amount of Sample | Sample | Relative Abundance ' |
| F-1-1      | Phylum<br>Arthropoda   | Insecta     | Diptera                          | Chironomidae               | Chironominae                                     | Chironomini                           | Polypedilum              | Species                               | Counted        | Analyzed (%)     | Total  | (Percent)            |
| F-1-1      | Arthropoda             | Insecta     | Diptera                          | Chironomidae               | Chironominae                                     | Chironomini                           | Einfeldia                | illinoense                            | 5              | 50               | 10     | 19.23                |
| F-1-1      | Annelida               | Oligochaeta | Tubificida                       | Naididae                   | On Oncomme                                       | CINCIDITIII                           | Branchiura               | sp.                                   | 4              | 50               | 8      | 15.38                |
| F-1-1      | Arthropoda             | Insecta     | Diptera                          | Ceratopogonidae            |                                                  |                                       | Culicoides               | sowerbyi                              | 3              | 50               | 6      | 11.54                |
| F-1-1      | Mollusca               | Pelecypoda  | Prionodesmacea                   | Sphaeriidae                |                                                  | <del></del>                           | Sphaerlum                | sp.                                   | 3              | 50               | 6      | 11.54                |
| F-1-1      | Annelida               | Oligochaeta | Tubificida                       | Tubificidae                |                                                  |                                       |                          | sp.                                   | 2              | 50               | 4      | 7.69                 |
| F-1-1      | Annelida               | Oligochaeta | Tubificida                       | Tubificidae                |                                                  |                                       | Limnodrilus              | claparedianus                         | 1              | 50               | 2      | 3.85                 |
| F-1-1      | Arthropoda             | Insecta     | Lepidoptera                      | Pyralidae                  |                                                  |                                       | Haemonais                | waldvogeli                            | 1              | 50               | 2      | 3.85                 |
| F-1-1      | Arthropoda             | Insecta     | Hemiptera                        | Pleidae                    |                                                  |                                       | Acentria                 | sp.                                   | 1              | 50               | 2      | 3.85                 |
| F-1-1      | Arthropoda             | Insecta     | Coleoptera                       | Hydrophilidae              |                                                  |                                       | Neoplea                  | sp.                                   | 1              | 50               | 2      | 3.85                 |
| F-1-1      | Arthropoda             | Insecta     | Diptera                          | Ceratopogonidae            |                                                  | ·                                     | Hydrochus                | sp.                                   | 1              | 50               | 2      | 3.85                 |
| F-1-1      | Arthropoda             | Insecta     | Diptera                          | Chironomidae               | Chironominae                                     | Chironomini                           | Ceratopogon              | sp.                                   | 1              | 50               | 2      | 3.85                 |
| F-1-1      | Arthropoda             | Insecta     | Diptera                          | Chironomidae               | Chironominae                                     | Chironomini                           | Chironomus               | decorus                               | 1              | 50               | 2      | 3.85                 |
| F-1-1      | Arthropoda             | Insecta     | Diptera                          | Chironomidae               | Tanypodinae                                      | Tanypodini                            | Chironomus               | sp.                                   | 1              | 50               | 2      | 3.85                 |
| F-1-2      |                        | Insecta     | Diptera                          | Chironomidae               | Chironominae                                     |                                       | Tanypus                  | carinatus                             |                | 50               | 2      | 3.85                 |
| F-1-2      | Arthropoda<br>Mollusca | Pelecypoda  | Prionodesmacea                   | Sphaeriidae                | CHRONOMINAC                                      | Chironomini                           | Chironomus               | sp.                                   | 17             | 50               | 34     | 56.67                |
| F-1-2      | Arthropoda             | Insecta     | Diptera                          | Chironomidae               | Chironominae                                     | Chironomini                           | Sphaerium<br>Polypedilum | sp.                                   | 8              | 50               | 16     | 26.67                |
| F-1-2      | Annelida               | Oligochaeta | Tubificida                       | Tubificidae                | Jim Or Dillinate                                 | Crinonomina                           | Limnodrilus              | illinoense                            | 3              | 50               | 6      | 10.00                |
| F-1-2      | Arthropoda             | Insecta     | Diptera                          | Ceratopogonidae            |                                                  |                                       |                          | claparedianus                         | 1              | 50               | 2      | 3,33                 |
| F-1-3      | Annelida               | Oligochaeta | Tubificida                       | Naldidae                   |                                                  | <del></del>                           | Ceratopogon              | sp.                                   |                | 50               | 2      | 3.33                 |
| F-1-3      |                        |             | Diptera                          | Ceratopogonidae            |                                                  | · · · · · · · · · · · · · · · · · · · | Branchiura               | sowerbyi                              | 5              | 50               | 10     | 22.73                |
|            | Arthropoda             | Insecta     |                                  |                            | <del></del>                                      |                                       | Culicoldes               | sp.                                   | 4              | 50               | 8      | 18.18                |
| F-1-3      | Mollusca               | Pelecypoda  | Prionodesmacea<br>Prionodesmacea | Sphaeriidae<br>Sphaeriidae |                                                  |                                       | Musculium                | sp.                                   | 4              | 50               | 8      | 18.18                |
|            | Mollusca               | Pelecypoda  |                                  | Chironomidae               | Chironominae                                     | Chironomini                           | Sphaerium                | sp.                                   | 3              | 50               | 6      | 13.64                |
| F-1-3      | Arthropoda             | Insecta     | Diptera                          |                            |                                                  | Chironomini                           | Chironomus               | sp.                                   | 2              | 50               | 4      | 9.09                 |
| F-1-3      | Arthropoda             | Insecta     | Diptera                          | Chironomidae               | Chironominae                                     | Chironomini                           | Polypedilum              | illinoense                            | 2              | 50               | 4      | 9.09                 |
| F-1-3      | Arthropoda             | Insecta     | Diptera                          | Chironomidae               | Tanypodinae                                      | Tanypodini                            | Tanypus                  | neopunctipennis                       | 1              | 50               | 2      | 4.55                 |
| F-1-3      | Arthropoda             | Insecta     | Diptera                          | Ceratopogonidae            |                                                  |                                       | Ceratopogon              | sp.                                   | <u> </u>       | 50               | 2      | 4,55                 |
| F-2-1      | Arthropoda             | Insecta     | Diptera                          | Ceratopogonidae            |                                                  | <u> </u>                              | Sphaeromias              | sp.                                   | 7              | 50               | 14     | 38.89                |
| F-2-1      | Annelida               | Oligochaeta | Tubificida                       | Naididae                   |                                                  |                                       | Branchjura               | sowerbyi                              | 5              | 50               | 10     | 27.78                |
| F-2-1      | Arthropoda             | Insecta     | Diptera                          | Ceratopogonidae            |                                                  | 0 111                                 | Ceratopogon              | sp.                                   | 3              | 50               | 6      | 16.67                |
| F-2-1      | Arthropoda             | Insecta     | Diptera                          | Chironomidae               | Tanypodinae                                      | Coelotanypodini                       | Coelotanypus             | scapularis                            | 1              | 50               | 2      | 5.56                 |
| F-2-1      | Arthropoda             | Insecta     | Diptera                          | Ceratopogonidae            |                                                  |                                       | Bezzia                   | sp.                                   | 1              | 50               | 2      | 5.56                 |
| F-2-1      | Arthropoda             | Insecta     | Diptera                          | Chironomidae               | Chironominae                                     | Chironomini                           | Chironomus               | sp.                                   | 1              | 50               | 2      | 5.56                 |
| F-2-2      | Arthropoda             | Insecta     | Diptera                          | Ceratopogonidae            |                                                  |                                       | Ceratopogon              | sp.                                   | 12             | 50               | 24     | 33.33                |
| F-2-2      | Annelida               | Oligochaeta | Tubificida                       | Naididae                   |                                                  |                                       | Branchiura               | sowerbyi                              | 8              | 50               | 16     | 22.22                |
| F-2-2      | Arthropoda             | Insecta     | Diptera                          | Ceratopogonidae            |                                                  |                                       | Sphaeromias              | sp.                                   | 8              | 50               | 16     | 22.22                |
| F-2-2      | Arthropoda             | Insecta     | Diptera                          | Chironomidae               | Chironominae                                     | Chironomini                           | Chironomus               | sp.                                   | 2              | 50               | 4      | 5.56                 |
| F-2-2      | Arthropoda             | Insecta     | Hemiptera                        | Pleidae                    |                                                  |                                       | Neoplea                  | sp.                                   | 2              | 50               | 4      | 5.56                 |
| F-2-2      | Arthropoda             | Insecta     | Hemiptera                        | Mesoveliidae               | <u></u>                                          |                                       | Mesovelia                | sp.                                   | 1              | 50               | 2      | 2.78                 |
| F-2-2      | Arthropoda             | Insecta     | Diptera                          | Chironomidae               | Chironominae                                     | Chironomini                           | Polypedilum              | illinoense                            | <del> !</del>  | 50               | 2      | 2.78                 |
| F-2-2      | Arthropoda             | Insecta     | Diptera                          | Ceratopogonidae            | <u> </u>                                         |                                       | Culicoides               | sp.                                   | 1              | 50               | 2      | 2.78                 |
| F-2-2      | Arthropoda             | Insecta     | Diptera                          | Chironomidae               | Tanypodinae                                      | L                                     | Psectrolanypus           | sp.                                   | <del>  1</del> | 50               | 2      | 2.78                 |
| F-2-3      | Arthropoda             | Insecta     | Diptera                          | Ceratopogonidae            |                                                  |                                       | Ceratopogon              | sp.                                   | 11             | 50               | 22     | 47.83                |
| F-2-3      | Annelida               | Oligochaeta | Tubificida                       | Naididae                   |                                                  |                                       | Branchiura               | sowerbyi                              | 9              | 50               | 18     | 39.13                |
| F-2-3      | Arthropoda             | Insecta     | Diptera                          | Ceratopogonidae            | L                                                |                                       | Sphaeromias              | sp.                                   | 2              | 50               | 4      | 8.70                 |
| F-2-3      | Arthropoda             | Insecta     | Diptera                          | Chironomidae               | Chironominae                                     | Chironomini                           | Polypedilum              | illinoense                            | 1              | 50               | 2      | 4.35                 |
| F-3-1      | Annelida               | Oligochaeta | Tubificida                       | Naididae                   |                                                  |                                       | Branchiura               | sowerbyl                              | 28             | 50               | 56     | 53.85                |
| F-3-1      | Annelida               | Oligochaeta | Tubificida                       | Tubificidae                |                                                  |                                       | Limnodrilus              | hoffmeisterl                          | 14             | 50               | 28     | 26.92                |
| F-3-1      | Annelida               | Oligochaeta | Tubificida                       | Tubificidae                |                                                  |                                       | llyodrilus               | templetoni                            | 3              | 50               | 6      | 5.77                 |
| F-3-1      | Arthropoda             | Insecta     | Diptera                          | Chironomidae               | Tanypodinae                                      |                                       | Krenopelopia             | sp.                                   | 2              | 50               | 4      | 3.85                 |
| F-3-1      | Arthropoda             | Insecta     | Coleoptera                       | Dytiscidae                 |                                                  |                                       | Hygrotus                 | sp.                                   | 1              | 50               | 2      | 1.92                 |
| F-3-1      | Arthropoda             | Insecta     | Diptera                          | Ceratopogonidae            |                                                  |                                       | Culicoldes               | sp.                                   | 1              | 50               | 2      | 1.92                 |
| F-3-1      | Arthropoda             | Insecta     | Diptera                          | Chironomidae               | Chironominae                                     | Chironomini                           | Polypedilum              | illinoense                            | 1              | 50               | 2      | 1.92                 |
| F-3-1      | Arthropoda             | Insecta     | Coleoptera                       | Hydrophilidae              |                                                  | <del></del>                           | Tropisternus             | sp.                                   | 1              | 50               | 2      | 1.92                 |
|            |                        | Insecta     | Diptera                          | Stratiomyidae              | <del>                                     </del> | l                                     | Stratiomys               | sp.                                   | 1              | 50               | 2      | 1.92                 |
| F-3-1      | Arthropoda             | HISCOR      | Dipicia                          | 1 3000000                  |                                                  | <del></del>                           |                          | · · · · · · · · · · · · · · · · · · · | <del></del>    | <del></del>      |        |                      |

Appendix D

Benthic Macroinvertebrate Data for Dead Creek Sector F, the Borrow Pit Lake, and Reference Areas

Bauget Area 1

| Nation ID      | Phylum     | Class                  | Order                          | Family          | Bub-Family                          | Tribe                             | Genus                | Species         | Number of<br>Organisms<br>Counted | Amount of Sample | Sample<br>Total                                  | Relative Abundance<br>(Percent) |
|----------------|------------|------------------------|--------------------------------|-----------------|-------------------------------------|-----------------------------------|----------------------|-----------------|-----------------------------------|------------------|--------------------------------------------------|---------------------------------|
| F-3-2          | Annelida   | Oligochaeta            | Tubificide                     | Tubificidae     |                                     |                                   | Limnodrilus          | holfmelsterl    | 31                                | 50               | 62                                               | 45 59                           |
| F-3-2          | Annelida   | Oligochaeta            | Tubificida                     | Naididae        |                                     |                                   | Branchiura           | aowerbyi        | 27                                | 50               | 54                                               | 39 71                           |
| F-3-2          | Annelida   | Oligochaeta            | Tubificida                     | Tubificidae     |                                     |                                   | Hyodrifus            | Ismpletoni      | 2                                 | 60               | 4                                                | 2 94                            |
| F-3-2          | Arthyopoda | Insecta                | Diptera                        | Chironomidae    | Chironominae                        | Chironomini                       | Polypeditum          | Minoense        | $\frac{1}{2}$                     | 60               | 1                                                | 2 94                            |
| F-3-2          | Mollusca   | Gastropoda             | Basommatophora                 | Physidae        | 0                                   |                                   | Physelle             | heleroelrophe   |                                   | 50               | 1                                                | 294                             |
|                |            |                        | Tubificida                     | Tubificidae     |                                     |                                   | Dero                 |                 | <del></del>                       | 50               | <del></del>                                      | 147                             |
| F-3-2          | Annelida _ | Oligochaeta<br>Insecta | Hemiptera                      | Corixidae       | Cortringe                           | <del></del>                       | Yrichocorixa         | vege            | <del></del>                       | 80               |                                                  | 147                             |
| F-3-2          | Arthropoda |                        |                                | Caratopogonidae |                                     |                                   | Spheeromies          | #0<br>#0        | <del></del>                       | 50               | <del>-                                    </del> |                                 |
| . <u>F-3-2</u> | Arthropoda | ineecta                | Diptera                        | Yipuiidae       |                                     |                                   | Tipulidee (family)   |                 | <del></del>                       | 50               |                                                  | 147                             |
| F-3-2          | Arthropoda | Insecta                | Diptera                        | Naididae        |                                     |                                   |                      |                 | <del></del>                       |                  | 2                                                | 147                             |
| F-3-3          | Annelida   | Oligochaeta            | Tubificida                     | Tubificidae     |                                     |                                   | Branchiura           | sowerbyl        | 24                                | 50               | 62                                               | 44 07                           |
| F-3-3          | Annelida   | Oligochaeta            | Tubificida                     |                 | China                               | A 5 5                             | Limnodrikus          | hoffmelsteri    | 11                                | 50               | 22                                               | 18.64                           |
| F-3-3          | Arthropoda | Insecta                | Diptera                        | Chironomidae    | Chironominas                        | Chironomini                       | Polypedilum          | Minoense        |                                   | 50               | 20                                               | 16 96                           |
| F-3-3          | Arthropoda | Insecta                | Diplera                        | Ceratopogonidae |                                     |                                   | Sphaeromies          | ap .            | 3                                 | 50               | 6                                                | 5.08                            |
| F-3-3          | Arthropoda | insecta                | Diptera                        |                 |                                     |                                   | (Mptera (class)      |                 | 3                                 | 50               | 6                                                | <u> </u>                        |
| F-3-3          | Arthropoda | Insecta                | Diptora                        | Chironomidae    | Tanypodinae                         |                                   | Krenopelopie         | ερ              | 3                                 | l 60             | 6                                                | ñ Ōñ                            |
| F-3-3          | Arthropoda | Insecta                | Diptera                        | Tipulidae       |                                     |                                   | i.imonie             | ıρ              | 1                                 | 50               | 2                                                | 1 60                            |
| F-3-3          | Arthropoda | Insecta                | Diptora                        | Caratopogonidae |                                     |                                   | Ceretopogon          | εp.             |                                   | 80               | 2                                                | 1 69                            |
| F-3-3          | Mollusca   | Gastropoda             | Basommatophora                 | Physidae        |                                     |                                   | Physella             | heterostrophe   | 1                                 | 50               | 2                                                | 1 69                            |
| BP-1-1         | Arthropoda | Insecta                | Odonala                        | Libellulidas    |                                     |                                   | Perthemis            | ıρ              | 5                                 | 50               | 10                                               | 29 41                           |
| BP-1-1         | Annelida   | Otigochaeta            | Tubificida                     | Naididae        |                                     |                                   | Branchiura           | sowerbyl        | 3                                 | 50               | 6                                                | 17 66                           |
| BP-1-1         | Annelkia   | Oligochaeta            | Tubificida                     | Yublficidae     |                                     |                                   | Limnodrijus          | hoffmelsterl    | 3                                 | 50               | 6                                                | 17 65                           |
| 8P-1-1         | Arthropoda | Insecta                | Hemiptera                      | Cortsidee       | 1                                   |                                   | Palmacortxa          | 10              | 2                                 | 50               | 4                                                | 11.76                           |
|                | - r        | Hirudinea              | Pheryngobdellida               | Erpobdellidae   |                                     | - f                               | Mooreobdella         | microstoma      | 1                                 | 50               | 2                                                | 5.88                            |
| BP-1-1         | Annelida   |                        |                                |                 |                                     |                                   | Ceretopogon          | <b>ερ</b> .     | 1                                 | 80               | 1 2                                              | 5 68                            |
| BP-1-1         | Arthropoda | Insecta                | Diptera                        | Ceratopogonidae | Townsdage                           | Madacallai                        | Natarala             |                 | <del></del>                       | 50               | <del> </del>                                     | 5 88                            |
| BP-1-1         | Arthropoda | insecta                | Diptera                        | Chironomidae    | Tanypodinee                         | Natarslini                        |                      | - θρ            | <del></del>                       | 50               | 2                                                | 5.68                            |
| BP-1-1         | Arthropoda | Insecta                | Diptera                        | Chironomidae    | Yanypodinae                         | Tanypodini                        | Tanypus              | neopunctipennis | · · · · <u>}</u> · · · —          | - <del> </del>   | - 6                                              | 17 39                           |
| BP-1-2         | Annelida   | Oligochaeta            | Tubificida                     | Tubificidae     |                                     |                                   | Limn <b>odril</b> us | hoffmelsteri    | <u>.</u> -                        | 50               | <u> </u>                                         |                                 |
| BP-1-2         | Annelida   | Oligochaeta            | Tubificida                     | Naididae        |                                     | ļ                                 | Dero                 | digitala        | 3                                 | 50               | 6                                                | 13.04                           |
| BP-1-2         | Arthropoda | Insecta                | Homiptera                      | Cortxidae       |                                     |                                   | Palmacorixa          | ερ              | 3                                 | 50               | 6                                                | 13 04                           |
| BP-1-2         | Annelida   | Hirudinea              | Pharyngobdellida               | Erpobdellidae   |                                     | ļ                                 | Mooreobdella         | microstoma      | 2                                 | 50               | 4                                                | 8 70                            |
| BP-1-2         | Arthropoda | Insects                | Diptera                        | Chironomidae    | Tanypodinae                         | Tanypodini                        | Tanypus              | neopunctipennis | 2                                 | 50               | 4                                                | 8 70                            |
|                |            |                        | Ephomeroptera                  | Caenidae        | "                                   | ,, ,,                             | Caenis               | Sp.             | 2                                 | 50               | 4                                                | 8.70                            |
| BP-1-2         | Arthropoda | Insecta                | Odonala                        | t ibeliulidae   |                                     | į                                 | Parithemia           | Sp.             | 2                                 | 50               | 4                                                | 8 70                            |
| BP-1-2         | Arthropoda | Insects                | Tubificida                     | Naklidae        |                                     | Į.                                | Aulodrilus           | piqueli         | 1                                 | 50               | 2                                                | 4 35                            |
| BP-1-2         | Annelida   | Oligochaeta            |                                | Naididae        |                                     |                                   | Branchlura           | sowerbyl        | 1 1                               | 50               | 2                                                | 4 35                            |
| BP-1-2         | Annelida   | Óligochaeta            | Tubificida                     |                 | Musicantiliana                      |                                   | Hydroptile           | ajax            | i 1                               | 50               | 2                                                | 4 36                            |
| BP-1-2         | Arthropoda | Insecta                | Trichoptera                    | Hydroptilidae   | Hydroptilinee                       | Attache mini                      |                      | sp.             | l i                               | 50               | 2                                                | 4,35                            |
| BP-1-2         | Arthropoda | Insecta                | Diptera                        | Chironomidae    | Chironominae                        | Chironomini                       | Cryptolendipes       |                 | · <del></del>                     | 50               | 2                                                | 4 35                            |
| BP-1-2         | Arthropoda | Insecta                | Odonala                        | Gomphidae       | ł                                   | i                                 | Arigomphus           | sp.             | 1 4                               | 50               | 14                                               | 30.43                           |
| BP-1-3         | Annelide   | Óligochaeta            | Tubificida                     | Tubificidae     |                                     |                                   | Limnodrilus          | hoffmelsteri    | 1 4                               | 50               | 10                                               | 21 74                           |
| BP-1-3         | Arthropoda | Insects                | Hemiptera                      | Corixidae       | Corixinae                           | 1                                 | Trichocorixa         | aρ.             | ļ <u>- 2</u>                      |                  |                                                  | 8 70                            |
|                |            | Insects                | Diptera                        | Ceratopogonidae |                                     |                                   | Ceratopogon          | aρ.             | 2                                 | 50               | 4                                                |                                 |
| BP-1-3         | Arthropoda |                        | Odonata                        | Libellulidae    |                                     |                                   | Perithemia           | aρ.             | 2                                 | 50               | 4                                                | 8.70                            |
| BP-1-3         | Arthropoda | Insecta                |                                | Erpobdeliidae   |                                     | ļ                                 | Mooreobdella         | microstoma      | I <u>_1</u>                       | 50               | 2                                                | 4.36                            |
| BP-1-3         | Anneilda   | Hirudines              | Pharyngobdellida<br>Tubificida | Tubificidae     | í i                                 |                                   | llyodrilus           | templetoni      | 1 1                               | 80               | 2                                                | 4.35                            |
| BP-1-3         | Annelida   | Oligochaeta            |                                | Naididae        | 1                                   |                                   | Branchiura           | sowerbyl        | 1                                 | 50               | 2                                                | 4.35                            |
| BP-1-3         | Annelida   | Oligochaeta            | Tubificida                     |                 |                                     |                                   | Caenia               | 8p.             | 1                                 | 60               | 2                                                | 4.35                            |
| BP-1-3         | Arthropoda | Insects                | Ephemeroptera                  | Caenidae        |                                     |                                   | Berosus              | <b>40</b> .     | 1                                 | 60               | 2                                                | 4.35                            |
| BP-1-3         | Arthropoda | insecta                | Coleoptera                     | Hydrophilidae   |                                     | المناف مواقعة                     |                      | neopunctipennia | 1                                 | 80               | 2                                                | 4.35                            |
| BP-1-3         | Arthropoda | Insects                | Diptera                        | Chironomidae    | Tanypodinae                         | Tanypodini                        | Tanypus              |                 | I .                               | 80               | 1                                                | 4,35                            |
| BP-1-3         | Nematoda   | 1                      | Dorylaimida                    |                 |                                     | ]                                 | Alalmus              | sp              | 27                                | 50               | 54                                               | 47.37                           |
| BP-2-1         | Annelida   | Oligochaeta            | Tubificida                     | Tubificidae     |                                     |                                   | Limnodrilus          | hoffmelsterl    | - <del>2/</del>                   | 50               | 12                                               | 10.63                           |
| BP-2-1         | Annelida   | Oligochaeta            | Tublficida                     | Naididae        |                                     |                                   | Dero                 | digitata        | 1                                 |                  | 10                                               | 8.77                            |
|                | Annelida   | Oligochaeta            | Tubificida                     | Tubificidae     | ł                                   | \                                 | llyodrilus           | templetoni      | 5                                 | 60               |                                                  |                                 |
| BP-2-1         |            | Oligochaeta            | Tubificida                     | Naididae        |                                     |                                   | Aulodrilus           | pigueti         | 4                                 | 50               | 8                                                | 7.02                            |
| BP-2-1         | Annelida   |                        | Diptera                        | Chironomidae    | Tanypodinae                         | Tanypodini                        | Tanypus              | stellatus       | 3                                 | 50               | 8                                                | 5.26                            |
| BP-2-1         | Arthropoda | Insecta                |                                | Ceratopogonidae | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Ceratopogon          | Sp.             | 3                                 | 50               | 6 _                                              | 5.26                            |
| BP-2-1         | Arthropoda | Insecta                | Diptera                        |                 |                                     |                                   | Branchiura           | sowerbyl        | 2                                 | 50               | 4                                                | 3.51                            |
| BP-2-1         | Annelida   | Oligochaeta            | Tublficida                     | Naididae        | Tames dises                         | Contoton-modific                  |                      | sp.             | 2                                 | 50               | 4                                                | 3.51                            |
| BP-2-1         | Arthropoda | Insecta                | Diptera                        | Chironomidae    | Tanypodinae                         | Coelotanypodini                   | Clinolenypus         |                 | 2                                 | 50               | 1 4                                              | 3.51                            |
| BP-2-1         | Arthropoda |                        | Diptera                        | Chironomidae    | Tanypodinae                         | Tanypodini                        | Tanypus              | neopunctipennis | 1 :                               | 50               | 2                                                | 1.75                            |
| BP-2-1         | Arthropoda |                        | Odonata                        | Gomphidae       | .]                                  | .,,,                              | Arigomphus           | \$ρ.            | 1 1                               | 50               | ~                                                | 1.75                            |
| BP-2-1 4       | Yropoda    |                        | Diptera                        | Chironomidae    | Chironominae                        | Chironomini                       | Chironomus           | selinarius      | 1 - 1 - 1                         |                  | 2                                                | 75                              |
| DF-2-1         | ropoda     |                        | Diotera                        | Ceratopogonidae | (                                   |                                   | Culicoides           | sp.             | J., <del>_</del>                  | 50               | 2                                                |                                 |

### Appendix D Benthic Macroinvertebrate Data for Dead Creek Sector F, the Borrow Pit Lake, and Reference Areas Sauget Area I

| 2 m. s     |            | 100                        | 11在10年2月20日 |                      |                                                  | ili.            |                        |                        | Number of                                        | (                |                                                  | and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o |
|------------|------------|----------------------------|-------------|----------------------|--------------------------------------------------|-----------------|------------------------|------------------------|--------------------------------------------------|------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Station ID | > Phylum   | Class                      | Order       | Family               | Sub-Family                                       | Tribe           | Genus                  | Species                | Organisms                                        | Amount of Sample | Sample                                           | Relative Abundance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BP-2-2     | Annelida   | Oligochaeta                | Tublficida  | Tubificidae          |                                                  | 11100           | Limnodrilus            | hoffmeisteri           | Counted<br>13                                    | Analyzed (%)     | Total                                            | (Percent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| BP-2-2     | Annelida   | Oligochaeta                | Tubificida  | Tublficidae          |                                                  |                 | liyodrilus             | templetoni             | 4                                                | 50               | 26<br>8                                          | 44.83<br>13.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BP-2-2     | Arthropoda | Insecta                    | Diptera     | Chironomidae         | Chironominae                                     | Chironomini     | Chironomus             | salinarius             | 3                                                | 50               | 6                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BP-2-2     | Arthropoda | Insecta                    | Diptera     | Chironomidae         | Tanypodinae                                      | Procladiini     | Procladius             | SD.                    | 3                                                | 50               | 6                                                | 10.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BP-2-2     | Annelida   | Oligochaeta                | Tubificida  | Naididae             |                                                  |                 | Branchiura             | sowerbyi               | 2                                                | 50               | 4                                                | 10.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BP-2-2     | Arthropoda | Insecta                    | Diptera     | Chironomidae         | Tanypodinae                                      | Coelotanypodini | Clinotanypus           | sp.                    | <del></del>                                      | 50               | 4                                                | 6.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-2-2     | Arthropoda | Insecta                    | Diptera     | Ceratopogonidae      |                                                  |                 | Ceratopogon            | Sp.                    | 1                                                | 50               | 2                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BP-2-2     | Arthropoda | Insecta                    | Diptera     | Chironomidae         | Tanypodinae                                      | Tanypodini      | Tanypus                | neopunctipennis        | <del></del>                                      | 50               | 2                                                | 3.45<br>3.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BP-2-3     | Annelida   | Oligochaeta                | Tubificida  | Tubificidae          |                                                  |                 | Limnodrilus            | hoffmeisterl           | 18                                               | 50               | 36                                               | 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BP-2-3     | Arthropoda | Insecta                    | Diptera     | Ceratopogonidae      |                                                  | <del></del>     | Ceratopogon            | sp.                    | 7                                                | 50               | 14                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BP-2-3     | Annelida   | Oligochaeta                | Tubificida  | Naididae             |                                                  | *****           | Dero                   | digitata               | 6                                                | 50               | 12                                               | 15,56<br>13.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BP-2-3     | Annelida   | Oligochaeta                | Tubificida  | Naididae             |                                                  |                 | Branchiura             | sowerbyi               | 2                                                | 50               | 4                                                | 4.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-2-3     | Arthropoda | Insecta                    | Diptera     | Chironomidae         | Chironominae                                     | Chironomini     | Chironomus             | decorus                | - 2                                              | 50               | 4                                                | 4,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-2-3     | Arthropoda | Insecta                    | Diptera     | Chironomidae         | Chironominae                                     | Tanytarsini     | Tanytarsus             | sp.                    | 2                                                | 50               | 4                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BP-2-3     | Arthropoda | Insecta                    | Diptera     | Chironomidae         | Tanypodinae                                      | Tanypodini      | Tanypus                | stellatus              | 2                                                | 50               | 4                                                | 4.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-2-3     | Arthropoda | Insecta                    | Odonata     | Gomphidae            |                                                  |                 | Arigomphus             | sp.                    | 1                                                | 50               | 2                                                | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-2-3     | Arthropoda | Insecta                    | Diptera     | Chironomidae         | Chironominae                                     | Chironomini     | Cladopelma             | sp.                    | 1                                                | 50               | 2                                                | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-2-3     | Arthropoda | Insecta                    | Diptera     | Chironomidae         | Tanypodinae                                      | Coelotanypodini | Clinotanypus           | sp.                    | <del>- i -</del>                                 | 50               | 2                                                | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-2-3     | Arthropoda | Insecta                    | Diptera     | Chironomidae         | Tanypodinae                                      | Procladiini     | Procladius             | sp.                    | <del>- i</del>                                   | 50               | 2                                                | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-2-3     | Arthropoda | Insecta                    | Diptera     | Chironomidae         | Tanypodinae                                      | Tanypodini      | Tanypus                | neopunctipennis        | 1                                                | 50               | 2                                                | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-2-3     | Arthropoda | Insecta                    | Diptera     | Tipulidae            |                                                  |                 | Tipulidae (family)     |                        | <del>- i -</del>                                 | 50               | 2                                                | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-1     | Annelida   | Oligochaeta                | Tubificida  | Tubificidae          |                                                  |                 | Limnodrilus            | hoffmeisteri           | 42                                               | 100              | 42                                               | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BP-3-1     | Annelida   | Oligochaeta                | Tubificida  | Naididae             |                                                  |                 | Dero                   | digitata               | 16                                               | 100              | 16                                               | 19.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BP-3-1     | Annelida   | Oligochaeta                | Tubificida  | Naididae             |                                                  |                 | Branchiura             | sowerbyi               | 9                                                | 100              | 9                                                | 10.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BP-3-1     | Arthropoda | Insecta                    | Diptera     | Ceratopogonidae      |                                                  |                 | Ceratopogon            | sp.                    | 5                                                | 100              |                                                  | 5.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-1     | Arthropoda | Insecta                    | Diptera     | Chironomidae         | Tanypodinae                                      | Tanypodini      | Tanypus                | neopunctipennis        | 4                                                | 100              | 4                                                | 4.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-1     | Arthropoda | Insecta                    | Diptera     | Chironomidae         | Chironominae                                     | Chironomini     | Cryptochironomus       | fulvus                 | 3                                                | 100              | 3                                                | 3.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-1     | Arthropoda | Insecta                    | Odonata     | Libellulidae         |                                                  |                 | Perithemis             | sp.                    | 2                                                | 100              | 2                                                | 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-1     | Annelida   | Oligochaeta                | Tubificida  | Naididae             |                                                  |                 | Aulodrilus             | pigueti                | 1 -                                              | 100              | 1                                                | 1,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-1     | Arthropoda | Insecta                    | Diptera     | Chironomidae         | Tanypodinae                                      | Coelotanypodini | Clinotanypus           | sp.                    | 1                                                | 100              | <del>i</del>                                     | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-1     | Arthropoda | Insecta                    | Diptera     | Ceratopogonidae      | Tanypounds                                       | Cociotanypodini | Sphaeromias            | Sp.                    | <del> </del>                                     | 100              | 1                                                | 1,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-1     | Annelida   |                            | Tubificida  | Tubificidae          | i                                                | <del></del>     | Limnodrilus            | hoffmeisteri           | 7                                                | 100              | 7                                                | 43.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BP-3-2     | Annelida   | Oligochaeta                | Tubificida  | Naididae             | <del> </del>                                     |                 | Branchiura             | sowerbyi               | - <u>;</u> -                                     | 100              | 2                                                | 12.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BP-3-2     | Annelida   | Oligochaeta<br>Oligochaeta | Tubificida  | Naididae             |                                                  | <del> </del>    | Dero                   | digitata               | 1                                                | 100              | 1                                                | 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |            |                            | Diptera     | Ceratopogonidae      |                                                  |                 | Ceratopogon            | sp.                    | <del> </del>                                     | 100              | 1                                                | 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-2     | Arthropoda | Insecta                    |             | Libellulidae         |                                                  | <del></del>     | Plathemis              | sp.                    | <del></del>                                      | 100              | <del></del>                                      | 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-2     | Arthropoda | Insecta                    | Odonata     | Chironomidae         | Chironominae                                     | Tanytarsini     | Tanytarsus             | sp.                    | <del> </del>                                     | 100              | 1                                                | 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-2     | Arthropoda | Insecta                    | Diptera     | Chironomidae         | Tanypodinae                                      | Tanypodini      | Tanypus                | neopunctipennis        | <del>                                     </del> | 100              | 1                                                | 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-2     | Arthropoda | Insecta                    | Diptera     | Libellulidae         | Tarrypodinae                                     | ranypooliii     | Perithemis             | sp.                    | <del> </del>                                     | 100              | ├ <del>─</del>                                   | 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-2     | Arthropoda | Insecta                    | Odonata     |                      |                                                  |                 | Sphaeromias            | sp.                    | <del>                                     </del> | 100              | 1                                                | 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-2     | Arthropoda | Insecta                    | Diptera     | Ceratopogonidae      | <del> </del>                                     | <del> </del>    | Limnodrilus            | hoffmeisteri           | 36                                               | 100              | 36                                               | 70,59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BP-3-3     | Annelida   | Oligochaeta                | Tubificida  | Tubificidae          | <u> </u>                                         | <del></del>     | Branchiura             | sowerbyi               | 5                                                | 100              | 5                                                | 9.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-3     | Annelida   | Oligochaeta                | Tubificida  | Naididae<br>Naididae | <del>                                     </del> | <del> </del>    | Dero                   | digitata               | 3                                                | 100              | 3                                                | 5.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-3     | Annelida   | Oligochaeta                | Tubificida  |                      | <del></del>                                      | <del> </del>    | Ceratopogon            | sp.                    | 2                                                | 100              | 2                                                | 3.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-3     | Arthropoda | Insecta                    | Diptera     | Ceratopogonidae      | <del> </del>                                     | <del> </del>    | Bezzia                 | sp.                    | <del></del> -                                    | 100              | <del></del>                                      | 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-3     | Arthropoda | Insecta                    | Diptera     | Ceratopogonidae      | <del>                                     </del> | <del> </del>    | Chaoborus              | punctipennis           | <del>                                     </del> | 100              | <del>                                     </del> | 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-3     | Arthropoda | Insecta                    | Diptera     | Chaoboridae          | Chhanamhasa                                      | Chironomini     | Cryptochironomus       | fulvus                 | 1                                                | 100              | <del> </del>                                     | 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-3     | Arthropoda | Insecta                    | Diptera     | Chironomidae         | Chironominae                                     | Chironomini     |                        |                        | <del>                                     </del> | 100              | <del>                                     </del> | 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-3     | Arthropoda | Insecta                    | Odonata     | Libellulidae         | Tanadaa                                          | Tom             | Perithemis             | sp.<br>neopunctipennis | <del>                                     </del> | 100              | <del>                                     </del> | 1,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BP-3-3     | Arthropoda | Insecta                    | Diptera     | Chironomidae         | Tanypodinae                                      | Tanypodini      | Tanypus                |                        | 71                                               | 100              | 71                                               | 89.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PDC-1-1    | Annelida   | Oligochaeta                | Tubificida  | Tubificidae          | <del></del>                                      | <del></del>     | Limnodrīlus            | hoffmeisteri           |                                                  |                  |                                                  | 2.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PDC-1-1    | Annelida   | Oligochaeta                | Tubificida  | Naididae             | <del></del>                                      | <del></del>     | Dero                   | digitata               | 2                                                | 100              | 2                                                | 2.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PDC-1-1    | Annelida   | Oligochaeta                | Tubificida  | Tubificidae          |                                                  | <b></b>         | llyodrīlus             | templetoni             | 2                                                | 100              | 2                                                | 2.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PDC-1-1    | Annelida   | Oligochaeta                | Tubificida  | Tubificidae          | <b></b>                                          | <b></b>         | Psammoryclides         | californianus          | 2                                                | 100              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PDC-1-1    | Arthropoda | Insecta                    | Diptera     | Ceratopogonidae      | <b></b>                                          | <del> </del> -  | Ceratopogon            | sp.                    | <del> </del>                                     | 100              | 1                                                | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PDC-1-1    | Arthropoda | Insecta                    | Diptera     | Chaoboridae          |                                                  | <u> </u>        | Chaoborus              | punctipennis           | 1                                                | 100              | 1                                                | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PDC-1-2    | Annelida   | Oligochaeta                | Tubificida  | Tubificidae          | L                                                | L               | Limnodrilus            | hoffmeisteri           | 4                                                | 100              | 4                                                | 66.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PDC-1-2    | Arthropoda | Insecta                    | Diptera     | Ceratopogonidae      | <u> </u>                                         | ļ <u>.</u>      | Ceratopogon            | sp.                    | 11                                               | 100              | 1                                                | 16.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PDC-1-2    | Arthropoda | Insecta                    | Diptera     | Ceratopogonidae      |                                                  | L               | Bezzia                 | sp.                    | 1                                                | 100              |                                                  | 16.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 55046      | Annelida   | Oligochaeta                | Tubificida  | Tubificidae          | <u> </u>                                         | L               | Limnodrilus            | hoffmeisterl           | 4                                                | 100              | 4                                                | 57.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PDC-1-3    |            |                            |             |                      |                                                  | ,               |                        |                        | 2                                                | 100              | 2                                                | 28.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PDC-1-3    | Arthropoda | Insecta                    | Diptera     | Ceratopogonidae      | Tanypodinae                                      | Tanypodini      | Ceralopogon<br>Tanypus | sp.<br>neopunctipennis |                                                  | 100              | <u> </u>                                         | 14,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Appendix D Benthic Macroinvertebrate Data for Dead Creek Sector F, the Borrow Pit Lake, and Reference Areas Bauget Area I

| į                 | l .                    | . 2" drie 4                | "冷暖"。"冷心"                        |                                  |                | No. Company                         |                            | il disasta                 | Number of                                        | Amount of Sample | Sample      | Relative Abundanc |
|-------------------|------------------------|----------------------------|----------------------------------|----------------------------------|----------------|-------------------------------------|----------------------------|----------------------------|--------------------------------------------------|------------------|-------------|-------------------|
|                   |                        |                            | A DESTRUCTION OF THE PROPERTY OF | Family                           | Sub-Family     | Tribe                               | Conus                      | Species                    | Counted                                          | Analyzed (%)     | Total       | (Percent)         |
| ation ID          | mytum                  | Crane                      | Tubificide                       | Tubificidae                      | according at   | - 11100                             | Limnodrilus                | hoffmeisteri               | 3                                                | 100              | 1014        | 78.00             |
| DC-2-1            | Annelida               | Oligochaeta                | Prionodesmacea                   | Unionidae                        | 1              | l                                   | Lampaille                  | AD .                       | 1                                                | 100              |             | 25.00             |
| DC-2-1            | Mollusca               | Pelecypoda                 | Tubificida                       | Tubificidae                      |                | 1                                   | Limnodrikus                | hoffmeistert               | 30                                               | 100              | 30          | 83 33             |
| DC-5-3            | Annelida               | Cligochaeta                | Tubificida                       | Tubificidae                      | 1              | ł                                   | Hyodrikus                  | Iompletoni                 | 3                                                | 100              | 3           | 6 33              |
| DC-2-2            | Annelida               | Oligochaeta                | Tublificida                      | Naididae                         | ŀ              |                                     | Dero                       | digitala                   |                                                  | 100              | 1           | 2 78              |
| DC-2-2            | Annelida               | Oligochaeta<br>Oligochaeta | Tubificida                       | Tubificidae                      |                |                                     | Psammaryclides             | californianus              | <del></del>                                      | 100              | <del></del> | 2 78              |
| DC-2-2            | Annelida<br>Anthropoda | Crustacea                  | Decapoda                         | Palaemonidae                     |                |                                     | Palaemonetes               | kadlakanala                | <del></del>                                      | 100              | <del></del> | 278               |
| DC-2-3            | Annelida               | Olioochaela                | Tubificide                       | Tubificidae                      |                |                                     | Limnodrilus                | hoffmeisteri               | 49                                               | 50               | 98          | 90 74             |
| DC-2-3            | Arthropoda             | Insecta                    | Diptera                          | Cheoboridae                      |                |                                     | Cheoborus                  | punctipennia               | 2                                                | 50               | 4           | 3.70              |
| DC-2-3            | Annelida               | Oligochaeta                | Tubificida                       | Naididae                         | •              |                                     | Dero                       | digitala                   |                                                  | 50               | 2           | 1 85              |
| DC-2-3            | Arthropoda             | Insecta                    | Diptera                          | Chironomidae                     | Chironominae   | Chironomini                         | Chironomus                 | decorus                    | <del>-</del>                                     | 50               | 3           | 1 85              |
| DC-2-3            | Arthropoda             | insecta                    | Diptera                          | Chironomidae                     | Tanypodinae    | Procladiini                         | Procladius                 | Ap.                        | <del> </del>                                     | 50               | 2           | 1.85              |
| DC-2-3<br>CF2-1-1 | Annelida               |                            | Tubificida                       | Tubificidae                      |                | * 100,000                           | l amnodrilus               | hoffmelsteri               | 149                                              | 10               | 1490        | 90.86             |
| EF2-1-1           |                        | Oligochaeta<br>Insecta     | Diptera                          | Ephydridae                       |                |                                     | Ephydra                    | aubopaca                   | 6                                                | 10               | 60          | 3 66              |
|                   | Arthropoda             | insecta                    | Ototora                          | Chironomidae                     | Tanypodinae    | Tanypodini                          | Tanypus                    | neopunctipennis            | 7                                                | 10               | 20          | 1 22              |
| EF2-1-1           | Arthropoda             |                            |                                  | Palaemonidae                     | , and bounded  | · milypaama                         | Palaemonetes               | kadlakensis                | 2                                                | 1                | 20          | 1 22              |
| EF2-1-1           | Arthropoda             | Crustacea                  | Decapoda<br>Basommatophora       | Physidae                         |                |                                     | Physella                   | helerostropha              |                                                  | 10               | 20          | 1 22              |
| EF2-1-1           | Mollusca               | Gastropoda                 | Tubificida                       | Tubificidae                      |                |                                     | Neis                       | variabilis                 | <del>-</del>                                     | 10               | 10          | 061               |
| EF2-1-1           | Annelida               | Oligochaela                |                                  | Tubificidae                      |                |                                     | Limnodrilus                | udekemienus                | <del> </del>                                     | 10               | 10          | 0.01              |
| EF2-1-1           | Annelida               | Oligochaeta                | Tubificida                       |                                  |                |                                     |                            |                            | t — — <del>;</del>                               | 10               | 10          | 061               |
| EF2-1-1           | Arthropoda             | insecta                    | Diplera                          | Ceratopogonidae  <br>Tubificidae |                | 1                                   | Ceralopogon<br>Limnodrilus | <u>ap.</u><br>hoffmelsteri | 116                                              | 10               | 1150        | 89 15             |
| EF2-1-2           | Annelida               | Oligochaeta                | Tubificida                       |                                  | 1              |                                     |                            | heterostropha              | 3                                                | 10               | 30          | 2.33              |
| EF2-1-2           | Mollusca               | Gastropoda                 | Basommatophora                   | Physidae                         |                |                                     | Physella                   | ,                          | 2                                                | 10               | 20          | 1 55              |
| EF2-1-2           | Arthropoda             | Insecta                    | Diptera                          | Ceratopogonidae                  |                |                                     | Ceratopogon                | #p                         | J - 2                                            | 10               | 20          | 1 55              |
| F2-1-2            | Arthropoda             | Insecta                    | Hemiplera                        | Corixidae                        | Cortxinae      |                                     | Trichocorixa               | sp.                        | 2                                                | 10               | 20          | 1 55              |
| EF2-1-2           | Arthropoda             | Insects                    | Diptera                          | Chironomidae                     | Yanypodines    | Tanypodini                          | Tanypus                    | neopunctipennis            | ! !                                              | 10               | 10          | 0.78              |
| EF 2-1-2          | Annelida               | Oligochaeta                | Tubificida                       | Tubificidae                      |                |                                     | Psammoryclides             | californianus              | 1 !                                              | 10               | 10          | 0.78              |
| EF2-1-2           | Annelida               | Oligochaeta                | Tublficida                       | Naididae                         |                |                                     | Autodrifus                 | pluriseta                  | ! !                                              | 10               | 10          | 0.78              |
| EF 2-1-2          | Arthropoda             | insecta                    | Diptera                          | Coratopogonidae                  |                |                                     | Spheeromies                | ŧρ                         | 1 !                                              | 10               | 10          | 0.78              |
| EF2-1-2           | Arthropoda             | Insecta                    | Diptera                          | Ceratopogonidae                  |                |                                     | Cuticoldes                 | <b>ερ</b> .                | l :                                              | 10               | 10          | 0.78              |
| EF2-1-2           | Arthropoda             | Insecta                    | Hemiptera                        | Corixidae                        | 1              |                                     | Sigere                     | <b>ερ</b> .                | 1                                                | 10               | 600         | 40 27             |
| EF2-1-3           | Arthropoda             | Insecta                    | Diptera                          | Ceratopogonidae                  |                |                                     | Culicoldes                 | <b>₽</b> ₽                 | 60                                               |                  | 500         | 33 56             |
| EF2-1-3           | Annelida               | Oligochaeta                | Tubificida                       | Tubificidae                      |                |                                     | Limnodrilus                | hoffmeisteri               | 50                                               | 10               | • · · —     | 33 50<br>16 79    |
| EF2-1-3           | Arthropoda             | Insecta                    | Diptera                          | Chironomidae                     | Tanypodinae    | Tanypodini                          | tanypus                    | neopunctipennia            | 28                                               | 10               | 280         | 3 36              |
| EF2-1-3           | Arthropoda             | Insects                    | Diptera                          | Ceratopogonidae                  |                |                                     | Ceratopogon                | ₽¢                         | 5                                                | 10               | 50          | 1.34              |
| EF2-1-3           | Annelida               | Olipochaeta                | Tubificida                       | Naididae                         | Ì              |                                     | Aulodrifus                 | piurisela                  | 2                                                | 10               | 20          | 0.67              |
| EF2-1-3           | Annelida               | Oligochaeta                | Tubificida                       | Naididae                         |                |                                     | Dero                       | digitala                   | !                                                | 10               | 10          | 0 67              |
| EF2-1-3           | Arthropoda             | Insects                    | Hemiotera                        | Cortxidae                        | Corixinae      |                                     | Trichocorixe               | ap.                        | 1 1                                              | 10               | 10          | 0.67              |
|                   | Arthropoda             | Insecta                    | Diptera                          | Ceratopogonidae                  |                | ]                                   | Bezzie                     | <b>e</b> p                 | 11                                               | 10               | 10          |                   |
| EF2-1-3           | Arthropoda             | Insecta                    | Diptera                          | Ceratopogonidae                  | Į.             | ľ                                   | Spheeromies                | æρ.                        | 1 1                                              | 10               | 10          | 0.67              |
| EF2-1-3           | Annelida               | Oligochaeta                | Tubificida                       | Tubificidae                      | 1              | ļ                                   | Limnodriluz                | hoffmelsterf               | 22                                               | 100              | 22          | 69 46             |
| EF2-2-1           |                        | Insects                    | Diptera                          | Caratopogonidae                  | 1              | 1                                   | Ceretopogon                | aρ.                        | 8                                                | 100              | 8           | 21.62             |
| EF2-2-1           | Arthropoda             |                            | TubMicida                        | Naididae                         | i              | 1                                   | Dero                       | digitala                   | 1 1                                              | 100              | 1           | 2.70              |
| EF2-2-1           | Annelida               | Oligochaela                | Tubificida                       | Naididae                         |                |                                     | Aulodrilus                 | pigueti                    | 1                                                | 100              | 1 1         | 2.70              |
| EF2-2-1           | Annelida               | Oligochaeta                | Diplera                          | Chironomidae                     | Tanypodinae    | Tanypodini                          | Tanypus                    | neopunctipennis            | 1                                                | 100              | 1           | 2.70              |
| EF2-2-1           | Arthropoda             | insects                    |                                  | Ceratopogonidae                  | 15,            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Spheeromias                | ND.                        | 1 7                                              | 100              | 1           | 2.70              |
| EF2-2-1           | Arthropoda             | Insects                    | Diptera                          | Chironomidae                     | Chironominae   | Tanytaraini                         | Tanylaraus                 | Sp.                        | ] 1                                              | 100              | 1           | 2.70              |
| EF2-2-1           | Arthropoda             | Insects                    | <u>Diplera</u>                   | Tipulidae                        |                | ,,                                  | Ormosia                    | 8D.                        | 1 1                                              | 100              | 1           | 2.70              |
| EF2-2-1           | Arthropoda             | insect <u>a</u>            | Diptera                          | Chironomidae                     | Orthocladiinae | Orthocladiini                       | Paecirociadius             | 80.                        | 1 1                                              | 100              | 1           | 2.70              |
| EF2-2-1           | Arthropoda             | insecta                    | Diptera                          |                                  | CHIRCHEOMISE   |                                     | Limnodrilus                | hoffmelateri               | 13                                               | 100              | 13          | 92.66             |
| EF2-2-2           | Annelida               | Oligochaeta                | Tublficida                       | Tubificidae                      | Tommadasa      | Pentaneurini                        | Abiebesmyla                | annulata                   | 1 1                                              | 100              | 1           | 7,14              |
| EF2-2-2           | Arthropoda             | insecta                    | Diptera                          | Chironomidae                     | Tanypodinae    | - WINGINGUINI                       | Limnodritus                | hoffmeisteri               | 25                                               | 100              | 28          | 89.44             |
| EF2-2-3           | Annelida               | Oligochaeta                | Tubificids                       | Tubificidae                      |                | Chlor-control                       |                            | salinarius                 | 8                                                | 100              | 8           | 22.22             |
| REF2-2-3          | Arthropoda             | Insecta                    | Diptera                          | Chironomidae                     | Chironominae   | Chironomini                         | Chironomus                 | scaleenum                  | 1 1                                              | 100              | 1 1         | 2.78              |
| REF2-2-3          | Arthropoda             | Insecta                    | Diptera                          | Chironomidae _                   | Chironominae   | Chironomini                         | Polypedilum                | neopunctipennis            |                                                  | 100              | 1 1         | 2.78              |
| REF2-2-3          | Arthropoda             | Insecta                    | Diptera                          | Chironomidae                     | Tanypodinae    | Tanypodini                          | Tenypus                    | neopunctipennis<br>ερ.     | <del>                                     </del> | 100 -            | 1 1         | 2.78              |
| REF2-2-3          | Arthropoda             | Insecta                    | Hemiptera                        | Corixidae                        | Corixinae      | I                                   | Trichocorixa               | - ap.                      | 1                                                | .L <del></del>   | 1           |                   |











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 13012

Client Sample ID

: F-1-1-"CREEK SECTOR F-1"

Remarks

Date/Time Sample Collected : 10/7/99 @ 3:00:00 P

Percent Sample Examined

Sampling Depth (m)

: Not Reported

| Phylum     | Class       | Order          | Family          | Sub-Family   | Tribe       | Genus/Species/Variety     | #<br>Counter  |
|------------|-------------|----------------|-----------------|--------------|-------------|---------------------------|---------------|
| Annelida   | Oligochaeta | Tubificida     | Naididae        |              |             | Haemonais waldvogeli      | 1             |
|            |             |                | Tubificidae     |              |             | Branchiura sowerbyi       | 3             |
|            |             |                |                 |              |             | Limnodrilus claparedianus | 1             |
| ilusca     | Pelecypoda  | Prionodesmacea | Sphaeriidae     |              |             | Sphaerium sp.             | 2             |
| Arthropoda | Insecta     | Coleoptera     | Hydrophilidae   |              |             | Hydrochus sp.             | 1             |
|            |             | Diptera        | Ceratopogonidae |              |             | Ceratopogon sp.           | 1             |
|            |             |                |                 |              |             | Culicoides sp.            | 3             |
|            |             |                | Chironomidae    | Chironominae | Chironomini | Chironomus sp.            | 1             |
|            |             |                |                 |              |             | Chironomus decorus        | 1             |
|            |             |                |                 |              |             | Einfeldia sp.             | 4             |
|            |             |                |                 |              |             | Polypedilum illinoense    | 5             |
|            |             |                |                 | Tanypodinae  | Tanypodini  | Tanypus carinatus         | 1             |
|            |             | Hemiptera      | Pleidae         |              |             | Neoplea sp.               | 1             |
|            |             | Lepidoptera    | Pyralidae       |              |             | Acentria sp.              | 1             |
|            |             |                |                 |              |             | Sub-Tota                  | l: 26         |
|            |             |                |                 |              |             | Grand Tota                | <i>l</i> : 26 |

**ABS** 

Page 67 of 74











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET.IL

Laboratory Sample ID : 13013

Remarks

Client Sample ID

: F-1-2-"CREEK SECTOR F-1"

Date/Time Sample Collected : 10/7/99 @ 3:00:00 P

Percent Sample Examined

Sampling Depth (m)

: Not Reported

| _ | Phylian    | Cless       | Order           | Family          | Sub-Family   | Tribe       | Genus/Species/Variety    | Counted |
|---|------------|-------------|-----------------|-----------------|--------------|-------------|--------------------------|---------|
|   | Amelda     | Oligochaeta | Tubificida      | Tubificidae     |              |             | Limnodrilus daparedianus | 1       |
|   | Molusca    | Pelecypoda  | Prionodes/naces | Sphaeradae      |              |             | Sphaenum sp.             | 8       |
|   | Arthropoda | Insecta     | Diptera         | Ceratopogonidae |              |             | Ceratopogon sp.          | 1       |
|   |            |             |                 | Chironomidae    | Chironominae | Chironomini | Chironomus sp.           | 4-      |
|   |            |             |                 |                 |              |             | Polypedilum illinoense   | _       |
|   |            |             |                 |                 |              |             | <del></del>              |         |

Sub-Total: Grand Total:

**ABS** 

Page 68 of 74











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 13014

Client Sample ID

: F-1-3-"CREEK SECTOR F-1"

Remarks

**Date/Time Sample Collected** 

: 10/7/99 @ 3:00:00 P

Percent Sample Examined

: 50

Sampling Depth (m)

| Phylum   | Class       | Order          | Family          | Sub-Family   | Tribe       | Genus/Species/Variety   | #<br>Counted |
|----------|-------------|----------------|-----------------|--------------|-------------|-------------------------|--------------|
| Annelida | Oligochaeta | Tubificida     | Tubificidae     |              |             | Branchiura sowerbyi     | 5            |
| Mollusca | Pelecypoda  | Prionodesmacea | Sphaeriidae     |              |             | Musculium sp.           | 4            |
|          |             |                |                 |              |             | Sphaerium sp.           | 3            |
| thropoda | Insecta     | Diptera        | Ceratopogonidae |              |             | Ceratopogon sp.         | 1            |
|          |             |                |                 |              |             | Culicoides sp.          | 4            |
|          |             |                | Chironomidae    | Chironominae | Chironomini | Chironomus sp.          | 2            |
|          |             |                |                 |              |             | Polypedilum illinoense  | 2            |
|          |             |                |                 | Tanypodinae  | Tanypodini  | Tanypus neopunctipennis | 1            |
|          |             |                |                 |              |             | Sub-Total:              | 22           |
|          |             |                |                 |              |             | Grand Total:            | 22           |











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

**Date** 

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 13015

Client Sample ID

Remarks

: F-2-1-"CREEK SECTOR F-2"

Date/Time Sample Collected : 10/7/99 @ 4:10:00 P

Percent Sample Examined

Sampling Depth (m)

: Not Reported

| Phylum     | Class       | Order      | Family          | Sub-Family   | Tribe           | Genus/Species/Variety   | #<br>Counted |
|------------|-------------|------------|-----------------|--------------|-----------------|-------------------------|--------------|
| Annelida   | Oligochaeta | Tubificida | Tubificidae     |              |                 | Branchiura sowerbyi     | 5            |
| Artivopoda | Insects     | Diotera    | Ceratopogonidae |              |                 | Bezzia sp.              | 1            |
|            |             |            |                 |              |                 | Ceratopogon sp.         | 3            |
|            |             |            |                 |              |                 | Sphaeromias sp.         | -            |
|            |             |            | Chironomidae    | Chironominae | Chironomini     | Chironomus sp.          | · _ ·        |
|            |             |            |                 | Tanypodinae  | Coelotanypodini | Coelotanypus scapularis | 1            |
|            |             |            |                 |              |                 | Sub-Total:              | 18           |
|            |             |            |                 |              |                 | Grand Total:            | 18           |

**ABS** 

Page 70 of 7











**Charlie Menzie** 

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

**Date** 

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 13016

Client Sample (D

: F-2-2-"CREEK SECTOR F-2"

Remarks

Date/Time Sample Collected : 10/7/99 @ 4:10:00 P

Percent Sample Examined

Sampling Depth (m)

| Phylum     | Class       | Order      | Family          | Sub-Family   | Tribe       | Genus/Sp           | ecies/Variety | #<br>Counted |
|------------|-------------|------------|-----------------|--------------|-------------|--------------------|---------------|--------------|
| Annelida   | Oligochaeta | Tubificida | Tubificidae     |              |             | Branchiura sowe    | rbyi          | 8            |
| Arthropoda | Insecta     | Diptera    | Ceratopogonidae |              |             | Ceratopogon sp.    |               | 12           |
|            |             |            |                 |              |             | Culicoides sp.     |               | 1            |
|            |             |            |                 |              |             | Sphaeromias sp.    |               | 8            |
|            |             |            | Chironomidae    | Chironominae | Chironomini | Chironomus sp.     |               | 2            |
|            |             |            |                 |              |             | Polypedilum illind | ense          | 1            |
|            |             |            |                 | Tanypodinae  |             | Psectrotanypus s   | p.            | 1            |
|            |             | Hemiptera  | Mesoveliidae    |              |             | Mesovelia sp.      |               | 1            |
|            |             |            | Pleidae         |              |             | Neoplea sp.        |               | 2            |
|            |             |            |                 |              |             | <b>-</b>           | Sub-Total:    | 36           |
|            |             |            |                 |              |             |                    | Grand Total:  | 36           |











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 13017

Client Sample ID

Remarks

: F-2-3-TCREEK SECTOR F-2T

Date/Time Sample Collected : 10/7/99 @ 4:10:00 P

Percent Sample Examined

Sampling Depth (m)

: Not Reported

| Phylon    | Class       | Order    | Family          | Sub-Family   | Tribe       | Genus/Species/Variety  | Counted |
|-----------|-------------|----------|-----------------|--------------|-------------|------------------------|---------|
| Annelida  | Oligochaeta | Tublicda | Tubificidae     |              |             | Branchiura sowerbyi    | 9       |
| Artwopoda | Insecta     | Diptera  | Ceratopogonidae |              |             | Ceratopogon sp.        | 11      |
|           |             |          |                 |              |             | Sphaeromias sp.        | 2       |
|           |             |          | Chiranomidae    | Chironominae | Cheronomeni | Polypedilum illinoense | 1       |
|           |             |          |                 |              |             | Sub-Total              |         |
|           |             |          |                 |              |             | Grand Total            | : 23    |

**ABS** 

Page 72 of 74











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

**Date** 

: 12/23/99

BTR No.

: 03703

Project No.

No. of Samples: 69

: 99033

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 13018

Client Sample ID

: F-3-1-"CREEK SECTOR F-3"

Remarks

Date/Time Sample Collected : 10/7/99 @ 10:45:00

Percent Sample Examined

: 50

Sampling Depth (m)

| Phylum   | Class       | Order        | Family          | Sub-Family   | Tribe       | Genus/Species/Variety    | #<br>Counte |
|----------|-------------|--------------|-----------------|--------------|-------------|--------------------------|-------------|
| Annelida | Oligochaeta | Tubificida   | Tubificidae     |              |             | Branchiura sowerbyi      | 28          |
|          |             |              |                 |              |             | llyodrilus templetoni    | 3           |
|          |             |              |                 |              |             | Limnodrilus hoffmeisteri | 14          |
| thropoda | insecta     | Coleoptera   | Dytiscidae      |              |             | Hygrotus sp.             | 1           |
|          |             |              | Hydrophilidae   |              |             | Tropisternus sp.         | 1           |
|          |             | Diptera      | Ceratopogonidae |              |             | Culicoides sp.           | 1           |
|          |             |              | Chironomidae    | Chironominae | Chironomini | Polypedilum illinoense   | 1           |
|          |             |              |                 | Tanypodinae  |             | Krenopelopia sp.         | 2           |
|          |             |              | Stratiomyidae   |              |             | Stratiomys sp.           | 1           |
|          |             |              |                 |              |             | Sub-Total                | : 52        |
|          |             | <del> </del> |                 |              |             | Grand Total              | : 52        |











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID: 13019

: F-3-2-TCREEK SECTOR F-3"

Remarks

Client Sample ID

Date/Time Sample Collected : 10/7/99 @ 10:45:00

Percent Sample Examined

Sampling Depth (m)

: Not Reported

| Annelida Oligochieta Tubificida Naridiae Dero vaga  Tubificidae Branchiura sowerbyi Byodrilus templetoni Lumnodrilus hoffmeisi Mollusca Gastropoda Basommatophora Physidae Physidae Physiella heterostropi Artivopoda Insecta Diptera Ceratopogonidae Chironomina Polypedilum illinoens |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Tubilicidae Branchiura sowerbyi Byodnitus templetoni Limnodritus holfmeisi Mollusca Gastropoda Basonimatophora Physidae Physidae Physella heterostropi Arthropoda Insecta Diptera Ceratopogonidae Sphaeromias sp.                                                                       |                |
| Mollusca Gasaropoda Basommatophora Physidae Physidae Physida Physida Physidae Sphaeromias sp.                                                                                                                                                                                           | 1              |
| Lumnodritus hoffmeist  Mollusca Gassropoda Basommatophora Physidae Physidae Physida heterostropi  Arthropoda Insecta Diptera Ceratopogonidae Sphaeromas sp.                                                                                                                             | 27             |
| Mollusca Gassropoda Basommatophora Physidae Physidae Physidae Arthropoda Insecta Diptera Ceratopogonidae Sphaeromias sp.                                                                                                                                                                | 2              |
| Arthropoda Insecta Diptera Ceratopogonidae Sphaeromias sp.                                                                                                                                                                                                                              | eri 🤫          |
|                                                                                                                                                                                                                                                                                         | a              |
| Chronomidae Chironominae Chironomini Polypedilum illinoens                                                                                                                                                                                                                              | 1              |
|                                                                                                                                                                                                                                                                                         | e 2            |
| Tipulidae                                                                                                                                                                                                                                                                               | 1              |
| Hemplera Consodae Consonae Trichoconica sp.                                                                                                                                                                                                                                             | 1              |
| <del></del>                                                                                                                                                                                                                                                                             | Sub-Total: 68  |
| G                                                                                                                                                                                                                                                                                       | rand Total: 68 |

**ABS** 

Page 74 of 74











**Charlie Menzie** 

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12965

Client Sample ID

: F-3-3-"CREEK SECTOR F-3"

Remarks

Date/Time Sample Collected

: 10/7/99 @ 10:45:00

Percent Sample Examined

Sampling Depth (m)

| Phylum   | Class       | Order          | Family          | Sub-Family   | Tribe       | Genus/Species/V          | ariety   | #<br>Counted |
|----------|-------------|----------------|-----------------|--------------|-------------|--------------------------|----------|--------------|
| Annelida | Oligochaeta | Tubificida     | Tubificidae     |              |             | Branchiura sowerbyi      |          | 26           |
|          |             |                |                 |              |             | Limnodrilus hoffmeisteri |          | 11           |
| Mollusca | Gastropoda  | Basommatophora | Physidae        |              |             | Physella heterostropha   |          | 1            |
| ropoda   | Insecta     | Diptera        |                 |              |             |                          |          | 3            |
|          |             |                | Ceratopogonidae |              |             | Ceratopogon sp.          |          | 1            |
|          |             |                |                 |              |             | Sphaeromias sp.          |          | 3            |
|          |             |                | Chironomidae    | Chironominae | Chironomini | Polypedilum illinoense   |          | 10           |
|          |             |                |                 | Tanypodinae  |             | Krenopelopia sp.         |          | 3            |
|          |             |                | Tipulidae       |              |             | Limonia sp.              |          | 1            |
|          |             |                |                 |              |             | Su                       | b-Total: | 59           |
|          |             |                |                 |              |             | Gran                     | d Total: | 59           |











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET.IL

Laboratory Sample ID : 12965

Remarks

Client Sample ID

: BP-1-1-"BORROW PIT LAKE-1"

Date/Time Sample Collected : 10/6/99 @ 11:30:00

Percent Sample Examined

Sampling Depth (m)

: Not Reported

| Phylum     | Class       | Order            | Family          | Sub-Family  | Tribe      | Genus/Species/Variety    | #<br>Counted |
|------------|-------------|------------------|-----------------|-------------|------------|--------------------------|--------------|
| Annalida   | Hirudines   | Pharyngobdellida | Erpobdellidae   |             |            | Mooreobdelle microstoma  |              |
| Attends    |             | -                | Сримения        |             |            | mud ecocess inscressorie | ,            |
|            | Oligochaeta | Tubificida       | Tubificidae     |             |            | Branchiura sowerbyi      | 3            |
|            |             |                  |                 |             |            | Limnodrilus holimeisteri | 3            |
| Artivopoda | Insecta     | Diptera          | Ceratopogonidae |             |            | Ceratopogon sp.          | •            |
|            |             |                  | Chironomidae    | Tanypodinae | Natarsini  | Natarsia sp.             | <b>~</b> ′   |
|            |             |                  |                 |             | Tanypodini | Tanypus neopunctipennis  | 1            |
|            |             | Hemplera         | Conxidae        |             |            | Palmaconira sp.          | 2            |
|            |             | Odonata          | Libellulidae    |             |            | Perithernis sp.          | 5            |
|            |             |                  |                 |             |            | Sub-Total:               | 17           |
|            |             |                  |                 |             |            | Grand Total              | 17           |

**ABS** 

Page 40 of 7<sup>4</sup>











**Charlie Menzie** 

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

**Date** 

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12986

Client Sample ID

Remarks

: BP-1-2-"BORROW PIT LAKE -1"

Date/Time Sample Collected

: 10/6/99 @ 11:30:00

Percent Sample Examined

Sampling Depth (m)

: Not Reported

| Phylum     | Class       | Order            | Family        | Sub-Family    | Tribe       | Genus/Species/Variety    | #<br>Counted |
|------------|-------------|------------------|---------------|---------------|-------------|--------------------------|--------------|
| Annelida   | Hirudinea   | Pharyngobdellida | Erpobdellidae |               |             | Mooreobdella microstoma  | 2            |
|            | Oligochaeta | Tubificida       | Naididae      |               |             | Dero digitata            | 3            |
|            |             |                  | Tubificidae   |               |             | Aulodrilus pigueti       | 1            |
|            |             |                  |               |               |             | Branchiura sowerbyi      | 1            |
|            |             |                  |               |               |             | Limnodrilus hoffmeisteri | 4            |
| Arthropoda | Insecta     | Diptera          | Chironomidae  | Chironominae  | Chironomini | Cryptotendipes sp.       | 1            |
|            |             |                  | ·             | Tanypodinae   | Tanypodini  | Tanypus neopunctipennis  | 2            |
|            |             | Epherneroptera   | Caenidae      |               |             | Caenis sp.               | 2            |
|            |             | Hemiptera        | Corixidae     |               |             | Palmacorixa sp.          | 3            |
| ,          |             | Odonata          | Gomphidae     |               |             | Arigomphus sp.           | 1            |
|            |             |                  | Libellulidae  |               |             | Perithemis sp.           | 2            |
|            |             | Trichoptera      | Hydroptilidae | Hydroptilinae |             | Hydroptila ajax          | 1            |
|            |             |                  |               |               |             | Sub-Total:               | 23           |
|            |             |                  |               |               |             | Grand Total:             | 23           |

**ABS** 

Page 41 of 74











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane Chelmsford, MA 01824 Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12987

: 1/290/

Remarks

Client Sample ID

: BP-1-3-"BORROW PIT LAKE-1"

Date/Time Sample Collected

: 10/6/99 @ 11:30:00

Percent Sample Examined : 50

Sampling Depth (m)

: Not Reported

| Phylom     | Class       | Order            | Family          | Sub-Family  | Tribe      | Genus/Species/Variety     | #<br>Counted |
|------------|-------------|------------------|-----------------|-------------|------------|---------------------------|--------------|
| Nematoda   |             | Dorylamida       |                 |             |            | Alaimus sp.               | 1            |
| Annelida   | Hrudines    | Pharyngobdellida | Erpobdellidae   |             |            | Mooreobdella microstoma   | 1            |
|            | Oligochaeta | Tubificida       | Tubificidae     |             |            | Branchiura sowerbyi       | 1            |
|            |             |                  |                 |             |            | Byodnius templetoni       | 1            |
|            |             |                  |                 |             |            | Limnodrilus hollimeisteri |              |
| Arthropoda | Insects     | Coleoptera       | Hydrophilidae   |             |            | Berosus sp.               | 1            |
|            |             | Dictera          | Ceratopogonidae |             |            | Ceratopogon sp.           | 2            |
|            |             |                  | Chiranomidae    | Tanypodinae | Tanypodini | Tarrypus neopunctipennis  | 1            |
|            |             | Ephemeroptera    | Caemdae         |             |            | Caenis sp.                | 1            |
|            |             | Hemptera         | Commdae         | Conxinae    |            | Trichocorica sp.          | 5            |
|            |             | Otionata         | Libelluidae     |             |            | Perithemis sp.            | 2            |
|            |             |                  |                 |             |            | Sub-Total                 | 23           |
|            |             |                  |                 |             |            | Grand Total               | 23           |

**ABS** 

Page 42 of 74











**Charlie Menzie** 

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12995

Client Sample ID

Remarks

: BP-2-1-"BORROW PIT LAKE-2"

Date/Time Sample Collected : 10/6/99 @ 9:30:00 A

Percent Sample Examined

Sampling Depth (m)

: Not Reported

| Phylum     | Class       | Order      | Family          | Sub-Family   | Tribe           | Genus/Species/Variety    | #<br>Counter |
|------------|-------------|------------|-----------------|--------------|-----------------|--------------------------|--------------|
| Annelida   | Oligochaeta | Tubificida | Naididae        |              |                 | Dero digitata            | 6            |
|            |             |            | Tubificidae     |              |                 | Aulodrilus pigueti       | 4            |
|            |             |            |                 |              |                 | Branchiura sowerbyi      | 2            |
|            |             |            |                 |              |                 | llyodrilus templetoni    | 5            |
|            |             |            |                 |              |                 | Limnodrilus hoffmeisteri | 27           |
| Arthropoda | Insecta     | Diptera    | Ceratopogonidae |              |                 | Ceratopogon sp.          | 3            |
|            |             |            |                 |              |                 | Culicoides sp.           | 1            |
|            |             |            | Chironomidae    | Chironominae | Chironomini     | Chironomus salinarius    | 1            |
|            |             |            |                 | Tanypodinae  | Coelotanypodini | Clinotanypus sp.         | 2            |
|            |             |            |                 |              | Tanypodini      | Tanypus neopunctipennis  | 2            |
|            |             |            |                 |              |                 | Tanypus stellatus        | 3            |
|            |             | Odonata    | Gomphidae       |              |                 | Arigomphus sp.           | 1            |
|            |             |            |                 |              |                 | Sub-Total                | : 57         |
|            |             |            |                 |              |                 | Grand Total              | : 57         |

ABS

Page 50 of 74











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12968

Client Sample ID

: BP-2-2-TBORROW PIT LAKE-2T

Remarks

Date/Time Sample Collected : 10/6/99 @ 9:30:00 A

Percent Sample Examined

Sampling Depth (m)

: Not Reported

| Phylesia   | Class       | Order    | Family          | Sub-Family   | Tribe           | Genus/Species/Variety    | #<br>Counted |
|------------|-------------|----------|-----------------|--------------|-----------------|--------------------------|--------------|
| Annelica   | Oligochaeta | Tubifoda | Tubficidae      |              |                 | Branchiura sowerbyi      | 2            |
|            |             |          |                 |              |                 | Byodrikus templetoni     | 4            |
|            |             |          |                 |              |                 | Limnodrilus holimeisteri | 13           |
| Artivopoda | Insecta     | Diptera  | Ceratopogonidae |              |                 | Ceratopogon sp.          | 4            |
|            |             |          | Chironomidae    | Chironominae | Chironomini     | Chironomus salinarius    |              |
|            |             |          |                 | Tanypodinae  | Coelotanypodini | Clinotanypus sp.         | 2            |
|            |             |          |                 |              | Procladim       | Procladius sp.           | 3            |
|            |             |          |                 |              | Tanypodini      | Tanypus neopunctipennis  | 1            |
|            |             |          | _               | _            |                 | Sub-Total:               | 29           |
|            |             |          |                 |              |                 | Grand Total:             | 29           |

**ABS** 

Page 43 of 74











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12989

Client Sample ID

Remarks

: BP-2-3-"BORROW PIT LAKE-2"

Date/Time Sample Collected : 10/6/99 @ 9:30:00 A

Percent Sample Examined

Sampling Depth (m)

: Not Reported

| Phylum   | Class       | Order      | Family          | Sub-Family   | Tribe           | Genus/Species/Variety    | #<br>Counted |
|----------|-------------|------------|-----------------|--------------|-----------------|--------------------------|--------------|
| Annelida | Oligochaeta | Tubificida | Naididae        |              |                 | Dero digitata            | 6            |
|          |             |            | Tubificidae     |              |                 | Branchiura sowerbyi      | 2            |
|          |             |            |                 |              |                 | Limnodrilus hoffmeisteri | 18           |
| hropoda  | Insecta     | Diptera    | Ceratopogonidae |              |                 | Ceratopogon sp.          | 7            |
|          |             |            | Chironomidae    | Chironominae | Chironomini     | Chironomus decorus       | 2            |
|          |             |            |                 |              |                 | Cladopelma sp.           | 1            |
|          |             |            |                 |              | Tanytarsini     | Tanytarsus sp.           | 2            |
|          |             |            |                 | Tanypodinae  | Coelotanypodini | Clinotanypus sp.         | 1            |
|          |             |            |                 |              | Procladiini     | Procladius sp.           | 1            |
|          |             |            |                 |              | Tanypodini      | Tanypus neopunctipennis  | 1            |
|          |             |            |                 |              |                 | Tanypus stellatus        | 2            |
|          |             |            | Tipulidae       |              |                 |                          | 1            |
|          |             | Odonata    | Gomphidae       |              |                 | Arigomphus sp.           | 1            |
|          |             |            |                 |              |                 | Sub-Tota                 | ıl: 45       |
|          |             |            |                 |              |                 | Grand Total              | al: 45       |

**ABS** 

Page 44 of 74











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID: 12992

Client Sample ID Remarks

: BP-3-1-"BORROW PIT LAKE-3"

Date/Time Sample Collected : 10/6/99 @ 4:30:00 P

Percent Sample Examined

Sampling Depth (m)

: Not Reported

| Phylen     | Class        | Order     | Family          | Sub-Family   | Tribe           | Genus/Species/Variety   | #<br>Counted |
|------------|--------------|-----------|-----------------|--------------|-----------------|-------------------------|--------------|
|            |              |           |                 |              |                 |                         |              |
| Annelida   | Oligochiaeta | Tubficida | Nadidae         |              |                 | Dero digitata           | 16           |
|            |              |           | Tubificidae     |              |                 | Autodnitus pigueti      | 1            |
|            |              |           |                 |              |                 | Branchiura sowerbyi     | 9            |
|            |              |           |                 |              |                 | Limnodnius holimeisteri | 4^           |
| Arthropoda | Insecta      | Osptera   | Ceratopogonidae |              |                 | Ceratopogon sp.         | •            |
|            |              |           |                 |              |                 | Sphaeromias sp.         | 1            |
|            |              |           | Cheronomedae    | Chironominae | Chironomini     | Cryptochironomus fulvus | 3            |
|            |              |           |                 | Tanypodinae  | Coelotanypodini | Clinotarrypus sp.       | 1            |
|            |              |           |                 |              | Tanypodini      | Tanypus neopunctipennis | 4            |
|            |              | Odonata   | Libellulidae    |              |                 | Perithemis sp.          | 2            |
|            |              |           |                 |              |                 | Sub-Total               | : 84         |
|            |              |           |                 | <u> </u>     |                 | Grand Total             | : 84         |
|            |              |           | <del></del>     |              |                 |                         |              |

**ABS** 

Page 47 of 74











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane Chelmsford, MA 01824 **Date** 

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12990

Client Sample ID

: BP-3-2-"BORROW PIT LAKE-3"

Remarks

Date/Time Sample Collected

: 10/6/99 @ 4:30:00 P

Percent Sample Examined

: 100

Sampling Depth (m)

: Not Reported

| Phylum   | Class       | Order      | Family          | Sub-Family   | Tribe       | Genus/Species/Variety    | #<br>Counter |
|----------|-------------|------------|-----------------|--------------|-------------|--------------------------|--------------|
| Annelida | Oligochaeta | Tubificida | Naididae        |              |             | Dero digitata            | 1            |
|          |             |            | Tubificidae     |              |             | Branchiura sowerbyi      | 2            |
|          |             |            |                 |              |             | Limnodrilus hoffmeisteri | 7            |
| ropoda   | Insecta     | Diptera    | Ceratopogonidae |              |             | Ceratopogon sp.          | 1            |
|          |             |            |                 |              |             | Sphaeromias sp.          | 1            |
|          |             |            | Chironomidae    | Chironominae | Tanytarsini | Tanytarsus sp.           | 1            |
|          |             |            |                 | Tanypodinae  | Tanypodini  | Tanypus neopunctipennis  | 1            |
|          |             | Odonata    | Libellulidae    |              |             | Perithemis sp.           | 1            |
|          |             |            | e               |              |             | Plathemis sp.            | 1            |
|          |             |            |                 | _            |             | Sub-Total                | : 16         |
|          |             |            |                 |              |             | Grand Total              | : 16         |

**ABS** 

Page 45 of 74









**Date** 



: 12/23/99

: 03703

: 99033

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane Cheimsford, MA 01824 BTR No. Project No.

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID: 12991

: BP-3-3-"BORROW PIT LAKE-3" Client Sample ID

Remarks

Date/Time Sample Collected : 10/6/99 @ 4:30:00 P : 100

Percent Sample Examined Sampling Depth (m)

: Not Reported

| Phylum     | Class        | Order     | Family          | Sub-Family   | Tribe       | Genus/Species/Variety    | #<br>Counted |
|------------|--------------|-----------|-----------------|--------------|-------------|--------------------------|--------------|
|            | 24           | Tubifoda  | Naidde          |              |             | One forther              |              |
| Armelide   | Oligocheella | ( GOMCOGS | Naturale        |              |             | Dero digitata            | 3            |
|            |              |           | Tubificidae     |              |             | Branchiura sowerbyi      | 5            |
|            |              |           |                 |              |             | Limnodrilus holfmeisteri | 36           |
| Arthropoda | Insects      | Diptera   | Ceratopogonidae | •            |             | Bezzia sp.               | 4            |
|            |              |           |                 |              |             | Ceratopogon sp.          | _            |
|            |              |           | Chaobondae      |              |             | Chaoborus punctipennis   | 1            |
|            |              |           | Chironomidae    | Chironominae | Chironomini | Cryptochironomus fulvus  | 1            |
|            |              |           |                 | Tanypodinae  | Tanypodini  | Tanypus neopunctipennis  | 1            |
|            |              | Odonata   | Libellulidae    |              |             | Perithemis sp            | 1            |
|            |              |           |                 | _            |             | Sub-Total:               | 51           |
|            |              |           |                 |              |             | Grand Total:             | 51           |

**ABS** 

Page 46 of 74











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12979

Client Sample ID

Remarks

: PDC-1-1-"PRARIE DUPONT CREEK-1"

Date/Time Sample Collected

: 10/8/99 @ 9:30:00 A

Percent Sample Examined

: 100

Sampling Depth (m)

| Phylum     | Class       | Order      | Family          | Sub-Family | Tribe | Genus/Species/Variety        | #<br>Counted |
|------------|-------------|------------|-----------------|------------|-------|------------------------------|--------------|
| Annelida   | Oligochaeta | Tubificida | Naididae        |            |       | Dero digitata                | 2            |
|            |             |            | Tubificidae     |            |       | llyodrilus templetoni        | 2            |
|            |             |            |                 |            |       | Limnodrilus hoffmeisteri     | 71           |
|            |             |            |                 |            |       | Psammoryctides californianus | 2            |
| Arthropoda | Insecta     | Diptera    | Ceratopogonidae |            |       | Ceratopogon sp.              | 1            |
|            |             |            | Chaoboridae     |            |       | Chaoborus punctipennis       | 1            |
|            |             |            |                 |            |       | Sub-Total:                   | 79           |
|            |             |            |                 |            |       | Grand Total:                 | 79           |











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

**Project No.** 

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12980

Client Sample ID

Remarks

: PDC-1-2-"PRARIE DUPONT CREEK-1"

Date/Time Sample Collected : 10/8/99 @ 9:30:00 A

Percent Sample Examined

Sampling Depth (m)

| Phylum     | Class       | Order      | Family          | Sub-Family | Tribe | Genus/Spe          | cies/Variety | #<br>Counted |
|------------|-------------|------------|-----------------|------------|-------|--------------------|--------------|--------------|
| Amelda     | Oligochesta | Tubificida | Tubificidae     |            |       | Limnodrilus holima | eisteri      | 4            |
| Arthropoda | Insecta     | Diptera    | Ceratopogonidae |            |       | Bezzia sp.         |              | 1            |
|            |             |            |                 |            |       | Ceratopogon sp.    |              | 1            |
|            |             |            |                 |            |       | _                  | Sub-Total:   | 6            |
|            |             |            |                 |            |       |                    | Grand Total: |              |
|            |             |            |                 |            |       |                    |              |              |











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12981

Client Sample ID

Remarks

: PDC-1-3-"PRARIE DUPONT CREEK-1"

Date/Time Sample Collected : 10/8/99 @ 9:30:00 A

Percent Sample Examined

: 100

Sampling Depth (m)

| Phylum     | Class       | Order      | Family          | Sub-Family  | Tribe      | Genus/Species/Variety    | #<br>Counted |
|------------|-------------|------------|-----------------|-------------|------------|--------------------------|--------------|
| Annelida   | Oligochaeta | Tubificida | Tubificidae     |             |            | Limnodrilus hoffmeisteri | 4            |
| Arthropoda | Insecta     | Diptera    | Ceratopogonidae |             |            | Ceratopogon sp.          | 2            |
|            |             |            | Chironomidae    | Tanypodinae | Tanypodini | Tanypus neopunctipennis  | 1            |
|            |             |            |                 |             |            | Sub-Total:               | 7            |
|            |             |            |                 |             |            | Grand Total:             | 7            |











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

**Date** 

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12982

Client Sample ID

Remarks

: PDC-2-1-"PRARIE DUPONT CREEK-2"

Date/Time Sample Collected : 10/8/99 @ 11:20:00

Percent Sample Examined

: 100

Sampling Depth (m)

: Not Reported

| Class       | Order           | Family                 | Sub-Family                         | Tribe                              | Genus/Species/Variety              | Counted                                                                                                                   |
|-------------|-----------------|------------------------|------------------------------------|------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Oligochesta | Tubificida      | Tubificidae            |                                    |                                    | Limnodrilus holfmeisteri           | 3                                                                                                                         |
| Pelecypoda  | Prioriodesmacas | Unionidae              |                                    |                                    | Lampsilis sp.                      | 1                                                                                                                         |
|             |                 |                        |                                    |                                    | Sub-Total:                         | 4                                                                                                                         |
|             |                 |                        |                                    |                                    | Grand Total:                       | 4                                                                                                                         |
|             | Oligochesta     | Oligocheeta Tubificida | Oligochesta Tubificida Tubificidae | Oligochesta Tubificida Tubificidae | Oligochesta Tubificida Tubificidae | Oligochiesta Tubificida Tubificidae Limnodrilus holfmeisteri Pelecypoda Prionodesmace Unionidae Lampsilis sp.  Sub-Total: |

**ABS** 

Page 37 of 74











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12983

Client Sample ID

Remarks

: PDC-2-2-"PRARIE DUPONT CREEK-2"

Date/Time Sample Collected

: 10/8/99 @ 11:20:00

Percent Sample Examined

: 100

Sampling Depth (m)

| Phylum     | Class       | Order      | Family       | Sub-Family | Tribe | Genus/Species/Variety        | #<br>Counted |
|------------|-------------|------------|--------------|------------|-------|------------------------------|--------------|
| Annelida   | Oligochaeta | Tubificida | Naididae     |            |       | Dero digitata                | 1            |
|            |             |            | Tubificidae  |            |       | llyodrilus templetoni        | 3            |
|            |             |            |              |            |       | Limnodrilus hoffmeisteri     | 30           |
| Malau i    |             |            |              |            |       | Psammoryctides californianus | 1            |
| Arthropoda | Crustacea   | Decapoda   | Palaemonidae |            |       | Palaemonetes kadiakensis     | 1            |
|            |             |            |              |            |       | Sub-Total:                   | 36           |
|            |             |            |              |            |       | Grand Total:                 | 36           |











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Cheimsford, MA 01824

**Date** 

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID: 12984

Client Sample ID

: PDC-2-3-"PRARIE DUPONT CREEK-2"

Remarks

Date/Time Sample Collected : 10/8/99 @ 11:20:00

Percent Sample Examined

: 50

Sampling Depth (m)

: Not Reported

| Ptrylum    | Class       | Order      | Family       | Sub-Family   | Tribe       | Genus/Species/Variety    | #<br>Counted |
|------------|-------------|------------|--------------|--------------|-------------|--------------------------|--------------|
|            |             |            |              |              |             |                          |              |
| Annelida   | Oligochaeta | Tubificita | Nardidae     |              |             | Dero digitata            | 1            |
|            |             |            | Tubificidae  |              |             | Limnodrilus holimeisteri | 49           |
| Artivopoda | Insecta     | Diptera    | Chaobondae   |              |             | Chaobarus punctipennis   | 2            |
|            |             |            | Charonomidae | Chironominae | Chironomini | Chironomus decorus       | 1            |
|            |             |            |              | Tanypodinae  | Procladimi  | Procladius sp.           | )            |
|            |             |            |              |              |             | Sub-Total:               | 54           |
|            |             |            | -            |              |             | Grand Total:             | 54           |

**ABS** 

Page 39 of 74











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12973

Client Sample ID

Remarks

: REF2-1-1-"REFERENCE LOCATION 2-1"

Date/Time Sample Collected : 10/8/99 @ 2:30:00 P

Percent Sample Examined

Sampling Depth (m)

| Phylum      | Class       | Order          | Family          | Sub-Family  | Tribe      | Genus/Species/Variety    | #<br>Counted |
|-------------|-------------|----------------|-----------------|-------------|------------|--------------------------|--------------|
| Annelida    | Oligochaeta | Tubificida     | Naididae        |             |            | Nais variabilis          | 1            |
|             |             |                | Tubificidae     |             |            | Limnodrilus hoffmeisteri | 149          |
|             |             |                |                 |             |            | Limnodrilus udekemianus  | 1            |
| lusca       | Gastropoda  | Basommatophora | Physidae        |             |            | Physella heterostropha   | 2            |
| Arthropoda  | Crustacea   | Decapoda       | Palaemonidae    |             |            | Palaemonetes kadiakensis | 2            |
|             | Insecta     | Diptera        | Ceratopogonidae |             |            | Ceratopogon sp.          | 1            |
|             |             |                | Chironomidae    | Tanypodinae | Tanypodini | Tanypus neopunctipennis  | 2            |
|             |             |                | Ephydridae      |             |            | Ephydra subopaca         | 6            |
|             |             |                |                 |             |            | Sub-Total:               | 164          |
| <del></del> |             |                |                 |             |            | Grand Total:             | 164          |











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID: 12974

Client Sample ID

Remarks

: REF2-1-2-"REFERENCE LOCATION 2-1"

Date/Time Sample Collected

: 10/8/99 @ 2:30:00 P

Percent Sample Examined

Sampling Depth (m)

: Not Reported

| Phylam     | Class       | Order          | Family          | Sub-Family  | Tribe      | Genus/Species/Variety        | #<br>Counted |
|------------|-------------|----------------|-----------------|-------------|------------|------------------------------|--------------|
| Annelida   | Oligochaeta | Tubificida     | Tubificidae     |             |            | Autodnius pluriseta          | 1            |
|            |             |                |                 |             |            | Limnodrilus hollimeisteri    | 115          |
|            |             |                |                 |             |            | Psammoryctides californianus | 1            |
| Mohisca    | Gastropoda  | Basommatophora | Physiciae       |             |            | Physelle heterostropha       | 2            |
| Artivopoda | Insecta     | Diptera        | Ceratopogonidae |             |            | Ceratopogon sp.              | *            |
|            |             |                |                 |             |            | Culicoides sp.               | 1            |
|            |             |                |                 |             |            | Sphaeromias sp.              | 1            |
|            |             |                | Chironomidae    | Tanypodinae | Tanypodini | Tanypus neopunctipennis      | 2            |
|            |             | Нетпрвега      | Contradae       |             |            | Signara sp                   | 1            |
|            |             |                |                 | Conxinae    |            | Trichocorixa sp.             | 2            |
|            |             |                |                 |             |            | Sub-Total:                   | 129          |
|            |             |                |                 |             |            | Grand Total:                 | 129          |

**ABS** 

Page 29 of 74











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12975

Client Sample ID

Remarks

: REF2-1-3-"REFERENCE LOCATION 2-1"

Date/Time Sample Collected : 10/8/99 @ 2:30:00 P

Percent Sample Examined

Sampling Depth (m)

| Phylum   | Class       | Order      | Family          | Sub-Family  | Tribe      | Genus/Species/Variety    | #<br>Counted |
|----------|-------------|------------|-----------------|-------------|------------|--------------------------|--------------|
| Annelida | Oligochaeta | Tubificida | Naididae        |             |            | Dero digitata            | 1            |
|          |             |            | Tubificidae     |             |            | Aulodrilus pluriseta     | 2            |
|          |             |            |                 |             |            | Limnodrilus hoffmeisteri | 50           |
| ropoda   | Insecta     | Diptera    | Ceratopogonidae |             |            | Bezzia sp.               | 1            |
|          |             |            |                 |             |            | Ceratopogon sp.          | 5            |
|          |             |            |                 |             |            | Culicoides sp.           | 60           |
|          |             |            |                 |             |            | Sphaeromias sp.          | 1            |
|          |             |            | Chironomidae    | Tanypodinae | Tanypodini | Tanypus neopunctipennis  | 28           |
|          |             | Hemiptera  | Corixidae       | Corixinae   |            | Trichocorixa sp.         | 1            |
|          |             |            |                 |             |            | Sub-Total:               | 149          |
|          |             |            |                 |             |            | Grand Total:             | 149          |











Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID: 12976

Client Sample ID

: REF2-2-1-TREFERENCE LOCATION 2-2

Remarks

Date/Time Sample Collected : 10/9/99 @ 10:30:00

Percent Sample Examined

: 100

Sampling Depth (m)

: Not Reported

| Ptrylum    | Class       | Order      | Family          | Sub-Family    | Tribe       | Genus/Species/Variety   | Counted |
|------------|-------------|------------|-----------------|---------------|-------------|-------------------------|---------|
|            |             |            |                 |               |             | _                       |         |
| Annelida   | Oligochaeta | Tubificida | Naddae          |               |             | Dero digitata           | 1       |
|            |             |            | Tubiliodae      |               |             | Aulodrilus pigueti      | 1       |
|            |             |            |                 |               |             | Limnodritus hoffmeisten | 22      |
| Artivopoda | Ingecta     | Diplera    | Ceratopogonidae |               |             | Ceratopogon sp.         | ٥       |
|            |             |            |                 |               |             | Sphaeromias sp.         |         |
|            |             |            | Chironomidae    | Chironominae  | Tanytarsini | Tarrytarsus sp.         | 1       |
|            |             |            |                 | Orthoctadimae | Orthocladim | Psectrocladius sp.      | 1       |
|            |             |            |                 | Tanypodinae   | Tanypodini  | Tanypus neopunctipennis | 1       |
|            |             |            | Tipulidae       |               |             | Ormosva sp.             | 1       |
|            |             |            |                 |               |             | Sub-Total:              | : 37    |
|            |             |            |                 |               |             | Grand Total:            | : 37    |

**ABS** 

Page 31 of 74











**Charlie Menzie** 

Menzie-Cura & Associates

1 Courthouse Lane Chelmsford, MA 01824 Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12977

Client Sample ID

Remarks

: REF-2-2-"REFERENCE LOCATION 2-2"

Date/Time Sample Collected : 10/9/99 @ 10:30:00

Percent Sample Examined

: 100

Sampling Depth (m)

| Phylum     | Class       | Order      | Family       | Sub-Family  | Tribe        | Genus/Species/Variety    | Counter |
|------------|-------------|------------|--------------|-------------|--------------|--------------------------|---------|
| Annelida   | Oligochaeta | Tubificida | Tubificidae  |             |              | Limnodrilus hoffmeisteri | 13      |
| Arthropoda | Insecta     | Diptera    | Chironomidae | Tanypodinae | Pentaneurini | Ablabesmyia annulata     | 1       |
|            |             |            |              |             |              | Sub-Total:               | 14      |
|            |             |            |              |             |              | Grand Total:             | 14      |





: REF-2-3-TREFERENCE LOCATION 2-2T







Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID: 12978

Client Sample ID

Remarks

Date/Time Sample Collected : 10/9/99 @ 10:30:00

Percent Sample Examined

: 100

Sampling Depth (m)

: Not Reported

| Phylum     | Class        | Order      | Family       | Sub-Family   | Tribe       | Genus/Species/Variety   | #<br>Counted |
|------------|--------------|------------|--------------|--------------|-------------|-------------------------|--------------|
| Arnelida   | Oligochiaeta | Tubificita | Tublicate    |              |             | Lumnodnius holimeisteri | 26           |
| ATTENDED.  | Ogoles       | 100-006    | 10040000     |              |             |                         | 25           |
| Artivopoda | Insecta      | Diptera    | Chironomidae | Chironominae | Chironomini | Chironomus salinarius   | 8            |
|            |              |            |              |              |             | Polypedilum scalaenum   | 1            |
|            |              |            |              | Tanypodinae  | Tanypodini  | Tanypus neopunctipennis | 1            |
|            |              | Hemptera   | Corondae     | Conxinae     |             | Trichocorixa sp.        | _            |
|            |              |            |              |              |             | Sub-Total:              | 36           |
|            |              |            |              |              |             | Grand Total:            | 36           |

**ABS** 

Page 33 of 74



# Results of Hyalella azteca Survival and Growth Sediment Toxicity Tests Conducted on Sediment Samples from Dead Creek / Sauget, Illinois

Reference BTRs 3615, 3622, 3629, 3633, 3641, 3643

Prepared for: Menzie-Cura & Associates 1 Courthouse Lane, Suite 2 Chelmsford, MA 01824



December 1999











BTRS 3615, 3622, 3629, 3633, 3641, 3643

**PROJECT:** 99033

I have reviewed this data package, which was completed under my supervision. This data package is complete, and to the best of my ability, accurately reflects the conditions and the results of the reported tests.

John W. Williams

Toxicity Laboratory Manager

Date

I have reviewed and discussed this data package with the responsible laboratory manager. Based on this review, the data package was, to the best of my knowledge and belief, conducted in accordance with established company quality assurance procedures.

Philip C. Downey, Ph.D.

Director

Date

#### TABLE OF CONTENTS

| EXECUTIVE SUMMARY   | 1 |
|---------------------|---|
| INTRODUCTION        | 2 |
| METHODS             | 2 |
| PROTOCOL DEVIATIONS | 3 |
| RESULTS             | 4 |
| QUALITY ASSURANCE   | 5 |

#### LIST OF APPENDICES

| APPENDIX A: | RESULTS OF WHOLE SEDIMENT TOXICITY TESTS                                         |
|-------------|----------------------------------------------------------------------------------|
| APPENDIX B: | CHAIN-OF-CUSTODY DOCUMENTATION                                                   |
| APPENDIX C: | LABORATORY DOCUMENTATION AND DATA ANALYSES FOR<br>Hyalella azteca TOXICITY TESTS |
| APPENDIX D: | RESULTS OF STANDARD REFERENCE TOXICANT TESTS                                     |

#### **EXECUTIVE SUMMARY**

# 100.1HASG Amphipod, Hyalella azteca 10 Day Survival and Growth Test Conducted October 7 - October 31, 1999 for Menzie-Cura & Associates Dead Creek Site

| Laboratory<br>Sample ID | Client<br>Sample ID          | Mean<br>Survival<br>(%) | <b>M</b> ean<br>Dry Weight<br>(mg) |
|-------------------------|------------------------------|-------------------------|------------------------------------|
| 12546                   | BTOX-C-1                     | 90                      | 0.080*                             |
| 12547                   | BTOX-C-2                     | 71                      | 0.064*                             |
| 12548                   | BTOX-C-3                     | 68*                     |                                    |
| 12549                   | BTOX-D-1                     | 90                      | 0.172                              |
| 12550                   | BTOX-D-2                     | 88                      | 0.134*                             |
| 12551                   | BTOX-D-3                     | 90                      | 0.168                              |
| 12552                   | Laboratory Control Sediment  | 86                      | 0.223                              |
| 12589                   | BTOX-B-1                     | 16 <sup>-</sup>         |                                    |
| 12590                   | BTOX-B-1 (DUPE)              | 19⁼                     |                                    |
| 12591                   | BTOX-B-2                     | 1*                      |                                    |
| 12592                   | BTOX-B-3                     | 64*                     |                                    |
| 12593                   | BTOX-M                       | 10*                     |                                    |
| 12609                   | E-1 Dead Creek               | 23*                     |                                    |
| 12610                   | E-2 Dead Creek               | 76                      | 0.664                              |
| 12611                   | E-3 Dead Creek               | 85                      | 0.141*                             |
| 12612                   | BP-1 Borrow Pit              | 89                      | 0.156*                             |
| 12613                   | BP-1 Borrow Pit (DUPE)       | 94                      | 0.154*                             |
| 12614                   | BP-3 Borrow Pit              | 91                      | 0.154*                             |
| 12622                   | Laboratory Control Sediment  | 86                      | 0.202                              |
| 12638                   | BP-2 Borrow Pit              | 96                      | 0.172                              |
| 12639                   | F-1 Dead Creek Section F     | 91                      | 0.221                              |
| 12640                   | F-2 Dead Creek Section F     | 86                      | 0.219                              |
| 12641                   | F-3 Dead Creek Section F     | 83                      | 0.183                              |
| 12664                   | Prairie DuPont Creek         | 98                      | 0.254                              |
| 12665                   | Prairie DuPont Creek 2       | 98                      | 0.404                              |
| 12666                   | Reference Creek              | 98                      | 0.393                              |
| 12668                   | Laboratory Control Sediment  | 98                      | 0.268                              |
| 12671                   | Ref 2-2 Reference Borrow Pit | 98                      | 0.335                              |

<sup>\*</sup> The response data were statistically significantly different from the corresponding laboratory control sediment (p ≤ 0.05)

<sup>--</sup> When a significant reduction in survival was detected mean only weight data were only reported in Appendix A (See Results)

#### **INTRODUCTION:**

Samples were received for toxicity testing at Aquatec Biological Sciences of 75 Green Mountain Drive, South Burlington, Vermont. Tests were conducted at Aquatec Biological Sciences. The results of the following tests are reported:

Client: Menzie-Cura & Associates
Facility/Location: Dead Creek / Sauget, IL
Initial Sampling Date: October 4 - October 9, 1999
Testing Date: October 7 - October 31, 1999

Tests Conducted: Amphipod, Hyalella azteca, 10-day Survival and

Growth

#### **METHODS:**

The procedures followed in conducting these toxicity tests were based on methods described by the USEPA (EPA 600/R-94/024). Test conditions for *Hyalella azteca* are listed in Table 1. Testing was begun in four separate groupings based upon chronological sequencing from the time of sediment collection. The objective for the test groupings was to complete the 10-day acute tests prior to expiration of a 14-day sediment storage time so that subsequent chronic toxicity tests could be started within a 14-day time frame. The first testing group was initiated on October 7, 1999. The second testing group was initiated on October 8, 1999. The third testing group was initiated on October 9, 1999. The fourth testing group was initiated on October 10, 1999. A laboratory control (artificial sediment) was included with each testing group.

Due to unacceptable survival in the both field and laboratory samples, the first three testing groups were combined into two testing groups and were retested, beginning on October 19, 1999 and October 21, 1999, within the project-specific sample holding time. The laboratory control associated with the October 10, 1999 testing group met survival acceptability criteria, therefore acute toxicity testing of samples associated with this testing group was not repeated.

#### **Sediment Preparation**

The samples were stored refrigerated and in the dark whenever they were not being used in preparation for testing. Sediments distributed in test beakers were examined for the presence of indigenous organisms which were removed when observed. Also, large pieces of vegetative material (e.g., leaf litter, sticks, grass) were removed. Qualitative observations regarding the sediment type and indigenous organisms removed were recorded. A laboratory control sediment was used with each Sample Delivery Group. The laboratory control sediment (artificial sediment) was prepared following formulations specified in the USEPA protocols and then hydrated prior to distribution to test chambers. Sediments were then distributed to individual replicate test chambers, overlying water was added, and the overlying water renewal system was activated. The unused portion of each sample (in the original sample container) was returned to refrigerated storage.

#### **Statistical Analysis**

Statistical comparisons were performed against the concurrent laboratory control. The growth measurement was based upon average dry weight of surviving amphipods per replicate, following the USEPA protocol for the test method. This procedure can result in inflated average dry weights for samples with significantly low survival. Statistical significance for any sample was based upon the most sensitive endpoint (survival or growth). An F-Test was performed to test for equality of variances between each sample comparison to the control. If variances were not significantly different, paired T-Tests with equal variances were used to determine whether there were significant reductions in mean survival (Arcsin transformed) and/or mean growth in each sample relative to the control. If the variance between a sample and control comparison was significantly different, paired T-Tests with unequal variances were used to determine significant reductions in mean survival and/or growth.

#### **PROTOCOL DEVIATIONS:**

Surviving amphipods in four test replicates (Samples 12546D, 12550C, 12590D, and 12611B) were not measured for growth (replicate dry weight) due to an apparent laboratory error.

Replicate G of Sample 12590 was scored as having one amphipod surviving on Day 10, however, according to the laboratory documentation, two amphipods from this replicate were weighed for growth determination.

Sample 12547, Replicate H had two surviving amphipods recovered on Day 10. A large dragonfly nymph was also found in this replicate, leading to the possibility that amphipod predation had occurred.

Sample 12609 had an unusual characteristic in the laboratory, in that the sediment expanded within the test beakers. In one replicate (Replicate D), a portion of the sediment separated and floated to the water surface. On Day 10 the measured dissolved oxygen below this separation layer was measured to be 2.0 mg/L

#### **RESULTS:**

Summary result tabulations for the *Hyalella azteca* whole sediment toxicity tests are located in Appendix A.

Group 1 Test Results: This group included samples 12546 (BTOX-C-1), 12547 (BTOX-C-2), 12548 (BTOX-C-3), 12549 (BTOX-D-1), 12550 (BTOX-D-2), 12551 (BTOX-D-3), 12589 (BTOX-B-1), 12590 (BTOX-B-1 duplicate), 12591 (BTOX-B-2), 12592 (BTOX-B-3), 12593 (BTOX-M), 12609 (E-1 Dead Creek), and 12610 (E-2 Dead Creek). Samples 12548, 12589, 12590, 12591, 12592, 12593, and 13609 had survival responses that were significantly less than the Laboratory Control Sample (12552). Samples 12546, 12547, and 12550 had growth responses that were significantly less than the Laboratory Control Sample (12552).

Group 2 Test Results: This group included samples 12611 (E-3 Dead Creek), 12612 (BP-1 Borrow Pit), 12613 (BP-1 Borrow Pit duplicate), and 12614 (BP-3 Borrow Pit), 12638 (BP-2 Borrow Pit), 12639 (F-1 Dead Creek Section F) 12640 (F-2 Dead Creek Section F), 12641 (F-3 Dead Creek Section F). None of the samples in this testing group had survival responses that were significantly less than the Laboratory Control Sample (12622). Samples 12611,

12612. 12613. and 12614 had growth responses that were significantly less than the Laboratory Control Sample (12622).

Group 3 Test Results: This group included samples 12664 (Prairie DuPont Creek), 12665 (Prairie DuPont Creek 2), 12666 (Reference Creek), and 12671 (Ref 2-2 Reference Borrow Pit). The survival and growth responses in all the samples in this testing group were not significantly less than the Labortory Control Sample (12668).

<u>Total Ammonia and Sulfide</u>: Total ammonia concentrations were less than 25 mg/L in all porewaters and less than 7 mg/L in overlying water. Total sulfide was not detected (<0.5 mg/L) in any porewater samples, therefore, testing to sulfide in overlying water was not conducted.

#### **QUALITY ASSURANCE:**

A standard reference toxicant SRT test was conducted concurrently with each batch of Hyalella azteca. The resulting LC50 values fell within control chart limits and were viewed as being acceptable.

Table 1. Test Conditions for the Amphipod (*Hyalella azteca*) 10-day Whole Sediment Survival and Growth Toxicity Test.

ASSOCIATED PROTOCOL: EPA, 1994. Methods for Measuring the Toxicity and Bioaccummulation of Sediment-associated Contaminants with Freshwater Invertebrates Method 100.1 (EPA/600/R-94/024).

1. Test type: Whole-sediment toxicity (static renewal)

2. Test temperature:  $23 \pm 1^{\circ}$ C

3. Light quality: Wide-spectrum fluorescent lights

4. Light illuminance: 500 to 1000 lux

5. Photoperiod: 16 hr. light, 8 hr. dark

6. Test chamber size: 300 mL beaker

7. Sediment volume: 100 mL (distributed to test chambers on the

day prior to administration of test organisms

8. Overlying water volume: 175 mL

9. Renewal of overlying water : At least twice daily

10. Age of test organisms: 7-14 days old at the start of the test

11. Number of organisms /

test chamber: 10

12. Number of replicate test

chambers / treatment:

13. Feeding regime: 1.5 mL YCT daily

14. Aeration: None unless dissoved oxygen in overlying

8

water drops below 40% saturation or demonstrates a declining trend during daily monitoring. If required, aeration will be sufficiently gentle to prevent resuspension

of sediments to the overlying water.

Additional water renewals may be used in

lieu of aeration.

15. Overlying water: Reconstituted water (EPA/600/R-94/024)

Table 2. Test Conditions for the Amphipod (*Hyalella azteca*) 10-Day Whole Sediment Survival and Growth Toxicity Test (continued).

16. Control sediment: Formulated sediment (EPA/600/R-94/024,

section 7.2.3.2)

17. Test chamber cleaning: Overflow screens daily

18. Monitoring:

Overlying water

Temperature

Dissolved oxygen

pН

Conductivity

Alkalinity Hardness

Ammonia

Organism behavior

19. Test duration:

20. End points:

21. Reference toxicant:

22. Test acceptability:

23. Statistical analysis and data interpretation:

Daily Daily

Beginning and end of test Beginning and end of test Beginning and end of test Beginning and end of test Beginning and end of test

Within 2 hours to remove "floaters"

10 days

Survival and growth (dry weight to 0.01 mg,

60°C overnight), by replicate

96-h acute, water only (KCI)

Minimum mean control survival of 80% and

performance-based criteria outlined in

EPA/600/R-94/024, Table 11.3

Arc-sine (square-root) transformation of survival data. F-Tests were performed for equality of variance. Paired T-Tests were performed versus the negative control for

survival and growth.

APPENDIX: A

# Summary of Statistical Tests and Probabilities Dead Creek *Hyalella azteca* Acute Toxicity Test BTR: 3615a

|        |                |                         | Sur                                      | vival                                |                              | Growth                |                                          |                                      |                              |  |  |  |
|--------|----------------|-------------------------|------------------------------------------|--------------------------------------|------------------------------|-----------------------|------------------------------------------|--------------------------------------|------------------------------|--|--|--|
| Day 10 | -              | Proportion<br>Surviving | F-Test<br>Equal<br>Variance <sup>1</sup> | T-Test<br>Statistical<br>Probability | Statistically<br>Significant | Average<br>Weight(mg) | F-Test<br>Equal<br>Variance <sup>1</sup> | T-Test<br>Statistical<br>Probability | Statistically<br>Significant |  |  |  |
| 12552  | Control        | 0.86                    |                                          |                                      |                              | 0 223                 |                                          |                                      |                              |  |  |  |
| 12546  | Sample         | 0.90                    | 0 684                                    | 0.241                                |                              | 0.080                 | 0.0856                                   | 0.0000                               | •                            |  |  |  |
| 12547  | Sample         | 0 71                    | 0.132                                    | 0.066                                |                              | 0.064                 | 0.0264                                   | 0.0000                               | •                            |  |  |  |
| 12548  | Sample         | 0.68                    | 0.090                                    | 0.008                                | •                            | 0.110                 | 0.5088                                   | 0.0005                               | •                            |  |  |  |
| 12549  | Sample         | 0.90                    | 0 021                                    | 0.251                                |                              | 0.172                 | 0.3880                                   | 0.0966                               |                              |  |  |  |
| 12550  | Sample         | 0.88                    | 0.412                                    | 0.382                                |                              | 0.134                 | 0.5643                                   | 0.0041                               | •                            |  |  |  |
| 12551  | Sampl <b>e</b> | 0.90                    | 0.016                                    | 0.307                                |                              | 0.168                 | 0.0460                                   | 0.0170                               | •                            |  |  |  |

<sup>\*</sup> A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05).

<sup>1</sup> If the F-Test result was significant (relative to the Laboratory Control, P<0.05), the T-Test was performed using unequal variances.

|                  |           |                |                | <del></del>             |                                 | Day 10                         | Data                        |                           | <del></del>                    |                              |
|------------------|-----------|----------------|----------------|-------------------------|---------------------------------|--------------------------------|-----------------------------|---------------------------|--------------------------------|------------------------------|
| Sample<br>Number | Replicate | Start<br>Count | #<br>Surviving | Proportion<br>Surviving | Mean<br>Proportion<br>Surviving | Initial Boat<br>Weight<br>(mg) | Total Dry<br>Weight<br>(mg) | #<br>Organisms<br>Weighed | Mean Wt.<br>within Rep<br>(mg) | Mean Wt.<br>Reps I-L<br>(mg) |
| 12552            | Α         | 10             | 6              | 0.6                     |                                 | 28.52                          | 30.36                       | 6 -                       | 0.307                          |                              |
| ł                | В         | 10             | 9              | 0.9                     |                                 | 30.76                          | 31.84                       | 9                         | 0.120                          |                              |
| 1                | С         | 10             | 10             | 1                       |                                 | 31.62                          | 33.73                       | 10                        | 0.211                          |                              |
|                  | D         | 10             | 9              | 0.9                     |                                 | 27.67                          | 29.76                       | 9                         | 0.232                          |                              |
| ļ                | E         | 10             | 8              | 8.0                     |                                 | 29.39                          | 31.17                       | 8                         | 0.223                          |                              |
| Í                | F         | 10             | 9              | 0.9                     |                                 | 29.56                          | 32.15                       | 9                         | 0.288                          |                              |
| l                | G         | 10             | 9              | 0.9                     |                                 | 29.61                          | 31.76                       | 9                         | 0.239                          |                              |
|                  | Н         | 10             | 9              | 0.90                    | 0.86                            | 21.96                          | 23.43                       | 99                        | 0.163                          | 0.223                        |
| 12546            | Α         | 10             | 9              | 0.90                    |                                 | 29.35                          | 29.70                       | 9                         | 0.039                          |                              |
| ł                | В         | 10             | 9              | 0.90                    |                                 | 33.28                          | 34.17                       | 9                         | 0.099                          |                              |
| ł                | С         | 10             | 9              | 0.90                    |                                 | 31.89                          | 32.49                       | 9                         | 0.067                          |                              |
| i                | D         | 10             | 9              | 0.90                    |                                 |                                |                             | •                         | •                              |                              |
| ľ                | E         | 10             | 10             | 1.00                    |                                 | 30.55                          | 31.55                       | 10                        | 0.100                          |                              |
| {                | F         | 10             | 10             | 1.00                    |                                 | 29.54                          | 30.13                       | 10                        | 0.059                          |                              |
|                  | G         | 10             | 7              | 0.70                    |                                 | 31.04                          | 31.90                       | 7                         | 0.123                          |                              |
|                  | н         | 10             | 9              | 0.90                    | 0.90                            | 36.72                          | 37.41                       | 99                        | 0.077                          | 0.080                        |
| 12547            |           | 10             | 6              | 0.60                    |                                 | 27.76                          | 27.98                       | 6                         | 0.037                          |                              |
| 1234/            | A<br>B    | 10             | 10             | 1.00                    |                                 | 27.76<br>30.95                 | 27.98<br>31.60              | 10                        | 0.037                          |                              |
|                  | C         | 10             | 7              | 0.70                    |                                 | 30.95<br>33.31                 | 33.71                       | 7                         | 0.065                          |                              |
|                  | D         | 10             | 8              | 0.70                    |                                 | 33.31<br>31.58                 | 33.71                       | 8                         | 0.057                          |                              |
|                  | E         | 10             | 7              | 0.80                    |                                 | 31.94                          | 32.53                       | 7                         | 0.079                          |                              |
|                  | F         | 10             | 9              | 0.70                    |                                 | 33.35                          | 34.11                       | 9                         | 0.084                          |                              |
|                  | Ğ         | 10             | 8              |                         |                                 | 25.95                          | 26.62                       | 8                         | 0.084                          |                              |
|                  | Н         | 10             | 2              | 0.80<br>0.20            | 0.71                            | 25.95<br>33.87                 | 34.29                       | 2                         | 0.084                          | 0.064                        |
|                  |           |                |                |                         |                                 |                                |                             |                           |                                |                              |
| 12548            | Α         | 10             | 8              | 0.80                    |                                 | 30.15                          | 30.87                       | 8                         | 0.090                          |                              |
|                  | В         | 10             | 6              | 0.60                    |                                 | 29.31                          | 30.55                       | 6                         | 0.207                          |                              |
|                  | C         | 10             | 6              | 0.60                    |                                 | 31.25                          | 31.55                       | 6                         | 0.050                          |                              |
|                  | D         | 10             | 6              | 0.60                    |                                 | 30.00                          | 30.78                       | 6                         | 0.130                          |                              |
|                  | E         | 10             | 7              | 0.70                    |                                 | 29.78                          | 30.30                       | 7                         | 0.074                          |                              |
|                  | F         | 10             | 6              | 0.60                    |                                 | 31.74                          | 32.32                       | 6                         | 0.097                          |                              |
|                  | G<br>H    | 10<br>10       | 8<br>7         | 0.80<br>0.70            | 0.68                            | 30.16<br>24.43                 | 31.04<br>25.29              | 8<br>7                    | 0.110<br>0.123                 | 0.110                        |
|                  | <u> </u>  |                |                | 0.70                    | 0.00                            | 24.43                          | 23.25                       |                           | 0.123                          | 0.110                        |
| 12549            | Α         | 10             | 10             | 1.00                    |                                 | 31.68                          | 33.23                       | 10                        | 0.155                          |                              |
| 1                | В         | 10             | 8              | 0.80                    |                                 | 26.02                          | 26.64                       | 8                         | 0.078                          |                              |
|                  | C         | 10             | 10             | 1.00                    |                                 | 27.87                          | 29.33                       | 10                        | 0.146                          |                              |
|                  | D         | 10             | 8              | 0.80                    |                                 | 32.54                          | 33.43                       | 8                         | 0.111                          |                              |
|                  | E         | 10             | 8              | 0.80                    |                                 | 28.32                          | 29.87                       | 8                         | 0.194                          |                              |
|                  | F         | 10             | 9              | 0.90                    |                                 | 25.55                          | 26.76                       | 8                         | 0.151                          |                              |
|                  | G         | 10             | 10             | 1.00                    |                                 | 31.47                          | 32.56                       | 3                         | 0.363                          | 0.470                        |
| <del></del>      | н         | 10             | 9              | 0.90                    | 0.90                            | 28.89                          | 30.50                       | 99                        | 0.179                          | 0.172                        |
| 12550            | Α         | 10             | 9              | 0.90                    |                                 | 27.87                          | 28.57                       | 9                         | 0.076                          |                              |
|                  | В         | 10             | 10             | 1.00                    |                                 | 25.64                          | 26.40                       | 9                         | 0.084                          |                              |
|                  | С         | 10             | 9              | 0.90                    |                                 |                                |                             | •                         | •                              |                              |
|                  | D         | 10             | 5              | 0.50                    |                                 | 29.10                          | 30.10                       | 5                         | 0.200                          |                              |
| 1                | F         | 10             | 10             | 1.00                    |                                 | 33.58                          | 34.67                       | 10                        | 0.109                          |                              |
|                  | G         | 10             | 9              | 0.90                    |                                 | 23.84                          | 24.96                       | 9                         | 0.124                          |                              |
|                  | Н         | 11             | 11             | 1.00                    | 0.88                            | 23.93                          | 25.89                       | 11                        | 0.178                          | 0.134                        |
| 12551            | A         | 10             | 9              | 0.90                    |                                 | 28.94                          | 30.32                       | 9                         | 0.153                          |                              |
| 12331            | B         | 10             | 10             | 1.00                    |                                 | 26.94<br>32.79                 | 34.17                       | 10                        | 0.133                          |                              |
|                  | C         | 10             | 8              | 0.80                    |                                 | 34.40                          | 34.17<br>35.91              | 8                         | 0.138                          |                              |
|                  | 0         | 10             | 10             | 1.00                    |                                 | 27.15                          | 28.98                       | 10                        | 0.183                          |                              |
|                  | Ē         | 10             | 9              | 0.90                    |                                 | 33.25                          | 34.79                       | 9                         | 0.163                          |                              |
|                  | F         | 10             | 9              | 0.90                    |                                 | 33.25<br>32.88                 | 34.79<br>34.80              | 9                         | 0.171                          |                              |
|                  | F<br>G    | 10             | 7              | 0.90                    |                                 | 32.88<br>27.47                 | 28.58                       | 9<br>7                    | 0.213                          |                              |
|                  | H         | 10             | 10             | 1.00                    | 0.90                            | 27.47<br>25.40                 | 26.56<br>26.75              | 10                        | 0.135                          | 0.168                        |
|                  | п         | 10             | 10             | 1.00_                   | 0.90                            | 20.40                          | 20.75                       | IŬ                        | 0.135                          | 0.100                        |

# Summary of Statistical Tests and Probabilities Dead Creek *Hyalella azteca* Acute Toxicity Test BTR: 3615b

|        |         |                         | Sur                            | vival                      |                              | Growth                 |                                |                            |                              |  |  |
|--------|---------|-------------------------|--------------------------------|----------------------------|------------------------------|------------------------|--------------------------------|----------------------------|------------------------------|--|--|
|        |         |                         | F-Test                         | T-Test                     |                              |                        | F-Test                         | T-Test                     |                              |  |  |
| Day 10 |         | Proportion<br>Surviving | Equal<br>Variance <sup>1</sup> | Statistical<br>Probability | Statistically<br>Significant | Average<br>Weight (mg) | Equal<br>Variance <sup>1</sup> | Statistical<br>Probability | Statistically<br>Significant |  |  |
| 12552  | Control | 0.86                    |                                |                            |                              | 0 223                  |                                |                            |                              |  |  |
| 12589  | Sample  | 0.16                    | 0.184                          | 0.000                      | •                            | 0.937                  | 0.0000                         | 0.0199                     |                              |  |  |
| 12590  | Sample  | 0.19                    | 0.044                          | 0.000                      | •                            | 0.550                  | 0.0000                         | 0.1467                     |                              |  |  |
| 12591  | Sample  | 0.01                    | 0 530                          | 0.000                      | •                            | 0.000                  | NA <sup>2</sup>                | NA <sup>2</sup>            | •                            |  |  |
| 12592  | Sample  | 0.64                    | 0.055                          | 0.005                      | •                            | 0 411                  | 0.0087                         | 0.0122                     |                              |  |  |
| 12593  | Sample  | 0.10                    | 0.325                          | 0.000                      | ٨                            | 1.372                  | 0.0000                         | 0.0339                     |                              |  |  |
| 12609  | Sample  | 0.23                    | 0.269                          | 0.000                      | •                            | 2.136                  | 0.000                          | 0.0029                     |                              |  |  |
| 12610  | Sample  | 0.76                    | 0.233                          | 0.135                      |                              | 0.664                  | 0.0138                         | 0.0000                     |                              |  |  |

<sup>\*</sup> A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05).

<sup>1.</sup> If the F-Test result was significant (relative to the Laboratory Control, P<0.05), the T-Test was performed using unequal variances.

<sup>2</sup> There was not enough sample and/or control response variability to conduct a meaningful F-Test.

|                  |             |                |                |                         |                                 | Day 10                         | Data                        |                           |                                |           |
|------------------|-------------|----------------|----------------|-------------------------|---------------------------------|--------------------------------|-----------------------------|---------------------------|--------------------------------|-----------|
| Sample<br>Number | Replicate   | Start<br>Count | #<br>Surviving | Proportion<br>Surviving | Mean<br>Proportion<br>Surviving | Initial Boat<br>Weight<br>(mg) | Total Dry<br>Weight<br>(mg) | #<br>Organisms<br>Weighed | Mean Wt.<br>within Rep<br>(mg) |           |
| 12552            | À           | 10             | 6              | 0.60                    |                                 | 28 52                          | 30 36                       | 6                         | 0 307                          | · · · · · |
|                  | B           | 10             | 9              | 0.90                    |                                 | 30 76                          | 31 84                       | 9                         | 0 120                          |           |
|                  | С           | 10             | 10             | 1.00                    |                                 | 31 62                          | 33 73                       | 10                        | 0.211                          |           |
|                  | D           | 10             | 9              | 0 90                    |                                 | 27 57                          | 29 76                       | ç                         | 0.232                          |           |
|                  | E           | 10             | 8              | 0.80                    |                                 | 29.39                          | 31,17                       | 8                         | 0.223                          |           |
|                  | F           | 10             | 9              | 0 90                    |                                 | 29.56                          | 32.15                       | 9                         | 0.288                          |           |
|                  | G           | 10             | 9              | 0.90                    |                                 | 29 61                          | 31.76                       | 9                         | 0.239                          |           |
|                  | H           | 10             | 9              | 0.90                    | 0.86                            | 21 96                          | 23.43                       | 9                         | 0.163                          | 0 223     |
| 12589            | A           | 10             | 0              | 0.00                    |                                 |                                |                             |                           | 0.000                          |           |
|                  | В           | 10             | 1              | 0 10                    |                                 | 27 32                          | 28.90                       | 1                         | 1.580                          |           |
|                  | С           | 10             | 2              | 0.20                    |                                 | 25.27                          | 27.00                       | 1                         | 1.730                          |           |
|                  | D           | 10             | 0              | 0.00                    |                                 |                                |                             | Э                         | 0 000                          |           |
|                  | Ē           | 10             | 1              | 0.10                    |                                 | 27 39                          | 29.27                       | 1                         | 1.880                          |           |
|                  | F           | 10             | 2              | 0.20                    |                                 | 30 30                          | 33 22                       | 2                         | 1.460                          |           |
|                  | G           | 10             | 2              | 0.20                    |                                 | 27 29                          | 28.29                       | 2                         | 0 500                          |           |
|                  | н           | 10             | 5              | 0.50                    | 0.16                            | 31,69                          | 33.28                       | 4                         | 0.348                          | 0.937     |
| 12590            | A           | 10             | 1              | 0.10                    |                                 | 34 53                          | 36.46                       | 1                         | 1.930                          |           |
| 12000            | B           | 10             | Ó              | 0.00                    |                                 | J4 J3                          | 50.40                       | 0                         | 0.000                          |           |
|                  | C           | 10             | 5              | 0.50                    |                                 | 33,17                          | 35 83                       | 5                         | 0.532                          |           |
|                  | ۵           | 10             | 6              | 0 60                    |                                 | 00,11                          |                             | •                         | 1                              |           |
|                  | Ē           | 10             | 2              | 0.20                    |                                 | 32 63                          | 35 25                       | 2                         | 1.210                          |           |
|                  | F           | 10             | 0              | 0.00                    |                                 |                                |                             | 0                         | 0 000                          |           |
|                  | G           | 10             | 1              | 0 10                    |                                 | 35.04                          | 35.40                       | 2                         | 0 180                          |           |
|                  | H           | 10             | 00             | 0 00                    | 0.19                            |                                |                             | 0                         | 0.000                          | 0.550     |
| 40564            | A           | 10             |                | 0.00                    |                                 |                                |                             |                           | 0.000                          |           |
| 12591            | B           | 10             | 0              | 0.00<br>0.00            |                                 |                                |                             | 0                         | 0.000<br>0.000                 |           |
|                  | Č           | 10             | 0              | 0.00                    |                                 |                                |                             | 0                         | 0 000                          |           |
|                  | Ď           | 10             | 0              | 0.00                    |                                 |                                |                             | 5                         | 0 000                          |           |
|                  | Ē           | 10             | Ö              | 0.00                    |                                 |                                |                             | 5                         | 0.000                          |           |
|                  | F           | 10             | Ď              | 0.00                    |                                 |                                |                             | ō                         | 0.000                          |           |
|                  | G           | 10             | 1              | 0.10                    |                                 |                                |                             | ٥                         | 0 000                          |           |
|                  | H           | 10             | 0              | 0.00                    | 0 01                            |                                |                             | 0                         | 0 000                          | 0.000     |
| 12592            | A           | 10             | 8              | 0.80                    |                                 | 30.25                          | 33 04                       | 6                         | 0 349                          |           |
| 12592            | B           | 10             | 4              | 0.60                    |                                 | 30.25<br>32.94                 | 34,30                       | 3                         | 0 453                          |           |
|                  | C           | 10             | 8              | 0.80                    |                                 | 28,43                          | 30.67                       | 8                         | 0 280                          |           |
|                  | Ď           | 10             | 8              | 0 80                    |                                 | 33.73                          | 37.12                       | 6                         | 0.424                          |           |
|                  | E           | 10             | 8              | 0 80                    |                                 | 30.41                          | 32.06                       | 7                         | 0.236                          |           |
|                  | F           | 10             | 5              | 0.50                    |                                 | 36 67                          | 40.21                       | 5                         | 0.268                          |           |
|                  | G           | 10             | 3              | 0.30                    |                                 | 25.29                          | 26 69                       | 3                         | 0.467                          |           |
|                  | H           | 10             | 77             | 0.70                    | 0.64                            | 33.5                           | 39.21                       | 7                         | 0.616                          | 0.411     |
| 10500            | <del></del> | 10             | <del></del>    | 0.40                    |                                 | 26.00                          | 20.00                       |                           | 2.400                          |           |
| 12593            | A<br>B      | 10<br>10       | 1<br>2         | 0.10<br>0.20            |                                 | 26 62<br>31.37                 | 29.00<br>33.69              | 1<br>2                    | 2.180<br>1.160                 |           |
|                  | C           | 10             | 0              | 0.20                    |                                 | 31.31                          | 33.08                       | 0                         | 0.000                          |           |
|                  | ۵           | 10             | 0              | 0.00                    |                                 |                                |                             | 5                         | 0.000                          |           |
|                  | F           | 10             | 1              | 0.10                    |                                 | 22.90                          | 26.11                       | •                         | 3.210                          |           |
|                  | G           | 10             | 0              | 0.00                    |                                 |                                |                             | 0                         | 0 000                          |           |
|                  | Н           | 10             | 1              | 0.10                    | 0 10                            | 25 36                          | 29 11                       |                           | 3.750                          | 1.372     |
| 10055            |             |                |                |                         |                                 |                                |                             |                           |                                |           |
| 12609            | A<br>B      | 10<br>10       | 1<br>1         | 0 10<br><b>0</b> 10     |                                 | 37 16                          | 40 82<br>37 05              | 1                         | 3 660<br>3 440                 |           |
|                  | C           | 10             | 1              | 0.10                    |                                 | 33 61<br>36 62                 | 42.83                       | 4                         | 3 440<br>4 010                 |           |
|                  | ٥           | 10             | 6              | 0.10                    |                                 | 36 62<br>36 43                 | 40.03                       | ÷                         | 0 635                          |           |
|                  | 8           | 10             | 2              | 0.20                    |                                 | 26 59                          | 29.70                       | 3                         | 1 037                          |           |
|                  | F           | 10             | 2              | 0.20                    |                                 | 26 53                          | 29.12                       | 2                         | 1 295                          |           |
|                  | G           | 10             | 4              | 0 40                    |                                 | 32 31                          | 35 65                       | 4                         | 0.835                          |           |
|                  | Н           | 10             | 1              | 0,10                    | 0 23                            | 32.77                          | 34 95                       |                           | 2 180                          | 2 136     |
| 40010            |             | 40             | <del></del>    | 0.00                    |                                 | 25.00                          | 20.00                       |                           | 0.000                          |           |
| 12610            | A<br>B      | 10<br>10       | 6<br>8         | 0 60<br>0.80            |                                 | 25 00<br>29 95                 | 28.98<br>35.42              | ê<br>ê                    | 0 663<br>0 684                 |           |
|                  | C           | 10             | 8              | 0.80                    |                                 | 29 95<br>26 78                 | 35.42<br>32.93              | 6<br>5                    | 0 769                          |           |
|                  |             |                |                | 1 00                    |                                 | 32 53                          | 36 55                       | 10<br>10                  | 0 402                          |           |
|                  | Ď           | 10             | าก             |                         |                                 |                                |                             |                           | U U4                           |           |
|                  | D           | 10<br>10       | 10<br>10       |                         |                                 |                                |                             |                           |                                |           |
|                  | ₽<br>D      | 10             | 10             | 1.00                    |                                 | 30 09                          | 34 73                       | • ၁                       | 0 464                          |           |
|                  | D           |                |                |                         |                                 |                                |                             |                           |                                |           |

# Summary of Statistical Tests and Probabilities Dead Creek *Hyalella azteca* Acute Toxicity Test BTR: 3633a

Survival

F-Test T-Test

Proportion Equal Statistical Statistically Average Equal Statistical Statistically

Surviving Variance Probability Significant

Weight (mg) Variance Probability Significant

| Day 10 |         | Surviving | Variance <sup>1</sup> | Probability_ | Significant | Weight (mg) | Varianco¹ | Probability | Significant |
|--------|---------|-----------|-----------------------|--------------|-------------|-------------|-----------|-------------|-------------|
| 12622  | Control | 0.86      |                       |              |             | 0.202       |           |             |             |
| 12611  | Sample  | 0.85      | 0.653                 | 0.402        |             | 0.141       | 0 620     | 0.001       | •           |
| 12612  | Sample  | 0.89      | 0.105                 | 0.376        |             | 0.156       | 0 701     | 0.007       | •           |
| 12613  | Sample  | 0 94      | 0.043                 | 0.462        |             | 0.154       | 0.894     | 0.009       | •           |
| 12614  | Sample  | 0.91      | 0.037                 | 0.436        |             | 0.154       | 0.851     | 0.006       | •           |

<sup>\*</sup> A statistically significant reduction in the response was observed (relative to the Faboratory Control, P<0.05).

<sup>1.</sup> If the F-Test result was significant (relative to the Laboratory Control, P+0.05), the T-Test was performed using unequal variances

|                  | ·····     |                |                |                         | -                               | Day 10                         | Data                        |                           |                                |                             |
|------------------|-----------|----------------|----------------|-------------------------|---------------------------------|--------------------------------|-----------------------------|---------------------------|--------------------------------|-----------------------------|
| Sample<br>Number | Replicate | Start<br>Count | #<br>Surviving | Proportion<br>Surviving | Mean<br>Proportion<br>Surviving | Initial Boat<br>Weight<br>(mg) | Total Dry<br>Weight<br>(mg) | #<br>Organisms<br>Weighed | Mean Wt.<br>within Rep<br>(mg) | Mean Wt<br>Reps I-L<br>(mg) |
| 12622            | Α         | 10             | 7              | 0.70                    |                                 | 35.9                           | 37.45                       | 7                         | 0.221                          |                             |
|                  | В         | 10             | 10             | 1.00                    |                                 | 33.92                          | 35.55                       | 10                        | 0.163                          |                             |
|                  | С         | 10             | 8              | 0.80                    |                                 | 33.32                          | 34.81                       | 8                         | 0.186                          |                             |
|                  | D         | 10             | 9              | 0.90                    |                                 | 35.54                          | 37.78                       | 9                         | 0.249                          |                             |
|                  | Ē         | 10             | 10             | 1.00                    | •                               | 36.47                          | 38.59                       | 10                        | 0.212                          |                             |
|                  | F         | 10             | 10             | 1.00                    |                                 | 32.63                          | 34.74                       | 10                        | 0.211                          |                             |
|                  | Ġ         | 10             | 8              | 0.80                    |                                 | 34.83                          | 35.85                       | 7                         | 0.146                          |                             |
|                  | н         | 10             | 77             | 0.70                    | 0.86                            | 38.00                          | 39.57                       | 7                         | 0.224                          | 0.202                       |
| 10011            | ···       |                |                | 0.00                    |                                 | 64.00                          | 05.50                       |                           | 0.450                          |                             |
| 12611            | A<br>B    | 10<br>10       | 6<br>8         | 0.60<br>0.80            |                                 | 34.69                          | 35.59                       | 6                         | 0.150                          |                             |
|                  |           | 10             | 9              |                         |                                 | 25.62                          | 20.05                       | 9                         | 0.440                          |                             |
|                  | C         | -              |                | 0.90                    |                                 | 35.63                          | 36.65                       |                           | 0.113                          |                             |
|                  | D         | 10             | 8              | 0.80                    |                                 | 39.05                          | 40.29                       | 8                         | 0.155                          |                             |
|                  | E         | 10             | 9              | 0.90                    |                                 | 33.19                          | 34.90                       | 9                         | 0.190                          |                             |
|                  | F         | 10             | 10             | 1.00                    |                                 | 36.59                          | 37.69                       | 10                        | 0.110                          |                             |
|                  | G         | 10             | 9              | 0.90                    |                                 | 39.11                          | 40.26                       | 9                         | 0.128                          | 0.4.4                       |
|                  | <u> </u>  | 10             | 9              | 0.90                    | 0.85                            | 35.08                          | 36.37                       | 9                         | 0.143                          | 0.141                       |
| 12612            |           | 10             | 8              | 0,80                    | <del></del>                     | 38.55                          | 39.66                       | 8                         | 0.139                          |                             |
| 12012            | B         | 10             | 9              | 0.90                    |                                 | 35.51                          | 36.77                       | 9                         | 0.135                          |                             |
|                  | C         | 10             | 10             | 1.00                    |                                 | 35.22                          | 36.80                       | 10                        | 0.158                          |                             |
|                  | D         | 10             | 8              | 0.80                    |                                 | 35.08                          | 36.51                       | 8                         | 0.179                          |                             |
|                  | E         | 10             | 9              | 0.90                    |                                 | 34.78                          | 35.87                       | 9                         | 0.173                          |                             |
|                  | F         | . 10           | 9              | 0.90                    |                                 | 34.36                          | 35.98                       | 9                         | 0.121                          |                             |
|                  | Ġ         | 10             | 9              | 0.90                    |                                 | 41.04                          | 42.20                       | 9                         | 0.129                          |                             |
|                  | Н         | 10             | 9              | 0.90                    | 0.89                            | 45.19                          | 47.04                       | 9                         | 0.206                          | 0.156                       |
|                  |           |                |                |                         |                                 |                                |                             |                           |                                |                             |
| 12613            | Α         | 10             | 10             | 1.00                    |                                 | 40.36                          | 41.89                       | 10                        | 0.153                          |                             |
|                  | В         | 10             | 9              | 0.90                    |                                 | 39.26                          | 40.33                       | 9                         | 0.119                          |                             |
|                  | С         | 10             | 10             | 1.00                    |                                 | 33.68                          | 34.99                       | 10                        | 0.131                          |                             |
|                  | D         | 10             | 8              | 0.80                    |                                 | 41.33                          | 42.35                       | 8                         | 0.128                          |                             |
|                  | Ε         | 10             | 10             | 1.00                    |                                 | 41.45                          | 42.84                       | 10                        | 0.139                          |                             |
|                  | F         | 10             | 10             | 1.00                    |                                 | 40.34                          | 41.91                       | 10                        | 0.157                          |                             |
|                  | G         | 10             | 9              | 0.90                    |                                 | 42.22                          | 44.29                       | 9                         | 0.230                          |                             |
|                  | н         | 10             | 9              | 0.90                    | 0.94                            | 40.51                          | 42.12                       | 9                         | 0.179                          | 0.154                       |
| 12614            |           | 10             | 10             | 1.00                    |                                 | 38.64                          | 39.76                       | 10                        | 0.112                          |                             |
|                  | В         | 10             | 9              | 0.90                    |                                 | 38.95                          | 40.19                       | 9                         | 0.138                          |                             |
|                  | Č         | 10             | 7              | 0.70                    |                                 | 37.28                          | 38.23                       | 7                         | 0.136                          |                             |
|                  | Ď         | 10             | 10             | 1.00                    |                                 | 35.81                          | 37,18                       | 10                        | 0.137                          |                             |
|                  | Ē         | 10             | 10             | 1.00                    |                                 | 37.76                          | 39.92                       | 10                        | 0.216                          |                             |
|                  | F         | 10             | 10             | 1.00                    |                                 | 41.40                          | 42.92                       | 10                        | 0.152                          |                             |
|                  | G         | 10             | 7              | 0.70                    |                                 | 41.23                          | 42,46                       | 7                         | 0.176                          |                             |
|                  | н         | 10             | 10             | 1.00                    | 0.91                            | 40.04                          | 41.68                       | 10                        | 0.164                          | 0.154                       |

<sup>\*</sup>No organisms weighed, see Protocol Deviations.

# Summary of Statistical Tests and Probabilities Dead Creek *Hyalella azteca* Acute Toxicity Test BTR: 3633b

|        | -       | •                       | Sur                                      | vival                                |                              | Growth                 |                             |                                      |                              |  |  |
|--------|---------|-------------------------|------------------------------------------|--------------------------------------|------------------------------|------------------------|-----------------------------|--------------------------------------|------------------------------|--|--|
| Day 10 |         | Proportion<br>Surviving | F-Test<br>Equal<br>Variance <sup>1</sup> | T-Test<br>Statistical<br>Probability | Statistically<br>Significant | Average<br>Weight (mg) | F-Test<br>Equal<br>Variance | T-Test<br>Statistical<br>Probability | Statistically<br>Significant |  |  |
| 12622  | Control | 0.86                    |                                          |                                      |                              | 0.202                  |                             |                                      |                              |  |  |
| 12638  | Sample  | 0.96                    | 0.054                                    | 0.036                                |                              | 0.172                  | 0.434                       | 0.085                                |                              |  |  |
| 12639  | Sample  | 0.91                    | 0.349                                    | 0.216                                |                              | 0 221                  | 0.885                       | 0.140                                |                              |  |  |
| 12640  | Sample  | 0.86                    | 0.051                                    | 0 233                                |                              | 0.219                  | 0.741                       | 0.144                                |                              |  |  |
| 12641  | Sample  | 0 83                    | 0 043                                    | 0 154                                |                              | 0 183                  | 0.213                       | 0 217                                |                              |  |  |

<sup>\*</sup> A statistically significant reduction in the response was observed (relative to the Laboratory Control, p<0.05).

<sup>1</sup> If the F-Test result was significant (relative to the Laboratory Control, P<0.05), the 1-Test was performed using unequal variances.

|                  |           |                |                | -                       |                                 | Day 10                         | Data                        |                           |                                |                            |
|------------------|-----------|----------------|----------------|-------------------------|---------------------------------|--------------------------------|-----------------------------|---------------------------|--------------------------------|----------------------------|
| Sample<br>Number | Replicate | Start<br>Count | #<br>Surviving | Proportion<br>Surviving | Mean<br>Proportion<br>Surviving | Initial Boat<br>Weight<br>(mg) | Total Dry<br>Weight<br>(mg) | #<br>Organisms<br>Weighed | Mean Wt.<br>within Rep<br>(mg) | Mean W<br>Reps I-L<br>(mg) |
| 12622            | A         | 10             | 7              | 0.70                    |                                 | 35.9                           | 37.45                       | 7                         | 0.221                          | 1                          |
|                  | В         | 10             | 10             | 1.00                    |                                 | 33.92                          | 35.55                       | 10                        | 0.163                          |                            |
|                  | C         | 10             | 8              | 0.80                    |                                 | 33.32                          | 34.81                       | 8                         | 0.186                          |                            |
|                  | Ď         | 10             | 9              | 0.90                    |                                 | 35.54                          | 37.78                       | 9                         | 0.249                          |                            |
|                  | Ē         | 10             | 10             | 1.00                    |                                 | 36.47                          | 38.59                       | 10                        | 0.212                          |                            |
|                  | Ē         | 10             | 10             | 1.00                    |                                 | 32.63                          | 34.74                       | 10                        | 0.211                          |                            |
|                  | Ġ         | 10             | 8              | 0.80                    |                                 | 34.83                          | 35.85                       | 7                         | 0.146                          |                            |
|                  | Н         | 10             | 7              | 0.70                    | 0.86                            | 38.00                          | 39.57                       | 7                         | 0.224                          | 0.202                      |
|                  |           |                |                | 0.70                    | 0.86                            | 36.00                          | 39.31                       |                           | 0.224                          | 0.202                      |
| 12638            | A         | 10             | 10             | 1.00                    | <del></del> -                   | 36.21                          | 37.61                       | 10                        | 0.140                          |                            |
|                  | В         | 10             | 10             | 1.00                    |                                 | 32.14                          | 33.57                       | 10                        | 0.143                          |                            |
|                  | С         | 10             | 9              | 0.90                    |                                 | 37.76                          | 38.77                       | 9                         | 0.112                          |                            |
|                  | D         | 10             | 10             | 1.00                    |                                 | 40.64                          | 42.43                       | 10                        | 0.179                          |                            |
|                  | E         | 10             | 9              | 0.90                    |                                 | 35.52                          | 36.71                       | 9                         | 0.132                          |                            |
|                  | F         | 10             | 10             | 1.00                    |                                 | 31.14                          | 33.25                       | 10                        | 0.211                          |                            |
|                  | G         | 10             | 10             | 1.00                    |                                 | 35.66                          | 38.00                       | 10                        | 0.234                          |                            |
|                  | <u>H</u>  | 10             | 9              | 0.90                    | 0.96                            | 37.52                          | 39.54                       | 9                         | 0.224                          | 0.172                      |
|                  |           |                |                |                         |                                 |                                |                             |                           |                                |                            |
| 12639            | Α         | 10             | 9              | 0.90                    |                                 | 34.44                          | 35.79                       | 9                         | 0.150                          |                            |
|                  | В         | 10             | 10             | 1.00                    |                                 | 36.84                          | 38.81                       | 10                        | 0.197                          |                            |
|                  | С         | 10             | 8              | 0.80                    |                                 | 34.06                          | 36.20                       | 8                         | 0.268                          |                            |
|                  | D         | 10             | 9              | 0.90                    |                                 | 27.24                          | 29.41                       | 9                         | 0.241                          |                            |
|                  | Ε         | 10             | 10             | 1.00                    |                                 | 28.68                          | 31.15                       | 10                        | 0.247                          |                            |
|                  | F         | 10             | 8              | 0.80                    |                                 | 34.61                          | 36.40                       | 8                         | 0.224                          |                            |
|                  | G         | 10             | 9              | 0.90                    |                                 | 37.94                          | 40.05                       | 9                         | 0.234                          |                            |
|                  | Н         | 10             | 10             | 1.00                    | 0.91                            | 37.24                          | 39.34                       | 10                        | 0.210                          | 0.221                      |
| 12640            | A         | 10             | 8              | 0.80                    |                                 | 27.90                          | 29.53                       | 8                         | 0.204                          |                            |
| 12040            | B         | 10             | 6              | 0.60                    |                                 | 27.90                          | 25.14                       | 6                         | 0.290                          |                            |
|                  | Č         | 10             | 9              | 0.90                    |                                 | 37.66                          | 39.44                       | 9                         | 0.198                          |                            |
|                  | D         | 10             | 8              | 0.80                    |                                 | 25.06                          | 26.72                       | 8                         | 0.198                          |                            |
|                  | E         | 10             | 10             | 1.00                    |                                 | 25.06<br>28.45                 | 26.72<br>30.63              | 10                        | 0.208                          |                            |
|                  | F         | 10             | 9              | 0.90                    |                                 | 28.45<br>31.90                 | 30.63<br>33.71              | 9                         | 0.218                          |                            |
|                  |           |                | _              |                         |                                 |                                |                             | 9<br>10                   |                                |                            |
|                  | G         | 10             | 10             | 1.00                    | 0.00                            | 34.54                          | 36.64                       |                           | 0.210                          | 0.219                      |
| <del></del>      | Н         | 10             | 9              | 0.90                    | 0.86                            | 33.49                          | 35.53                       | 99                        | 0.227                          | 0.219                      |
| 12641            | A         | 10             | 8              | 0.80                    | <del></del>                     | 30.74                          | 31.70                       | 8                         | 0.120                          |                            |
|                  | В         | 10             | 10             | 1.00                    | •                               | 30.83                          | 32.75                       | 10                        | 0.192                          |                            |
|                  | Ċ         | 10             | 9              | 0.90                    |                                 | 31.24                          | 32.49                       | 9                         | 0.139                          |                            |
|                  | D         | 12             | 12             | 1,00                    |                                 | 33.61                          | 35.62                       | 12                        | 0.168                          |                            |
|                  | Ē         | 10             | 9              | 0.90                    |                                 | 34.36                          | 36.17                       | 9                         | 0.201                          |                            |
|                  | Ē         | 10             | 7              | 0.70                    |                                 | 26.92                          | 28.19                       | 7                         | 0.181                          |                            |
|                  | Ġ         | 10             | 4              | 0.40                    |                                 | 36.63                          | 37.85                       | 4                         | 0.305                          |                            |
|                  | H         | 10             | 9              | 0.90                    | 0.83                            | 39.97                          | 41.38                       | 9                         | 0.157                          | 0.183                      |

## Summary of Statistical Tests and Probabilities Dead Creek *Hyalella azteca* Acute Toxicity Test

BTR: 3461

|        |         |                         | Sui                         | vival                                |                              | Growth                 |                             |                                      |                              |  |  |  |
|--------|---------|-------------------------|-----------------------------|--------------------------------------|------------------------------|------------------------|-----------------------------|--------------------------------------|------------------------------|--|--|--|
| Day 10 |         | Proportion<br>Surviving | F-Tost<br>Equal<br>Variance | T-Test<br>Statistical<br>Probability | Statistically<br>Significant | Average<br>Weight (mg) | F-Test<br>Equal<br>Variance | T-Test<br>Statistical<br>Probability | Statistically<br>Significant |  |  |  |
|        |         |                         |                             |                                      |                              | 0.202                  |                             |                                      |                              |  |  |  |
| 12668  | Control | 0 98                    |                             |                                      |                              | 0.268                  |                             |                                      |                              |  |  |  |
| 12664  | Sample  | 0.98                    | 1.000                       | 0.500                                |                              | 0.254                  | 0 547                       | 0.261                                |                              |  |  |  |
| 12665  | Sample  | 0.98                    | 1.000                       | 0.500                                |                              | 0.404                  | 0.601                       | 0.000                                |                              |  |  |  |
| 12666  | Sample  | 0.98                    | 1.000                       | 0.500                                |                              | 0.393                  | 0.034                       | 0.002                                |                              |  |  |  |
| 12671  | Sample  | 0.98                    | 0.367                       | 0.478                                |                              | 0 335                  | 0.511                       | 0.003                                |                              |  |  |  |
| 12671  | Sample  | 0.98                    | 0.367                       | 0.470                                |                              | 0.333                  | ., 311                      | 0.003                                |                              |  |  |  |

<sup>\*</sup> A statistically significant reduction in the response was observed (relative to the Laboratory Cor $^{-1}$   $\approx$  0.05).

|                  |           |                |                |                         |                                 | Day 10                         | Data                         | <u> </u> |                                |                              |
|------------------|-----------|----------------|----------------|-------------------------|---------------------------------|--------------------------------|------------------------------|----------|--------------------------------|------------------------------|
| Sample<br>Number | Replicate | Start<br>Count | #<br>Surviving | Proportion<br>Surviving | Mean<br>Proportion<br>Surviving | Initial Boat<br>Weight<br>(mg) | Total Dry.<br>Weight<br>(mg) |          | Mean Wt.<br>within Rep<br>(mg) | Mean Wt.<br>Reps I-L<br>(mg) |
| 12668            | Α         | 10             | 10             | 1.00                    |                                 | 30.81                          | 33.19                        | 10       | 0.238                          |                              |
| Ī                | В         | 10             | 10             | 1.00                    |                                 | 26.79                          | 29.62                        | 10       | 0.283                          |                              |
| l                | С         | 10             | 10             | 1.00                    |                                 | 29.98                          | 32.17                        | 10       | 0.219                          |                              |
|                  | D         | 10             | 10             | 1.00                    |                                 | 23.66                          | 26.88                        | 10       | 0.322                          |                              |
|                  | E         | 10             | 9              | 0.90                    |                                 | 26.13                          | 28.6                         | 9        | 0.274                          |                              |
|                  | F         | 10             | 10             | 1.00                    |                                 | 29.22                          | 32.29                        | 10       | 0.307                          |                              |
|                  | G         | 10             | 9              | 0.90                    |                                 | 21.52                          | 23.68                        | 9        | 0.240                          |                              |
|                  | H         | 10             | 10             | 1.00                    | 0.98                            | 24.02                          | 26.59                        | 10       | 0.257                          | 0.268                        |
|                  |           |                |                | 1.00                    | 0.00                            | 24.02                          |                              |          | 0.201                          |                              |
| 12664            | A         | 10             | 10             | 1.00                    |                                 | 39.18                          | 40.98                        | 10       | 0.180                          |                              |
|                  | В         | 10             | 10             | 1.00                    |                                 | 32.99                          | 35.06                        | 10       | 0.207                          |                              |
|                  | С         | 10             | 9              | 0.90                    |                                 | 41.23                          | 43.62                        | 9        | 0.266                          |                              |
|                  | D         | 10             | 10             | 1.00                    |                                 | 36.75                          | 39.51                        | 10       | 0.276                          |                              |
|                  | E         | 10             | 10             | 1.00                    |                                 | 32.17                          | 35.43                        | 10       | 0.326                          |                              |
|                  | F         | 10             | 9              | 0.90                    |                                 | 40.12                          | 42.65                        | 9        | 0.281                          |                              |
|                  | G         | 10             | 10             | 1.00                    |                                 | 36.04                          | 38.49                        | 10       | 0.245                          |                              |
|                  | н         | 10             | 10             | 1.00                    | 0.98                            | 35.76                          | 38.29                        | 10       | 0.253                          | 0.254                        |
|                  |           |                |                |                         |                                 |                                |                              |          |                                |                              |
| 12665            | Α         | 10             | 9              | 0.90                    |                                 | 27.97                          | 31.79                        | 9        | 0.424                          |                              |
|                  | В         | 10             | 10             | 1.00                    |                                 | 29.88                          | 33.46                        | 10       | 0.358                          |                              |
|                  | С         | 10             | 10             | 1.00                    |                                 | 29.18                          | 32.64                        | 10       | 0.346                          |                              |
|                  | D         | 10             | 10             | 1.00                    |                                 | 28.55                          | 32.54                        | 10       | 0.399                          |                              |
|                  | E         | 10             | 10             | 1.00                    |                                 | 29.28                          | 33.98                        | 10       | 0.470                          |                              |
|                  | F         | 10             | 9              | 0.90                    |                                 | 28.25                          | 32.36                        | 9        | 0.457                          |                              |
|                  | G         | 10             | 10             | 1.00                    |                                 | 31.97                          | 35.91                        | 10       | 0.394                          |                              |
|                  | H         | 10             | 10             | 1.00                    | 0.98                            | 24.38                          | 28.25                        | 10       | 0.387                          | 0.404                        |
|                  |           |                |                |                         |                                 |                                |                              |          |                                |                              |
| 12666            | A         | 10             | 9              | 0.90                    |                                 | 34,15                          | 37.52                        | 9        | 0.374                          |                              |
|                  | В         | 10             | 10             | 1.00                    |                                 | 34.11                          | 38.09                        | 10       | 0.398                          |                              |
|                  | C         | 10             | 10             | 1.00                    |                                 | 35.53                          | 39.32                        | 10       | 0.379                          |                              |
|                  | D         | 10             | 10             | 1.00                    |                                 | 37.52                          | 41.57                        | 10       | 0.405                          |                              |
|                  | E         | 10             | 10             | 1.00                    |                                 | 29.66                          | 33.32                        | 10       | 0.366                          |                              |
|                  | F         | 10             | 10             | 1.00                    |                                 | 32.52                          | 36.79                        | 10       | 0.427                          |                              |
|                  | G         | 10             | 9              | 0.90                    |                                 | 32.96                          | 37.95                        | 9        | 0.554                          |                              |
|                  | <u> </u>  | . 10           | 10             | 1.00                    | 0.98                            | 31.85                          | 34.27                        | 10       | 0.242                          | 0.393                        |
| 10674            |           | 10             | 10             | 1.00                    |                                 | 25.12                          | 27.91                        | 10       | 0.279                          |                              |
| 12671            | A         |                |                | 1.00                    |                                 |                                |                              | 10<br>6  |                                |                              |
|                  | В         | 10             | 8              | 0.80                    |                                 | 30.63                          | 33.41                        |          | 0.348                          |                              |
|                  | C         | 10             | 10             | 1.00                    |                                 | 30.06                          | 32.94                        | 10       | 0.288                          |                              |
|                  | D         | 10             | 10             | 1.00                    |                                 | 33.29                          | 36.48                        | 10       | 0.319                          |                              |
|                  | E         | 10             | 10             | 1.00                    |                                 | 29.46                          | 32.75                        | 10       | 0.329                          |                              |
|                  | F         | 10             | 10             | 1.00                    |                                 | 29.84                          | 33.01                        | 10       | 0.317                          |                              |
|                  | G         | 10             | 10             | 1.00                    |                                 | 32.94                          | 36.73                        | 10       | 0.379                          |                              |
|                  | Н         | 10             | 10             | 1.00                    | 0.98                            | 32.14                          | 36.32                        | 10       | 0.418                          | 0.335                        |

|      | <b>E</b> |   |  |
|------|----------|---|--|
| Page | E        | 1 |  |
|      |          |   |  |

## Aquatec Biological Sciences Chain-of-Custody Record

75 Green Mountain Drive South Burlington, VT 05403 TEL; (802) 860-1638 FAX: (802) 658-3189

| COMPANY INFORMATION                   |                 | COMPANY'S PROJECT INFORMATION                     |                |                 | ΙΛΤΙΟΝ   | SHIPPING INFORMATION                                                                                                                                                  |           |             | 1E/CON<br>PRESEF | _           |         |        |
|---------------------------------------|-----------------|---------------------------------------------------|----------------|-----------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|------------------|-------------|---------|--------|
| Name: Menzie Cura & Associates        | F               | roject Nam                                        | e: <u>Deac</u> | l Creek Sedim   | ent Tox  | Carrier:                                                                                                                                                              | 4ºC       |             |                  |             |         |        |
| Address: One Courthouse Lane, Suite 2 |                 |                                                   |                | 000             |          |                                                                                                                                                                       |           |             |                  | _           | _       |        |
| Chelmsford, MA 01824                  | 1               | roject Num                                        |                |                 |          | Airbill Number:                                                                                                                                                       | plastic   | ĺ           |                  |             | Ì       | Ì      |
| Telephone: (978) 453-4300             | 5               | iampler Nai                                       | ne(s):         | <del></del>     |          |                                                                                                                                                                       | l l       |             |                  |             |         |        |
| Facsimile: (978) 453-7260             |                 |                                                   |                |                 |          | Date Shipped:                                                                                                                                                         |           |             |                  |             | _       | _      |
| Contact Name: Ken Cerrelo, Ph.D.      |                 |                                                   |                |                 |          | ·                                                                                                                                                                     | 1 gal     |             |                  |             |         |        |
|                                       | i               | Quote #:                                          | 3/99           | Client Code:    | MENCUR   | Hand Delivered:YesNo                                                                                                                                                  |           |             |                  |             |         | ·      |
| SAMPLE IDENTIFICATION                 | COLI.           | ECTION TIME                                       | GRAB           | COMPOSITE       | MATRIX   | ANALYSIS / REMARKS                                                                                                                                                    |           | AILIMI      | ER OF            | CONTA       | NEDC    |        |
| JAWA EE IDEIVIII (DAVIOI)             | . /             | <del>                                      </del> | 0117115        |                 | Sediment | Hyalella azleca 10-d Survival & Growth                                                                                                                                |           | NOMB        | EROF             | CONTAI      | NERS    |        |
| BTOX- C-1                             | ( <i>0)</i> [   |                                                   |                | \               |          | Hyalella azteca 42-day Chronic Toxicity Chironomus tentans 10-d Survival & Growth Chironomus tentans Chronic Toxicity                                                 |           | j-0,4       |                  |             |         |        |
| BTOX-C-1<br>BTOX-C-1-2                | 10/1            |                                                   |                | 6               | Sediment | Hyalella azteca 10-d Survival & Growth Hyalella azteca 42-day Chronic Toxicity Chironomus tentans 10-d Survival & Growth Chironomus tentans Chronic Toxicity          |           | 1=0,4       |                  | ,           |         |        |
|                                       | <u></u>         |                                                   |                |                 | Sediment | Hynlella azteca 10-d Survival & Growth Hyalella azteca 42-day Chronic Toxicity Chironomus tentans 10-d Survival & Growth Chironomus tentans Chronic Toxicity          |           |             |                  |             |         |        |
|                                       |                 |                                                   |                |                 | Sediment | Hyalella azteca 10-d Survival & Growth<br>Hyalella azteca 42-day Chronic Toxicity<br>Chironomus tentans 10-d Survival & Growth<br>Chironomus tentans Chronic Toxicity |           |             |                  |             |         |        |
|                                       |                 |                                                   |                |                 | Sediment | Hyalella azteca 10-d Survival & Growth Hyalella azteca 42-day Chronic Toxicity Chironomus tentans 10-d Survival & Growth Chironomus tentans Chronic Toxicity          |           |             |                  |             |         |        |
| Tenneth Merret 1                      | DATE            | TIME 19:00                                        | Kau            | ed by: (signal  | W.       | NOTES TO SAMPLER(S): We recommen shipment. Please cover sample labels w                                                                                               | ith clear | tape (lat   | els are i        | iot water   | rproof) | luring |
| Relinquished by: (slgnature)          | DA'TE<br>)/S/77 | TIME /0:00                                        | Receiv         | eo by. (signati |          | Notes to Lab: Cooler ambient tempe                                                                                                                                    | erature i | ipon de     | livery:_         | 0(          | 3       |        |
| i-4                                   | DATE            | TIME                                              | Receiv         | ed by: (signali | ire)     |                                                                                                                                                                       |           |             |                  |             |         |        |
| C\99033V\COC1.doc                     | <del>,</del> -  |                                                   | <u> </u>       |                 |          |                                                                                                                                                                       |           | <del></del> |                  | <del></del> | ==-+    |        |

| _ |   |   |   |   |  |
|---|---|---|---|---|--|
| ١ | 1 | 1 | ł | ٠ |  |

## Aquatec Biological Sciences



75 Green Mountain Drive South Burlington, VT 05403 TEL: (002) 000-1038

|                                      |                                         |             |                  | Chain-          | -01-C/118                                    | stody/Record                                                                    | 417         | <b>**</b> ********************************** | F۸               | ·Χ: (862)                             | 650-0100   | P            |
|--------------------------------------|-----------------------------------------|-------------|------------------|-----------------|----------------------------------------------|---------------------------------------------------------------------------------|-------------|----------------------------------------------|------------------|---------------------------------------|------------|--------------|
| COMPANY INFORMATION                  |                                         | COMPA       | NY'S PRO         | OU CT INFORM    | MATION                                       | SHIPPING INFORMATION                                                            |             | VOLUN                                        | ME/GON<br>PRESEI |                                       |            |              |
| Name Menzie Cura & Associates        |                                         | Project Nan | mo <u>Dea</u>    | nd Crook Sedim  | nent Tox                                     | Corrier                                                                         | 49C         |                                              | 1                |                                       | 1          |              |
| Address One Courthouse Lane, Suite 2 | 2                                       |             |                  | •               |                                              |                                                                                 | 7           |                                              |                  |                                       | <b>1</b> ' | ( <i> </i>   |
| Chelmsford, MA 01824                 |                                         | Project Nun | mber: <u>0</u> £ | 9033            |                                              | Airbill Number                                                                  | A           | -                                            | -                |                                       | -          |              |
| Telephone (978) 453-4300             |                                         | Sampler Na  | ame(s)           |                 |                                              |                                                                                 | plastic     | 1                                            |                  |                                       | '          |              |
| Lacsimile (978) 453-7260             | Ī                                       |             |                  |                 |                                              | Date Shipped                                                                    |             |                                              |                  |                                       | - !        |              |
| Contact Name - Ken Cerrelo, Ph D     | ]                                       |             |                  |                 | ,                                            |                                                                                 | t gat       |                                              | 1                | '                                     | [ '        |              |
| ** **                                | 1                                       | Quota#.     | 3/90             | Chant Code A    | MUNGUR                                       | Hand Delivered. Yes No                                                          |             |                                              |                  |                                       | '          |              |
|                                      |                                         | LICTION     | 1                | 1               | J                                            |                                                                                 |             |                                              |                  | // pa may , America                   | SMAPEL .   | . 17.5723.57 |
| SAMPLE IDENTIFICATION                | DATE                                    | ÎIMI        | GRAB             | COMPOSITE       | MATRIX                                       | ANALYGIS / REMARKS  Hydlolla aztoga 10 d Guivival & Growth                      |             | NUMB                                         | BER OF (         | CONTV                                 | INCRS      | !            |
| DTAY / 2 3                           | 13/,1                                   | , }         | 1                |                 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \        | Hyalolla aztaca 42 day Chronic Toxicity                                         | /           | 1:09                                         | '                | 1                                     | 1 '        | 1 1          |
| B10X-C-3-2                           | 177                                     |             | f                |                 |                                              | Chironomus tentans 10 d Survival & Grow                                         | h /         | 1.0.1                                        | ] '              | 1                                     | 1 '        | 1 1          |
| i                                    |                                         |             | 1                |                 | Sediment                                     | Chironomus tentans Chronic Loxicity Hystolia uztaca 10 d Survival & Growth      |             |                                              | '                | !                                     | 1 '        |              |
| 107N/-12                             | 10/,                                    | . [ ]       | 1                |                 | <b>,,,,,</b> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Hyalalla aztaca 42 day Chronic Toxicity                                         | /           | ī.o.ŋ                                        | '                | 1 '                                   | 1 '        | l y          |
| BTOX - D-3                           | 1/4                                     | -   -       | 1                |                 |                                              | Chironomus tantans 10 d Survival & Grow                                         | h /         | '                                            | '                | 1 '                                   | 1 '        | 1 1          |
|                                      | ',                                      | .           | 1                |                 | Sedlment                                     | Chironomus tentans Chronic Foxicity Hyntalla aztaca 10-0 Survival & Growth      |             | ļ '                                          |                  |                                       | 1 - 1      |              |
| BTOX-0-3-2                           | 10/                                     | ,           | 1                |                 | 200000000000000000000000000000000000000      | Hyalalla aztaca 42 day Chronic Toxicity                                         | /           | 7=0.9                                        | '                | Í '                                   | 1 '        | 1 1          |
| 10101/CV 7 5 6                       | 1/4                                     |             | í.               |                 |                                              | Chironomus tantans 10 d Survival & Growl                                        | .h          | 1-0.1                                        | ( ''             | 1 '                                   | 1          | 1 1          |
| ,                                    | 11                                      |             | 1                | 1               |                                              | Chironomus lantans Chronic Toxicity                                             | /           | . '                                          | 1!               | l'                                    | L !        |              |
|                                      | l., /                                   |             | i .              | 1               | Sadknant                                     | Hydalla uzlaca 10 d Survival & Growth                                           | 11          |                                              |                  | 1                                     |            |              |
| PTOX- C-2-2                          | 1/6/                                    |             | i                |                 |                                              | Hyalalla aztaca 42 day Chronic Toxicity                                         | <i> </i>    | Tool                                         | 1 '              | 1 '                                   | 1          | 1 /          |
| ツノント しっし ん                           | 174                                     |             | i .              |                 |                                              | Chironomus tantans 10 d Survival & Growt<br>Chironomus tantans Chronic Toxicity | "   1       | '                                            | 1 1              | 1 '                                   | 1          | 1            |
| · '                                  | 1 >                                     |             | i .              | 1               | Sadimont                                     | Hynlalla aztaga 10 d Gurvival & Growth                                          |             |                                              |                  | · · · · · · · · · · · · · · · · · · · | 1          |              |
| DINK / )                             | 10/                                     |             | i .              | ' سر ر          | ,                                            | Hyalalla aztaca 42 day Chronic Toxicity                                         | /           | 1=05                                         | 1                | 1 '                                   | 1          | 1 /          |
| BTOX-C-2                             | 1/4                                     |             | 1                |                 |                                              | Chironomus tantans 10 d Survival & Grow                                         | h  /        | 1-0.1                                        | !                | 1 '                                   | 1          | 1            |
|                                      | 1//                                     |             | بحدد، د ا        |                 |                                              | Chironomus tentans Chronic Toxicity                                             | _   _/      | .  !                                         | 11               | 1!                                    | 11         | l            |
| Relinquished by: (signature)         | DVIE                                    | 1 12        |                  | vad by: (signat | Alio)                                        | NOTES TO SAMPLER(S): We recomme shipment. Please cover sample labels            |             |                                              |                  |                                       |            | during       |
|                                      | /0/-(/59                                | 19 17 CC    | 기                |                 |                                              | amphium. Cusas sover ampha man                                                  | Willi wiwn. | tulin tin-                                   | Juio mi          | .IUI Wine                             | moon       |              |
| Relinguished by. (signatura)         | DATE                                    | TIME        | Recgiv           | ved by: (signal | luin)                                        | Notes to Lab: Cooler ambient ten                                                | perature    | upon de                                      | alivery:         | O                                     | С          |              |
| VI.                                  | 0/5/99                                  | 9/0:00      | ) Ka             | ver 2011        | naces.                                       | ,   -, /- /                                                                     |             |                                              |                  | !                                     |            |              |
| Relindalshed by: (signatura)         | DATE                                    |             |                  | ved by: (signal | (iiio)                                       | - CO0(9-15                                                                      | 5           |                                              |                  |                                       |            | . ,          |
| i D                                  | *************************************** |             |                  | , , ,           | , ,                                          |                                                                                 | ,           |                                              |                  |                                       |            |              |
|                                      |                                         |             |                  |                 |                                              |                                                                                 | ,           |                                              |                  |                                       |            |              |

C199033W1CO

| <sup>o</sup> age | of |  |
|------------------|----|--|
|                  |    |  |

## Aquatec Biological Sciences Chain-of-Custody Record

75 Green Mountain Drive 14 South Burlington, VT 05403 17 TEL: (802) 860-1638 17 FAX: (802) 658-3189

| COMPANY INFORMATION                 |                                                   | COMPAN               | Y'S PRO.        | JECT INFORM     | MOLLVI   | SHIPPING INFORMATION                                                                 | PRESERVATIVE |          |           |          |           |             |
|-------------------------------------|---------------------------------------------------|----------------------|-----------------|-----------------|----------|--------------------------------------------------------------------------------------|--------------|----------|-----------|----------|-----------|-------------|
| Name: Menzie Cura & Associales      | _                                                 | roject Nan           | ne: <u>Deac</u> | l Creek Sedim   | ent Tox  | Carrier:                                                                             | ·49C         |          |           |          |           |             |
| Address: One Courthouse Lane, Suite | 2                                                 |                      |                 |                 |          |                                                                                      |              |          |           |          |           |             |
| Chelmsford, MA 01824                | ļ F                                               | Project Nun          | ber: <u>99</u>  | 033             |          | Airbill Number:                                                                      | plastic      |          |           |          |           |             |
| Felephone: (978) 453-4300           | 5                                                 | ampler Na            | me(s):          |                 |          |                                                                                      | ,,,,,,,,,,,  |          |           |          |           |             |
| Facsimile: (978) 453-7260           |                                                   |                      |                 |                 |          | Date Shipped:                                                                        |              |          |           |          |           |             |
| Contact Name: Ken Cerreto, Ph.D.    | -                                                 |                      |                 |                 |          |                                                                                      | 1 gal        |          |           |          |           |             |
|                                     |                                                   | λυοί <del>e</del> #: | 3/99            | Client Code:N   | MENCUR   | Hand Delivered:YesNo                                                                 |              |          |           |          |           |             |
| SAMPLE IDENTIFICATION               | COLL                                              | ECTION               | GRAB            | COMPOSITE       | MATRIX   | ANALYSIS / REMARKS                                                                   |              | ALL JAAD | EB OF (   | CONTAI   | NEDC      | ·           |
|                                     | -  <del>-                                  </del> | 1                    |                 |                 | Sediment | Hyalella azteca 10-d Survival & Growth                                               |              | INOINIB  | ER OF (   | OIALVI   | NERS      |             |
| BTOX- D-2                           | 10/4                                              | 1 1                  |                 |                 |          | Hyalella azleca 42-day Chronic Toxicity Chironomus tentans 10-d Survival & Growth    |              | E0,5     |           |          |           |             |
|                                     |                                                   |                      |                 |                 |          | Chironomus tentans Chronic Toxicity                                                  | ·<br>        |          |           |          |           |             |
| BTOX-D-7-2                          | 10/,                                              |                      |                 |                 | Sediment | Hyalella azteca 10-d Survival & Growth Hyalella azteca 42-day Chronic Toxicity       | ,            | TE0.5    |           |          |           |             |
| DION & C C                          | 10/4                                              |                      |                 |                 | ļ        | Chironomus tentans 10-d Survival & Growth                                            |              |          |           |          |           |             |
|                                     | -   <del></del>                                   | -                    |                 | ·               | Sediment | Chironomus tantans Chronic Toxicity  Hyalella azteca 10-d Survival & Growth          |              |          |           |          |           | <del></del> |
| FTOX-D-/                            | 10/1                                              |                      |                 | ,               |          | Hyalella azteca 42-day Chronic Toxicity                                              | 1            | T =0.5   |           | ,        |           |             |
| TATON O                             | / /                                               |                      |                 |                 |          | Chironomus tentans 10-d Survival & Growth Chironomus tentans Chronic Toxicity        |              |          |           |          |           |             |
|                                     | -                                                 |                      |                 |                 | Sediment | Hyalella azteca 10-d Survival & Growth                                               |              | Γ-0,5    |           | ,        |           |             |
| BTDX-D-1-2                          | 10/4                                              |                      |                 | 1               |          | Hyalella azteca 42-day Chronic Toxicity<br>Chironomus tontans 10-d Survival & Growth | /            | -0,5     |           |          |           |             |
|                                     | //_                                               |                      |                 |                 |          | Chironomus tentans Chronic Toxicity                                                  |              |          |           | ·        |           |             |
|                                     | 10/                                               |                      |                 |                 | Sediment | Hyalella azteca 10-d Survival & Growth<br>Hyalella azteca 42-day Chronic Toxicity    | 1            | 5.05     |           |          |           |             |
| 3TOX-C-3                            | 1/4                                               |                      |                 | L               |          | Chironomus tentans 10-d Survival & Growth                                            | /            |          |           |          |           |             |
| Line in the desire (single (up))    | D/1//E                                            | TIME                 | Dacaiy          | ed by: (signati | <br>     | Chimnomus lenlans Chronic Toxicity  NOTES TO SAMPLER(S): We recommen                 | d nestin     | d sample | es in ice | lo maint | ain 4°C c | luring      |
| Tennet (1)                          | 10/4/99                                           |                      | ľ               | ow oy. taigriou | 07       | shipment. Please cover sample labels w                                               |              | ••       |           |          |           | y           |
| elinquished by: (signature)         | _/_///_<br>DATĘ                                   | TIME                 | 1               | ed by: (signal  | urc)     | Notes to Lab: Cooler ambient tempe                                                   | erature      | upon de  | elivery:_ | 0        | 3         |             |
|                                     | 10/5/99                                           | 10:00                | cka             | ien 200         | UNGER    |                                                                                      |              |          |           |          |           |             |
| elinquished by: (signature)         | DATE                                              | TIME                 | Receiv          | ed by: (signal  | ure)     | > 000(S                                                                              |              |          |           |          |           |             |
| 55                                  |                                                   |                      |                 |                 |          |                                                                                      |              |          |           |          |           |             |

| Project No. Project                               | Mame:            | د مدی حقی است به علی به علی |                   |                   | Project Locati       |                  | . a. paper de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la |              | ····                                                                           |                                                           |
|---------------------------------------------------|------------------|-----------------------------|-------------------|-------------------|----------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------|-----------------------------------------------------------|
| 648B San                                          | get-             | 1/100                       | I- Dead G         | ach               | Sourcely             | CahoKi           | a II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /            |                                                                                | MENZIE-CURA & ASSOCIATES, INC. 1 COURTHOUSE LANE, SUITE 2 |
| <del> </del>                                      |                  |                             |                   |                   | 3-1                  | Analyses         | s Require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d            | ··                                                                             | CHELMSFORD, MA 01824                                      |
| DATE: 10/6/99                                     |                  |                             |                   |                   |                      | Q-11             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                | TEL: 978/453-4300 FAX: 978/453-7260                       |
| SAMPLERS Cher                                     | n zue            | , ,                         | Pogoty.           |                   |                      | sere of note     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                | ŧ                                                         |
| SAMPLE ID Date                                    | Comp.            | Tymo<br>Grand               | Station Locations |                   | No. of<br>Containers | 1 2 3 3 S        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                | NOTES                                                     |
| E-1 19699                                         | <u> </u>         | 9:50                        | Dead Coop-Sed     | , G-              | <u> </u>             | ×                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                |                                                           |
| 4 2                                               | 19               | 9:05                        | <u></u>           | <del></del>       | <u> </u>             | <del>-&gt;</del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | ·                                                                              |                                                           |
| E-3<br>BP-1                                       | <u></u>          | (Z)O                        | Bonow P.          | J                 | _ <u>-</u> -}        | <del>X</del>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                |                                                           |
| BP/ (Dupe                                         |                  | 163                         |                   |                   | a                    | X,               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                |                                                           |
| BP-311                                            |                  | 16.30                       | <u> </u>          |                   | ス                    | X                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                |                                                           |
|                                                   |                  |                             |                   |                   | ļ                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                |                                                           |
|                                                   |                  |                             |                   |                   |                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del> |                                                                                |                                                           |
|                                                   |                  |                             |                   |                   |                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                |                                                           |
|                                                   |                  |                             |                   |                   |                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                |                                                           |
|                                                   |                  |                             |                   |                   |                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ            |                                                                                |                                                           |
|                                                   |                  |                             |                   |                   |                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                |                                                           |
|                                                   |                  |                             |                   |                   |                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                |                                                           |
|                                                   |                  |                             |                   |                   | ļ                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ            |                                                                                |                                                           |
|                                                   |                  |                             |                   |                   |                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b> </b>     |                                                                                |                                                           |
| B. H. andala I. S (Characters)                    |                  | <del></del>                 | , Date            | Time              | Received By: (Sig    | nature)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date         | Time                                                                           | Remarks:                                                  |
| Relinquished By: (Signatur)                       | reni             | 4                           | 10/6/99           | 1900              | Kaund                | Mincon           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/7/17      | 10:00                                                                          | Noto (1) Hazteca/                                         |
| Relinquished By: (Signature                       | <del>,, ()</del> | 6                           | Date              | Thine             | Received By: (Sig    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date         | Time                                                                           | C. Lantans acute/                                         |
| Relinquished By: (Signature) Date Time            |                  |                             |                   | Received By: (Sig | nature)              |                  | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time         | Note () H.azteca/<br>C. Lentans acute/<br>Ononic sediment/<br>-10 Kicity teals |                                                           |
| Laboratory: Aquatich Contact Person: Phil. Downey |                  |                             |                   |                   | Phone:               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                | -10 KICITY HEAL)                                          |
| Contact Person:                                   | hil              | 1)201                       | onost-            |                   | J                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                |                                                           |
|                                                   | <u>~~</u> .      | 1,77                        | <u> </u>          |                   | ····                 | <del></del>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -117         |                                                                                | - 10 0 b a m 2                                            |

Via Feder in 3 coolers

(00 let 12 temp = 3, 18 - B3 + E3 (00 let 12 temp = 3, 20 - PAGE 1 OF ) Con let 12 temp = 3, 50 - BOT - BOT - Dup

| Colf & P                                 | Praject<br>Do 10                 | Namin<br>, () ( / \su           | , 1 <sub>t</sub>   | · Sarry, L                | New T                  | Project Location Secure 1/Calenders Required |              |        |              |          |           | MINZIE GURA & ASSOCIATES, INC<br>1 GOURTHOUSE LAND, SUITE 2<br>CHI L MSCORD, MA 01824 |
|------------------------------------------|----------------------------------|---------------------------------|--------------------|---------------------------|------------------------|----------------------------------------------|--------------|--------|--------------|----------|-----------|---------------------------------------------------------------------------------------|
| DATE 10/                                 | 190                              | γ                               |                    |                           |                        |                                              | <u>Apa</u> l | ysos R | <br>adřiji a | d        | /##FFF %: | TF1, 978/453-4300 FAX 978/453-7260                                                    |
| 1                                        |                                  |                                 | , 1,               | loganle                   | तः विशासन्तर           |                                              | 200          |        |              |          |           |                                                                                       |
| SAMPLEIO                                 | Date                             | They'<br>Gemp                   | Qmts               |                           |                        | No. of<br>Containers                         |              |        |              |          |           | NOTES                                                                                 |
| 30-3                                     | id fa                            | 9:36<br>15:00<br>16:10<br>10:10 |                    | Barrow P. 1 Dead (nooks   | عبدا ده ۱۱ (           | i)<br>iii                                    | XXXXX        |        |              |          |           | (o. lec ) 3.3°°<br>(o. lec ) 3.3°°<br>(, lec ) 3.7°°                                  |
| Rollinguished By:                        | (Signatur<br>LMP ()<br>(Signatur | )<br>f. () / ()<br>n)           | rils               | 1) 7 /1/1/<br>10) 7 /1/1/ | time<br>(6'01)<br>time | Received Hy. (Sig                            | CAON.        | ~J.    |              | 11/2/4/5 | 11me      | Romarks: 2<br>Somit in B cooleans<br>Via Feder                                        |
| Relinquished By: Laboratory: Contact Per |                                  |                                 | <i>نام</i> ا (بر)( | Dalo                      | 1 lmn                  | Phone:                                       |              |        |              | Date     | Time      |                                                                                       |

PAGE OF

| Project No.                                 |                             |           |             |                   | ·····                              | Project Locati       | on:                                             |           |         |               |                                                            |
|---------------------------------------------|-----------------------------|-----------|-------------|-------------------|------------------------------------|----------------------|-------------------------------------------------|-----------|---------|---------------|------------------------------------------------------------|
| 648B                                        | Dia                         | 9 CV      | eek_        | - Souget Noo      |                                    | Sauget               | -Co-h                                           | ohis.     | , T.//. |               | MENZIE-CURA & ASSOCIATES, INC.  1 COURTHOUSE LANE, SUITE 2 |
| 101                                         | 8/99                        | ,         |             | <b>V</b>          |                                    |                      |                                                 | yses Requ |         | 1             | CHELMSFORD, MA 01824                                       |
|                                             |                             |           |             |                   | <del></del>                        | ·                    | 1.32                                            |           |         |               | TEL: 978/453-4300 FAX: 978/453-7260                        |
| SAMPLERS (                                  | C. Ho                       | M ZU      | , 6         | Fogaily           |                                    |                      | なるか                                             |           |         |               |                                                            |
| SAMPLE ID                                   | Date                        | TIM Comp. | Grab        | Station Locations |                                    | No. of<br>Containers | まつる                                             |           |         |               | NOTES                                                      |
| bDC-I                                       | 10/8/9-                     |           |             | Prairie delon (   | 1012                               | 2                    | Z                                               |           |         |               |                                                            |
| LDC-9                                       | <u> </u>                    | 11:20     |             | 11 11             |                                    | <u> </u>             | X                                               |           |         | <u> </u>      |                                                            |
| 100 - 1                                     | سلا_                        | 16:30     |             | Rof Creck         |                                    |                      | <del>                                    </del> |           |         |               |                                                            |
| ļ                                           |                             |           |             |                   | <del></del>                        |                      |                                                 |           |         | <u> </u>      |                                                            |
|                                             |                             |           |             |                   |                                    | <del></del>          |                                                 |           |         | <del></del>   |                                                            |
|                                             |                             |           |             |                   |                                    |                      |                                                 |           |         |               |                                                            |
|                                             |                             |           | ļ. <u> </u> |                   |                                    |                      |                                                 |           |         |               |                                                            |
| <u> </u>                                    |                             |           |             |                   |                                    |                      |                                                 |           |         |               |                                                            |
|                                             |                             |           |             |                   |                                    |                      |                                                 |           |         |               |                                                            |
|                                             |                             |           |             |                   |                                    | <del></del>          |                                                 |           |         |               |                                                            |
|                                             |                             |           |             |                   |                                    |                      |                                                 |           |         |               |                                                            |
|                                             |                             |           |             |                   |                                    |                      |                                                 |           |         |               |                                                            |
|                                             |                             |           |             |                   |                                    |                      |                                                 |           |         |               |                                                            |
|                                             |                             |           |             |                   |                                    |                      |                                                 |           |         |               |                                                            |
|                                             |                             |           |             | · <u>···</u>      |                                    |                      |                                                 |           |         |               |                                                            |
| Relinguished By:                            | (Signatur                   | 2/01/     | Ma          | Date (15/8/94)    | Time<br>18130                      | Recoived Dy: (Sig    | naturo)                                         |           | Date    |               | Remarks:<br>2 coolors via Fedex                            |
| Relinquished By: (Signature)    Date   Time |                             |           |             |                   | Received By: (Sign                 | nature)              | 1                                               | Dale      | Time    |               |                                                            |
| Relinquished By: (Signature) Date Time      |                             |           |             |                   | Received By: (Signature) Date Time |                      |                                                 | Date      | Time    | 511399 409571 |                                                            |
| Contact Person Phil Downery                 |                             |           |             |                   |                                    | Phone:               |                                                 |           |         |               |                                                            |
| Contact Per                                 | Contact Person Phil Downery |           |             |                   |                                    |                      |                                                 | ,         |         |               |                                                            |
| ~7                                          |                             |           |             | 4                 | <del></del>                        | 120                  | -11-                                            | -/ /      | ° C     |               |                                                            |

Croler #1 1°C Temp #2 31°C

PAGE OF

|   | Project No          | i :                  |            |               |                   |                                       | Project Locat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lon;                    |         |  |        |              | MENZIE GURA & ABSOCIATES, INC                   |
|---|---------------------|----------------------|------------|---------------|-------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|--|--------|--------------|-------------------------------------------------|
|   | 64813               | Dea                  | d la       | با ز          | Sauget Avea       | 7                                     | Sungel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                       | ole i a |  |        | · ± ·1       | 1 COURTHOUSE LANE, SUITE 2 CHELMSFORD, MA 01024 |
|   | DATE: /0/           | 9/49                 |            |               |                   | ल बारा करी स्थल की स्थल है ।          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,3 6                   |         |  |        |              | TEL: 978/453-4300 FAX: 978/453-7260             |
|   | ,                   | •                    | n rid      | , K.          | Gode              | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.00<br>27.20<br>27.00 |         |  |        |              |                                                 |
|   | SAMPLE ID           | Date                 | Comp       | Grab          | Station Locations |                                       | No. of<br>Containers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | より ダ                    |         |  |        |              | NOTES                                           |
| 1 | ReFa-a              | 10/7/19              | 10:30      | \ \tau^{\chi} | Reparence Bornow  | Pit                                   | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                       |         |  |        |              |                                                 |
|   |                     | '                    |            |               | (                 |                                       | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |         |  |        |              |                                                 |
|   |                     |                      |            |               |                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |  |        | <u> </u>     |                                                 |
|   |                     |                      |            |               |                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |  |        |              |                                                 |
|   |                     |                      |            |               |                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |  |        | ļ            |                                                 |
|   |                     |                      |            |               |                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |  |        |              |                                                 |
|   |                     |                      |            |               |                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |  | ļ<br>ļ | ļ            |                                                 |
|   |                     |                      | }          | ,             |                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |  |        |              |                                                 |
|   |                     |                      |            |               |                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |  |        |              |                                                 |
|   |                     |                      | ı          |               |                   |                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |         |  |        |              |                                                 |
|   |                     |                      |            |               |                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | •       |  |        | <u> </u><br> | ( ( ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (         |
|   | tollerinion of the  | : (Slynatur          | ii         | 151           | 10/0/00           | 111111                                | Uncolved By: (81)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gnatura)                |         |  | Date   | Time         | Romarks:                                        |
|   | Relinquished By     | ンノンハリ<br>: (Signatur | 11 40 B    | out .         | Dale              | Time                                  | Itacelved liy: (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gernturo)               |         |  | l)ate  | fime         | Sout VIA US Nir<br>Counter to Counter           |
|   | <br>Relinquished By | : (Signatur          | *)         |               | Dale              | lime                                  | Received By: (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ynatura)                |         |  | Dale   | Time         | Course 10                                       |
|   | Laboratory          | Agu                  | <br>catecl |               | I                 | 1                                     | Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |         |  | J      | ļ <u></u> _  | 1                                               |
|   | Conjact Per         | rson: /              | Ohil.      | D000          | /V24              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |  |        |              |                                                 |
|   | <u>1-4</u><br>CO    |                      | ~ / 11 (   |               |                   |                                       | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |                         |         |  |        |              | <u>k,</u>                                       |

PAGE \_\_\_ OF \_\_

APPENDIX: C

| Client: Menzie-Cura & Assoc. | Project: 99033 Dead Creek    | BTR: 3615                  |
|------------------------------|------------------------------|----------------------------|
|                              | Test Start: October 19, 1999 | Test End: October 29, 1999 |

|             |           |          |          |          | Repick   | Total          | #                                     | Init Pan | Total       | 1        |
|-------------|-----------|----------|----------|----------|----------|----------------|---------------------------------------|----------|-------------|----------|
| Sample      | Repl.     | # Alive  | Init_    | Repick # | Init.    | Surv           | Weighed                               | WŁ.      | Dry Wt.     | }        |
| 12546       | Α         | 96       | 53       | G -      |          | 9              | 9                                     | 29,35    | 29.70       | 1        |
|             | В         | 9        | (        |          |          | 9              | 9                                     | 33,28    | 34.17       |          |
|             | С         | 4        | RB       |          |          | 9              | 9                                     | 31.89    | 32.49       |          |
|             | D         | 9        | TM       |          |          | 9              | 0                                     | 31.93    |             | No A     |
|             | E         | (0       |          |          | _        | 10             | 10                                    | 30.55    | 3i.55       | 1 ''`    |
|             | F         | 0        | 76       | -        |          | 19             | 10                                    | 29.54    | 30.13       | 1        |
|             | G         | 7        |          | 0        | m 1/4    | 7              | 7                                     | 31.04    | 31.90       | 1        |
|             | Н         | 9        |          |          | _        | 9              | 9                                     | 36.72    | 37.41       | 1        |
|             |           |          |          |          |          |                |                                       |          | <del></del> |          |
| 12547       | Α         | 6        | 9        | 0        | 7m ::!"  | (o             | 6                                     | 27.76    | 27.98       | ]        |
|             | В         | 10       | T        |          |          | 10             | 10                                    | 30,95    | 31.60       | 1        |
|             | С         | 7        | TYN      | 0        | DMil.    | 7              | 7                                     | 33,31    | 33.71       |          |
|             | D         | 8        | m        | 0        | m 11/4   | 8              | 7 8                                   | 31.58    | 32.21       | 1        |
|             | E         | 6        | 0_       |          | Milling  | 7              | 7                                     | 31,94    | 32.53       |          |
|             | F         | 9        | J        |          |          | 9              | 9                                     | 33,35    | 34 11       |          |
|             | G         | <u>R</u> | Ris      | 0        | 7777     | 8              | Ŗ                                     | 2595     | 26.62       | 1        |
|             | H         | 3        | JK       |          | <u>-</u> | 0              | <b>D</b>                              | 33,87    | 34.29       |          |
|             |           |          |          |          |          |                |                                       |          |             | 1        |
| 12548       | <u>A</u>  | 8        | RB       |          | all TM   | 3              | Ç                                     | 30.15    | 30.87       |          |
|             | В         | 3        | 10       | - 3      | TM       | <u>(e</u>      | 6                                     | 29.31    | 30.55       |          |
| ł           | <u>_C</u> | 6        | TiG-     |          | 19.4     | 6              | 6                                     | 31,25    | 31.55       | ļ        |
|             | D         | 5        | 10       |          | 174 mg.  | <u></u>        | 6                                     | 30.00    | 30.78       | 4        |
| 135         | E         | 7        | TM       | نے       | 76 119   | <u>+</u>       | 7                                     | 29,78    | 30.30       | ]        |
| المنطقة الم | <u>-</u>  | _6,      | Tm       | O        | JW W     | 16             | 6                                     | 31.74    | 32.32       | 1        |
| rus         | <u>G</u>  | _8       | 06       |          |          | 18             | 8                                     | 30.16    | 31.04       |          |
| 7 200 -     | • н       | 7        | TM       |          |          | <u> </u>       | 7                                     | 24,43    | 25.29       | ]        |
|             |           |          |          |          |          |                | <del></del>                           | 0 : (=   |             | 7        |
| 12549       | A         | 10       | <u> </u> |          |          | _{9_           | 10                                    | 31.68    | 33.23       | 1        |
|             | В         | - 3      | <u> </u> |          |          | <u> </u>       | <u> </u>                              | 26.08    | 26.64       | j        |
|             | <u>C</u>  | io       | <u> </u> |          |          | ( 0            | 10                                    | 27.87    | 29.33       | <b>↓</b> |
| ļ           | D         | × ×      | TM       | 0        | 16-11/7  | <u>&amp;</u> _ | 9                                     | 32.54    | 33.43       | <u> </u> |
|             | E         | 8        | 76       |          |          | 3              | ×                                     | 2832     | 29.87       | 1        |
|             | F         |          | 111      | (I)      | Mida     | 9              | × ×                                   | 25.55    | 26.76       | 1        |
|             | G         | 'υ       | 36       |          |          | 10             | × × × × × × × × × × × × × × × × × × × | 31.47    | 32.56       | 1        |
| L           | Н         | 9        | J        | 0        | Thain    | 9              | 9                                     | 28.89    | 30.5°       | Ĺ        |

| Balance QC Initial (20 mg = 19,47) Final (20 mg = 19.97) Balance Asset #:       |          |
|---------------------------------------------------------------------------------|----------|
| Date/time In 1/14 - "Temp("C) 79" Init JG Date/time out 11/5 16 = Temp("C) 79"C | Init. 7h |
| Comments 1) One inspectly runnyk (Dianata) procest, 10/29 JG                    |          |
| Reviewer Of Original Sciences South Burkington, Vermont                         | 4.06.12  |

| Client: Menzie-Cura & Assoc. | Project: 99033 Dead Creek    | BTR: 3615                  |
|------------------------------|------------------------------|----------------------------|
|                              | Test Start: October 19, 1999 | Test End: October 29, 1999 |

| Sample                | Repl.                                          | # Alive   | 10/29/99<br>Init.                      | Repick#       | Repick<br>Init.                      | Total<br>Surv | #<br>Weighed                          | Init Pan<br>Wt.                                                                        | Total<br>Dry Wt.                                                     |                                                        |
|-----------------------|------------------------------------------------|-----------|----------------------------------------|---------------|--------------------------------------|---------------|---------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|
| 12550                 | Α                                              | 9         | m                                      |               |                                      | 9             | 9                                     | 27,87                                                                                  | 28.57                                                                |                                                        |
|                       | В                                              | 10        | J                                      | (             |                                      | 10            | 9 00E                                 | 25.64                                                                                  | 26.40                                                                |                                                        |
| k                     | С                                              | 9         | Tm                                     | _             |                                      | 9             | 0 5                                   | 27.50                                                                                  |                                                                      |                                                        |
| chionomids<br>pregnat | D                                              | 5         | Tm                                     | 0             | JG11/7                               | 5             | 5                                     | 29.10                                                                                  | 30.10                                                                |                                                        |
| Chroan                | E                                              | 8         | JG                                     |               |                                      | 8             | 8                                     | 28,55                                                                                  | 29.86                                                                |                                                        |
| pres                  | F                                              | 10        | JG                                     | _             |                                      | 10            | 10                                    | 33,58                                                                                  | 34.67                                                                |                                                        |
|                       | G                                              | 9         | J                                      |               |                                      | 9             | G                                     | 23,84                                                                                  | 24.96                                                                | i                                                      |
|                       | Н                                              | 7/        | T                                      |               | _                                    | 11            | (1                                    |                                                                                        | 25.89                                                                |                                                        |
|                       |                                                |           | ·                                      |               |                                      |               | · · · · · · · · · · · · · · · · · · · |                                                                                        |                                                                      |                                                        |
| 12551                 | Α                                              | 9         | 16                                     |               |                                      | 9             | 9                                     | 28.94                                                                                  | 30.32                                                                |                                                        |
|                       | В                                              | 10        | 1                                      |               |                                      | 10            | 10                                    | 32.79                                                                                  | 34.17                                                                |                                                        |
|                       | С                                              | 8         | 7M                                     | 0             | JG11/7                               | 8             | 8                                     | 34.40                                                                                  | 35.91                                                                |                                                        |
|                       | D                                              | 10        | 75                                     |               |                                      | 10            | 10                                    | 27.15                                                                                  | 28.98                                                                |                                                        |
|                       | E                                              | 9         | 7                                      | _             | _                                    | 9             | 9                                     |                                                                                        | 34.79                                                                |                                                        |
|                       | F                                              | 9         | 36                                     |               |                                      | Q             | 9                                     | 32.88                                                                                  | 34.80                                                                |                                                        |
|                       | G                                              | 4         | 16                                     | ~_            | _                                    | 7             | 7                                     | 27.47                                                                                  | 28.58                                                                |                                                        |
|                       | Н                                              | 10        | 36                                     |               | _                                    | 10            | 10                                    | 25.40                                                                                  | 26.75                                                                |                                                        |
|                       |                                                |           |                                        |               |                                      |               |                                       |                                                                                        |                                                                      | •                                                      |
| 12552                 | Α                                              | 6         | J                                      | 0             | 15 11/7                              | 6             | 6                                     | 28.52                                                                                  |                                                                      |                                                        |
|                       | В                                              | 9         | 16                                     |               |                                      | 9             | 9                                     | 30,76                                                                                  | 31.84                                                                |                                                        |
|                       | С                                              | 10        | J                                      |               |                                      | 10            | 10                                    | 31.62                                                                                  | -33.73                                                               |                                                        |
|                       | D                                              | 9         | 5                                      |               |                                      | 9             | 9                                     | 27.67                                                                                  | 29.76                                                                |                                                        |
|                       | $\bot$                                         |           |                                        |               |                                      |               |                                       |                                                                                        | ~                                                                    |                                                        |
|                       | E                                              | 6         |                                        | 0             | JG11/12                              | _8            | 8                                     | 29,39                                                                                  | 31.17                                                                |                                                        |
|                       | $\bot$                                         | 9         | 7m                                     | 0             | JG11/12                              | 8             | 9                                     | ·                                                                                      |                                                                      |                                                        |
|                       | E<br>F<br>G                                    | 9         | 7m<br>136                              | 0             | JG11/12<br>                          | 9             |                                       | 29,39<br>29,56                                                                         | 31.17                                                                |                                                        |
|                       | E<br>F                                         | 9         |                                        | 0             | 16 11/12<br>                         |               | 9                                     | 29,39<br>29,56<br>29,61                                                                | 31.17<br>32.15                                                       | ant at                                                 |
|                       | F<br>G<br>H                                    | 9         |                                        | <u> </u>      | JG 11/12                             | 9             | 9                                     | 29,39<br>29,56<br>29,61                                                                | 31.17<br>32.15<br>31.76                                              | ग्गी <i>व</i> [वव                                      |
| 12589                 | E<br>F<br>G<br>H                               | 9         |                                        | 0 -           | JG 11/12                             | 9             | 9                                     | 29,39<br>29,56<br>29,61<br>21,96                                                       | 31.17<br>32.15<br>31.76<br>23.43                                     | Brokedo                                                |
| 12589                 | E<br>F<br>G<br>H                               | 9         |                                        |               | JG 11/12                             | 9             | 9                                     | 29,39<br>29,56<br>29,61<br>21,96<br>25,38<br>27,32                                     | 31.17<br>32.15<br>31.76<br>23.43                                     | Broke do<br>Repa I                                     |
| 12589                 | E<br>F<br>G<br>H                               | 999       |                                        |               |                                      | 9 9 0 2       | 9                                     | 29,39<br>29,56<br>29,61<br>21,96                                                       | 31.17<br>32.15<br>31.76<br>23.43                                     | Broke do<br>Rept I<br>from char                        |
| 12589                 | E<br>F<br>G<br>H                               | 9 9       | 16<br>5<br>30                          | ) ) ) ) ) ) ) |                                      | 9             | 9                                     | 29.39<br>29.66<br>29.61<br>21.96<br>25.38<br>27.32<br>25.27<br>27.66                   | 31.17<br>32.15<br>31.76<br>23.43<br>28.90<br>27.00                   | Broke do<br>Rept I<br>from char<br>I = 3 Su            |
| 12589                 | E<br>F<br>G<br>H<br>A<br>B<br>C<br>D<br>E      | 999       | 16<br>5<br>30                          | ) ) ) ) ) ) ) |                                      | 9 9 0 2       | 9                                     | 29,39<br>29,56<br>29,61<br>21,96<br>25,38<br>27,32<br>25,27<br>27,66<br>27,39          | 31.17<br>32.15<br>31.76<br>23.43<br>                                 | Broke do<br>Rept I<br>from char                        |
| 12589                 | E<br>F<br>G<br>H<br>A<br>B<br>C<br>D<br>E<br>F | 999       | 70000000000000000000000000000000000000 | ))),          | -<br>1611/7<br>1611/9<br>1611/4      | 9 9 0 2       | 9 9 9                                 | 29.39<br>29.66<br>29.61<br>21.96<br>25.38<br>27.32<br>25.27<br>27.66<br>27.39<br>30.30 | 31.17<br>32.15<br>31.76<br>23.43<br>                                 | Broke do<br>Rept I<br>from char<br>I = 3 Su<br>11/9/99 |
| 12589                 | E<br>F<br>G<br>H<br>A<br>B<br>C<br>D<br>E<br>F | -27-Chi-0 | JOHN COMPURE                           |               | 1611/7<br>1611/9<br>1611/4<br>1611/4 | 9 9 0 20 1    | 9 9 9                                 | 29.39<br>29.56<br>29.61<br>21.96<br>27.32<br>25.27<br>27.66<br>27.39<br>30.30<br>27.29 | 31.17<br>32.15<br>31.76<br>23.43<br>                                 | Broke do<br>Rept I<br>from char<br>I = 3 Su            |
| 12589                 | E<br>F<br>G<br>H<br>A<br>B<br>C<br>D<br>E<br>F | 999       | 70000000000000000000000000000000000000 | ))),          | -<br>1611/7<br>1611/9<br>1611/4      | 9 9 0 7 0 1 2 | 9 9 9                                 | 29.39<br>29.66<br>29.61<br>21.96<br>25.38<br>27.32<br>25.27<br>27.66<br>27.39<br>30.30 | 31.17<br>32.15<br>31.76<br>23.43<br>28.90<br>27.00<br>29.27<br>33.22 | Broke do<br>Rept I<br>from char<br>I = 3 Su<br>11/9/99 |

Balance QC: Initial (20 mg = 19.94 ) Final (20 mg = 19.94 ) Balance Asset #:

Date/time In 11/19/75 Temp(°C) 80° Init. KRD Date/time out 11/20 17:00 Temp(°C) 83— Init. JG

Comments:

Reviewer: Date: 12/3/99 hasurvwt.doc

000020

| Client:                                          | Menzie         | -Cura &                                      | Assoc.   | Project:       | 99033 Dea       | d Creek                           | BTR                                              | : 3615       |                  |                |
|--------------------------------------------------|----------------|----------------------------------------------|----------|----------------|-----------------|-----------------------------------|--------------------------------------------------|--------------|------------------|----------------|
|                                                  |                |                                              |          |                | t: Octobe       |                                   |                                                  | End: Oc      | tober 29,        | 1999           |
|                                                  |                |                                              |          |                | Daniele         | Total                             | #                                                | Init Pan     | Total            | 1              |
| Sample                                           | Repl.          | # Alive                                      | Init.    | Repick #       | Repick<br>Init. | Total<br>Surv                     | #<br>Weighed                                     | Wt.          | Total<br>Dry Wt. |                |
| 12590                                            | Α              | 1                                            |          | 0              | m IIII          |                                   | 1                                                | 34.53        | 36.46            | ]              |
| بالمكماء                                         | B¥             | 0                                            | RB       | : 0            | 136 11/7        | 0                                 |                                                  | 34.632       |                  | ]              |
| سرعكميه                                          | С              | 5                                            | TM       | 0              | m III           | 5                                 | 5                                                | 33. 17       | 35.83            |                |
| San Comment                                      | D              | (0                                           | 15       | $\overline{O}$ | 1611/2          | 00                                |                                                  | 37.06        |                  | i              |
| cyc                                              | E              | 1                                            | RB       | )              | 7m 11/11        | 20                                | يني                                              | 32,83        | 35,25            | 1              |
|                                                  | F              | 0                                            | 36       |                |                 | Ò                                 |                                                  | 40,18        |                  | 1              |
|                                                  | G              | <del>- }</del>                               | 15       | 0              | in 11/11        | 1                                 | 2                                                |              | 35,40            | 1              |
|                                                  | Н              | $\overline{\Delta}$                          |          | Č              | 15119           | 0                                 |                                                  | 26.30        |                  | İ              |
|                                                  |                |                                              |          | <del></del>    | 90 11           |                                   |                                                  | <u> </u>     |                  |                |
| 2591                                             | Α              | $\circ$                                      | 16       |                |                 | 8                                 |                                                  | 21.31        |                  | Broke          |
|                                                  | В              | ()                                           | -        | On             | mile            | 0                                 |                                                  | 23.43        |                  | Reps 1         |
| 10 5<br>19 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | C              | 8                                            | X        |                |                 | 0                                 |                                                  | 22 43        |                  | found          |
| 4 4 mm                                           | D              | 0                                            |          |                |                 | O                                 |                                                  | 22.19        |                  | Surviv         |
| 182 T                                            | E              | 0                                            | 10       |                |                 | $\delta$                          |                                                  | 19.98        |                  | H.OZH<br>Termi |
|                                                  | F              | $\tilde{\alpha}$                             |          |                |                 | $\overline{\wedge}$               |                                                  | 19.34        |                  | Chron          |
| ended<br>Chal                                    | <del>'</del> G | <u> </u>                                     | 36       |                |                 | <u> </u>                          |                                                  | 20.45        |                  | +29+           |
|                                                  | <del>-</del>   |                                              |          |                |                 | O                                 |                                                  |              |                  | 11/4           |
|                                                  |                |                                              |          |                |                 | <u> </u>                          |                                                  | 23.32        |                  | 1              |
| 12592                                            | Α              | 3                                            | 1        | 0              | 3611/7          | 8                                 | 8                                                | 30.25        | 33,04            | [              |
|                                                  | В              | -й                                           | 70       |                |                 | 4                                 | \3                                               | 32 94        | 34,30            | 1              |
|                                                  | C              | 8                                            | 7        |                | 3611/9          | 8                                 |                                                  | 28. +3       | 30.67            | 1              |
|                                                  | D              | 8                                            |          | <del></del>    | JE 11/7         | 8/                                | \$                                               | 33.73        | 37.12            | 1              |
|                                                  | E              | 3                                            | 10       |                |                 | 3                                 | 7                                                | 30.41        | 32.06            | i              |
|                                                  | F              | <u> </u>                                     |          | <del></del>    |                 |                                   | 2                                                | 38.87        | 40,21            | ł              |
|                                                  | G              | <del>-9</del>                                | 50       |                |                 | 3                                 | <del></del>                                      |              |                  | ł              |
|                                                  | H              | <del>- 그</del>                               | TIM      |                | 16.116          | <del>\</del>                      | <del></del>                                      |              | 26.69            | ł              |
|                                                  | <u> </u>       |                                              | 111/     | <u> </u>       | J6 11/9         | <u> </u>                          | <u>+</u>                                         | 33,50        | 29.21            | J              |
| 12593                                            | Α              |                                              | 16       | / _            |                 | 1                                 | 1                                                | 26.82        | 29.00            | Jan Jan        |
| بويع ر                                           | В              | 2                                            | 70       |                |                 | 2                                 | 7-                                               | 31.37        | 33,69            | , ν            |
| N's 30 11 5                                      | C              | 5                                            | 1        |                |                 |                                   |                                                  | 27.48        | 20.01            | 103 1          |
| کس <sub>ک</sub> استور                            | <u>D</u>       | -                                            | 10       |                | <del></del>     |                                   |                                                  | 21.40        |                  | gonu ,         |
| ~                                                | E,             | 3                                            | 7        |                | <del></del>     | $\frac{\mathcal{S}}{\mathcal{S}}$ | =                                                | 26.11        | 31.17            | gour, a        |
| 1                                                | F 1343         |                                              | 10       | <del>-</del>   | <del></del>     | <del>-7</del>                     | 1-5-                                             |              | 3617             | 82,10          |
|                                                  | G Vicia        |                                              | 70       | <del></del>    |                 |                                   | <del>                                     </del> | <u>22.90</u> | 26.11            | ord and        |
|                                                  |                | <u>`                                    </u> | 75       |                |                 | <u> </u>                          | <del>                                     </del> | 26.46        | 2011             | **             |
|                                                  | Н              |                                              |          | Combine        | ly sixed        |                                   |                                                  | 25.36        | 27.1             | ]              |
| laiacco (                                        | DC 100         | iai (20 mg =                                 | RD 19.94 | Emal           | (20 mg = /9     | 95                                | Balance A                                        | SSE1 #-      |                  |                |
| Balance (                                        |                | 71 Temp(°C                                   |          | Int KRD        | Date/time       |                                   | Temp                                             |              | Init.            |                |
|                                                  |                |                                              |          |                |                 |                                   |                                                  |              |                  |                |

hasurant boo Laboratory: Aquatec Siological Sciences, South Burlington, Vermont

| Client: Menzie-Cura & Assoc. | Project: 99033 Dead Creek    | BTR: 3615                  |
|------------------------------|------------------------------|----------------------------|
| 1                            | Test Start: October 19, 1999 | Test End: October 29, 1999 |

| Sample | Repl.         | # Alive | Init.       | Repick #    | Repick<br>Init. | Total<br>Surv  | #<br>Weighed                                     | Init Pan<br>Wt. | Total<br>Dry Wt. |    |
|--------|---------------|---------|-------------|-------------|-----------------|----------------|--------------------------------------------------|-----------------|------------------|----|
| 12609  | Α             | 1       |             | 0           | 1 HI4           | 1              | 1                                                | 37.16           | 40.82            |    |
| *      | В             | 1       | RB          | 0           | 46117           | <u>r</u>       | 1                                                | 33, 61          | 37.05            |    |
|        | С             | Ũ.      | 76          | ~           | TM 1114         | 1 /            | 1                                                | 38.82           | 42.83            |    |
| *      | D             | 2630    | - 16        |             | , — \           | 18.96          | 10                                               | 36, 43          | 40,24            |    |
|        | ш             | 2       | 15          | 0           | 3611/7          | 12             | 3                                                | 24.59           | 29,70            |    |
|        | F             | 2       |             | 0           | m 11/14         | <u>~</u>       | 2                                                | 24.53           | 29,12            |    |
|        | G             | 4       | 14          | 0           | JG 11/7         | <del></del>    | <del>                                     </del> | 32.31           | 35,645           | (G |
|        | Н             |         | 16          |             |                 |                |                                                  | 32.77           | 34.95            |    |
| 12610  | Α             | 6       | 3(5         |             |                 | 6              | 6                                                | 25.00           |                  |    |
| ļ      | В             | 8       | RB_         |             |                 | <u>Z</u>       | 8                                                | 29.95           | 35,42            |    |
|        | С             | 8       | R.B         |             |                 | 8              | 8                                                | 26.78           | 32,93            |    |
|        | D             | 10      | <u> </u>    |             |                 | 10             | 10                                               | 32.53           | 36,55            |    |
|        | E<br>F        | 10      | RB-         |             |                 | _10            | 10                                               | 30.09           | 34,73            |    |
| j      | G             | 8       | <u> </u>    | 0           | m 11/4          | 7 8            | 7                                                | 25,59           | 29.73            |    |
|        | Н             | 3       |             | 0           | JG 11/8         | 4              | <i>II</i>                                        | 34.39           | 31,83            |    |
|        |               |         |             |             | 90 118          |                |                                                  | U 1.51          | 001 51           |    |
|        | Α             |         |             |             |                 |                |                                                  |                 |                  |    |
| ļ      | В             |         |             |             |                 |                |                                                  |                 |                  |    |
|        | <u>c</u>      |         | ·           |             |                 |                | ļ                                                | <del> </del>    |                  |    |
|        | D<br>E        |         |             |             |                 |                |                                                  |                 |                  |    |
| ł      | F             |         |             |             |                 |                |                                                  | <del> </del>    |                  |    |
|        | G             |         |             |             |                 | <del></del>    |                                                  | <del> </del>    | <b></b>          |    |
| 1      | $\frac{H}{H}$ |         |             |             |                 |                |                                                  |                 |                  |    |
|        |               |         |             |             |                 |                | <u></u>                                          | ·               | <del></del>      |    |
|        | A<br>B        |         |             | <del></del> |                 | <del></del>    | <u> </u>                                         | <del> </del>    |                  |    |
|        | С             |         | <del></del> |             |                 | <del></del>    | <b> </b>                                         | <del> </del>    | <del> </del>     |    |
| i      | D             |         |             |             |                 | <del>-</del> , | <del>                                     </del> | <del> </del>    | <del>  </del>    |    |
| į      | E             |         | ·           |             | <del></del>     |                | <del>                                     </del> | <del> </del>    |                  |    |
|        | F             |         |             |             |                 | <del></del>    |                                                  |                 | 0000             | 2  |
|        | G             |         |             |             |                 |                |                                                  |                 |                  |    |
|        | Н             |         |             |             |                 |                |                                                  |                 |                  |    |
|        |               |         | KRD         |             |                 |                |                                                  |                 |                  |    |

| Balance QC:    | Initial (20 mg = | 19.95 | ) Final (2 | 20  mg = 19.95 | ) | Balance Asset #: |       |  |
|----------------|------------------|-------|------------|----------------|---|------------------|-------|--|
| Date/time In i | روام، Temp(°C)   | 500   | Init. KRD  | Date/time out  |   | Temp(°C)         | Init. |  |
| Comments:      | 17:35            |       |            |                |   |                  |       |  |

# 12609 - Sample DO's very low, 609D has very little
something water. Sediment
expanded during teating. 10/29
Points of somen flooring.
Fileners us algae

Menzie Cura Dead Creek 99033 BTR s 3615, 3622, 3629 Aquatec Biological Sciences

|           | Initial Dry Weight Data |                                |                             |                                |                              |  |  |  |  |  |  |
|-----------|-------------------------|--------------------------------|-----------------------------|--------------------------------|------------------------------|--|--|--|--|--|--|
| Replicate | #<br>Weighed            | Initial Boat<br>Weight<br>(mg) | Final Dry<br>Weight<br>(mg) | Mean Wt.<br>within Rep<br>(mg) | Mean Wt.<br>Reps I-L<br>(mg) |  |  |  |  |  |  |
| 1         | 10                      | 39.02                          | 40.45                       | 0.143                          |                              |  |  |  |  |  |  |
| 2         | 10                      | 40.11                          | 41.6                        | 0.149                          |                              |  |  |  |  |  |  |
| 3         | 10                      | 38.73                          | 40.19                       | 0.146                          |                              |  |  |  |  |  |  |
| 4         | 10                      | 41.98                          | 43.41                       | 0.143                          |                              |  |  |  |  |  |  |
| 5         | 10                      | 41.09                          | 42.75                       | 0.166                          |                              |  |  |  |  |  |  |
| 6         | 10                      | 35.32                          | 36.81                       | 0.149                          |                              |  |  |  |  |  |  |
| 7         | 10                      | 40.47                          | 41.86                       | 0.139                          |                              |  |  |  |  |  |  |
| 8         | 10                      | 35.92                          | 37.64                       | 0.172                          | 0.151                        |  |  |  |  |  |  |

## Hyalella azteca Initial Dry Wt. ( Pre-TesT)

| Client: Menzie-Cura & | Project: 99033 | BTR: 3615/ 3629 / 3 622 |
|-----------------------|----------------|-------------------------|
| Assoc.                |                | October 19 1999         |
| Culture ID: 10/19     | Age: q day     | 'S                      |

| <b>5</b>  | Number of         | Initial Pan Weight | Final Pan Weight |
|-----------|-------------------|--------------------|------------------|
| Replicate | Organisms weighed | (mg)               | (mg)             |
| 1         | 10                | 39.017             | 40.45            |
| 2         | 10                | 40.110             | 41.60            |
| 3         | 10                | 38.733             | 40.18            |
| 4         | 10                | 3°44. 982 41.978   | 43,41            |
| 5         | 10                | 41.086             | 42.75            |
| 6         | 10                | 35, 324            | 36.81            |
| 7         | 10                | 40.468             | 41,86            |
| 8         | 10                | 35. 917            | 37.64            |
|           |                   |                    |                  |
| Initials: |                   |                    |                  |
| Date:     |                   |                    |                  |
|           |                   |                    |                  |

| _ | AUG UT   |
|---|----------|
| 1 | WT. (Mg) |
|   | 0.143    |
|   | 0.149    |
|   | 0.146    |
|   | 0.143    |
|   | 0.166    |
|   | 6.149    |
|   | 0.139    |
|   | 0.172    |
|   |          |
| 1 |          |

| Balance QC: Initial (20 mg = <i>/9,96</i> )<br>Asset #:      | Final (20 mg = /9.96 ) Balance |
|--------------------------------------------------------------|--------------------------------|
| Date/time Inでするから Temp(°C) 多つっし Init.<br>Temp(°C) SO Init.コG | S Date/time out 12/5 12:00     |
| Comments:                                                    |                                |

Subset of Emphipolis used for acuse test sizers on 10/19/99

Reviewer: Date: 12/8/99

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont



## Aquatic Research Organisms

### DATA SHEET

| I.      | Organism I  | listory                                                                                          |
|---------|-------------|--------------------------------------------------------------------------------------------------|
|         | Species:    | Hyglella azTeca                                                                                  |
|         | Source:     | Lab reared Field collected                                                                       |
|         |             | Hatch date 10/9-10/99 Receipt date                                                               |
|         |             | Lot number 1009 \$9 Hg Strain ACO                                                                |
|         |             | Brood OriginationUS FWS MO                                                                       |
| Ш.      | Water Qua   | lity                                                                                             |
|         |             | Temperature 24 °C Salinity ppt DO 7.6                                                            |
|         |             | pH 7 / Hardness 2/80 ppm                                                                         |
| III.    | Culture Co  | nditions                                                                                         |
|         |             | System: Pin STUTIC / CNKW9/                                                                      |
|         | ł a c       | Diet: Flake Food Phytoplankton Trout Chow                                                        |
| ^ . C . | = = 1999    | Diet: Flake Food Phytoplankton Trout Chow  Brine Shrimp Rotifers Other  Prophylactic Treatments: |
| 1-4     | 1710        | Prophylactic Treatments:                                                                         |
|         | jud         | Comments:                                                                                        |
| 31.5    | 3/4/99      | Comments:                                                                                        |
| γ. του. | Shipping In | of ormation                                                                                      |
| SRT on  | 10/23/49    | Client: AUARCH # of Organisms: 2500                                                              |
|         | •           | Carrier: 1-42 & Date Shipped: 10/18/99                                                           |
| Bio     | logist:     | Ster Sintific                                                                                    |

| Ct. Menzie   | -Cura & Associates      | ,   1 10 <u>)</u> |       | 33 Dead | - OTCCK      | Dav   | of Ana  |       | 10 1650 | Starts 10    | 113133 |      |  |
|--------------|-------------------------|-------------------|-------|---------|--------------|-------|---------|-------|---------|--------------|--------|------|--|
| Comple       | Parameter               | 0                 |       |         |              |       |         |       |         |              |        | 1 40 |  |
| Sample       | Parameter               | U                 |       |         |              | •     |         | ĺ     | _       |              | 9      | 10   |  |
| 12546        | T (°C) + <del>∕</del> ⁄ | 23.1              | 27.5  | 22,5    | 32.9<br>22.7 | 21.9  | 33.31   | 31.7  | 20.4    | 22.6         | 21.7   | 22   |  |
|              | рН                      | 7.8               | Х     | Х       | Х            | X     | 7.7     | X     | X       | Х            | Х      | 7.0  |  |
|              | DO (mg/L)               | 7.2               | 6.4   | 6.8     | 6.0          | 7.2   | 7-0     | 7.3   | 6,8     | 65           | 6.2    | 6.   |  |
|              | Conductivity            | 450               | Х     | X       | Х            | X     | 290     | X     | Х       | Х            | Х      | 310  |  |
|              | Ammonia, alk/hardness   | >                 | Х     | X       | Х            | X     | X       | X     | Х       | Х            | Х      | V    |  |
| 12547        | T (°C)                  | <b>33.</b> 2      | 22.2  | 22,2    | 23.2         |       | 7. AT   |       |         |              |        | 22-  |  |
|              | pН                      | 7.6               | Х     | X       | X            | Х     | 76      | Х     | X       | X            | X      | 7.   |  |
|              | DO (mg/L)               | 6.5               | 5.3   | 6,4     | 5.6          | 6,3   | 6.4     | 5.8   | 5.4     | 55           | 5.1    | 5.   |  |
|              | Conductivity            | 430               | Х     | X'      | Х            | Х     | 300     | Χ.    | Х       | Х            | Х      | 315  |  |
|              | Ammonia, alk/hardness   |                   | Х     | Х       | Х            | Х     | Х       | Х     | Х       | Х            | Х      | 1    |  |
| 12548        | T (°C)                  | 23.4              | ح.22  | 22,3    |              |       |         |       |         |              |        | 21.9 |  |
|              | pH                      | 7.7               | Х     | Х       | Х            | Х     | 7-6     | Х     | Х       | Х            | Х      | 7.   |  |
|              | DO (mg/L)               | 6.2               | 5.7   | 6,0     | 5.2          | 6.7   | 7-0     | 7.0   | 5.8     | 5.9          | 5.2    | 5.   |  |
|              | Conductivity            | 460               | X     | X       | Х            | X     | 280     | Х     | X       | X            | X      | 310  |  |
|              | Ammonia, alk/hardness   | 1                 | Х     | Х       | Х            | Х     | X       | Х     | Х       | Х            | X      | /    |  |
|              | Init./Date (1999):      | 10/19<br>TM       | 10/20 | 10/21   | 19/22        | 10/23 | 10/24 m | 10/25 | 10/26   | 10/27<br>//M | 10/28  | 19/2 |  |
| ₩·<br>nents: | Temperare me            | doute             | Vin   | reflec  |              | neacu | veren   | - fro | 70(2)   | neo .        | Aprile |      |  |

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

|        |                       | BTR: 3615 Test Starts 10/19/99  Day of Analysis |            |       |       |       |       |       |       |       |       |              |
|--------|-----------------------|-------------------------------------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|--------------|
| Sample | Parameter             | 0                                               | 1          | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10           |
| 12549  | T (°C)                | 23.2                                            | 22./       | 32.4  |       |       |       |       |       |       |       | 21.          |
|        | pН                    | 7.8                                             | X          | X     | Х     | X     | 7.7   | Х     | X     | X     | X     | 7.(          |
|        | DO (mg/L)             | 68                                              | 6.3        | 6.8   | 6.5   | 7.3   | 7.1   | 7.8   | 6,3   | 5.9   | 6.5   | 6            |
|        | Conductivity          | 390                                             | x          | X     | X     | X     | 20    | X     | X     | Х     | X     | 30           |
|        | Ammonia, alk/hardness |                                                 | Х          | X     | X     | ×     | X     | X     | X     | X     | X     | 36           |
| 12550  | T (°C)                | 24.3                                            | a.2.0      | 22.4  | _     |       |       |       |       |       |       | <u>21.</u> ° |
|        | рН                    | 7.9                                             | X          | X     | Х     | Х     | 7.7   | X     | X     | X     | Х     | 7.           |
|        | DO (mg/L)             | 7.3                                             | 4          | 6.5   | 6.7   | 7.3   | 73    | 7.7   | 6.3   | 5.7   | 6.2   | 5.           |
|        | Conductivity          | 380                                             | X,         | X     | X     | X     | 280   | X     | X     | X     | X     | 30           |
|        | Ammonia, alk/hardness | /                                               | ×          | X     | X     | X     | ×     | X     | ×     | Х     | X     | レ            |
| 12551  | T ("C)                | 22.7                                            | 227        | 22.4  |       |       |       |       |       |       |       | 21.          |
|        | pН                    | 7.9                                             | X          | X     | X     | X     | 7.7   | X     | ×     | X     | X     | 71           |
|        | DO (mg/L)             | 6.4                                             | 18         | 6,8   | 6.3   | 73    | 7.2   | 7.2   | 5,9   | 5,8   | 6.1   | 5 (          |
|        | Conductivity          | 380                                             | <b>`</b> x | X     | X     | 1     | 270   | X     | X     | X     | X     | 30           |
|        | Ammonia, alk/hardness |                                                 | X          | X     | ×     | X     | X     | X     | X     | X     | X     | レ            |
|        | Init./Date (1999):    | 19/19                                           | 10/20      | 10/20 | 19/23 | 10/22 | 19/24 | 19/35 | 10/26 | 10/27 | 19/28 | 19/2         |

Comments:

Date: 12/3/99

haenv.doc

1 - boratory: Aquatec Biological Sciences, South Burlington, Vermont

| ct: Menzie |                       |                 |        |       |             |         |         |       |                   |       |       |      |
|------------|-----------------------|-----------------|--------|-------|-------------|---------|---------|-------|-------------------|-------|-------|------|
|            |                       | Day of Analysis |        |       |             |         |         |       |                   |       |       |      |
| Sample     | Parameter             | 0               | 1      | 2     | 3           | 4       | 5       | 6     | 7                 | 8     | 9     | 1    |
| 12552      | T (°C)                | 22.0            | 22.7   | 22.5  |             |         |         |       |                   |       |       | 21:  |
|            | рН                    | 7.6             | X      | Х     | Х           | Х       | 7-8     | Х     | Х                 | Х     | Х     | 7.8  |
|            | DO (mg/L)             | 8.7             | 7.9    | 74    | 7.7         | 7.5     | 7.5     | 7.9   | 7.1               | 6.7   | 7.0   | 7.0  |
|            | Conductivity          | 420             | Х      | Х     | Х           | Х       | 310     | Х     | X                 | X     | Х     | 30   |
|            | Ammonia, alk/hardness | /               | Х      | X     | Х           | Х       | Х       | Х     | Х                 | X     | Х     | V    |
| 12589      | T (°C)                | 22.9            | -, 2,9 | 22.5  | 13:2        | 22:37.4 | 235     | 22.7  | 22.2<br>22.4<br>X | 22.60 | 22.5  | 22   |
|            | рН                    | 7.8             | Х      | Х     | X           | X       | 7.7     | X     | X                 | X     | X     | 7    |
|            | DO (mg/L)             | 7:00            | 6-6    | 6.4   | 6.2         | 7.3     | 7.0     | 7.4   | 6,6               | 6.3   | 6.3   | 6-   |
|            | Conductivity          | 400             | Х      | Х     | Х           | Х       | 290     | Х     | Х                 | X     | Х     | 31   |
|            | Ammonia, alk/hardness | ~               | Х      | Х     | Х           | Х       | Х       | Х     | Х                 | Х     | Х     | L    |
| 12590      | T (°C)                | 21-9            | 37/    | 22.8  |             |         |         |       |                   |       |       | 22   |
|            | рН                    | 7.8             | Х      | Х     | Х           | Х       | 7-7     | Х     | Х                 | X     | X     | 7.   |
|            | DO (mg/L)             | 6.5             | 68     | 6.4   | 7.0         | 7.3     | 7-0     | 6.9   | 6.4               | 6.2   | 67    | 6    |
|            | Conductivity          | 400             | X      | X     | Х           | Х       | 300     | Х     | Х                 | Х     | X     | 3    |
|            | Ammonia, alk/hardness | /               | Х      | Х     | Х           | Х       | Х       | Х     | Х                 | Х     | Х     | 1    |
|            | Init./Date (1999):    | 10/19           | 10/20  | 19/83 | 19/22<br>WY | 10/23   | 10/247M | 10/25 | 10/26             | 10/27 | 19/28 | 19/2 |

| . )       | )             | <br><del></del> | <u> </u> |
|-----------|---------------|-----------------|----------|
| $\supset$ | Comments:     |                 |          |
| (:)       | 기             |                 |          |
| ( )       | ) <del></del> |                 |          |

haenv.doc

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 Dead Creek BTR: 3622 Test Starts 10/19/99 Project: Menzie-Cura & Associates Day of Analysis **Parameter** 0 2 3 7 Sample 1 5 6 8 9 10 T (°C) 12591 21.9 /29 22.7 216 pН X X X X X X X 7.6 7.6 7.7 DO (mg/L) 7.0 78 7.6 70 7.0 0 7.8 Conductivity Х X Χ Х X X 30 375 Ammonia, alk/hardness X X Χ X X Χ X T (°C) 12592 21.7/22.8 228 22.3 pН X X Χ X X  $\overline{X}$ 78 X 7.9 DO (mg/L) 6.5 7.5 6,2 7-0 7.4  $\bar{\mathsf{X}}$ Χ Χ Conductivity X 370 310 Ammonia, alk/hardness X Χ Χ Χ Χ Х Х Х T (°C) 12593 22.6 22.7 212 229 pН X X X X Χ X X Χ 7.7 7.8 6.3 DO (mg/L) 70 7.4

|            | 0 | U F | $\nu$ |
|------------|---|-----|-------|
|            |   |     |       |
| Comments:  |   |     |       |
| · <b>i</b> |   |     |       |
|            |   |     | ·     |

X

X

X

X

300

Х

X

X

Χ

X

10/26

X

X

290

10/29

6.1

X

192

X

X

10/20

000010 Date: 12/3/99 Review: haenv.doc Soratory: Aquatec Biological Sciences, South Burlington, Vermont

Conductivity

Ammonia, alk/hardness

Init./Date (1999):

7.1

375

10/19

| <del>, , , , , , , , , , , , , , , , , , , </del> | -Cura & Associates    | 1     | · · · · · · · · · · · · · · · · · · · |                | d Creek      | Dav   | of Ana       |              |             | Starts 10 |              |      |
|---------------------------------------------------|-----------------------|-------|---------------------------------------|----------------|--------------|-------|--------------|--------------|-------------|-----------|--------------|------|
|                                                   |                       |       | ,                                     | <del>r -</del> | <del>,</del> |       | <del>,</del> |              | <del></del> | <b></b>   | <del>,</del> |      |
| Sample                                            | Parameter             | 0     | 1                                     | 2              | 3            | 4     | 5            | 6            | 7           | 8         | 9            | 1    |
| 12609                                             | T (°C)                | 21.7  | 24                                    | 22.5           |              |       |              |              |             |           |              | 22.  |
|                                                   | рН                    | 7.7   | X,                                    | X              | X            | X     | 7-7          | Х            | X           | Х         | X            | 7.   |
|                                                   | DO (mg/L)             | 6.6   | 5.7                                   | 512            | 6.0          | 7.0   | 6.8          | 7.2          | 6,5         | 610       | 5.1          | 5    |
|                                                   | Conductivity          | 395   | Х                                     | Х              | Х            | Х     | 240<br>X     | Х            | X           | Х         | Х            | 3.   |
|                                                   | Ammonia, alk/hardness | V     | Х                                     | Х              | Х            | Х     | X            | Х            | X           | Х         | X            | 1    |
| 12610                                             | T (°C)                | 22-0  | 27.6                                  | 22.6           |              |       |              |              |             |           |              | 22   |
|                                                   | рН                    | 7-9   | X                                     | Х              | Х            | Х     | 7.7          | Х            | Х           | Х         | X            | 7.   |
|                                                   | DO (mg/L)             | 7.8   | 6.7                                   | 63             | 6.7          | 7,2   | 6.7          | 7.1          | 6,3         | 6.3       | 6.3          | 6    |
|                                                   | Conductivity          | 415   | Х                                     | Х              | Х            | X     | 310          | Х            | Х           | Х         | Х            | 37   |
|                                                   | Ammonia, alk/hardness | /     | Х                                     | Х              | Х            | Х     | Х            | Х            | Х           | Х         | Х            |      |
| · · · · · · · · · · · · · · · · · · ·             | T (°C)                |       | 22.7                                  |                |              |       |              |              |             |           | 1            |      |
| \ \ \                                             | pH                    |       | Х                                     | Х              | Х            | Х     |              | Х            | Х           | Х         | Х            |      |
| 12000                                             | DO (mg/L)             |       | 8.2                                   |                |              |       |              |              |             |           |              |      |
|                                                   | Conductivity          |       | Х                                     | Х              | Х            | Х     |              | X            | X           | Х         | X            |      |
|                                                   | Ammonia, alk/hardness |       | Х                                     | X              | Х            | Х     | X            | Х            | X           | X         | X            | †    |
|                                                   | Init./Date (1999):    | 10/19 | 10/20                                 | 10/21/         | 10/22        | 10/23 | 10/24        | 10/25<br>1/N | 10/26       | 10/27     | 19/28        | 19/2 |

Comments: (1) 1/29 609 D sediment / notes / sediment stratification (D) of middly large = 2.0) ccd

haenv.doc

00

 $\subset$ 

30

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| Client: Menzie-Cura & Assoc. | Project: 99033 Dead Creek    | BTR: 3633                  |
|------------------------------|------------------------------|----------------------------|
|                              | Test Start: October 21, 1999 | Test End: October 31, 1999 |

|        |                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Repick    | Total                                               | #                                              | Init Pan                                                                                                          | Total                                                                                                             |
|--------|---------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-----------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Sample | Repl.                           | # Alive                                             | Init.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Repick # | Init.     | Surv                                                | Weighed                                        | Wt.                                                                                                               | Dry Wt.                                                                                                           |
| 12611  | Α                               | 6                                                   | TM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0        | MILA      | <u>(a</u>                                           | 6                                              | 34,69                                                                                                             | 35.59                                                                                                             |
|        | В                               | 8                                                   | Tm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 '      | m 11/14   | 82                                                  | ALLIderitz                                     | discarded                                                                                                         | Ju                                                                                                                |
|        | С                               | 9                                                   | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           | 9                                                   | 9                                              | 35.63                                                                                                             | 36.65                                                                                                             |
|        | D                               | 6                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11/3./   | & Thu ult |                                                     | 8                                              | 39.05                                                                                                             | 40.29                                                                                                             |
|        | E                               | 9                                                   | TM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           | 9                                                   | 9                                              | 33,19                                                                                                             | 34.90                                                                                                             |
|        | F                               | 10                                                  | IM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           | 10                                                  | TO_                                            | 36.59                                                                                                             | 37.69                                                                                                             |
|        | G                               | 9                                                   | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :<br>    |           | 9                                                   | 9                                              | 39.11                                                                                                             | 40.26                                                                                                             |
|        | Н                               | 9                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           | 9                                                   | 4                                              | 35.08                                                                                                             | 36.37                                                                                                             |
| 10010  | ī • i                           | ~                                                   | 4~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           | <u> </u>                                            | 04                                             | i -o i                                                                                                            | <del>~</del>                                                                                                      |
| 12612  | A                               | 8                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,        |           | 8                                                   | <del>- 8</del>                                 | 38.55                                                                                                             | 39.66                                                                                                             |
|        | В                               | 7                                                   | $\mathcal{L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1-1      | St.       | -// <del>/</del>                                    | <u> </u>                                       | 35.51                                                                                                             | 36.77                                                                                                             |
|        | C                               | 10                                                  | 1/1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |           | 10,                                                 | 10                                             | 32.35                                                                                                             | 36.80                                                                                                             |
|        | D                               | 3                                                   | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           |                                                     | <u> </u>                                       | 35.08                                                                                                             | 36.5i                                                                                                             |
|        | E                               | 9                                                   | <u>im</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |           | 7                                                   | 1                                              | 34.78                                                                                                             | 35.87                                                                                                             |
|        | F                               | 9                                                   | <u> 1m</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |           | 9                                                   | 9                                              | 34.36                                                                                                             | 35.98                                                                                                             |
|        | G                               | 9                                                   | JG-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |           | 9                                                   | 7 J                                            | 5341.04                                                                                                           | 47.20                                                                                                             |
|        | Н                               | 9 201                                               | " ZEGI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>\</u> | - 9       | 10p                                                 | 79_                                            | 45.19                                                                                                             | 47.04                                                                                                             |
| 40040  | 7 - 1                           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                                                     |                                                |                                                                                                                   |                                                                                                                   |
| 17613  | I A                             | 10                                                  | 4 Car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |           | 160                                                 | 10                                             | 40 3/                                                                                                             | 4180                                                                                                              |
| 12613  | A<br>B                          | 40                                                  | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           | 10                                                  | 10                                             | 40.36                                                                                                             |                                                                                                                   |
| 12013  | В                               | 9                                                   | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           |                                                     | 9                                              | 39.26                                                                                                             | 40.33                                                                                                             |
| 12013  | B<br>C                          | 9                                                   | JG<br>TM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u></u>  |           | 9                                                   |                                                | 39.26<br>33.68                                                                                                    | 40.33<br>34.99                                                                                                    |
| 12013  | B<br>C<br>D                     | 9<br>10<br>8                                        | Tm<br>Tm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0        | Tm ula    | 9 10 8                                              | 9 10 8                                         | 39.26<br>33.68                                                                                                    | 40.33<br>34.99<br>42.35                                                                                           |
| 12613  | B<br>C                          | 9                                                   | Im<br>Im<br>Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |           | 9                                                   | 9 10 8                                         | 39.26<br>33.68                                                                                                    | 40.33<br>34.99<br>42.35<br>42.84                                                                                  |
| 12613  | B<br>C<br>D<br>E<br>F           | 9<br>10<br>8                                        | TIM TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TIME TO THE TI |          | Tm 414    | 9 10 8                                              | 9 10 8                                         | 39.26<br>33.68<br>41.33<br>41.45<br>40.34                                                                         | 40.33<br>34.99<br>42.35<br>42.84<br>41.91                                                                         |
| 12613  | B<br>C<br>D                     | 9<br>10<br>8<br>10<br>10                            | TM<br>TM<br>TM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | IM 114    | 9 10 8                                              | 9 10 8 10 10 9                                 | 39.26<br>33.68<br>41.33<br>41.45<br>40.34<br>42.22                                                                | 40.33<br>34.99<br>42.35<br>42.84<br>41.91<br>44.29                                                                |
| 12613  | B<br>C<br>D<br>E<br>F           | 9<br>10<br>8<br>10<br>4<br>7693                     | TM<br>TM<br>TM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | TM 114    | 9 10 8                                              | 9 10 8                                         | 39.26<br>33.68<br>41.33<br>41.45<br>40.34<br>42.22<br>40.51                                                       | 40.33<br>34.99<br>42.35<br>42.84<br>41.91                                                                         |
| 12613  | B<br>C<br>D<br>E<br>F           | 9<br>10<br>8<br>10<br>4<br>10<br>10                 | TM<br>TM<br>TM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 7m 44     | 9 10 8                                              | 9 10 8 10 10 9                                 | 39.26<br>33.68<br>41.33<br>41.45<br>40.34<br>42.22<br>40.51                                                       | 40.33<br>34.99<br>42.35<br>42.84<br>41.91<br>44.29<br>42.12                                                       |
|        | B<br>C<br>D<br>E<br>F<br>G<br>H | 9<br>10<br>8<br>10<br>4<br>7693                     | TM TM TM TM TM TM TM TM TM TM TM TM TM T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           | 9<br>10<br>8<br>7710<br>9<br>9                      | 9 10 8 10 10 9                                 | 39.26<br>33.68<br>41.33<br>41.45<br>40.34<br>42.22<br>40.51                                                       | 40.33<br>34.99<br>42.35<br>42.84<br>41.91<br>44.29                                                                |
|        | B<br>C<br>D<br>E<br>F<br>G<br>H | 9<br>10<br>8<br>10<br>4<br>10<br>10                 | TM TM TM TM TM TM TM TM TM TM TM TM TM T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           | 90<br>10<br>8<br>10<br>10<br>10                     | 9 10 9 9                                       | 39.26<br>33.68<br>41.33<br>41.45<br>40.34<br>42.22<br>40.51                                                       | 40.33<br>34.99<br>42.35<br>42.84<br>41.91<br>44.29<br>42.12                                                       |
|        | B<br>C<br>D<br>E<br>F<br>G<br>H | 9<br>10<br>8<br>10<br>4<br>7693                     | TM TM TM TM TM TM TM TM TM TM TM TM TM T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           | 90<br>10<br>8<br>10<br>10<br>10                     | 9 10 9 9                                       | 39.26<br>33.68<br>41.33<br>41.45<br>40.34<br>42.22<br>40.51<br>38.64<br>38.65                                     | 40.33<br>34.99<br>42.35<br>42.84<br>41.91<br>44.29<br>42.12<br>39.76<br>40.19                                     |
|        | B<br>C<br>D<br>E<br>F<br>G<br>H | 9<br>10<br>8<br>10<br>10<br>14<br>10<br>10<br>7     | TIM TIM TIMES TIMES OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PART |          |           | 90<br>8<br>70<br>90<br>10<br>10<br>7                | 9<br>10<br>10<br>10<br>9<br>9                  | 39.26<br>33.68<br>41.33<br>41.45<br>40.34<br>42.22<br>40.51<br>38.64<br>38.64<br>38.95                            | 40.33<br>34.99<br>42.35<br>42.84<br>41.91<br>44.29<br>42.12<br>39.76<br>40.19<br>38.23<br>37.18                   |
|        | B<br>C<br>D<br>E<br>F<br>G<br>H | 9<br>10<br>8<br>10<br>4<br>7<br>10<br>7<br>10<br>10 | JEMEN SING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |           | 90<br>870<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 9 10 9 9 9 10                                  | 39.26<br>33.68<br>41.33<br>41.45<br>40.34<br>42.22<br>40.51<br>38.64<br>38.95<br>37.28<br>35.81                   | 40.33<br>34.99<br>42.35<br>42.84<br>41.91<br>44.29<br>42.12<br>39.76<br>40.19<br>38.23                            |
|        | B<br>C<br>D<br>E<br>F<br>G<br>H | 9<br>10<br>8<br>10<br>4<br>10<br>10<br>7<br>10      | IM IM IM IM IM IM IM IM IM IM IM IM IM I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           | 90<br>870<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 9 10 9 9 9 10 10 10 10 10                      | 39.26<br>33.68<br>41.33<br>41.45<br>40.34<br>42.22<br>40.51<br>38.64<br>38.95<br>37.28<br>35.81<br>37.46<br>41.40 | 40.33<br>34.99<br>42.35<br>42.84<br>41.91<br>44.29<br>42.12<br>39.76<br>40.19<br>38.23<br>37.18<br>39.92<br>42.92 |
|        | B<br>C<br>D<br>E<br>F<br>G<br>H | 9<br>10<br>8<br>10<br>4<br>7<br>10<br>7<br>10<br>10 | TIM TIM TIME OF THE CONTROL TIME (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           | 90<br>870<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 9<br>10<br>10<br>10<br>9<br>9<br>9<br>10<br>10 | 39.26<br>33.68<br>41.33<br>41.45<br>40.34<br>42.22<br>40.51<br>38.64<br>38.95<br>37.28<br>35.81                   | 40.33<br>34.99<br>42.35<br>42.84<br>41.91<br>44.29<br>42.12<br>39.76<br>40.19<br>38.23<br>37.18<br>39.92          |

|                                     | 14(17. 199年 119.1                        |               |
|-------------------------------------|------------------------------------------|---------------|
| Balance QC Initial (20 mg = 19,93   | ) Final (20 mg = $19.95$ ) Balance Asset | #:            |
| Date/time In II/2 15:00 Temp(°C) 81 | nit 16 Date/time out 1/ 22 15-15Temp(°C) | 79° Init. 111 |
| Comments: 1                         |                                          |               |

Reviewer Date 12/6/99 nasurver doc

Laboratory Adjuated Biological Sciences, South Burlington, Vermont

| Client: Menzie-Cura & Assoc. | Project: 99033 Dead Creek    | BTR: 3633                  |
|------------------------------|------------------------------|----------------------------|
|                              | Test Start: October 21, 1999 | Test End: October 31, 1999 |

| ₽        |        |         |                |         |                 |               |              |                 |                  |
|----------|--------|---------|----------------|---------|-----------------|---------------|--------------|-----------------|------------------|
| Sample   | Repl.  | # Alive | lnit.          | Repick# | Repick<br>Init. | Total<br>Surv | #<br>Weighed | init Pan<br>Wt. | Total<br>Dry Wt. |
| 12622    | Α      | 7       | TM             |         | ~               | 7             | 7            | 35,90           | 37.45            |
|          | В      | 10      | 15             | _       |                 | 10            | 10           | 33.92           | 35.55            |
| Į        | С      | 8       | 7              | 0       | 7m 11/14        | 8             | 18           | 33,32           | 34.81            |
|          | D      | q       | 16             |         | <b>VIII.</b>    | 9             | 9            | 35,54           | 37.78            |
|          | E      | 10      | TM             |         |                 | 10            | 10           | 36.47           | 38.59            |
|          | F      | 10      | TM             |         |                 | 10            | 10           | 32,63           | 34.74            |
|          | G      | R       |                | 0_ 1    | Tm 11/14        | 8             | 4            | 34.83           | 35.85            |
|          | Н      | 4       | 36             | 0       | JGNH            | 7             | 4            | 38,00           | 39.57            |
|          |        |         |                |         |                 |               |              |                 |                  |
| 12638    | Α      | 10      | 7              | -       | 406             | DO            | 0            | 36,21           | 37.61            |
|          | В      | 10      | m              | 1       | 911             | 10            | 10           | 32.14           | 33.57            |
|          | С      | 9       | 7              |         |                 | 9             | 9            | 37.76           | 38.77            |
|          | D      | 16      | 5              | 1       | <u> </u>        | 69            | 10           | 40.64           | 42.43            |
|          | E      | 4       | 16             |         | )               | 9             | 9            | 35,52           | 36.71            |
|          | F      | 10      | J              |         |                 | 76            | 10           | 31.14           | 33.25            |
|          | G      | 10      | TM             |         |                 | 10            | 10           | 35.66           | 38.00            |
|          | Н      | 9       | 7m             |         |                 | 9             | 9            | 37.52           | 39.54            |
|          |        |         |                |         |                 |               |              |                 |                  |
| 12639    | Α      | 9       |                |         |                 | 9             | 9            | 34,44           | 35.79            |
|          | В      | 10      | TM             |         |                 | 10,           | 10           | 375.84          | 38.81            |
|          | С      | 8       |                | 0 1     | m 11/14         | 8             | 8            | 34.06           | 36.20            |
|          | D      | 9       |                |         |                 | 9             | 9            | 27,24           | 29.41            |
|          | E      | 10      | 5              |         |                 | 10            | 10           | 28,68           | 31.15            |
|          | F      | 8       |                | 0       | 1G11 14         | 8             | <u> </u>     | 34.61           | 36.40            |
|          | G      | 3       | <del>Q</del> _ | 1 10/31 | 0               | 9             | - 4          | 37.94           | 40.05            |
|          | Н      | 10      | ()E            |         |                 | 10            | 10           | 37,24           | 39.34            |
| 12640    | Λ      | පි      |                | 7       | AClv            | 0             | 6            | 270             | 28.52            |
| 12040    | A<br>B |         |                | 0       | 761114          | 8             | 8            | 27.90           | 29.53            |
|          | С      | G       | 0              |         | JG11/14         | 6             | 9            | 23.40           | 25. A            |
|          | D      | 8       | 16             |         | 7C-11.          |               |              | 37.66           | 39.44            |
|          |        |         |                | 0       | 751/14          |               | 8            | 25.06           | 26.72            |
| 1        | E      | 10      | 0              |         |                 | /0<br>9       | 10           | 28.45           | 30.63            |
|          | G      | 10      |                |         |                 |               | 17           | 31,90           | 33.71            |
|          | Н      |         | 755            |         |                 | 10            | 9            | <del></del>     | 36.64<br>35.53   |
| <u> </u> | П      | 9       | 7m             |         |                 | (             | <u> </u>     | 33,49           | 20.23            |

| Balance QC:  | Initial (20 mg = | ) Fina | al (20 mg = ) | Balance Asset #: |       |
|--------------|------------------|--------|---------------|------------------|-------|
| Date/time In | Temp(°C)         | Init.  | Date/time out | Temp(°C)         | Init. |
| Comments:    |                  |        |               |                  |       |

Date: 12/8/99 Reviewer: hasurvwt.doc

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| Client: Menzie-Cura | & Assoc. Project: 99033 D | ead Creek BTR: 3633                      |  |
|---------------------|---------------------------|------------------------------------------|--|
|                     | Test Start: Octob         | er 21, 1999   Test End: October 31, 1999 |  |

|              |        | <del></del> |              |             | Repick        | Total  | #            | Init Pan     | Total    |
|--------------|--------|-------------|--------------|-------------|---------------|--------|--------------|--------------|----------|
| Sample       | Repl.  | # Alive     | Init.        | Repick #    | Init.         | Surv   | Weighed      | WŁ           | Dry Wt.  |
| 12641        | Α      | 7           |              |             | 361/11        | 8      | 8            | 30.74        | 31.70    |
|              | В      | 10          | 7            | _           | _             | 0      | 10           | 36.83        | 37.75    |
|              | С      | 905         |              |             |               | 9      | 9            | 31,24        | 32.49    |
|              | D      | 912         | 7            | 6           |               | 91236  | 1313         | 33,61        | 35.62    |
|              | E      | 8           |              | 1           | m 11/4        | 9      | 9            | 34,36        | 36.17    |
|              | F      | 7           | Tm           | 0 1         | JOUN          | -      | 7            | 26.92        | 28.19    |
|              | G      | 4           |              | $\sim$      | 7m ii  4      | 4      | 4            | 36,63        | 37.85    |
|              | Н      | q           | <del>`</del> |             |               | a      | <del>'</del> | 39.97        | 41.38    |
| <del>-</del> | 1 - "  |             |              |             |               |        |              |              | 11-24    |
|              | Α      |             |              |             |               |        |              | 1            |          |
|              | В      |             |              |             | -             |        |              |              |          |
|              | С      | <u> </u>    |              |             |               |        |              | 1            |          |
|              | D      |             |              | İ           |               |        |              | 4            | <u>:</u> |
|              | E      | ·           |              | ;           | <del></del>   |        | <del></del>  |              |          |
|              | F<br>G | i           |              |             |               |        |              | <u>!</u>     | <u> </u> |
|              | Н      |             |              |             |               |        |              |              |          |
|              | 1      |             |              |             |               |        |              |              | <u>!</u> |
|              | Α      |             |              |             |               |        |              |              | Ţ        |
|              | В      |             |              |             |               |        |              |              |          |
|              | С      |             |              |             | ·             |        |              | )<br>        |          |
|              | D      |             |              |             |               |        |              | i<br>i       | <u> </u> |
|              | Е      |             |              | <u> </u>    | · <del></del> |        |              | :<br>        |          |
|              | F      |             |              | <u>:</u>    |               |        |              |              |          |
|              | G      |             | <u> </u>     | <del></del> |               |        |              |              |          |
|              | Н      |             |              | 1           |               |        |              |              |          |
|              | Α      |             | 1            |             |               |        |              |              |          |
|              | В      |             | <u> </u>     |             | <del></del>   |        |              | 1            |          |
|              | C      |             |              |             |               |        |              |              | <u>"</u> |
|              | D      |             |              |             | <del></del>   |        |              | <del>!</del> | <u>-</u> |
|              | E      |             |              |             |               |        |              | :            |          |
|              | F      |             |              |             |               |        |              |              |          |
|              | G      |             |              | <del></del> |               |        |              |              |          |
|              | Н      |             |              |             |               | ·,-, · |              |              |          |

| Batance QC   | Initial (20 mg = | ) Fit | nal (20 mg =  | Balance Asset #: |       |   |
|--------------|------------------|-------|---------------|------------------|-------|---|
| Date/time In | Temp(°C)         | Init  | Date/time out | Temp(°C)         | Init. | - |
| Comments     |                  |       |               |                  |       |   |

|           |              | Initial [                      | ry Weight Data              |                                |                              |
|-----------|--------------|--------------------------------|-----------------------------|--------------------------------|------------------------------|
| Replicate | #<br>Weighed | Initial Boat<br>Weight<br>(mg) | Final Dry<br>Weight<br>(mg) | Mean Wt.<br>within Rep<br>(mg) | Mean Wt.<br>Reps I-L<br>(mg) |
| 1         | 10           | 40.21                          | 41.48                       | 0.127                          |                              |
| 2         | 10           | 43.62                          | 44.84                       | 0.122                          |                              |
| 3         | 10           | 40.88                          | 42.10                       | 0.122                          |                              |
| 4         | 10           | 43.05                          | 44.15                       | 0.110                          |                              |
| 5         | 10           | 35.51                          | 36.97                       | 0.146                          |                              |
| 6         | 10           | 38.68                          | 39.32                       | 0.064                          |                              |
| 7         | 10           | 37.52                          | 38.73                       | 0.122                          |                              |
| 8         | 10           | 38.76                          | 40.04                       | 0.128                          | 0.118                        |

## Hyalella azteca Initial Dry Wt.

| Client: Menzie-Cura & | Project: 99033 | BTR: 3629 / 3633 |
|-----------------------|----------------|------------------|
| Assoc.                |                | Cotober 21, 1999 |
| Culture ID: 10/14     | Age: /         | / days           |

| Replicate | Number of Organisms weighed | Initial Pan Weight (mg) | Final Pan Weight (mg) |
|-----------|-----------------------------|-------------------------|-----------------------|
| 1         | 10                          | 40. 211                 | 41.48                 |
| 2         | 10                          | +3.617                  | 44.84                 |
| 3         | 10                          | 41. 882                 | 42.10                 |
| 4         | 10                          | 43.058                  | 44.15                 |
| 5         | 10                          | 35.510                  | 36.47                 |
| 6         | 10                          | 38. (177                | 39.32                 |
| 7         | 10                          | 37.5.5                  | 38.73                 |
| 8         | 10                          | 38.758                  | 40.04                 |
| nitials:  |                             |                         |                       |
| Date:     |                             |                         |                       |

| Balance QC: Initial (20 mg = / 9,96) Asset #:            | )     | Final (20 mg = $19.96$ ) Balance |
|----------------------------------------------------------|-------|----------------------------------|
| Date/time In 12/4 1050 Temp(°C) 82°C Temp(°C) 80 Init JG | Init. | Date/time out 12/5 12:00         |
| Comments:                                                |       |                                  |

Subset et organisme uses for acute rest sports en 14/2/199

Laboratory Aquatec Biological Sciences, South Burlington, Vermont

ATT That Invitadoc

0.127

0.122 0.110 0.146 0.064

0.122 0.126



# Aquatic Research Organisms

## DATA SHEET

| I.     | Organism I              | History                                                                                                                                                                                                                                                                                                    |
|--------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Species:                | Hygle//g azteca                                                                                                                                                                                                                                                                                            |
| ,      | Source:                 | Lab reared Hatchery reared Field collected Field collected                                                                                                                                                                                                                                                 |
|        |                         | Hatch date 10/9-10/99 Receipt date                                                                                                                                                                                                                                                                         |
|        |                         | Lot number 1009 99 Hg Strain ALO                                                                                                                                                                                                                                                                           |
|        |                         | Brood Origination US FWS MO                                                                                                                                                                                                                                                                                |
| II.    | Water Qua               | lity                                                                                                                                                                                                                                                                                                       |
|        |                         | Temperature 24 °C Salinity ppt DO 7.6                                                                                                                                                                                                                                                                      |
|        |                         | pH 7/4 Hardness 2/80 ppm                                                                                                                                                                                                                                                                                   |
| III.   | Culture Co              | _                                                                                                                                                                                                                                                                                                          |
|        |                         | System: FW STUTIC / CNKW9/                                                                                                                                                                                                                                                                                 |
|        | 1 deG                   | Diet: Flake Food Phytoplankton Trout Chow                                                                                                                                                                                                                                                                  |
| noc.   | 10/19/99                | Diet: Flake Food Phytoplankton Trout Chow  Brine Shrimp Rotifers Other  Prophylactic Treatments:  Comments:                                                                                                                                                                                                |
|        | N/ 17.1                 | Prophylactic Treatments:                                                                                                                                                                                                                                                                                   |
| ,      | Acute                   | Comments:                                                                                                                                                                                                                                                                                                  |
| Sed to | 10/19/99<br>\$ 1.12/199 | <del></del>                                                                                                                                                                                                                                                                                                |
| ix iv  | . Shipping In           | Mormation                                                                                                                                                                                                                                                                                                  |
| <2T C  | ~<br>~1~3/99            | Client: <u>AUA ICH</u> # of Organisms: <u>2500</u> Carrier: <u>F80 &amp; X</u> Date Shipped: <u>10/18/199</u>                                                                                                                                                                                              |
| 3/4 T  | 5                       | Carrier: Date Shipped: 10/18/99                                                                                                                                                                                                                                                                            |
| Ri     | ologist:                | Stan Sentili                                                                                                                                                                                                                                                                                               |
| 2.     | 0108.31.                | 10/20/9956                                                                                                                                                                                                                                                                                                 |
|        |                         | $1 - 800 - 927 - 1650$ $= 21.0^{\circ}$ C                                                                                                                                                                                                                                                                  |
|        | PC                      | D Box 1271 • One Lafayette Road • Hampton, NH 03842 • (603) 926-1650 $\Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow$ |
|        |                         | Do= 8.0                                                                                                                                                                                                                                                                                                    |
|        |                         | Cond,=1,700<br>Feb YCT/Sel/9C                                                                                                                                                                                                                                                                              |
|        |                         | 10 1-15el/9C                                                                                                                                                                                                                                                                                               |

|        | -Cura & Associates    |       | <del>-</del> - | 33 Dead |            | Day            | of Ana     |       |         |       | 10/21/91 |      |
|--------|-----------------------|-------|----------------|---------|------------|----------------|------------|-------|---------|-------|----------|------|
| Sample | Parameter             | 0     | 1              | 2       | 3          | 4              | 5          | 6     | 7       | 8     | 9        | 10   |
| 12611  | T (°C) #              | 22.9  | 23.1           | 31.1    | 37. 4<br>X | 12.1 A         | 2193       | 22.4  | 32 32 A | 22.09 | 21.9     | 122  |
|        | pH                    | 7.8   | X              | X       | X          | X              | 7.6        | X     | x       | X     | X        | 7.   |
|        | DO (mg/L)             | 70    | 7.4            | 7.4     | 7.1        | 77             | 6,9        | 6.7   | 6.7     | 6,4   | 6.3      |      |
|        | Conductivity          | ^     | ×              | 'x'     | x x        | ×              | 23°        | X     | X       | X     | X        | 310  |
|        | Ammonia, alk/hardness | 360/  | ×              | ×       | ×          | ×              | X          | X     | Х       | Х     | Х        | レ    |
| 12612  | T (°C)                | 1,6.  | 21356          |         | ,          |                |            |       |         |       |          | 22.  |
|        | pH                    | 7,9   | X              | ) X     | X          | X              | 7.7        | X     | X       | X     | X        | 7.   |
|        | DO (mg/L)             | /0    | 7.1            | 6.9     | 6.3        | 7.4            | 6.5        | 6,7   | 6.0     | 6,0   | 7.5      | 5    |
|        | Conductivity          | 360   | X              | X       | ×          | Х              | 260        | x     | X       | X     | X        | 33   |
|        | Ammonia, alk/hardness |       | X              | X       | X          | X              | , <b>X</b> | X     | X       | X     | Х        | ~    |
| 12613  | T (°C)                | 207   |                |         |            |                |            |       |         |       |          | 22.  |
|        | pH                    | 7.9   | X              | X       | X          | X              | 7.8        | X     | X       | X     | X        | 7-   |
|        | DO (mg/L)             | 7.1   | 75             | 6.9     | 6.2        | 6.9            | 7.0        | 6.8   | 5.5     | 6.7   | 7.8      | 6.   |
|        | Conductivity          | 350   | ×              | X       | X          | ×              | 260        | X     | X       | X     | X        | 34   |
|        | Ammonia, alk/hardness | //    | ×              | X       | ×          | ×              | ×          | ×     | ×       | X     | X        | 3/2  |
|        | init./Date (1999):    | 10/21 | 10/22          | 10/23   | 10/24/1    | 10/25<br>1/1/1 | 10/26      | 10/27 | 19/28   | 19/29 | 19/39    | 19/3 |

Comments: H. aztece added 10/21/99 JG, B)

Temperative messivement reflects mossurement at Two locations

(Two impresentable test bearers) on

Date: 12/8/99

senv.doc horatory: Aquatec Biological Sciences, South Burlington, Vermont

4

|        | e-Cura & Associates   | <del></del> |       |       |             | Dav          | of Ana | lvsis |       | <del>-</del> |       | —   |
|--------|-----------------------|-------------|-------|-------|-------------|--------------|--------|-------|-------|--------------|-------|-----|
|        |                       |             |       |       |             | <del>,</del> |        | ·     |       |              | T     | _   |
| Sample | Parameter             | 0,          | 1     | 2     | 3           | 4            | 5      | 6     | 7     | 8            | 9     | 1   |
| 12614  | T (°C)                | 227         |       |       |             |              |        |       |       |              |       | 23  |
|        | рН                    | 7.8         | Х     | X     | Х           | X            | 7.7    | X     | Х     | Х            | Х     | 7.  |
|        | DO (mg/L)             | 7.1         | 6.7   | 6.8   | 6.3         | 6.9          | 6.7    | 60    | G4    | 5.8          | 7.1   | 5.  |
|        | Conductivity          | 350         | Х     | Х     | Х           | Х            | 280    | Х     | X     | X            | X     | 3   |
|        | Ammonia, alk/hardness |             | Х     | Х     | Х           | Х            | Х      | X     | Х     | Х            | X     | V   |
| 12622  | T (°C)                | 22.7        |       |       |             |              |        |       |       |              |       | 22  |
|        | рН                    | 7.8         | Х     | X     | Х           | Х            | 7.5    | Х     | Х     | Х            | X     | 7.  |
|        | DO (mg/L)             | 6,0         | 8-0   | 7,3   | 75          | 7.9          | 69     | 6.7   | 70    | 6.8          | 7.7   | 7.  |
|        | Conductivity          | 400         | Х     | X     | Х           | Х            | 780    | Х     | Х     | Х            | X     | 30  |
|        | Ammonia, alk/hardness | V           | Х     | Х     | Х           | Х            | X      | Х     | X     | Х            | Х     | V   |
| 12638  | T (°C)                | 27          |       |       |             |              |        |       |       |              |       | 20  |
|        | pH                    | 73          | Х     | Х     | Х           | Х            | 7.8    | Х     | Х     | Х            | Х     | 7   |
|        | DO (mg/L)             | 6,7         | 7.7   | 7.5   | 76          | 7.8          | 7.0    | lodo  | 6.2   | 5,9          | 7.0   | 16  |
|        | Conductivity          | 360         | Х     | Х     | X           | Х            | 260    | X     | Х     | Х            | X     | 3.  |
|        | Ammonia, alk/hardness |             | X     | Х     | Х           | Х            | X      | Х     | X     | X            | X     | L   |
|        | Init./Date (1999):    | 10/24       | 19/22 | 10/23 | 10/24<br>MN | 10/25        | 10/26  | 10/27 | 19/28 | 10/29        | 10/30 | 10/ |

| ~                         | n en en en en en en en en en en en en en | <br> | <br> |
|---------------------------|------------------------------------------|------|------|
| $\preceq$                 | Comments:                                |      |      |
| $\stackrel{\smile}{\sim}$ | √                                        |      |      |
|                           | >                                        |      | •    |
| ٠. ١                      |                                          |      |      |

Review: Date: 12/8/99 haenv.doc

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| Ct. Melizie- | Cura & Associates     | 1.10  |       | 33 Dead |       | Day   | of Anal  |       | 10,00 |       | 10/21/99 |              |
|--------------|-----------------------|-------|-------|---------|-------|-------|----------|-------|-------|-------|----------|--------------|
| Sample       | Parameter             | 0     | 1     | 2       | 3     | 4     | 5        | 6     | 7     | 8     | 9        | 10           |
| 12639        | T (°C)                | 23.2- |       |         |       |       |          |       |       |       |          | 22           |
|              | рН                    | 7.8   | Х     | X       | Х     | Х     | 7,5      | X     | X     | Х     | X        | 7.5          |
|              | DO (mg/L)             |       | 6.4   | 2.8     | 58    | 66    | 5.6      | 5.4   | 5.6   | 5.1   | 6.2      | <del> </del> |
|              | Conductivity          | 350   | X     | X       | X     | X     | 250<br>X | X     | X     | X     | X        | 3.20         |
|              | Ammonia, alk/hardness | V     | ×     | X       | X     | Х     | X        | X     | X     | X     | X        | V            |
| 12640        | T (°C)                | ,23,3 |       |         |       |       |          |       |       |       |          | .2.2         |
|              | рН                    | 17    | ×     | X       | X     | X     | 7.6      | X     | X     | X     | X        | 7.           |
|              | DO (mg/L)             | 6.6   | 74    | 6.8     | 6.7   | 14    | 6,5      | 6.4   | 5.7   | 5,3   | 105      | 6.           |
|              | Conductivity          | 350   | ×     | X       | L X   | Х     | 240      | X     | X     | X     | X        | 341          |
|              | Ammonia, alk/hardnoss | V     | ×     | X       | Х     | Х     | X        | X     | Х     | ×     | Х        | V            |
| 12641        | T (°C)                | 227   |       |         |       |       |          |       |       |       |          | ప్రస్తే.     |
|              | pH                    | 7.6   | X     | X       | Х     | X     | 7.5      | X     | X     | X     | Х        | 7.6          |
|              | DO (mg/L)             | 6.3   | 70    | 6.4     | 5.6   | 6.9   | 5.8      | 5.0   | 49    | 5.1   | 6.4      | 5.           |
|              | Conductivity          | 400   | X     | X       | X     | ×     | 250      | X     | X     | X     | X        | 350          |
|              | Ammonia, alk/hardness |       | X     | ×       | X     | ×     | X        | X     | Х     | Х     | X        | 1            |
|              | Init./Date (1999):    | 10/21 | 19/32 | 10/222  | 19/24 | 19/25 | 10/26    | 10/27 | 19/28 | 10/20 | 10/20    | 19/31        |

Comments:

Review: Date: /2/8/99

haenv.doc Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| Client: Menzie-Cura & Assoc. | Project: 99033 Dead Creek    | BTR: 3641                  |
|------------------------------|------------------------------|----------------------------|
|                              | Test Start: October 10, 1999 | Test End: October 20, 1999 |

|        |       |           |       |             |        |       | <u></u>  |                |         |                                        |
|--------|-------|-----------|-------|-------------|--------|-------|----------|----------------|---------|----------------------------------------|
|        |       |           |       |             | Repick | Total | #        | Init Pan       | Total   |                                        |
| Sample | Repl. | # Alive   | Init. | Repick #    | Init.  | Surv  | Weighed  | Wt.            | Dry Wt. |                                        |
| 12664  | Α     | 9         | m     |             |        | 10    | 10       | 39.18          | 40.98   | BLL                                    |
|        | В     | 10_       | 12    |             |        |       | 10       | 32.99          | 35.06   | SaMPAS                                 |
|        | С     | 9_        | RB    |             |        | 9     | 9        | 41,23          | 43.62   | 70                                     |
|        | D     | 10        | LS    |             |        |       | 10       | 36.75          | 39,51   | MARNIC                                 |
|        | E     | 10_       | TM    |             |        | 10    | 10       | 32.17          | 35.43   | Santas<br>Santas<br>Chronic<br>restric |
|        | F     | 9         | TM    |             |        | 9     | 9        | 40.12          | 42.65   | ر پیکار                                |
|        | G     | 10        |       |             |        | /0    | 10       | 36,04          | 38.49   |                                        |
|        | Н     | jo        | TM    |             |        | 10    | 10       | 35,76          | 38.29   |                                        |
|        |       |           |       |             |        | /->   |          |                |         |                                        |
| 12665  | A     | 4         |       |             |        | 4     | 9        | 27,97          | 31,79   |                                        |
|        | В     | 10        | RB    |             |        | 10    | 10       | 29.88          | 33,46   |                                        |
|        | С     | 10_       |       |             |        | 10    | 10       | 29,18          | 32.64   |                                        |
|        | D     | 10        | TM    |             |        | 10    | 10       | 28.55          | 32.54   |                                        |
|        | E     | iQ        | m     | ~           |        | 10    | 10       | 29.28          | 33.98   |                                        |
|        | F     | 4         | 45    |             |        | 9     | 9        | 28,25          | 32,36   | \.                                     |
|        | G     | 10        | RB    |             |        | 10    | 10       | 31.97          | 35,91   |                                        |
|        | Н     | 10_       | LS    |             |        | 10    | 10       | 24.38          | 28.25   |                                        |
| 40000  |       | ()        | 0.0   | <del></del> |        |       | 0        | سرا ادم        | 00.00   | . \                                    |
| 12666  | A     | <u> </u>  | RB    |             |        | 9     |          | 34.15          | 37,52   |                                        |
|        | В     | 10        | TM    |             |        | 10    | 10       | 34.11          | 38.09   |                                        |
|        | С     | 10_       | TM    |             |        | 10    | 10 35.53 | 24.10-         | G39,32  | 1                                      |
|        | D     | 10        | 12    |             |        | · /Ø_ | 10 37.52 | 33,53          |         |                                        |
|        | E     | 10        | Tm    |             |        | 10    | 10 29.66 |                | 1633.32 |                                        |
|        | F     | 19        | TM    |             |        |       | 10 32.5  |                | G 36.79 |                                        |
|        | G     | 9         | 4     |             |        |       | 9        | 32.96          | 37.95   |                                        |
|        | Н     | 10        | RB    |             |        | 10    | 10       | 31.85          | 34,27   | Init. Par                              |
| 40074  | ΙΔ Ι  |           | 1.,   |             | معامد  | 10    |          | 20.00          | 07.01   | 25.12                                  |
| 12671  | A     | <u>IQ</u> | Jm-   |             | +0 fw  | 10    | 10       | 20.81          | 27.91   |                                        |
|        | В     | 8         | "LS   |             |        | 8     | 8        | 36.79<br>39.78 | 33,41   | 30.63                                  |
|        | С     | 10        | m     |             |        | 19    | 10       | 27/18          | 32.94   | 30.06                                  |
|        | D     | 10        | RB-   |             |        | 10    | 10       | 23.66          |         | 33.29                                  |
| i      | E     | 9         | RB    |             |        | 10    | 10       | 36.13          | 32.75   | 29.46                                  |
| '      | F     | 10        | RB    |             |        | 10    | 10       | 29.22          | 33.01   | 29.84                                  |
|        | G     | 10        | TM    |             |        | 10    | 10       | 21.52          | N - 🔺 1 | 32.94                                  |
|        | Н     | 10        | m     |             |        | 10    | 10       | 124.02         | 36.32   | 32.14                                  |

| ١ | Balance QC:      | Initial (20 mg = | 19.92  | Final (20 r | ng = 1292 )       | Balance Asset #   | t:  |          |
|---|------------------|------------------|--------|-------------|-------------------|-------------------|-----|----------|
|   | Date/time In II/ | Temp(°C)         | 5/2 Ir | nit. 16     | Date/time out [[] | 23 12:45 Temp(°C) | 82- | Init 7 6 |
|   | Comments: 1      | गुन्द            |        |             |                   |                   |     |          |

\_ Date: 12/8/99. O pan wits. recorded in wrong Spaces; Corrected. IG 11/22

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

151/23 \* Truitial par wts, for 668 recorded

in spaces for 12671 Init. p. 1

| Client: | Menzie | -Cura & | Assoc. | Project: 9 | 99033 De        | ad Creek      | BTR          | : 3641          | -                |             |
|---------|--------|---------|--------|------------|-----------------|---------------|--------------|-----------------|------------------|-------------|
|         |        |         |        | Test Start | t: Octobe       | r 10, 199     | 9 Test       | End: Oc         | tober 20,        | 1999        |
| Sample  | Repl.  | # Alive | Init.  | Repick #   | Repick<br>Init. | Total<br>Surv | #<br>Weighed | Init Pan<br>Wt. | Total<br>Dry Wt. | Tuit<br>Par |
| 12668   | Α      | 10      | Tm     | - 1        |                 | 10            | 10           | 125.12          | 279136           | 30,8        |
|         | В      | iO      | 15     |            |                 | 10            | 10           | 30.63           | 29.62            | 26.7        |
|         | С      | 10      | Tm     |            |                 | 10            | 10           | 30.06           | 32.17            | 29.9        |
|         | D      | 10      | RB     | _ !        |                 | 10            | 10           | 38.29           | 26,88            | 23,6        |
|         | E      | 9_      | LS     |            |                 | 9             | a s          | 14 A 19         | 28.60            | 26,1        |
|         | F      | 10      | TM     | _          |                 | 10            | 10_          | 29.84           | 32.29            | 29,7        |
|         | G      | 9       | RB     | -          |                 | 9             | 9            | 32.94           | 23.68            | 21.5        |
|         | Н      | 10      | TM     |            |                 | 10            | (i)          | 32.14           | 26.59            | 24.         |

| Α |      | , |   | 1    |   |  |
|---|------|---|---|------|---|--|
| В | <br> |   |   | İ    |   |  |
| C |      |   |   | 1    |   |  |
| D |      |   |   |      |   |  |
| E |      | ; | , | 1    |   |  |
| F |      |   |   |      |   |  |
| G | -    |   |   |      |   |  |
| Н |      | 1 | 1 |      | į |  |
|   | <br> |   |   | <br> |   |  |
| Α |      | ŀ | , | !    | 1 |  |

| 1   | 4   |             |   | ! |   |   |        |
|-----|-----|-------------|---|---|---|---|--------|
| [ E | 3 , |             |   |   |   | i |        |
|     | C   |             | - |   |   | 1 |        |
| [   | D   | <del></del> |   | İ |   | 1 | ;<br>i |
| E   | E   |             |   | i | 1 |   | :      |
| ि   | = - |             |   | : |   |   |        |
|     | G   |             |   | ! |   |   |        |
| Ī   | 4   |             |   |   |   |   |        |

| Α | ; | 1 |   |    |
|---|---|---|---|----|
| В | : |   |   | 1  |
| С |   |   | Ì | :  |
| D |   |   |   |    |
| E |   |   |   |    |
| F |   |   | i |    |
| G |   |   |   | nn |
| Н |   |   |   |    |

| Balance QC   | Initial (20 mg = \ 9, 9) | }    | Final (20 mg = ) | Balance Asset #: |       |    |
|--------------|--------------------------|------|------------------|------------------|-------|----|
| Date/bime In | Temp(°C)                 | inst | Date/time out    | Temp(°C)         | Init. |    |
| Comments     |                          |      |                  |                  |       | —, |

Reviewer \_\_\_\_ Date \_\_\_\_ of Truit, pan wits. for '671 recorded in hasunvar doc
Laboratory Aquatec Biological Sciences. South Burlington. Vermont Spaces for 12668 Truit, fan wits.

Corrected. 11/23 JG

|           |              | Initial D                      | ry Weight Data              |                                |                              |
|-----------|--------------|--------------------------------|-----------------------------|--------------------------------|------------------------------|
| Replicate | #<br>Weighed | Initial Boat<br>Weight<br>(mg) | Final Dry<br>Weight<br>(mg) | Mean Wt.<br>within Rep<br>(mg) | Mean Wt.<br>Reps I-L<br>(mg) |
| 1         | 10           | 26.13                          | 26.42                       | 0.029                          |                              |
| 2         | 10           | 28.00                          | 28.23                       | 0.023                          |                              |
| 3         | 10           | 33.61                          | 33.98                       | 0.037                          |                              |
| 4         | 10           | 24.48                          | 24.84                       | 0.036                          |                              |
| 5         | 10           | 25.80                          | 26.22                       | 0.042                          |                              |
| 6         | 10           | 29.37                          | 30.00                       | 0.063                          |                              |
| 7         | 10           | 29.15                          | 29.68                       | 0.053                          |                              |
| 8         | 10           | 26.92                          | 27.37                       | 0.045                          | 0.041                        |

### Hyalella azteca Initial Dry Wt.

| Client: Menzie-Cura & | Project: 99026 99033 | BTR: 3152 / 3153 |
|-----------------------|----------------------|------------------|
| Assoc.                |                      | 3641 0           |
| Culture ID: 10/1      | Age: /O day          | ys (UN 10/9/99)  |

| Replicate    | Number of<br>Organisms weighed | Initial Pan Weight (mg) | Final Pan Weight (mg) |
|--------------|--------------------------------|-------------------------|-----------------------|
| 1            | 10                             | 26.13                   | 26.42                 |
| 2            | 10                             | 28.00                   | 28.23                 |
| 3            | 10                             | 33.61                   | 33.98                 |
| 4            | 10                             | 24 48                   | 24 84                 |
| 5            | 10                             | 25.80                   | 018 22                |
| 6            | 10                             | 29.37                   | 30.00                 |
| 7            | 10                             | 2915                    | 29.68                 |
| 8            | 10                             | 26.92                   | 57.37                 |
| Initials: 77 |                                |                         |                       |
| Date: 13 899 |                                |                         |                       |

| Balance QC: Initial (20 mg = 19 98' ) Asset #:               | Final (20 mg = 19.96) Balance |
|--------------------------------------------------------------|-------------------------------|
| Date/time In 学 ら ※Temp(°C) うこう Init.<br>Temp(°C) りゃく Init. デ | m Date/time out 12/9/99 15:10 |
| Comments: 13/4/44 Proves for Fr ~ 32 mi                      | a (over sound)                |

Granisms preserved (subsample) on 10/9/99
Organisms used for 2002 resis ininered 10/10/99

000 Quadurint.doc



# Aquatic Research Organisms

## DATA SHEET

| I.  | Organism I | listory                                   |
|-----|------------|-------------------------------------------|
|     | Species:   | Hya/e//q az Teca                          |
|     | Source:    | Lab reared                                |
|     |            | Hatch date 09/29/99 Receipt date          |
|     |            | Lot number 09.29 99 49 Strain AV20        |
|     |            | Brood Origination USFW MO                 |
| II. | Water Qua  | lity                                      |
|     |            | Temperature 25 °C Salinity ppt DO 716     |
|     |            | pH 7: 4 Hardness 200 ppm                  |
| ш.  | Culture Co | nditions                                  |
|     |            | System: FW STATIC                         |
|     |            | Diet: Flake Food Phytoplankton Trout Chow |
|     |            | Brine Shrimp Rotifers Other               |
|     |            | Prophylactic Treatments:                  |
|     |            | Comments:                                 |
|     | ·          | *** - :                                   |
| IV. | Shipping I | nformation                                |
|     |            | Client: AQUIATOCH # of Organisms: 1500 +  |
|     |            | Carrier: F80 { } Date Shipped: 9-30-99    |
| Bio | ologist:   | Aten Sintshi                              |

1 - 800 - 927 - 1650

#### Organism Holding and Acclimation

| Species. Hyalella azteca      | Date Received: 10/1/99 No. Rec. 1500 |
|-------------------------------|--------------------------------------|
| Supplier ARO                  | Hatch Date: 9/29/99                  |
| Apparent Condition. Excellent | Cuiture ID: 10/1                     |

Acclimation / Holding Procedures: Transfer to holding culture boxes, and laboratory water. Acclimate to water to be used for testing (sediment overlying water formulation). Aerate lightly. Water change once (50%) weekly.

<u>Daily Feeding: 1:1 mix of Selenastrum / YCT. 1-3 mL</u> (maintain hint of green algal coloration on culture box bottom). Also, pinch of ground Tetrafin/Ceraphyll. Do not allow excess food/fungus to accumulate.

Monitoring: Examine over a light box daily, record apparent condition. Temperature daily; pH, D D on Mon., Weds., Fri., (miniumum). Conductivity weekly.

Test stans record date, time, initials for sediment test and SRT test starts.

| 1999         | 1           | l                                     |          |             | Cond         |              |                                       | Water       | !           |               |
|--------------|-------------|---------------------------------------|----------|-------------|--------------|--------------|---------------------------------------|-------------|-------------|---------------|
| Date         | Fed         | Temp                                  | ρН       | D.O.        | uct.         |              |                                       | Chg.        | Age (Days)  | Init.         |
| <del></del>  | ميدان       | <del></del>                           |          | 72.         |              |              |                                       |             | <del></del> |               |
| 10/1         | 3/2         | <u> </u>                              | 7.4      | 4.4         | <u>1,300</u> |              | -                                     |             | 2 Normal    | 136           |
| 40.00        | + 1145      |                                       |          |             |              |              | <u>-</u>                              | 1660        | 1000        |               |
| 10/2         | Wy.         | 20.5                                  |          | <del></del> | <del></del>  |              | <del></del>                           | 25%         | 3 Normal    | 13G           |
| 19/3         | 50476       | 21.0                                  | -        |             | 1            |              | · · · · · · · · · · · · · · · · · · · | ]           | 14 N        | 170           |
|              | De Co       | <u> </u>                              | <u> </u> |             | <u>:</u>     | <u>:</u>     | <u>'</u>                              | 1           | 1 10        | JG            |
| 10/4         | 22/20       | 20.71                                 |          |             |              |              |                                       | 150%        | 15 N        | UG            |
|              | 5/          |                                       |          |             |              |              |                                       |             |             |               |
| 10/5         | المراجع     | 210                                   | 7.9      | 14          | 750          | <u></u>      | 1                                     | 150%        | 16 N        | JG            |
|              | -1/         | - 1                                   |          |             |              |              |                                       |             | <del></del> |               |
| <u> 10/6</u> | م را الد    | 225                                   |          |             |              |              |                                       |             | 7           |               |
| 10/7         | <u> </u>    | 1. A. I                               | 7.8      | =1          | 1:00         |              | <del></del>                           | <del></del> | 0           | -W            |
|              | (P) VC+     | 3(1· 7 )                              | <u> </u> | <u> </u>    | 400          |              |                                       |             | 8 Nirmal    | 1 77          |
| 10/B         | -C- 501     | 32 2 1                                |          |             | <u> </u>     | <u> </u>     |                                       |             | 9 Normal    | sm            |
|              | <del></del> | <u> </u>                              |          |             | <del>-</del> |              |                                       |             | 100.00      | 31.1          |
| 10/9         | xtel        | 200                                   |          |             |              |              |                                       |             | 10 Normal   | G             |
|              |             |                                       |          |             |              |              |                                       |             |             | :             |
| 10/10        | YC Kel      | 22.3                                  |          |             |              |              |                                       |             | 11 Normal   | 13G           |
| 4044         | <del></del> |                                       |          |             |              |              |                                       | <del></del> |             | <del></del> - |
| 10/11        |             |                                       |          |             |              |              |                                       | 1           | 12          | <del></del> . |
| 10/12        | <del></del> | · · · · · · · · · · · · · · · · · · · |          |             | ;            | <del>T</del> | 1                                     | 1           | 13          | <u> </u>      |
| 10/12        | 1           |                                       |          |             |              | <u>!</u>     |                                       | 1           | 1 10        | <u> </u>      |

\* N = normal, appear healthy. Record # dead if any observed.

Sediment test start (Date/time/Init.) 10/10/99 SRT test start: (Date/time/init.) 10/8/99

| ct: Menzie       | -Cura & Associates               | Proj   | ect: 990 | 33 Dead | Creek |       |        | BTR: 36 | 41 Test       | Starts 10 | /10/99 |     |
|------------------|----------------------------------|--------|----------|---------|-------|-------|--------|---------|---------------|-----------|--------|-----|
|                  |                                  |        |          | -       |       | Day   | of Ana | lysis   |               |           |        |     |
| Sample           | Parameter                        | 0      | 1        | 2       | 3     | 4     | 5      | 6       | 7             | 8         | 9      | -   |
| 12664            | T (°C)                           | 22.8   | 215      | 23.1    | 22.9  | 32.8  | 22,8   | 229     | 23.2          | 23:2      | 23,1   | 7   |
|                  | рН                               | 8,0    | X        | Х       | Х     | Х     | 8.0    | X       | X             | Х         | X      | T   |
|                  | DO (mg/L)                        | 7.4    | 7.4      | 6.9     | 7.1   | 7.1   | 7.6    | 7.9     | 6.4           | 6.9       | 7.0    | 1.  |
|                  | Conductivity                     | 390    | Х        | Х       | Х     | Х     | 350    | Х       | Х             | X         | X      | 3   |
|                  | Ammonia, alk/hardness<br>Sulfide |        | Χ        | Х       | Х     | Х     | Х      | Х       | Х             | Х         | Х      |     |
| 12665            | T (°C)                           | 22,6   | 21.8     | 22.9    | 230   | 23.1  | 23.5   | 23,2    | 23 <i>.</i> 5 | 33.2      | 23,7   | 2   |
|                  | рН                               | 7.7    | Х        | X       | Х     | Х     | 5.79   | Х       | X             | Х         | X      | {   |
|                  | DO (mg/L)                        | 64     | 6.6      | 6,2     | (e-1  | 6,0   | \$6.3  | 7.2     | 4.8           | 5.9       | 4.7    | 5   |
|                  | Conductivity                     | 410    | Х        | X       | Х     | Х     | 370    | X       | Х             | Х         | Х      | 4   |
|                  | Ammonia, alk/hardness<br>Sulfide | V      | Х        | Х       | Χ     | Х     | Х      | Х       | Х             | Х         | Х      |     |
| 12666            | T (°C)                           | J2.S   | 21.9     | 22.9    | 23.0  | 23.1  | 23,4   | 23,2    | 23.7          | 23.4      | 23.8   | 7   |
|                  | рН                               | 4.5    | X        | X       | Х     | Х     | 7.6    | X       | X             | X         | X      | 1   |
|                  | DO (mg/L)                        | 5,0    | 4.0      | 4.1     | 4.0   | 3.6   | 61     | Ce.8    | 3.5           | 47        | 5.1    | 4   |
|                  | Conductivity                     | 420    | Х        | Х       | Х     | Х     | 360    | Х       | Χ             | X         | X      | 3   |
|                  | Ammonia, alk/hardness<br>Sulfide | /      | Х        | Х       | Х     | Х     | Х      | Х       | Х             | Х         | Х      |     |
| ··· <del>·</del> | Init./Date (1999):               | 10/101 | 19413    | 10/12   | 19/13 | 10/14 | 10/15  | 10/16   | 19/17         | 10/18     | 10/19  | 10/ |

Comments: H. 22/ec2 added to beakers 10/10/99 14:30 556

\* Gave 12660 an extra renewal manually 10:00 Jm 10/14/99

Review: \_\_\_\_\_ Date: 12/07/9\_ Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| ct: Menzie-C     | Cura & Associates                 | Proj           | ect: 990 | 33 Dead | Creek |       |                    | BTR: 36 | 11 Test | Starts 10 | /10/99 |                                                  |
|------------------|-----------------------------------|----------------|----------|---------|-------|-------|--------------------|---------|---------|-----------|--------|--------------------------------------------------|
|                  |                                   |                |          |         |       | Day   | of Anal            | lysis   |         |           |        |                                                  |
| Sample           | Parameter                         | 0              | 1        | 2       | 3     | 4     | 5                  | 6       | 7       | 8         | 9      | 1                                                |
| 12667 16         | T (°C)                            | 32.8           | 21.9     | 22.6    | 22.8  | 230   | 23.5               | 23.2    | 23.4    | 236       | .>3. ¥ | 21                                               |
| · <del>1</del> 1 | pH                                | 7.6            | X        | X       | X     | X     | 7.9                | X       | X       | X         | X      | E                                                |
|                  | DO (mg/L)                         | 6, J.          | 6,9      | 6.7     | 6.()  | 56    | 7-3                | G7.2    | 6.1     | 67        | 45,6   | 8                                                |
|                  | Conductivity                      | 300            |          | X       | X     | X     | 380                | X       | X       | X         | X      | 40                                               |
|                  | Ammonia, alk/hardness<br>Sulfide  | /              | ×        | X       | X     | X     | X                  | X       | X       | X         | X      | 1                                                |
| 12668            | T (°C)                            | <i>3</i> .>, 7 | 21.8     | 228     | .23.1 | 23.2  | 233                | 23.3    | 23.4    | 23.5      | 234    | 2                                                |
|                  | рН                                | 7.7            | x        | X       | X     | X     | 8.0                | X       | X       | X         | XF     |                                                  |
|                  | DO (mg/L)                         | 7.4            | 7.5      | 6.9     | (0.5  | (o.7  | 7.3                | 7.7     | 6.9     | 67        | 1976   | 1, 1                                             |
|                  | Conductivity                      | 420            | X        | X       | ×     | X     | 370                | 'x      | X       | ×         | X      | 3-                                               |
|                  | Anwnonia, alk/hardness<br>Sulfide |                | X        | Х       | ×     | X     | X                  | ×       | X       | X         | X      | L                                                |
|                  | T (°C)                            | <del> </del>   |          |         |       |       |                    |         |         |           |        |                                                  |
|                  | рН                                |                | X        | X       | X     | X     |                    | X       | X       | X         | Х      |                                                  |
|                  | DO (mg/L)                         | -              |          |         |       |       |                    |         |         |           | `      | <del>                                     </del> |
|                  | Conductivity                      | :              | ×        | Х       | x     | Х     |                    | ×       | х       | Х         | X      |                                                  |
|                  | Ammonia, alk/hardness<br>Sulfide  | •              | ×        | ×       | X     | X     | X                  | ×       | x       | ×         | X      |                                                  |
|                  | Init./Date (1999):                | 10410          | 1043     | 1912    | 19/13 | 19/14 | 10/15 <sub>G</sub> | 19/18   | 19/17   | 10/1B     | 10/19  | 10/                                              |

Comments:

Review: \_\_\_\_\_\_\_ Date: \_\_\_\_\_/ 2/3/49
L-\_\_\_ratory: Aduatec Biological Sciences, South Burlington, Vermont

haenv.doc

#### **ALKALINITY & HARDNESS WORKSHEET**

BTR Number: Several Project #: 99033 Analyst: LS

Species: Hyallela azteca Analysis

Test Facility: Aquatec Biological Sciences, South Burlington, Vermont Date: 10/13/99 12/2/99

Project: Menzie-Cura Dead Creek Acute Tests 12/7/99

|          |             | 1           | ALI     | KALINITY | ,          | <del> </del> | НА      | RDNESS |          |
|----------|-------------|-------------|---------|----------|------------|--------------|---------|--------|----------|
|          | Sample      | Sample      | Initial | Final    | Alkalinity | Sample       | Initial | Final  | Hardness |
| Date     | Type        | ml          | ml      | ml       | (mg/L)     | ml           | ml      | ml     | (mg/L)   |
|          |             |             |         |          |            |              |         |        | ,        |
| 10/10/99 | 12664 Day 0 | 50          | 35.9    | 37.2     | 26.0       | 50           | 34.0    | 42.0   | 160.0    |
| 10/10/99 | 12665 Day 0 | 50          | 37.2    | 39.2     | 40.0       | 50           | 0.8     | 7.9    | 142.0    |
| 10/10/99 | 12666 Day 0 | 50          | 39.2    | 41.5     | 46.0       | 50           | 7.9     | 16.0   | 162.0    |
| 10/10/99 | 12668 Day 0 | 50          | 41.5    | 43.4     | 38.0       | 50           | 16.0    | 23.5   | 150.0    |
| 10/10/99 | 12671 Day 0 | 50          | 43.4    | 44.9     | 30.0       | 50           | 23.5    | 30.2   | 134.0    |
|          |             |             |         |          |            |              |         |        |          |
| 10/19/99 | 12546 Day 0 | 50          | 0.2     | 2.3      | 42.0       | 50           | 0.1     | 11.6   | 230.0    |
| 10/19/99 | 12547 Day 0 | 50          | 2.3     | 4.6      | 46.0       | 30           | 11.6    | 17.7   | 203.3    |
| 10/19/99 | 12548 Day 0 | 50          | 4.6     | 6.9      | 46.0       | 50           | 17.7    | 26.8   | 182.0    |
| 10/19/99 | 12549 Day 0 | 50          | 6.9     | 9.1      | 44.0       | 50           | 26.8    | 36.7   | 198.0    |
| 10/19/99 | 12550 Day 0 | 50          | 9.1     | 11.2     | 42.0       | 50           | 36.7    | 45.7   | 180.0    |
| 10/19/99 | 12551 Day 0 | 50          | 11.2    | 13.4     | 44.0       | 50           | 0.1     | 9.0    | 178.0    |
| 10/19/99 | 12552 Day 0 | 50          | 13.4    | 15.9     | 50.0       | 50           | 9.0     | 19.6   | 212.0    |
| 40/40/00 | 10500 0     |             |         |          | •••        | 5.0          |         |        |          |
| 10/19/99 | 12589 Day 0 | 50          | 15.9    | 17.8     | 38.0       | 50           | 26.6    | 33.7   | 142.0    |
| 10/19/99 | 12590 Day 0 | 50          | 17.8    | 19.7     | 38.0       | 50           | 33.7    | 40.7   | 140.0    |
| 10/19/99 | 12591 Day 0 | 50          | 19.7    | 21.6     | 38.0       | 50           | 0.2     | 18.2   | 360.0    |
| 10/19/99 | 12592 Day 0 | 50          | 21.6    | 23.6     | 40.0       | 50           | 18.2    | 27.5   | 186.0    |
| 10/19/99 | 12593 Day 0 | 50          | 23.6    | 25.4     | 36.0       | 50           | 27.5    | 37.1   | 192.0    |
| 10/19/99 | 12609 Day 0 | 50          | 25.4    | 27.5     | 42.0       | 50           | 37.1    | 46.6   | 190.0    |
| 10/19/99 | 12610 Day 0 | 50          | 27.5    | 29.5     | 40.0       | 50           | 0.1     | 11.7   | 232.0    |
| 10/21/99 | 12611 Day 0 | 50          | 0.4     | 2.6      | 44.0       | 50           | 15.7    | 24.3   | 172.0    |
| 10/21/99 | 12612 Day 0 | 50          | 2.6     | 4.5      | 38.0       | 50           | 24.3    | 32.4   | 162.0    |
| 10/21/99 | 12613 Day 0 | 50          | 4.5     | 6.4      | 38.0       | 50           | 32.4    | 40.5   | 162.0    |
| 10/21/99 | 12614 Day 0 | 50          | 6.4     | 8.0      | 32.0       | 50           | 0.1     | 8.0    | 158.0    |
| 10/21/99 | 12622 Day 0 | 50          | 8.0     | 10.2     | 44.0       | 50           | 8.0     | 17.6   | 192.0    |
| 10/21/99 | 12638 Day 0 | 50          | 10.2    | 12.1     | 38.0       | 50           | 17.6    | 25.3   | 154.0    |
| 10/21/99 | 12639 Day 0 | 30          | 12.1    | 13.2     | 36.7       | 20           | 25.3    | 28.7   | 170.0    |
| 10/21/99 | 12640 Day 0 | 50          | 13.2    | 14.8     | 32.0       | 50           | 28.7    | 37.8   | 182.0    |
| 10/21/99 | 12641 Day 0 | 50          | 14.8    | 16.9     | 42.0       | 50           | 37.8    | 46.5   | 174.0    |
|          |             |             |         |          | .=.+       |              |         |        |          |
|          |             | <del></del> |         |          |            | <u> </u>     |         |        |          |

) 12/8/95

### **ALKALINITY & HARDNESS WORKSHEET**

| BTR Number     | Several                    | Project # <u>99033</u>        | Analyst: | LS               |         |
|----------------|----------------------------|-------------------------------|----------|------------------|---------|
| Species:       |                            | a azteca                      | Analysis |                  |         |
| Test Facility: | Aquatec Biological Science | es, South Burlington, Vermont | Dates:   | 11/21/99         | 12/2/99 |
| Project:       | Menzie-Cura Dead           | Creek Acute Tests             |          | 12 <i>/7/</i> 99 |         |

|                            | <del></del>     | Ī      | ALI     | KALINITY | ,          | _        | НА      | RDNESS | 3        |
|----------------------------|-----------------|--------|---------|----------|------------|----------|---------|--------|----------|
|                            | Sample          | Sample | Initial | Final    | Alkalinity | Sample   | Initial | Final  | Hardness |
| Date                       | Type            | ml     | ml      | ml       | (mg/L)     | ml       | ml      | ml     | (mg/L)   |
|                            | _               |        |         |          |            |          |         |        |          |
| 10/20/99                   | 12664 Day 10 HA | 50     | 32.1    | 34.0     | 38.0       | 50       | 24.1    | 31.8   | 154.0    |
| 10 <i>/</i> 20 <i>/</i> 99 | 12665 Day 10 HA | 50     | 34.0    | 36.3     | 46.0       | 50       | 31.8    | 39.8   | 160.0    |
| 10/20/99                   | 12666 Day 10 HA | 50     | 36.3    | 38.4     | 42.0       | 50       | 39.8    | 46.5   | 134.0    |
| 10/20/99                   | 12668 Day 10 HA | 50     | 38.4    | 40.1     | 34.0       | 50       | 0.2     | 7.4    | 144.0    |
| 10/20/99                   | 12671 Day 10 HA | 50     | 40.1    | 42.2     | 42.0       | 50       | 7.4     | 15.0   | 152.0    |
| 10/29/99                   | 12546 Day 10 HA | 50     | 1.9     | 3 6      | 34.0       | 50       | 19.1    | 25.3   | 124.0    |
| 10/29/99                   | 12547 Day 10 HA | 50     | 3.5     | 5 4      | 36.D       | 50       | 25.3    | 31.5   | 124.0    |
| 10/29/99                   | 12548 Day 10 H4 | 50     | 5.4     | 7.2      | 36.0       | 50       | 31.5    | 37.1   | 112.0    |
| 10/29/99                   | 12549 Day 10 HA | 50     | 7.2     | 8.9      | 34.0       | 50       | 37.1    | 42.7   | 112.0    |
| 10/29/99                   | 12550 Day 10 HA | 50     | 8.9     | 10.4     | 30.0       | 50       | 42.7    | 48.3   | 112.0    |
| 10/29/99                   | 12551 Day 10 HA | 50     | 10.4    | 12.1     | 34.0       | 50       | 0.3     | 6.1    | 116.0    |
| 10/29/99                   | 12552 Day 10 HA | 50     | 12.1    | 13.9     | 35.0       | 50       | 6.1     | 12.3   | 124.0    |
|                            | 40506 D 40 H4   |        | 45.0    | 45.0     | 22.0       | 50       | 40.0    | 40.5   | 404.0    |
| 10/29/99                   | 12589 Day 10 HA | 50     | 13.9    | 15.8     | 38.0       | 50<br>50 | 12.3    | 18.5   | 124.0    |
| 10/29/99                   | 12590 Day 10 H4 | 50     | 15.8    | 17.7     | 38.0       | 50       | 18.5    | 24.1   | 112.0    |
| 10/29/99                   | 12591 Day 10 HA | 50     | 17.7    | 19.2     | 30.0       | 50       | 24.1    | 30.5   | 128.0    |
| 10/29/99                   | 12592 Day 10 HA | 5C     | 19.2    | 21 0     | 36.0       | 50       | 30.5    | 36.4   | 118.0    |
| 10/29/99                   | 12593 Day 10 HA | 50     | 21.0    | 22 5     | 30.0       | 50       | 36.4    | 42.0   | 112.0    |
| 10/29/99                   | 12609 Day 10 HA | 50     | 22.5    | 25.1     | 52.0       | 50       | 42.0    | 48.7   | 134.0    |
| 10/29/99                   | 12610 Day 10 HA | 50     | 25.1    | 27.0     | 38.0       | 50       | 0.1     | 6.9    | 136.0    |
| 10/31/99                   | 12611 Day 10 HA | 50     | 29.5    | 31.1     | 32.0       | 50       | 11.7    | 19.8   | 162.0    |
| 10/31/99                   | 12612 Day 10 HA | 50     | 31.1    | 32.9     | 36.0       | 50       | 19.8    | 28.0   | 164.0    |
| 10/31/99                   | 12613 Day 10 HA | 50     | 32.9    | 34.7     | 35.0       | 50       | 28.0    | 36.4   | 168.0    |
| 10/31/99                   | 12614 Day 10 HA | 50     | 34.7    | 36.3     | 32.0       | 50       | 36.4    | 44.7   | 166.0    |
| 10/31/99                   | 12622 Day 10 HA | 50     | 36.3    | 38.2     | 38.0       | 50       | 0.2     | 8.9    | 174.0    |
| 10/31/99                   | 12638 Day 10 HA | 50     | 35.2    | 39.9     | 34.0       | 50       | 8.9     | 16.7   | 156.0    |
| 10/31/99                   | 12639 Day 10 HA | 50     | 39.9    | 41.5     | 32.0       | 50       | 16.7    | 24.5   | 156.0    |
| 10/31/99                   | 12640 Day 10 HA | 50     | 41.5    | 43.2     | 34.0       | 50       | 24.5    | 32.8   | 166.0    |
| 10/31/99                   | 12641 Day 10 HA | 50     | 43.2    | 45.0     | 35.0       | 50       | 32.8    | 40.6   | 156.0    |
|                            |                 |        |         |          |            |          |         |        |          |

1218/99

| Client: Menae-Cura    | Project: | 9903)       | BTR: | 3629 |  |
|-----------------------|----------|-------------|------|------|--|
| Sample Description: ( | Day O    | Ha. 10/21   |      |      |  |
|                       |          | <del></del> |      |      |  |

|              |              |                |                  |                  |                  |                |                  |                  |                  | ı                                                |
|--------------|--------------|----------------|------------------|------------------|------------------|----------------|------------------|------------------|------------------|--------------------------------------------------|
|              |              |                | ALKA             | LINITY           |                  |                | HARD             | NESS             |                  |                                                  |
| Sample       | Sample       | Sample<br>Vol. | Titrant<br>Init. | Titrant<br>Final | Analyst<br>Date/ | Sample<br>Vol. | Titrant<br>Init. | Titrant<br>Final | Analyst<br>Date/ | Data<br>entered                                  |
| ID           | Date         |                | Vol.             | Vol.             | Init.            |                | Vol.             | Vol.             | Init.            | Init.                                            |
| 12611        | 1024         | 50nJ           | 04               | W.6              | 12/218           | 50m            | 15.7             | 243              | 12/1 48          |                                                  |
| 112          |              |                | 12.6             | 4.5              | <u> </u>         |                | 24.3             | 32.4             |                  |                                                  |
| 13           |              |                | 4.5              | 10.4             |                  |                | 32.4             | 40.5             |                  |                                                  |
| +14          |              |                | 10.4             | 18.0             | 1                |                | 0.1              | 8.0              |                  |                                                  |
| 12022        |              |                | 18.D             | 10.2             |                  |                | 8.15             | 17.10            |                  |                                                  |
| 38           |              | +              | 10.2             | 112.1            |                  |                | 17.60            | 25.3             |                  |                                                  |
| 39           | ·            | 30m            | 12.1             | 13.2             | 1                | 20M            | 25:3             | 28.7             |                  |                                                  |
| 40           |              | 50m            | 13.2             | 14.8             |                  | 50ml           | 28.7             | 37 8             |                  |                                                  |
| 1 41         | 1            | I              | 14.8             | 110.9            | 1                |                | 378              | 37.8             | 1                |                                                  |
|              |              |                |                  | 100.1            | İ                |                | 2720             |                  |                  |                                                  |
|              |              |                |                  |                  |                  |                |                  |                  | <br>             |                                                  |
|              |              |                |                  |                  |                  |                |                  | 1                |                  |                                                  |
|              |              |                |                  | <u> </u>         | <u> </u>         |                | <u> </u>         | <u> </u>         |                  |                                                  |
|              |              |                | <u> </u>         |                  | 1                |                | <u> </u>         | 1                | <u> </u><br>     |                                                  |
|              |              |                | 1                |                  | <del> </del>     |                | <del>}</del>     | <del> </del>     |                  |                                                  |
|              |              |                |                  |                  |                  |                |                  |                  |                  |                                                  |
|              |              |                |                  | <u> </u>         | ļ                |                |                  | <u> </u>         |                  |                                                  |
|              | 1            |                |                  | 1                |                  |                | 1                | <u> </u>         | }                |                                                  |
|              |              |                | <u> </u>         | <del> </del>     | <u> </u>         | <del> </del>   | <u> </u>         | 1                | <u>1</u>         | -                                                |
|              | 1            |                | <u> </u>         |                  | <u></u>          | <u> </u>       | <u> </u>         | <u>'</u>         | <del> </del>     | <del>                                     </del> |
|              |              |                |                  |                  | i                |                |                  |                  |                  |                                                  |
|              |              |                | <u> </u>         |                  | 1                |                |                  | 1                |                  |                                                  |
| <del> </del> | 1            |                | -                |                  | 1                | <del> </del>   | 1                | 1                | 1                | <del> </del>                                     |
| <del></del>  | <u> </u>     | <del></del>    | 1                |                  | <u> </u>         |                | <del> </del>     | <u> </u>         | <u> </u>         |                                                  |
|              | <del> </del> | <del> </del>   | 1                | <del> </del>     |                  | <u> </u>       |                  | <del> </del>     | <del> </del>     |                                                  |
|              |              |                |                  |                  |                  |                |                  |                  |                  |                                                  |
|              |              |                |                  |                  |                  |                |                  |                  |                  |                                                  |
| <u> </u>     |              | ļ              | <u> </u>         | <u> </u>         | <u> </u>         | <u> </u>       | ļ                |                  | <u> </u>         | ļ                                                |
| <u></u>      | 1            | <u> </u>       |                  |                  | <u> </u>         |                |                  |                  |                  | <u> </u>                                         |

| Client: Manze-Cura  | Project: | 9903 | 3 | BTR: | 3615 |  |
|---------------------|----------|------|---|------|------|--|
| Sample Description: | Day C    | 101  | 9 |      |      |  |

|             |             | ALKALINITY HARDNESS                          |             |               |                                       |                |              |             |                                       | ľ                                                |
|-------------|-------------|----------------------------------------------|-------------|---------------|---------------------------------------|----------------|--------------|-------------|---------------------------------------|--------------------------------------------------|
|             |             | Sample                                       | Titrant     | Titrant       | Anglian                               | Camala         | Titrant      | Titrant     | Analyst                               | Data                                             |
| Sample      | Sample      | Vol.                                         | Init.       | Final         | Analyst<br>Date/                      | Sample<br>Vol. | Init.        | Final       | Date/                                 | entered                                          |
| ID          | Date        | _                                            | Vol.        | Vol.          | Init.                                 |                | Vol.         | Vol.        | Init.                                 | Init.                                            |
| 12546       | 1019        | 50ml                                         | (12         | a 3           | عيد فهاف                              | DN             | 0.1          | 11.6        | 12/7 48                               |                                                  |
| 47          |             |                                              | 2.3         |               | 1                                     | 30,004         | 11.60        | 17.7        | 1                                     |                                                  |
| اع          |             |                                              | 46          | 6.9           |                                       | 50m1           | 17.7         | 21c.8       |                                       |                                                  |
| 149         |             |                                              | 6.9         | GI            |                                       | 3277           | 268          | 20.7        |                                       |                                                  |
| 50          | 11          |                                              | 91          | 115           | -  -                                  |                | 30.7         | 45.7        |                                       |                                                  |
| 51          | <u> </u>    |                                              | 11.2        | B.4           | :                                     | <del></del>    | 0.1          | 90          |                                       |                                                  |
| 552         |             |                                              | 13.4        | 159           | 1                                     | ~              | 90           | 19.60       |                                       |                                                  |
|             |             |                                              | <u> </u>    |               |                                       |                |              |             | <u> </u>                              |                                                  |
| -           |             |                                              |             | <del></del>   |                                       |                |              |             |                                       |                                                  |
|             |             |                                              | <del></del> |               | *                                     |                |              |             |                                       |                                                  |
| ļ           |             |                                              |             |               |                                       |                |              |             |                                       |                                                  |
|             |             |                                              |             | <del></del> - |                                       |                | <del></del>  |             |                                       |                                                  |
|             | _           |                                              |             |               |                                       |                | <del></del>  | · · ·       |                                       |                                                  |
|             |             |                                              |             |               |                                       |                | -            |             |                                       |                                                  |
|             |             |                                              |             | -             |                                       |                |              |             | <u> </u>                              |                                                  |
|             |             |                                              |             |               |                                       | -              | -            |             |                                       |                                                  |
|             |             |                                              |             |               |                                       |                |              |             |                                       |                                                  |
|             |             |                                              |             |               |                                       |                |              |             |                                       |                                                  |
|             |             |                                              |             |               |                                       |                |              |             |                                       |                                                  |
| <del></del> |             |                                              |             |               |                                       |                |              |             |                                       |                                                  |
|             |             |                                              |             |               |                                       |                |              |             |                                       |                                                  |
|             |             |                                              |             |               |                                       |                |              |             |                                       |                                                  |
|             |             |                                              |             |               |                                       |                |              |             |                                       |                                                  |
| <del></del> |             |                                              |             |               |                                       |                |              |             |                                       |                                                  |
|             |             |                                              |             |               |                                       |                |              |             |                                       |                                                  |
|             |             |                                              |             |               |                                       |                | <del></del>  |             | :                                     | <del>                                     </del> |
|             |             |                                              |             | _             |                                       |                |              |             | :                                     | <b>†</b>                                         |
|             |             | <u> </u>                                     |             | <del></del>   | · · · · · · · · · · · · · · · · · · · |                | <del></del>  | <del></del> | · · · · · · · · · · · · · · · · · · · | 1                                                |
|             |             | <u>.                                    </u> |             |               |                                       |                | <del> </del> |             |                                       | <del>                                     </del> |
|             |             |                                              |             | <del>-</del>  | <del></del>                           | <del> </del>   |              | <del></del> | <del></del>                           | <del>                                     </del> |
|             | <del></del> |                                              | <del></del> |               |                                       |                |              |             |                                       | 1                                                |
|             |             |                                              |             |               | ·                                     | <del> </del>   | <del></del>  |             | <u></u>                               | <del>                                     </del> |
|             |             |                                              |             |               | <del></del>                           | <u> </u>       |              |             |                                       | <u></u>                                          |

12/8/99

0.00051

| Client: Menzie-Cura   | Project: | 99033 |       | BTR: 3622 |
|-----------------------|----------|-------|-------|-----------|
| Sample Description: ] | Day D    | H.a   | 10/19 |           |

|              |              |                                       | ALKA        | LINITY      |                                                  | HARDNESS     |                                                  |              |                                                  |                |  |  |
|--------------|--------------|---------------------------------------|-------------|-------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------|--------------------------------------------------|----------------|--|--|
|              |              | Sample                                | Titrant     | Titrant     | Analyst                                          | Sample       | Titrant                                          | Titrant      | Analyst                                          | Data           |  |  |
| Sample       | Sample       | Vol.                                  | Init.       | Final       | Date/                                            | Vol.         | Init.                                            | Final        | Date/                                            | entered        |  |  |
| ID           | Date         |                                       | Vol.        | Vol.        | Init.                                            | ,            | Vol.                                             | Vol.         | Init.                                            | Init.          |  |  |
| 12589        | 10/19        | 50ml                                  | 15.9        | 17.8        | 12/2 48                                          | Dom          | 26/0                                             | 337          | 12/7 48                                          |                |  |  |
| 190          |              |                                       | 17.8        | 19.7        |                                                  |              | 33.7                                             | 40.7         |                                                  |                |  |  |
| 91           |              |                                       | 19.7        | 216         |                                                  |              | 0.2                                              | 18.2         |                                                  |                |  |  |
| 192          |              |                                       | 21.6        | 23.U        |                                                  |              | 18.2                                             | 275          |                                                  |                |  |  |
| +93          | /            |                                       | 23.4        | 25.4        |                                                  |              | 27.5                                             | 37.1         |                                                  |                |  |  |
| 12609        |              |                                       | 25.4        | 27.5        |                                                  |              | 37.1                                             | 46.6         |                                                  |                |  |  |
| 1610         | $\perp$      |                                       | 27.5        | 29.5        |                                                  | 4-           | 0.1                                              | 11.7         | 1                                                |                |  |  |
|              |              | <del></del> -                         | - 1 1 1 -   | 1,0         |                                                  |              |                                                  |              |                                                  |                |  |  |
|              |              |                                       |             |             |                                                  |              |                                                  |              |                                                  |                |  |  |
| ļ            |              |                                       |             |             |                                                  |              |                                                  |              | <u> </u>                                         |                |  |  |
|              |              | <u> </u>                              | <del></del> |             | <u> </u>                                         |              |                                                  |              |                                                  |                |  |  |
|              |              |                                       |             | <br>        | <u>                                     </u>     |              |                                                  |              |                                                  |                |  |  |
|              |              |                                       |             |             |                                                  |              | <u> </u>                                         | <u> </u>     | <u> </u>                                         |                |  |  |
| ļ            |              |                                       |             |             | <u> </u>                                         | <del></del>  | <u> </u>                                         | <u> </u>     | <u> </u>                                         | <b></b>        |  |  |
|              |              |                                       |             |             | <u></u>                                          |              | 1                                                | <u> </u>     |                                                  | <b> </b>       |  |  |
| ļ            |              |                                       |             |             | <u> </u>                                         |              |                                                  |              | <u> </u>                                         |                |  |  |
|              |              |                                       |             |             |                                                  |              |                                                  | <u> </u>     |                                                  |                |  |  |
|              |              |                                       |             |             |                                                  |              |                                                  |              |                                                  |                |  |  |
|              |              |                                       |             |             |                                                  |              |                                                  |              |                                                  |                |  |  |
|              |              |                                       |             |             |                                                  |              |                                                  |              | <u> </u>                                         |                |  |  |
|              |              |                                       |             |             |                                                  |              |                                                  |              |                                                  | <u> </u>       |  |  |
|              |              |                                       |             |             |                                                  |              |                                                  |              |                                                  |                |  |  |
|              |              | '                                     |             |             |                                                  |              |                                                  |              |                                                  |                |  |  |
|              |              |                                       |             |             |                                                  |              |                                                  |              |                                                  |                |  |  |
|              |              |                                       |             |             |                                                  |              |                                                  |              | <u> </u>                                         |                |  |  |
|              |              |                                       |             |             |                                                  |              |                                                  |              | <u> </u>                                         |                |  |  |
|              |              | · · · · · · · · · · · · · · · · · · · |             | <del></del> |                                                  | <b> </b>     | <del> </del>                                     | <u> </u>     | <del> </del>                                     |                |  |  |
|              |              |                                       |             |             |                                                  |              |                                                  | <u> </u>     | <del>                                     </del> | <del> </del>   |  |  |
| }            |              |                                       |             |             |                                                  | <del> </del> | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del>   |  |  |
| <del> </del> |              |                                       |             |             | <del>                                     </del> | <del> </del> | <del>                                     </del> | <del> </del> | <del> </del>                                     | <del> </del>   |  |  |
|              |              |                                       |             |             | <del> </del>                                     | <del> </del> | <del> </del>                                     | 1            | 1                                                | <del> </del> - |  |  |
| ļ            | <del> </del> |                                       |             | }           | <del> </del>                                     |              | <del> </del>                                     |              | <del> </del>                                     |                |  |  |
| <b> </b>     |              |                                       | ļ <u>-</u>  |             | <u> </u>                                         | <del> </del> | <del> </del>                                     | <del> </del> | <del> </del>                                     | ļ              |  |  |
| L            |              |                                       |             | <u></u>     | ]                                                | <u> </u>     |                                                  |              | <u> </u>                                         | 1              |  |  |

12/8/99

| Client: MINZIE-Cura Project: | 94033 | BTR:  |  |
|------------------------------|-------|-------|--|
| Sample Description:          | Day D | HA/CT |  |

|        |                 |              |             | ΔΙΚΔ     | LINITY  |           |        | HARD        | NESS       |          | l        |              |
|--------|-----------------|--------------|-------------|----------|---------|-----------|--------|-------------|------------|----------|----------|--------------|
| 1      |                 |              | Sample      | Titrant  | Titrant | Analys:   | Sample | Titrant     | Titrant    | Analyst  | Da       | ta           |
| -      | Sample          | Sample       | Vol.        | init     | Final   | Date/     | Vol.   | Init.       | Final      | Date/    | ente     | -            |
|        | 10              | Date         |             | Vol.     | Vol.    | Init.     |        | Vol.        | Vol.       | Init.    | In       | t.           |
|        | 12:011          | 1019         | 50m         | 37.8     | 398     | 17:34     | 50mi   | 30.2        | 37.4       | 101345   | 11/13    | ęв           |
|        | 2:12            |              | 60<br>50    | 39.8     | 418     | 10/28     |        | 37.4        | 45.0       |          |          | $oxed{oxed}$ |
|        | 17113           | 10/19        |             | 418      | 43.7    | 的法区       |        | 0.8         | 90         |          |          |              |
|        | 12114           | 10/9         | 5)          | 0.4      | 25      | 13.35     |        | 90          | 165        |          |          |              |
|        | 17117           | 10/9         | 50          | 2.5      | 4.4     | 191.35    |        | 1105        | 24-1       |          | L        |              |
|        | 12138           | 1019         | 3           | 4.4      | 10.00   | 13.5      |        | 24.1        | 322        |          |          |              |
|        | 12639           | 1019         | $^{\circ}$  | 10.12    | 83      | 1038      |        | 32.2        | 386        |          |          |              |
|        | ≥14D            | 10/9         | 50          | <u> </u> | 100     | 19138     |        | 38.6        | 46.1       |          |          |              |
|        | 25-1            | 1019         | 5           | DO       | 120     | 01318     | #X 32  | 0.6         | 5.2        | <b>→</b> |          | L            |
| 23     |                 | i i          |             |          |         |           |        |             |            |          |          |              |
| 12546  | 1054c           | 10/7         | 50          | 13.0     | 135     | 13/2 X    | 50m    | 1 Ko. 4     | 23.1       | 10348    | 1 = 2    | RB           |
| 12547  | 7 بريخز         | 107          | 50          | 13.5     | 15.3    | , 2 /2 /F | 1      | 23.1        | 28.7       | -        |          | <u> </u>     |
| 2 548  | المجين المستحطة | シェ           | 50          | 15.3     | 17.0    | 1011348   | į      | 28.7        | 34.60      |          |          |              |
| 12 549 | 105mg           | :017         | 50          | 170      | 18.7    | 10/12/15  |        | 34.6        | 40.6       |          |          |              |
| 12550  | 10550           | 1017         | 50          | 18.7     | 20.4    | 1938      |        | 40.10       | 40.5       |          |          |              |
| 12551  | 12551           | シュ           | 50          | 204      | 222     | 1613 8    |        | 0.6         | 63         |          |          |              |
| 12 552 | WEST.           | 1017         | 50          | 22       | 240     | 1313 5    |        | 6.3         | 12.7       |          |          |              |
| 12569  | 1258            | 10/3         | BK          | 24.0     | 25.4    | 13.2 %    |        | p.7         | 19.0       |          |          |              |
| 12590  | 2590            | رار<br>چ/ار  |             | 25.4     | 2109    | 15 2 5    |        | 19.0        | 255        |          | <u> </u> |              |
| 12561  | 1501            | 10/8         | 50          |          | 28.3    | عمويزر    |        | 25.5        | 493        |          | ( )      |              |
| 1252   | 2592            | 10:1/8       | 50          | 28.3     | 29.9    | 13.2      |        | 1.0         | 7.3        |          |          |              |
| 1253   | 12543           | 15/8         | 50          | 299      | 31.3    | 1.1300    |        | 7.3         | 13.2       |          | į<br>!   |              |
| 12601  | 10209           | / <u>5/8</u> | 50          | 3.3      |         | 10/34     |        | 13.2        | 20.0       |          | i        |              |
| 126€   | 1100            | 1018         | 50          | 33.0     | 34.4    | 10138     |        | 20.0        | 27.8       |          | :        |              |
| 12615  | 10015           | 10/8         | 8           | 24.4     | 359     | 131315    |        | 27,8        | 34.0       |          |          |              |
|        | 12:004          | 10/10        | 50          | 309      | 372     | جمد 3، در |        | 34.0        | 42.0<br>19 |          |          |              |
|        | 3065            | 10/10        | 50          | 37.2     | 39.2    | 13/3 P    |        |             |            |          |          |              |
|        | 13/200          | 101:0        | 50          | 39.2     | -41.5   | 101130    |        | 7.9         | 16.0       |          |          |              |
|        | 13/1/18         | 161:0        | 50,50,50,50 | 41.5     | 43.4    | 1313 8    | ;      | 16.0        | 235        | \        |          |              |
|        | 121171          | الأزار       | 50          | 43.4     | 44.9    | 12/3/     | , V    | 16.0<br>235 | 30.2       | - 4      |          | 1            |
|        | l.              |              |             |          |         | . , ,     |        |             |            |          |          |              |
|        |                 |              |             |          |         |           |        |             |            |          |          |              |
|        |                 |              |             |          |         |           |        |             |            |          |          |              |

|                  | Client               | : Menz   | e-Cur          | QP               | roject:          | 99,03                       | '3             | BTR              | : 136            | 41               |                 |
|------------------|----------------------|----------|----------------|------------------|------------------|-----------------------------|----------------|------------------|------------------|------------------|-----------------|
|                  | Samp                 | le Desc  | ription        | 1: //a           | u 10             | $\mathcal{H}_{\mathcal{A}}$ | + (1           | 1                | : 36.<br>10/20   | )                |                 |
|                  |                      |          |                |                  |                  |                             |                |                  | /                |                  |                 |
|                  |                      |          |                | ALKA             | LINITY           |                             |                | HARD             | NESS             |                  |                 |
|                  | Sample               | Sample   | Sample<br>Vol. | Titrant<br>Init, | Titrant<br>Final | Analyst<br>Date/            | Sample<br>Vol. | Titrant<br>Init. | Titrant<br>Final | Analyst<br>Date/ | Data<br>entered |
|                  | ID                   | Date     | VOI.           | Vol.             | Vol.             | Init.                       | V 61.          | Vol.             | Vol.             | nit.us           |                 |
| $ \mathcal{L} $  | 1210104              | 10/20    | 50ml           | 132-1            | 134.0            | 12/2/18                     | 50nl           | 24.1             | 31.8             | 50ml             |                 |
| Ha. Y            | 165                  | 1        |                | 134.D            | 1363             |                             |                | 31.8             | 139.8            |                  |                 |
| ·/· <b>~</b> · / | 100                  |          |                | 36.4             | 38.4             |                             |                | 39.8             | 46.5             |                  | <u></u>         |
|                  | 108                  |          | <del></del>    | 38.4             | 40.1             |                             | <b></b>        | 9.2              | 74               |                  | <del> </del>    |
|                  | J 71                 |          |                | 140.1            | 142.2            | <u> </u>                    | <u> </u>       | 7.4              | 13.0             | <u></u>          | <del></del>     |
|                  | 126104               | 10/20    | 50 mJ          | 42.2             | 144.2            | !<br>! ID/2 UR              | 50ml           | 150              | 225              | 12/1 1/2         |                 |
|                  | 165                  | 1910     | 1              | 44.2             | 410.0            | 1 1                         | JUMA_          | 225              | 29.5             | 1777             |                 |
| C.+.<            | 100                  |          |                | 146.0            | 47.9             |                             |                | 245              | 309              |                  |                 |
| ( )              | 66<br>  68<br>  - 71 |          |                | 102              | 1.8              |                             |                | 3/04             | 42.4             |                  |                 |
|                  | 1-71                 | <u> </u> |                | 1.8              | 3.9              |                             | 1              | 04               | 17.9             | 4                |                 |
| Ŭ                |                      | i -      |                |                  |                  |                             |                | 1                | !                |                  |                 |
|                  | ļ                    | i        |                | <u> </u>         | -                | 1                           |                | 1                | 1                |                  |                 |
|                  | <u> </u>             | !        |                |                  | 1                | <u>i</u><br>İ               |                | <u> </u><br>     | 1                |                  |                 |
|                  | <b></b>              | <u> </u> |                | <u> </u>         | <u> </u>         | <u>:</u><br>                |                |                  |                  | !                |                 |
|                  |                      | ,<br>!   |                | <u>'</u> -       | <u> </u>         | 1                           | <u> </u><br>   |                  | <u> </u>         |                  |                 |
|                  |                      | İ        |                | <u> </u>         | j                | i                           |                | i :              |                  |                  |                 |
|                  |                      |          |                |                  |                  |                             |                |                  |                  |                  |                 |
|                  | ļ                    | 1        |                | 1                | 1                | <u> </u>                    | <u> </u>       | <u> </u>         |                  | <u> </u>         |                 |
|                  |                      | !        |                |                  | <u> </u>         | !                           | <b></b>        | 1                | 1                | <u> </u>         |                 |
|                  |                      | 1        |                | <u> </u>         | i                | <u> </u>                    |                |                  | <u>i</u>         | <u>:</u>         |                 |
|                  |                      | <u> </u> |                | <u> </u><br>     | <u>.l</u><br>1   | <u> </u><br>                |                | <u> </u>         | !                | <u>i</u><br>i    |                 |
|                  |                      |          |                | <u>i</u><br>İ    |                  | <u>!</u><br>                | <del></del>    | <u> </u>         | <u>:</u> ,       | <u> </u>         |                 |
|                  |                      | 1        |                |                  | <del> </del>     |                             |                |                  | 1                | <u> </u>         |                 |
|                  |                      |          |                |                  |                  | 1                           |                |                  | !                | Ì                |                 |
|                  |                      |          |                |                  |                  |                             |                | İ                | <u> </u>         |                  |                 |
|                  |                      | <u> </u> | ļ <u>.</u>     | !                | -                |                             |                | †                | <u> </u>         |                  | ļ               |
|                  | ļ                    | <u> </u> | <b> </b>       |                  | 1                | <u> </u>                    | <del> </del>   | 1                | 1                |                  | <u> </u>        |
|                  | <b> </b>             | 1        |                | 1                | +                | <u> </u>                    | <del> </del>   | <del> </del>     | 1                | 1                | <del> </del>    |
|                  |                      | <u> </u> |                | 1                | <u> </u>         |                             | 1              | 1                |                  | <u> </u>         | <u> </u>        |

000054

Aquates Biological Sciences South Burlington, VT

೨೦ರಿ.ಗಾರಗಿತಿತ

| J3 1111171 ( 1414_             |       |           |  |
|--------------------------------|-------|-----------|--|
| Client: Min De - Cura Project: | 24033 | BTR: 3615 |  |
| Sample Description:            | Daylo | H.a.      |  |
|                                |       |           |  |

|              |                | <u> </u>       | ALKA                     | LINITY                   |                           |                                                  | HARD                     | NESS                     |                           |                                                  |    |
|--------------|----------------|----------------|--------------------------|--------------------------|---------------------------|--------------------------------------------------|--------------------------|--------------------------|---------------------------|--------------------------------------------------|----|
| Sample<br>ID | Sample<br>Date | Sample<br>Vol. | Titrant<br>Init.<br>Vol. | Titrant<br>Final<br>Vol. | Analyst<br>Date/<br>Init. | Sample<br>Vol.                                   | Titrant<br>Init.<br>Vol. | Titrant<br>Final<br>Vol. | Analyst<br>Date/<br>Init. | Data<br>enter                                    | ed |
|              | 10/29          | 50ml           | 19                       | 3.6                      | المراء 84                 | 50ml                                             | 19.1                     | 25.3                     | "kuys                     |                                                  | _  |
| 12547        |                |                | 36                       | 5.4                      |                           |                                                  | 25.3                     | 31.5                     | 1                         |                                                  |    |
| 12548        |                |                | 5.4                      | 7.2                      |                           |                                                  | 31.5                     | 37.1                     |                           |                                                  |    |
| 12549        |                |                | 7.2                      | 89                       | !                         |                                                  | 37.1                     | 42.7                     |                           |                                                  |    |
| 12550        |                |                | 8.9                      | 10.4                     | · 1                       | -                                                | 427                      | 483                      |                           |                                                  |    |
| 1355         |                |                | 10.4                     | 12/                      | <del>` </del> -           | -4-                                              | 0.3                      | <u>[0.1]</u>             |                           |                                                  | -  |
| 12552        | . 4-           |                | 12.1                     | 13.9                     | <u>_</u>                  |                                                  | (o.1                     | <i>[2.3]</i>             | <u> </u>                  | _+                                               |    |
| 12589        | 10/29          | 50ml           | 13.9                     | 58                       | القراء وكل                | 50mi                                             | 12.3                     | 18.5                     | 11/2145                   | 1/23                                             | 8B |
| 12590        | 1              |                | 15.8                     | 17.7                     | 1                         |                                                  | 185                      | 24.1                     | <u>_</u>                  |                                                  |    |
| 12591        |                |                | 17.7                     | 192                      |                           | 1                                                | 24.1                     | 30.5                     |                           |                                                  |    |
| 2592         |                |                | 19.2                     | 210                      |                           | <del>   </del>                                   | 50.5                     | 36.4                     |                           |                                                  |    |
| 12593        |                |                | <u> 21.0</u>             | 225                      |                           | <del>                                     </del> | 34.4                     | 420                      |                           |                                                  |    |
| 124609       |                |                | 225                      | 25.1                     |                           | <u> </u>                                         | 42.0                     | 48.7                     |                           |                                                  |    |
| 12610        |                | <u></u>        | <u> 45./</u>             | 27.0                     |                           |                                                  | 0.1                      | 10.7                     |                           | <u> </u>                                         |    |
|              |                |                |                          |                          |                           | :                                                |                          |                          |                           |                                                  |    |
|              |                |                |                          |                          |                           | :                                                | ·- ·-                    |                          |                           | <del>                                     </del> |    |
|              |                |                |                          |                          |                           | i<br>!                                           |                          |                          |                           |                                                  |    |
| <u></u>      | <del></del>    |                |                          |                          |                           |                                                  | !<br><del>:</del>        |                          |                           |                                                  |    |
| <br>         | <del></del>    | ·              | <del></del>              |                          |                           | <u> </u>                                         | <u> </u>                 |                          | <del></del>               |                                                  |    |
| ļ            |                |                |                          |                          |                           | <del></del>                                      | i                        |                          | · ·                       |                                                  |    |
| <b> </b>     | <del></del>    |                |                          |                          | <del></del>               | <del> </del>                                     | · <del></del>            | <del></del>              |                           |                                                  |    |
|              |                |                |                          |                          |                           |                                                  | <del></del>              | <del> </del>             |                           |                                                  |    |
|              |                |                |                          |                          |                           | i                                                |                          |                          |                           |                                                  |    |
| ļ            |                |                |                          |                          |                           |                                                  |                          |                          |                           |                                                  |    |
|              |                |                |                          |                          |                           |                                                  |                          |                          |                           | <b>├</b>                                         |    |
|              | ··             |                |                          |                          |                           |                                                  |                          |                          |                           | <b>├</b>                                         |    |
| -            |                |                |                          |                          |                           |                                                  |                          |                          | <del></del>               |                                                  |    |
|              |                |                |                          |                          |                           | <del> </del>                                     | !                        | <del></del>              |                           | <del> </del>                                     |    |
| L            |                | L              |                          |                          |                           |                                                  | <u> </u>                 |                          |                           | <u> </u>                                         |    |

| Client: Menzie - Cura | Project: | 99033 | BTR:  | 3629/ | 3633 |
|-----------------------|----------|-------|-------|-------|------|
| Sample Description:   | Day 10   | H.a.  | 10/31 |       |      |

|              |                                        |                | ALKA                     | LINITY                   |                                                  | · · · · · · · · · · · · · · · · · · · | HARD                     | NESS                     |                           |                          |
|--------------|----------------------------------------|----------------|--------------------------|--------------------------|--------------------------------------------------|---------------------------------------|--------------------------|--------------------------|---------------------------|--------------------------|
| Sample<br>ID | Sample<br>Date                         | Sample<br>Vol. | Titrant<br>Init.<br>Vol. | Titrant<br>Final<br>Vol. | Analyst<br>Date/<br>Init.                        | Sample<br>Vol.                        | Titrant<br>Init.<br>Vol. | Titrant<br>Final<br>Vol. | Analyst<br>Date/<br>Init. | Data<br>entered<br>Init. |
| 12/01        | 10/31                                  | 50ml           |                          | 31.1                     | 12/2/18                                          | 50ml                                  | 11.7                     | 19.8                     | 12/748                    |                          |
| 112          | 10,0                                   |                | 29.5<br>31.1             | 32.9                     | 11                                               | 1                                     | 19.8                     | 28.0                     | 7.03                      |                          |
| 13           |                                        |                | 32.9                     | 34.7                     |                                                  |                                       | 28.0                     | 36.4                     |                           |                          |
| 111          |                                        |                | 34.7                     |                          |                                                  |                                       | 30.4                     | 44.7                     |                           |                          |
| 12622        |                                        |                | 303                      | 36.3                     |                                                  |                                       | 0.2                      | 89                       |                           |                          |
| 1 38         |                                        |                | 38,2                     | 39.9                     |                                                  |                                       | 8.9                      | 16.7                     |                           |                          |
| 39           |                                        |                | 39.9                     | 41.5                     |                                                  |                                       | 16.7                     | 24.5                     |                           |                          |
| 1 40         |                                        |                | 41.5                     | 43,2                     |                                                  |                                       | 84.5                     | <i>32.8</i>              |                           |                          |
| 41           | ــــــــــــــــــــــــــــــــــــــ |                | 43.2                     | 450                      | 1                                                | 1                                     | 328                      | 40.60                    |                           |                          |
|              |                                        |                |                          |                          |                                                  |                                       |                          |                          |                           |                          |
|              |                                        |                |                          |                          |                                                  |                                       |                          |                          |                           |                          |
|              | ·—.                                    |                |                          |                          |                                                  |                                       |                          |                          |                           |                          |
|              |                                        |                |                          |                          | ļ                                                |                                       |                          |                          |                           |                          |
|              |                                        |                |                          |                          |                                                  |                                       |                          |                          |                           |                          |
|              |                                        |                |                          |                          |                                                  |                                       |                          |                          |                           |                          |
|              |                                        |                |                          |                          |                                                  |                                       |                          |                          |                           |                          |
|              |                                        |                |                          |                          |                                                  |                                       |                          |                          |                           | <del></del>              |
| <u> </u>     |                                        | ·              | <del></del>              |                          |                                                  |                                       |                          |                          |                           |                          |
| ļ            |                                        |                |                          |                          |                                                  |                                       |                          |                          |                           |                          |
|              |                                        |                |                          |                          |                                                  | ·                                     |                          |                          |                           |                          |
|              |                                        |                |                          |                          |                                                  |                                       |                          |                          |                           |                          |
|              |                                        |                |                          |                          |                                                  |                                       | <br>                     | <br>                     |                           |                          |
|              |                                        |                |                          |                          |                                                  |                                       |                          |                          |                           |                          |
|              |                                        |                |                          | <del> </del>             | <del> </del>                                     | <del></del>                           |                          |                          | -                         |                          |
| <u> </u>     |                                        |                |                          |                          |                                                  |                                       |                          |                          |                           |                          |
| <b> </b>     |                                        |                | <u> </u>                 | <del></del>              | <del>                                     </del> |                                       |                          |                          |                           | <b> </b>                 |
| <del> </del> |                                        |                |                          |                          | <del> </del>                                     |                                       | ļ                        |                          | <del> </del>              |                          |
|              |                                        |                |                          |                          |                                                  |                                       |                          |                          | <del> </del>              | -                        |
| <u> </u>     |                                        |                |                          |                          |                                                  |                                       | <del> </del>             | -                        |                           |                          |
| <b></b>      |                                        |                |                          |                          |                                                  |                                       |                          |                          | <del> </del>              | <u> </u>                 |
|              |                                        |                |                          | <u> </u>                 | <del> </del>                                     |                                       |                          |                          |                           |                          |
| L            | ــــــــــــــــــــــــــــــــــــــ |                | <u> </u>                 |                          | <u> </u>                                         | l                                     | <u></u>                  | <u> </u>                 | <u> </u>                  | <u> </u>                 |

|        |           | onia Analyses (Total, m<br>Dead Creek / Project 99 | - •              |
|--------|-----------|----------------------------------------------------|------------------|
| Sample | Porewater | Day 0 Overlying                                    | Day 10 Overlying |
| ID     |           | Water                                              | Water            |
| 12546  | 6.3       | 1.4                                                | <0.5             |
| 12547  | 23.1      | 6.2                                                | 2.5              |
| 12548  | 17.3      | 4.1                                                | 0.5              |
| 12549  | 7.4       | 1.7                                                | 0.6              |
| 12550  | 9.3       | 2.2                                                | 0.9              |
| 12551  | 5.9       | 1.5                                                | 0.9              |
| 12552  | •         | <0.5                                               | <0.5             |
| 12589  | 2.9       | 0.7                                                | 0.7              |
| 12590  | 4.4       | 0.8                                                | <0.5             |
| 12591  | 2.1       | 0.5                                                | <0.5             |
| 12592  | 5.7       | 1.6                                                | 0.7              |
| 12593  | 13.3      | 3.0                                                | 0.5              |
| 12609  | 2.2       | < 0.5                                              | <0.5             |
| 12610  | 7.1       | 1.2                                                | <0.5             |
| 12611  | 12.9      | 2.2                                                | <0.5             |
| 12612  | 2.4       | 0.6                                                | <0.5             |
| 12613  | 2.7       | 0.6                                                | 0.7              |
| 12614  | 3.5       | 0.8                                                | <0.5             |
| 12622  | •         | <0.5                                               | <0.5             |
| 12638  | 4.0       | 0.9                                                | 0.5              |
| 12639  | 1.6       | 0.7                                                | 8.0              |
| 12640  | 0.6       | <0.5                                               | <0.5             |
| 12641  | 6.4       | 2.1                                                | 1.1              |
| 12664  | <0.5      | <0.5                                               | <0.5             |
| 12665  | 10.3      | 3.4                                                | 1.8              |
| 12666  | 6.7       | 2.2                                                | 2.3              |
| 12668  | -         | <0.5                                               | 0.6              |
| 12671  | 2.4       | 0.7                                                | <0.5             |

0,2/8/99

|            | ,                 |             | • • •  | A                               | bsorbance                 | (µAu) (E+0                            | 5)           |           |                          |                                         |      |
|------------|-------------------|-------------|--------|---------------------------------|---------------------------|---------------------------------------|--------------|-----------|--------------------------|-----------------------------------------|------|
|            | -1.000            | -0.500      | 0.000  | 0.500                           | 1.000                     | 1.500                                 | 2.000        | 2.500     | 3.000                    | 3.500                                   |      |
| 0          |                   |             |        | •                               |                           |                                       |              |           |                          |                                         |      |
|            | •                 |             | 1 22   |                                 | • (                       | 3ync: 9.935                           | 17           |           | . <del>.</del>           |                                         | :    |
|            |                   |             | Ca     | rryover: 0.0                    | 228382                    | ;                                     | :            |           |                          |                                         |      |
|            |                   |             |        | rryover: -0.0                   |                           | •                                     | ;<br>;       |           |                          | •                                       | . !  |
| 500        | <del>-</del>      | :           | Bas    | seline: -0.00                   | 989377 <sup> !</sup>      | · · · · · · · · · · · · · · · · · · · | ;            |           |                          | ;<br>                                   | - :  |
|            | 1                 |             | + Ca   | 0: 0.00989                      | 284                       | 7                                     | !            | 1<br>1    | :                        | 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : |      |
|            | ,                 |             | 8      | nk: -0.0119                     | (                         | Cal 1: 10                             | 1            |           | :                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   |      |
|            |                   |             | Bas    | seline: -0.00                   | 0989377                   |                                       |              |           | :                        |                                         |      |
|            |                   | 0           |        | IC                              | V: 4.97736                |                                       |              |           |                          |                                         |      |
| 1000       | Sediment<br>Ammon |             | `Eice  | 3: -0.00877:                    | 17Z                       |                                       | <del>-</del> |           |                          |                                         |      |
| D.         | 14(4(4)2)         | عه ۱۰<br>ا  |        | -                               | 12546 PV                  | V: 6.34008                            |              |           | Δ<br>- ω<br>- 25 47 DV   |                                         |      |
|            |                   | ; '         |        |                                 |                           | -                                     | 4<br>12      | 548 PW: 1 | +ω<br>12547 PV<br>7.3102 | v: 23.1481                              |      |
|            | · •               |             |        |                                 | — ທ່<br>1254 <u>9</u>     | PW: 7.371                             | 4            |           |                          |                                         | ·    |
|            |                   |             |        |                                 | 12                        | 2550 PW: 9                            | .28598       |           |                          | ;                                       |      |
| 150<br>    |                   |             |        | 18                              | 12551 PW                  | : 5.91703                             |              | :         |                          |                                         |      |
| 0          |                   | :           | 5      | → 0<br>10591 P                  | 590 PW: 4.4<br>W: 2.14957 | 14962                                 | :            | •         |                          | 1 .                                     |      |
|            |                   |             |        | •                               | 0<br>10592 PW:            | 5.71389 <sub>0</sub>                  | :            |           | ;<br>;                   |                                         |      |
| <br>الباد  |                   |             |        |                                 |                           | 105                                   | 593 PW: 1    | 3.28      | :                        | :                                       |      |
|            |                   |             | 230    | C 22122                         | CV: 4.8734                | 5                                     | :            | :<br>:    | :                        | . 1                                     | - ;  |
| 2000       |                   | ·           |        | B: 0.00139<br>selipe: -0.00     | 0989377                   |                                       |              |           |                          |                                         |      |
| O          |                   | •           |        |                                 | W: 220396                 | 1 1                                   | *            |           |                          |                                         |      |
|            |                   |             |        |                                 | 12610 F                   | W: 7.0841                             |              |           | :<br>:<br>               |                                         | - 1- |
|            | :                 |             |        | 0 -<br>13613 D                  | W: 2.38815                | 126                                   | 11 PW: 12    | 2.855     |                          |                                         | ,    |
| <b>N</b> 3 | •                 |             |        |                                 | ov. 2.38815<br>ov. 2.6871 |                                       |              |           | 1<br>•                   | · · · · · · · · · · · · · · · · · · ·   | ,    |
| 2500       |                   | . <b></b> . |        | 1261                            | 4 PW. 3.54                | 557                                   |              |           |                          |                                         | - '- |
| <b>U</b> . |                   |             |        | N                               | 38 PW: 3.97               | 2005 <sub>;</sub>                     |              |           |                          |                                         | :    |
|            |                   |             | 33     | ¯12639 PW:<br>2640 PW: 6        | /: 1.62824                |                                       |              |           |                          |                                         | :    |
|            |                   |             |        |                                 |                           | V: 6.36847                            |              |           |                          |                                         | . :  |
| 10         |                   |             | #6     | O C                             | →12641 PV<br>CV: 4.8589   | 5                                     |              |           | :                        |                                         | . 1  |
| 3000       |                   |             | ) . W  | B: -0.00248                     | 1                         |                                       |              |           |                          |                                         |      |
|            |                   |             | Bas    | seliner -0.00                   | D989377                   |                                       |              |           | :                        | 1                                       |      |
|            |                   | (i)         | ) 19   | 12664<br><del>164</del> PVV: 0: | PW: 2.8882<br>210309      | . A 3 / / &=                          |              |           |                          |                                         |      |
| -          |                   |             |        |                                 |                           | TOLON DIA                             | : 10.3393    |           |                          |                                         | . :  |
|            |                   |             |        | Ň                               | 12466 PV                  | <del>42403</del> PVV<br>N: 6.4635     |              |           |                          |                                         |      |
| <u></u>    |                   |             |        | 12671 P                         | PW: 2.40297               | ,<br>                                 |              | <b></b>   | <b>.</b>                 |                                         |      |
| )          |                   |             | + CC   | B: -0.00466                     |                           | •                                     |              |           | Λſ                       | 0058                                    |      |
|            |                   |             |        | seline: -0.00                   |                           |                                       |              |           | ) U<br>                  | , U U U O .                             |      |
| _          |                   |             | P. Win | ber Correct                     |                           | .21 /                                 |              | <b></b>   |                          |                                         |      |

Peak Table: ammonia

File name: C::FLOW\_4\101299E.RST Date: Obtober 12, 1999 Operator: LKS

| Peak           | C::p      | Name           | Type Dil                                 | Wt           | Heigh        | t Ca | alc. (mg/L) |
|----------------|-----------|----------------|------------------------------------------|--------------|--------------|------|-------------|
| :              | 2         | Symc           | SYNC                                     |              | 1 115        | 0681 | 9.935171    |
| 2              | 0         | Carryover      | CC                                       | <u>-</u>     | <u>.</u>     | 3787 | 0.022838    |
| 3              | D.        | Carryover      | CO                                       | _            | 1            | 487  | -0.005682   |
| 3              | Ξ         | Baseline       | 23                                       | :            | :            | 8    | -0.009894   |
| Ξ.             | D         | Baseline       | RB                                       | 1            | 1            | ε    | -0.009894   |
| £              | 1         | Cal 0          | RB<br>C<br>C                             | -            | •            | 2289 | 0.009893    |
| 7              | 2         | Cal 1          | ā                                        | -            |              | 8182 | 10.000000   |
| =              | Ď         | Blank          | •                                        | -            | •            | -233 | -0.011912   |
| =              | 5 A N 5 0 | Baseline       | 23                                       | -            | -            | 0    | -0.009894   |
|                | •         | ICV            | •••                                      |              | 1 57         | 7044 | 4.977356    |
|                | -         | 103            |                                          | -            |              | 130  | -0.008772   |
|                | 3-        | 12546 PW       |                                          | -            | 7. 73        | 4716 | 6.340084    |
|                | 32        | 12547 PW       | ••                                       | -            |              | 9467 | 23.148100   |
| - 3            | 33        | 12548 PW       | ••                                       | -            |              | 4003 | 17.310225   |
| - <del>-</del> | 34        | 12548 PW       |                                          | -            |              |      |             |
| - 3            |           |                |                                          | -            |              | 4013 | 7.371138    |
| - =            | 35        | 12550 PW       | 0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 | -            |              | 5568 | 9.285980    |
|                | 36        | 12551 PW       | -                                        | -            |              | 5767 | 5.917027    |
| - =            | 37        | 10590 PW       |                                          | -            |              | 5983 | 4.449624    |
| 19             | 3.8       | 10591 PW       | Ü                                        | -            |              | 9859 | 2.149575    |
| 2:             | 3.5       | 10592 PW       | <u> </u>                                 | 1            |              | 2263 | 5.713890    |
| 31             | 40        | 10593 PW       | •                                        | =            |              | 7687 | 13.279972   |
| 22             | 3         | CCV            | Ü                                        | -            |              | 5021 | 4.873451    |
| 23             | =         | CCB            | Ü                                        | -            | <u>-</u>     | 1306 | 0.001391    |
| 3              | 5         | Baseline       | RB                                       | 1            | 1            | ٥    | -0.009894   |
| 25             | 41        | 10609 PW       | ÷                                        | -            |              | 6151 | 2.203963    |
| 2 5            | 42        | 12610 PW       | Ü                                        | -            |              | 0805 | 7.084130    |
| 2              | 43        | 12611 PW       | :                                        | -            | 1 148        | 8515 | 12.854989   |
| 2 🛢            | 44        | 12612 PW       | ••                                       | 1            | 1 27         | 7463 | 2.388149    |
| 23             | 45        | 12613 PW       | ••                                       | <u>.</u>     | 1 31         | 2054 | 2.687114    |
| 3:             | 45        | 12614 PW       | :                                        | -            | 1 41         | 1381 | 3.545574    |
| 31             | 47        | 12638 PW       |                                          | <u>:</u>     | 1 46         | 0495 | 3.970054    |
| 32             | 48        | 12639 PW       | ••                                       | :            | 1 18         | 9538 | 1.628238    |
| 33             | 45        | 12643 PW       | :                                        | <u>:</u>     |              | 4455 | 0.633600    |
| 34             | 50        | 12641 PW       | •                                        | Ξ            |              | 8081 | 6.368472    |
|                |           | CC:            | ••                                       | -            |              | 3344 | 4.858951    |
| 3 S<br>3 S     | 3         | CC3            | •••                                      | =            | -            | 892  | -0.002186   |
| 3              | 5         | Baseline _     | 23                                       | -            | -            | 2    | -0.009894   |
| 3 8            | 51        | 10589 PW (D    | •••                                      | -            | - ::         | 5331 | 2.888294    |
| 3 5            | 52        | 12664 PW 12664 | RB 000000000000000000000000000000000000  | -            |              | 5478 | 0.210309    |
| 40             | 53        | 12465 PW 12665 |                                          | -            |              | 7437 | 10.339272   |
| 4:<br>-        | 54        | 22456 FW 12666 |                                          | -            |              | 8996 | 6.463504    |
| <del>-</del>   | 55        | 12671 PW       |                                          | <del>.</del> |              | 9177 | 2.402970    |
| 43             | 3         | 225.1 PM       | •                                        | -            |              | 3863 | 4.863436    |
| 44             | <i>-</i>  | CCB            | •                                        | -            | 1 25         |      |             |
| 3              | -         | Baseline       | RB                                       | -            | <del>.</del> | 605  | -0.004666   |
| =              | -         | Beserrie       |                                          | ±            | <del>-</del> | 9    | -0.009894   |

1 Samuel No. Correction Peak Cup Flags J-12/8/99

| - | _        |    |
|---|----------|----|
| - | 4        |    |
| - | -        |    |
| 4 | -        |    |
| 3 | •        |    |
| 2 | -        |    |
| = | 5        | 31 |
| = | <u>-</u> | 3- |

| Peak                                   | Cup                                         | Flags    |
|----------------------------------------|---------------------------------------------|----------|
| B<br>6                                 | 0                                           | BL       |
| eak<br>1367 B011234567890123 56789012  | - 01200311234567890310123456789031012345310 | LO<br>BL |
| 10<br>11<br>12                         | 3<br>1<br>31                                | LO       |
| 13<br>14<br>15                         | 32<br>33<br>34                              |          |
| 16<br>17                               | 35<br>36                                    |          |
| 19                                     | 38<br>39                                    |          |
| 21<br>22<br>23                         | 40<br>3<br>1                                |          |
| B<br>25<br>26                          | 0<br>41<br>42                               | BL       |
| 27<br>28<br>29                         | 43<br>44<br>45                              |          |
| 30                                     | 46                                          |          |
|                                        | 49<br>50                                    |          |
| 35<br>36                               | 3<br>1<br>0                                 | LO<br>BL |
| 38<br>39                               | 51<br>52                                    | 20       |
| 38<br>39<br>40<br>41<br>42<br>43<br>44 | 53<br>54<br>55                              |          |
| 356<br>36839<br>412344<br>42344        | 3<br>1<br>0                                 | TO<br>BT |



Peak Table: ammonia

File name: F:\FLOW\_4\102799D.RST Date: October 28, 1999 Operator: LKS 27

| Calc   Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -  |     | 2 ( ( )        |          |    |        |         |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----------------|----------|----|--------|---------|--------------|
| 2 0 Carryover CO 1 1 1 27244 0.147761 B 0 Baseline RB 1 1 0 -0.001356 B 0 Baseline RB 1 1 0 -0.001356 6 1 Cal 0 C 1 1 1 495 0.001355 7 2 Cal 1 C 1 1 1 495 0.001355 8 0 Baseline RB 1 1 0 -0.001356 8 0 Baseline RB 1 1 1 0 -0.001356 8 0 Blank U 1 1 1 1827302 10.000000 8 0 Blank U 1 1 1 -843 -0.005968 B 0 Baseline RB 1 1 0 -0.001356 10 2 ICV U 1 1 1 1846458 10.104847 11 1 ICB U 1 1 1 1846458 10.104847 12 3 LCS U 1 1 1 959538 5.250472 13 31 12611 HA DAY10 U 1 1 1 252528 0.286144 14 32 12611 CT DAY10 U 1 1 1 139074 0.759838 15 33 12612 HA DAY10 U 1 1 1 139074 0.759838 15 33 12612 HA DAY10 U 1 1 1 104208 0.569004 16 344 12612 CT DAY10 U 1 1 1 16208 0.569004 16 344 12612 CT DAY10 U 1 1 1 76558 0.417865 18 36 12613 CT DAY10 U 1 1 1 36337 0.745184 19 37 12614 HA DAY10 U 1 1 1 136337 0.745184 19 37 12614 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 195324 1.067707 22 40 12622 CT DAY10 U 1 1 1 195324 1.067707 23 3 CCV U 1 1 1 19688 0.425879 24 1 1 CCB U 1 1 1 19688 0.922760 25 40 12622 CT DAY10 U 1 1 1 168841 0.922760 26 41 12638 CT DAY10 U 1 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 1 168841 0.922763 31 46 12640 CT DAY10 U 1 1 1 76687 0.49249 31 46 12640 CT DAY10 U 1 1 1 76687 0.49249 31 46 12640 CT DAY10 U 1 1 1 76687 0.49249 31 46 12640 CT DAY10 U 1 1 1 76687 0.49249 31 46 12640 CT DAY10 U 1 1 1 982623 5.376822 34 7 12641 HA DAY10 U 1 1 1 982623 5.376822 35 12557 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 136070 6.216682 36 3 CCV U 1 1 1 982623 5.376822 37 1 CCB U 1 1 1 982623 5.376822 37 1 CCB U 1 1 1 1 104011 2.188566 42 54 12551 10/19 U 1 1 1 1 304011 2.188566 42 54 12551 10/19 U 1 1 1 304011 1.520886 43 55 12552 10/19 U 1 1 1 35264 0.191653                                                                                                                                                                                                                                                     | ak | Cup | Name           | Type Dil | Wt |        | Height  | Calc. (mg/L) |
| 2 0 Carryover CO 1 1 1 27244 0.147761 B 0 Baseline RB 1 1 0 -0.001356 B 0 Baseline RB 1 1 0 -0.001356 6 1 Cal 0 C 1 1 1 495 0.001355 7 2 Cal 1 C 1 1 1 495 0.001355 8 0 Baseline RB 1 1 0 -0.001356 8 0 Baseline RB 1 1 1 0 -0.001356 8 0 Blank U 1 1 1 1827302 10.000000 8 0 Blank U 1 1 1 -843 -0.005968 B 0 Baseline RB 1 1 0 -0.001356 10 2 ICV U 1 1 1 1846458 10.104847 11 1 ICB U 1 1 1 1846458 10.104847 12 3 LCS U 1 1 1 959538 5.250472 13 31 12611 HA DAY10 U 1 1 1 252528 0.286144 14 32 12611 CT DAY10 U 1 1 1 139074 0.759838 15 33 12612 HA DAY10 U 1 1 1 139074 0.759838 15 33 12612 HA DAY10 U 1 1 1 104208 0.569004 16 344 12612 CT DAY10 U 1 1 1 16208 0.569004 16 344 12612 CT DAY10 U 1 1 1 76558 0.417865 18 36 12613 CT DAY10 U 1 1 1 36337 0.745184 19 37 12614 HA DAY10 U 1 1 1 136337 0.745184 19 37 12614 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 195324 1.067707 22 40 12622 CT DAY10 U 1 1 1 195324 1.067707 23 3 CCV U 1 1 1 19688 0.425879 24 1 1 CCB U 1 1 1 19688 0.922760 25 40 12622 CT DAY10 U 1 1 1 168841 0.922760 26 41 12638 CT DAY10 U 1 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 1 168841 0.922763 31 46 12640 CT DAY10 U 1 1 1 76687 0.49249 31 46 12640 CT DAY10 U 1 1 1 76687 0.49249 31 46 12640 CT DAY10 U 1 1 1 76687 0.49249 31 46 12640 CT DAY10 U 1 1 1 76687 0.49249 31 46 12640 CT DAY10 U 1 1 1 982623 5.376822 34 7 12641 HA DAY10 U 1 1 1 982623 5.376822 35 12557 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 136070 6.216682 36 3 CCV U 1 1 1 982623 5.376822 37 1 CCB U 1 1 1 982623 5.376822 37 1 CCB U 1 1 1 1 104011 2.188566 42 54 12551 10/19 U 1 1 1 1 304011 2.188566 42 54 12551 10/19 U 1 1 1 304011 1.520886 43 55 12552 10/19 U 1 1 1 35264 0.191653                                                                                                                                                                                                                                                     | 1  | 2   | Svnc           | SYNC     | 1  | 1      | 1828142 | 10.004595    |
| 3 0 Carryover CO 1 1 1 682 0.002375 B 0 Baseline RB 1 1 0 0 -0.001356 6 1 Cal 0 C 1 1 1 495 0.001356 6 1 Cal 0 C 1 1 1 495 0.001356 7 2 Cal 1 C 1 1 1 827302 10.000000 8 0 Blank U 1 1 1 -843 -0.005968 B 0 Baseline RB 1 1 0 0 -0.001356 10 2 ICV U 1 1 1 1846458 10.104847 11 1 ICB U 1 1 1 1.44658 10.104847 11 1 ICB U 1 1 1 1.44658 10.104847 11 1 ICB U 1 1 1 52528 0.286144 13 31 12611 HA DAY10 U 1 1 1 52528 0.286144 14 32 12611 CT DAY10 U 1 1 1 139074 0.759838 15 33 12612 HA DAY10 U 1 1 1 104208 0.569004 16 34 12612 CT DAY10 U 1 1 1 82175 0.448812 17 35 12613 HA DAY10 U 1 1 1 36397 0.745184 19 37 12614 HA DAY10 U 1 1 1 78058 0.427858 18 36 12613 CT DAY10 U 1 1 1 78058 0.425879 20 38 12614 CT DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 182205 0.722242 23 3 CCV U 1 1 1 998992 5.466417 24 12638 CT DAY10 U 1 1 1 168841 0.922760 25 40 12639 HA DAY10 U 1 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 1 168841 0.922763 30 CV U 1 1 1 168841 0.922763 31 46 12640 CT DAY10 U 1 1 1 168841 0.922763 33 48 12641 CT DAY10 U 1 1 1 168841 0.922763 34 49 12639 CT DAY10 U 1 1 1 168847 0.49249 31 46 12640 CT DAY10 U 1 1 1 168847 0.49249 31 46 12640 CT DAY10 U 1 1 1 168847 0.49249 31 46 12640 CT DAY10 U 1 1 1 168847 0.49249 31 47 12644 HA DAY10 U 1 1 1 168847 0.49249 31 46 12640 CT DAY10 U 1 1 1 168847 0.49249 31 47 12644 HA DAY10 U 1 1 1 168847 0.49249 31 48 12641 CT DAY10 U 1 1 1 168847 0.49249 31 49 12546 10/19 U 1 1 1 1962623 5.376822 37 1 CCB U 1 1 1 300939 1.690103 34 49 12546 10/19 U 1 1 1 1 300939 1.690103 34 49 12546 10/19 U 1 1 1 1 300939 1.690103 34 49 12548 10/19 U 1 1 1 1 300939 1.690103 34 55 12554 10/19 U 1 1 1 300939 1.690103 35 50 12547 10/19 U 1 1 1 300939 1.690103 36 50 12547 10/19 U 1 1 1 300939 1.690103 37 1 CCB U 1 1 1 300939 1.690103 38 51 12548 10/19 U 1 1 1 300939 1.690103 39 51 12548 10/19 U 1 1 1 300939 1.690103 30 55 125547 10/19 U 1 1 1 300930 1.690103 31 55 12552 10/19 U 1 1 1 35264 1.919153 |    |     |                |          | 1  |        |         |              |
| B 0 Baseline RB 1 1 0 -0.001356 6 1 Cal 0 C 1 1 495 0.001355 7 2 Cal 1 C 1 1 1827302 10.000000 8 0 Blank U 1 1 1827302 10.000000 8 0 Blank U 1 1 1 -843 -0.005968 B 0 Baseline RB 1 1 0 -0.001356 10 2 ICV U 1 1 1846458 10.104087 11 1 ICB U 1 1 1.945 0.007889 12 3 LCS U 1 1 1 959538 5.250472 13 31 12611 HA DAY10 U 1 1 1 52528 0.286144 14 32 12611 CT DAY10 U 1 1 1 1339074 0.759838 15 33 12612 HA DAY10 U 1 1 1 104208 0.569004 16 34 12612 CT DAY10 U 1 1 1 136397 0.745184 17 35 12613 HA DAY10 U 1 1 1 136397 0.745184 18 36 12613 CT DAY10 U 1 1 1 136397 0.745184 19 37 12614 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 168841 0.922760 27 3 CCV U 1 1 1 168841 0.922760 28 41 12638 CT DAY10 U 1 1 1 168841 0.922760 29 44 12639 CT DAY10 U 1 1 1 168841 0.922760 30 45 12640 HA DAY10 U 1 1 1 168841 0.922760 31 46 12640 CT DAY10 U 1 1 1 55300 0.802235 32 44 12639 CT DAY10 U 1 1 1 168841 0.922760 33 48 12644 CT DAY10 U 1 1 1 168841 0.922760 34 49 12546 10/19 U 1 1 1 55300 0.301318 33 48 12641 CT DAY10 U 1 1 1 76847 0.419249 31 46 12640 CT DAY10 U 1 1 1 76847 0.419249 31 46 12640 CT DAY10 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 75658 4.129107 35 50 12547 10/19 U 1 1 1 75658 4.129107 36 CCV U 1 1 1 75658 4.129107 37 1 CCB U 1 1 1 75658 4.129107 38 12641 CT DAY10 U 1 1 1 75658 4.129107 39 51 12548 10/19 U 1 1 1 75658 4.129107 30 62 12549 10/19 U 1 1 1 75658 4.129107 31 1 CCB U 1 1 1 75658 4.129107 32 63 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                         |    |     |                |          |    |        |         |              |
| B 0 Baseline RB 1 1 0 -0.001356 6 1 Cal 0 C 1 1 1 495 0.001355 7 2 Cal 1 C 1 1 1 827302 10.000000 8 0 Blank U 1 1 1 -843 -0.005968 B 0 Blank U 1 1 1 -843 -0.005968 B 0 Baseline RB 1 1 0 0 -0.001356 10 2 ICV U 1 1 1846458 10.104847 11 1 ICB U 1 1 1 1944 -0.007889 12 3 LCS U 1 1 1 55558 5.20472 13 31 12611 HA DAY10 U 1 1 1 39074 0.759838 14 32 12611 CT DAY10 U 1 1 1 139074 0.759838 15 33 12612 HA DAY10 U 1 1 1 104208 0.569004 16 34 12612 CT DAY10 U 1 1 1 16208 0.569004 16 34 12612 CT DAY10 U 1 1 1 76598 0.417885 18 36 12613 CT DAY10 U 1 1 1 76598 0.417885 18 36 12613 CT DAY10 U 1 1 1 183977 0.745184 19 37 12614 HA DAY10 U 1 1 1 18397 0.745184 19 37 12614 HA DAY10 U 1 1 1 185397 0.745184 19 37 12614 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 199324 1.067707 21 39 12624 HA DAY10 U 1 1 1 199324 1.067707 21 39 12624 HA DAY10 U 1 1 1 199324 1.067707 21 39 12624 HA DAY10 U 1 1 1 16841 0.922760 22 40 12622 CT DAY10 U 1 1 1 168841 0.923765 23 3 CCV U 1 1 1 168841 0.923765 24 42 12638 HA DAY10 U 1 1 1 168841 0.923765 25 44 12638 HA DAY10 U 1 1 1 168841 0.923765 27 42 12638 HA DAY10 U 1 1 1 168841 0.923765 28 43 12639 HA DAY10 U 1 1 1 168841 0.923765 29 44 12639 CT DAY10 U 1 1 1 168841 0.923765 30 45 12640 HA DAY10 U 1 1 1 168841 0.923765 31 46 12640 CT DAY10 U 1 1 1 168841 0.923755 31 46 12640 CT DAY10 U 1 1 1 168840 0.802235 33 48 12641 CT DAY10 U 1 1 1 168840 0.802235 34 49 12546 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 758658 4.129107 37 1 CCB U 1 1 1 758658 4.129107 38 60 Baseline RB 1 1 0 0 0.001356 39 51 12547 10/19 U 1 1 1 756658 4.129107 40 52 12549 10/19 U 1 1 1 756658 4.129107 41 53 12550 10/19 U 1 1 1 758658 4.129107 41 53 12550 10/19 U 1 1 1 758658 4.129107 41 53 12550 10/19 U 1 1 1 758030 1.590385 41 55 12552 10/19 U 1 1 1 378030 1.590385                                                                                                                                                                                        |    |     |                |          |    | 1      |         |              |
| 6 1 Cal 0 C 1 1 1 495 0.001355 7 2 Cal 1 C 1 1 1 1827302 10.000000 8 0 Blank U 1 1 1 -843 -0.005968 B 0 Baseline RB 1 1 0 -0.001356 10 2 ICV U 1 1 1 1846458 10.104847 11 1 ICB U 1 1 1 1846458 10.104847 11 1 ICB U 1 1 1 5959538 5.250472 13 31 12611 HA DAY10 U 1 1 1 52528 0.286144 14 32 12611 CT DAY10 U 1 1 1 139074 0.759838 15 33 12612 HA DAY10 U 1 1 1 104208 0.569004 16 34 12612 CT DAY10 U 1 1 1 104208 0.569004 16 34 12612 CT DAY10 U 1 1 1 76598 0.417885 18 36 12613 CT DAY10 U 1 1 1 76598 0.425879 19 37 12614 HA DAY10 U 1 1 1 76598 0.425879 20 38 12614 CT DAY10 U 1 1 1 78058 0.425879 20 38 12612 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 195324 0.027801 22 40 12622 CT DAY10 U 1 1 1 195324 0.027801 23 3 CCV U 1 1 1 198892 5.466617 24 1 12638 HA DAY10 U 1 1 1 168841 0.922760 26 41 12638 CT DAY10 U 1 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 1 168841 0.922760 28 43 12639 CT DAY10 U 1 1 1 168841 0.922760 29 44 12639 CT DAY10 U 1 1 1 168841 0.923775 28 43 12639 HA DAY10 U 1 1 1 168841 0.922760 31 46 12640 CT DAY10 U 1 1 1 168841 0.922760 32 44 12639 CT DAY10 U 1 1 1 168841 0.922760 33 48 12641 CT DAY10 U 1 1 1 168841 0.922760 34 49 12546 10/19 U 1 1 1 136070 6.216682 36 3 CCV U 1 1 1 136070 6.216682 37 1 CCB U 1 1 1 136070 6.216682 37 1 CCB U 1 1 1 136070 6.216682 38 12547 10/19 U 1 1 1 136070 6.216682 39 51 12548 10/19 U 1 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 1 754658 4.129107 40 53 12552 10/19 U 1 1 1 35264 0.191653                                                                                                                                                                                                                                                                                                                                                                 |    |     |                |          | _  | 1      |         |              |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |     |                |          |    |        |         |              |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |     |                |          |    |        |         |              |
| B 0 Baseline RB 1 1 0 -0.001356 10 2 ICV U 1 1 1846458 10.104845 11 1 ICB U 1 1 1846458 10.104845 12 3 LCS U 1 1 1 959538 5.250472 13 31 12611 HA DAY10 U 1 1 1 52528 0.286144 14 32 12611 CT DAY10 U 1 1 1 139074 0.759838 15 33 12612 HA DAY10 U 1 1 1 104208 0.569004 16 34 12612 CT DAY10 U 1 1 1 76598 0.448412 17 35 12613 HA DAY10 U 1 1 1 76598 0.441885 18 36 12613 CT DAY10 U 1 1 1 36397 0.745184 19 37 12614 HA DAY10 U 1 1 1 136397 0.745184 19 37 12614 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 998992 5.466417 22 40 12622 CT DAY10 U 1 1 1 998992 5.466417 23 3 CCV U 1 1 198324 0.006847 26 41 12638 HA DAY10 U 1 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 168841 0.922760 27 42 12639 HA DAY10 U 1 1 168841 0.922760 30 45 12640 HA DAY10 U 1 1 176887 0.802235 29 44 12639 CT DAY10 U 1 1 176887 0.802235 29 44 12639 CT DAY10 U 1 1 176887 0.802235 29 44 12639 CT DAY10 U 1 1 176887 0.802235 29 44 12639 CT DAY10 U 1 1 176887 0.419249 31 46 12640 CT DAY10 U 1 1 176847 0.419249 31 46 12640 CT DAY10 U 1 1 1 255130 0.3039 1.690103 32 47 12641 HA DAY10 U 1 1 1 25613 1.726184 33 48 12641 CT DAY10 U 1 1 1 256130 1.400515 35 50 12547 10/19 U 1 1 1 256130 1.400515 36 3 CCV U 1 1 1 256130 1.400515 37 1 CCB U 1 1 754658 4.12910 39 51 12548 10/19 U 1 1 1 300925 1.667588 41 53 12550 10/19 U 1 1 1 300925 1.667588 41 53 12550 10/19 U 1 1 1 300925 1.667588 41 53 55 12552 10/19 U 1 1 1 300925 1.667588 42 54 12551 10/19 U 1 1 1 300925 1.667588                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |                |          | 1  |        |         |              |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |                |          | 7  |        |         |              |
| 11 1 ICB U 1 1 1 -1194 -0.007889 12 3 LCS U 1 1 1 959538 5.250472 13 31 12611 HA DAY10 U 1 1 1 52528 0.286144 14 32 12611 CT DAY10 U 1 1 1 139074 0.759838 15 33 12612 HA DAY10 U 1 1 1 104208 0.569004 16 34 12612 CT DAY10 U 1 1 1 76598 0.417885 18 36 12613 HA DAY10 U 1 1 76598 0.417885 18 36 12613 CT DAY10 U 1 1 1 76598 0.417885 18 36 12613 CT DAY10 U 1 1 1 78058 0.425879 20 38 12614 CT DAY10 U 1 1 1 95324 1.067707 21 39 12622 HA DAY10 U 1 1 1 998992 5.466417 22 40 12622 CT DAY10 U 1 1 1 998992 5.466417 23 3 CCV U 1 1 1 998992 5.466417 24 12638 HA DAY10 U 1 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 172681 0.943775 28 43 12639 HA DAY10 U 1 1 176847 0.402235 29 44 12639 CT DAY10 U 1 1 176847 0.419249 31 46 12640 CT DAY10 U 1 1 176847 0.419249 31 46 12640 CT DAY10 U 1 1 1 35300 0.301318 32 47 12641 HA DAY10 U 1 1 1 3509039 1.690103 34 49 12546 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 304925 1.6667588 41 53 12550 10/19 U 1 1 1 784658 4.129107 40 52 12549 10/19 U 1 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 1 30564 0.191658                                                                                                                                                                                                                                                                                                                                                           |    |     |                |          |    |        |         |              |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |                |          |    |        |         |              |
| 13 31 12611 HA DAY10 U 1 1 1 39528 0.286144 14 32 12611 CT DAY10 U 1 1 139074 0.759838 15 33 12612 HA DAY10 U 1 1 100208 0.569004 16 34 12612 CT DAY10 U 1 1 82175 0.448412 17 35 12613 HA DAY10 U 1 1 76598 0.417885 18 36 12613 CT DAY10 U 1 1 78058 0.425879 19 37 12614 HA DAY10 U 1 1 78058 0.425879 20 38 12614 CT DAY10 U 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 195324 1.067707 22 40 12622 CT DAY10 U 1 1 1998992 5.466417 1 CCB U 1 1 1998992 5.466417 1 CCB U 1 1 1998992 5.466417 27 42 12638 HA DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 168841 0.922760 28 43 12639 HA DAY10 U 1 1 168841 0.922760 39 44 12639 CT DAY10 U 1 1 168841 0.922760 30 45 12640 HA DAY10 U 1 1 168847 0.419249 31 46 12640 CT DAY10 U 1 1 168847 0.419249 31 46 12640 CT DAY10 U 1 1 155300 0.301318 32 47 12641 HA DAY10 U 1 1 155300 0.301318 33 48 12641 CT DAY10 U 1 1 198623 5.376822 34 49 12546 10/19 U 1 1 198623 5.376822 35 1 CCB U 1 1 75458 4.129107 36 3 CCV U 1 1 982623 5.376822 37 1 CCB U 1 1 75458 4.129107 40 52 12549 10/19 U 1 1 75458 4.129107 40 52 12549 10/19 U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 1 758658 4.129107 40 52 12549 10/19 U 1 1 1 758050 1.520385 43 55 12552 10/19 U 1 1 1 300030 1.520385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |     |                |          |    |        |         |              |
| 14 32 12611 CT DAY10 U 1 1 139074 0.759838 15 33 12612 HA DAY10 U 1 1 104208 0.569004 16 34 12612 CT DAY10 U 1 1 104208 0.569004 17 35 12613 HA DAY10 U 1 1 76598 0.417885 18 36 12613 CT DAY10 U 1 1 76598 0.417885 18 36 12613 CT DAY10 U 1 1 136397 0.745184 19 37 12614 HA DAY10 U 1 1 178058 0.422879 20 38 12614 CT DAY10 U 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 160178 0.328016 22 40 12622 CT DAY10 U 1 1 132205 0.722242 23 3 CCV U 1 1 1998992 5.466417 24 1 CCB U 1 1 1-1003 -0.006847 26 41 12638 HA DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 168841 0.922760 30 45 12640 HA DAY10 U 1 1 168895 0.353831 30 45 12640 HA DAY10 U 1 1 168895 0.353831 30 45 12640 CT DAY10 U 1 1 168895 0.353831 30 45 12640 CT DAY10 U 1 1 168895 0.353831 31 46 12640 CT DAY10 U 1 1 155300 0.301318 32 47 12641 HA DAY10 U 1 1 15630 0.301318 33 48 12641 CT DAY10 U 1 1 1982623 5.376822 36 3 CCV U 1 1 1982623 5.376822 37 1 CCB U 1 1 754658 4.129107 35 50 12547 10/19 U 1 1 1304925 1.667588 36 3 CCV U 1 1 1982623 5.376822 37 1 CCB RB I 1 0 -0.001796 39 51 12548 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 1304925 1.667588 43 55 12552 10/19 U 1 1 128564 0.191653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |     | ,              |          | _  |        |         |              |
| 15 33 12612 HA DAY10 U 1 1 104208 0.569004 16 34 12612 CT DAY10 U 1 1 1 82175 0.448412 17 35 12613 HA DAY10 U 1 1 1 76598 0.417885 18 36 12613 CT DAY10 U 1 1 1 36397 0.745184 19 37 12614 HA DAY10 U 1 1 1 78058 0.425879 20 38 12614 CT DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 60178 0.328016 22 40 12622 CT DAY10 U 1 1 1 998992 5.466417 1 1 CCB U 1 1 1 998992 5.466417 1 1 1 12638 HA DAY10 U 1 1 1 1 1003 -0.006847 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |     |                |          |    |        |         |              |
| 16 34 12612 CT DAY10 U 1 1 76598 0.448412 17 35 12613 HA DAY10 U 1 1 76598 0.417885 18 36 12613 CT DAY10 U 1 1 136397 0.745184 19 37 12614 HA DAY10 U 1 1 178058 0.425879 20 38 12614 CT DAY10 U 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 160178 0.328016 22 40 12622 CT DAY10 U 1 1 132205 0.722242 23 3 CCV U 1 1 2 998992 5.466417  B 0 Baseline RB 1 1 0 -0.001356 26 41 12638 HA DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 168841 0.922760 28 43 12639 HA DAY10 U 1 1 168841 0.922760 29 44 12639 CT DAY10 U 1 1 168841 0.943775 28 43 12639 HA DAY10 U 1 1 168841 0.943775 28 43 12639 HA DAY10 U 1 1 176881 0.943775 28 43 12639 HA DAY10 U 1 1 176885 0.353831 30 45 12640 HA DAY10 U 1 1 176847 0.419249 31 46 12640 CT DAY10 U 1 1 76847 0.419249 31 46 12640 CT DAY10 U 1 1 355300 0.301318 32 47 12641 HA DAY10 U 1 1 355631 1.726184 33 48 12641 CT DAY10 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 256130 1.400515 35 50 12547 10/19 U 1 1 1266130 1.400515 36 3 CCV U 1 1 1982623 5.376822 37 1 CCB U 1 1 754658 4.129107 40 52 12548 10/19 U 1 1 1304925 1.667588 41 53 12550 10/19 U 1 1 1304925 1.667588 41 53 12550 10/19 U 1 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 1 278030 1.520385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |     |                |          |    |        |         |              |
| 17 35 12613 HA DAY10 U 1 1 76598 0.417885 18 36 12613 CT DAY10 U 1 1 136397 0.745184 19 37 12614 HA DAY10 U 1 1 178058 0.425879 20 38 12614 CT DAY10 U 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 160178 0.328016 22 40 12622 CT DAY10 U 1 1 1998992 5.466417 23 3 CCV U 1 1 1998992 5.466417 24 1 CCB U 1 1 1003 -0.006847 26 41 12638 HA DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 176881 0.943775 28 43 12639 HA DAY10 U 1 1 168820 0.802235 29 44 12639 CT DAY10 U 1 164820 0.802235 30 45 12640 HA DAY10 U 1 164895 0.353831 30 45 12640 HA DAY10 U 1 176847 0.419249 31 46 12640 CT DAY10 U 1 1 315531 1.726184 33 48 12641 CT DAY10 U 1 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 256130 1.400515 35 50 12547 10/19 U 1 1 256130 1.400515 36 3 CCV U 1 1 982623 5.376822 37 1 CCB U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 278030 1.520385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |                |          |    |        |         |              |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |                |          |    |        |         |              |
| 19 37 12614 HA DAY10 U 1 1 78058 0.425879 20 38 12614 CT DAY10 U 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 60178 0.328016 22 40 12622 CT DAY10 U 1 1 132205 0.722242 23 3 CCV U 1 1 998992 5.466417 1 CCB U 1 1 -1003 -0.006847 0 Baseline RB 1 1 0 0 -0.001356 26 41 12638 HA DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 172681 0.943775 28 43 12639 HA DAY10 U 1 1 172681 0.943775 28 43 12639 HA DAY10 U 1 1 168841 0.922760 29 44 12639 CT DAY10 U 1 1 168895 0.353831 30 45 12640 HA DAY10 U 1 1 55300 0.301318 30 45 12640 HA DAY10 U 1 1 315631 1.726184 31 46 12640 CT DAY10 U 1 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 136070 6.216682 36 3 CCV U 1 1 256130 1.400515 35 50 12547 10/19 U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 278030 1.520385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |                |          |    |        |         |              |
| 20 38 12614 CT DAY10 U 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 160178 0.328016 22 40 12622 CT DAY10 U 1 132205 0.722242 3 3 CCV U 1 1 998992 5.466417 1 CCB U 1 1 -1003 -0.006847 0 Baseline RB 1 1 0 0 -0.001356 26 41 12638 HA DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 176681 0.943775 28 43 12639 HA DAY10 U 1 1 166820 0.802235 29 44 12639 CT DAY10 U 1 1 166820 0.802235 29 44 12639 CT DAY10 U 1 1 64895 0.353831 30 45 12640 HA DAY10 U 1 1 76847 0.419249 31 46 12640 CT DAY10 U 1 1 55300 0.301318 32 47 12641 HA DAY10 U 1 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 256130 1.400515 35 50 12547 10/19 U 1 1 136070 6.216682 36 3 CCV U 1 1 982623 5.376822 37 1 CCB U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 43 55 12552 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 278030 1.520385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |     |                |          |    | 1      |         |              |
| 21 39 12622 HA DAY10 U 1 1 1 60178 0.328016 22 40 12622 CT DAY10 U 1 1 132205 0.722242 23 3 CCV U 1 1 1 998992 5.466417 1 CCB U 1 1 1 -1003 -0.006847 0 Baseline RB 1 1 0 -0.001356 26 41 12638 HA DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 172681 0.943775 28 43 12639 HA DAY10 U 1 1 168820 0.802235 29 44 12639 CT DAY10 U 1 1 168895 0.353831 30 45 12640 HA DAY10 U 1 1 76847 0.419249 31 46 12640 CT DAY10 U 1 1 76847 0.419249 31 46 12640 CT DAY10 U 1 1 55300 0.301318 32 47 12641 HA DAY10 U 1 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 186070 6.216682 36 3 CCV U 1 1 982623 5.376822 37 1 CCB U 1 1 982623 5.376822 37 1 CCB U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 278030 1.520385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |                | Ū        |    | 1      |         | 0.425879     |
| 22 40 12622 CT DAY10 U 1 1 132205 0.722242 23 3 CCV U 1 1 1 998992 5.466417 1 CCB U 1 1 1 -1003 -0.006847 0 Baseline RB 1 1 0 -0.001356 26 41 12638 HA DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 172681 0.943775 28 43 12639 HA DAY10 U 1 1 146820 0.802235 29 44 12639 CT DAY10 U 1 1 64895 0.353831 30 45 12640 HA DAY10 U 1 1 76847 0.419249 31 46 12640 CT DAY10 U 1 1 76847 0.419249 31 46 12640 CT DAY10 U 1 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 256130 1.690103 34 49 12546 10/19 U 1 1 256130 1.400515 35 50 12547 10/19 U 1 1 1266130 1.400515 36 3 CCV U 1 1 1982623 5.376822 37 1 CCB U 1 1 982623 5.376822 37 1 CCB U 1 1 754658 4.129107 40 52 12548 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 278030 1.520385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |     |                | Ŭ        | 1  | 1      | 195324  | 1.067707     |
| 3 CCV U 1 1 1 998992 5.466417 1 CCB U 1 1 1 -1003 -0.006847 0 Baseline RB 1 1 0 0 -0.001356 26 41 12638 HA DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 172681 0.943775 28 43 12639 HA DAY10 U 1 146820 0.802235 29 44 12639 CT DAY10 U 1 164895 0.353831 30 45 12640 HA DAY10 U 1 176847 0.419249 31 46 12640 CT DAY10 U 1 1 55300 0.301318 32 47 12641 HA DAY10 U 1 1 155300 0.301318 32 47 12641 HA DAY10 U 1 1 155300 0.301318 34 12641 CT DAY10 U 1 1 126631 1.726184 33 48 12641 CT DAY10 U 1 1 126631 1.726184 34 49 12546 10/19 U 1 1 1256130 1.400515 50 12547 10/19 U 1 1 1266130 1.400515 36 3 CCV U 1 1 198623 5.376822 37 1 CCB U 1 1 982623 5.376822 37 1 CCB U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 42 54 12551 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 278030 1.520385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 39  | 12622 HA DAY10 | Ŭ        | 1  | 1      | 60178   | 0.328016     |
| 1 CCB U 1 1 -1003 -0.006847  B 0 Baseline RB 1 1 0 -0.001356  26 41 12638 HA DAY10 U 1 1 168841 0.922760  27 42 12638 CT DAY10 U 1 1 172681 0.943775  28 43 12639 HA DAY10 U 1 1 146820 0.802235  29 44 12639 CT DAY10 U 1 1 64895 0.353831  30 45 12640 HA DAY10 U 1 1 76847 0.419249  31 46 12640 CT DAY10 U 1 1 55300 0.301318  32 47 12641 HA DAY10 U 1 1 315631 1.726184  33 48 12641 CT DAY10 U 1 1 309039 1.690103  34 49 12546 10/19 U 1 1 256130 1.400515  55 0 12547 10/19 U 1 1 136070 6.216682  36 3 CCV U 1 1 1 982623 5.376822  37 1 CCB U 1 1 982623 5.376822  37 1 CCB RB U 1 754658 4.129107  B 0 Baseline RB 1 0 -0.001796  39 51 12548 10/19 U 1 1 304925 1.667588  40 52 12549 10/19 U 1 1 304925 1.667588  41 53 12550 10/19 U 1 1 278030 1.520385  43 55 12552 10/19 U 1 1 278030 1.520385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22 | 40  | 12622 CT DAY10 | Ū        | 1  | 1      | 132205  | 0.722242     |
| 1 CCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23 | 3   | CCV            | Ū        | 1  | 1      | 998992  | 5.466417     |
| B 0 Baseline RB 1 1 1 0 -0.001356 26 41 12638 HA DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 172681 0.943775 28 43 12639 HA DAY10 U 1 1 146820 0.802235 29 44 12639 CT DAY10 U 1 1 64895 0.353831 30 45 12640 HA DAY10 U 1 1 76847 0.419249 31 46 12640 CT DAY10 U 1 1 55300 0.301318 32 47 12641 HA DAY10 U 1 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 256130 1.400515 35 50 12547 10/19 U 1 1 1266130 1.400515 36 3 CCV U 1 1 1982623 5.376822 37 1 CCB U 1 1 982623 5.376822 37 1 CCB U 1 754658 4.129107 40 52 12548 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 42 54 12551 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 35264 0.191653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | 1   | CCB            | Ū        | 1  | 1      | -1003   |              |
| 26 41 12638 HA DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 172681 0.943775 28 43 12639 HA DAY10 U 1 1 146820 0.802235 29 44 12639 CT DAY10 U 1 1 64895 0.353831 30 45 12640 HA DAY10 U 1 1 76847 0.419249 31 46 12640 CT DAY10 U 1 1 55300 0.301318 32 47 12641 HA DAY10 U 1 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 256130 1.400515 35 50 12547 10/19 U 1 1 136070 6.216682 37 1 CCB U 1 1 982623 5.376822 37 1 CCB U 1 1 754658 4.129107 40 52 12548 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 42 54 12551 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 35264 0.191653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | В  | 0   | Baseline       | RB       | 1  |        |         |              |
| 27 42 12638 CT DAY10 U 1 1 172681 0.943775 28 43 12639 HA DAY10 U 1 1 146820 0.802235 29 44 12639 CT DAY10 U 1 1 64895 0.353831 30 45 12640 HA DAY10 U 1 1 76847 0.419249 31 46 12640 CT DAY10 U 1 1 55300 0.301318 32 47 12641 HA DAY10 U 1 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 256130 1.400515 35 50 12547 10/19 U 1 1 136070 6.216682 36 3 CCV U 1 1 1 982623 5.376822 37 1 CCB U 1 1 -81 -0.001796 B 0 Baseline RB 1 1 -0.001796 39 51 12548 10/19 U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 42 54 12551 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 35264 0.191653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26 | 41  | 12638 HA DAY10 |          |    |        |         |              |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |                |          |    |        |         |              |
| 29 44 12639 CT DAY10 U 1 1 64895 0.353831 30 45 12640 HA DAY10 U 1 1 76847 0.419249 31 46 12640 CT DAY10 U 1 1 55300 0.301318 32 47 12641 HA DAY10 U 1 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 256130 1.400515 35 50 12547 10/19 U 1 1 136070 6.216682 36 3 CCV U 1 1 982623 5.376822 37 1 CCB U 1 1 982623 5.376822 37 1 CCB U 1 1 754658 4.129107 B 0 Baseline RB 1 1 0 -0.001796 B 0 Baseline RB 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 42 54 12551 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 35264 0.191653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |     |                |          | 7  |        |         |              |
| 30  45  12640 HA DAY10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |     |                |          | 7  |        |         |              |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |                |          |    |        |         |              |
| 32 47 12641 HA DAY10 U 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 256130 1.400515 35 50 12547 10/19 U 1 1 136070 6.216682 36 3 CCV U 1 1 982623 5.376822 37 1 CCB U 1 1 -81 -0.001796 B 0 Baseline RB 1 1 0 -0.001356 39 51 12548 10/19 U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 400111 2.188566 42 54 12551 10/19 U 1 1 35264 0.191653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |     |                |          |    |        |         |              |
| 33 48 12641 CT DAY10 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 256130 1.400515 35 50 12547 10/19 U 1 1 136070 6.216682 36 3 CCV U 1 1 982623 5.376822 37 1 CCB U 1 1 -81 -0.001796 B 0 Baseline RB 1 1 0 -0.001356 39 51 12548 10/19 U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 42 54 12551 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 35264 0.191653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |     |                |          |    |        |         |              |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |                |          |    |        |         |              |
| 35 50 12547 10/19 U 1 1 1136070 6.216682 36 3 CCV U 1 1 982623 5.376822 37 1 CCB U 1 1 -81 -0.001796 B 0 Baseline RB 1 1 0 -0.001356 39 51 12548 10/19 U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 400111 2.188566 42 54 12551 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 35264 0.191653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |     |                |          |    |        |         |              |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     | •              |          |    |        |         |              |
| 37 1 CCB U 1 1 -81 -0.001796 B 0 Baseline RB 1 1 0 -0.001356 39 51 12548 10/19 U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 400111 2.188566 42 54 12551 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 35264 0.191653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |     |                |          | 1  |        |         |              |
| 41       53       12550       10/19       U       1       1       400111       2.188566         42       54       12551       10/19       U       1       1       278030       1.520385         43       55       12552       10/19       U       1       1       35264       0.191653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |                |          |    |        |         |              |
| 41       53       12550       10/19       U       1       1       400111       2.188566         42       54       12551       10/19       U       1       1       278030       1.520385         43       55       12552       10/19       U       1       1       35264       0.191653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |                |          |    |        |         |              |
| 41       53       12550       10/19       U       1       1       400111       2.188566         42       54       12551       10/19       U       1       1       278030       1.520385         43       55       12552       10/19       U       1       1       35264       0.191653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |                |          |    | -<br>- |         |              |
| 41       53       12550       10/19       U       1       1       400111       2.188566         42       54       12551       10/19       U       1       1       278030       1.520385         43       55       12552       10/19       U       1       1       35264       0.191653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |                |          | 1  | 1      |         |              |
| 42       54       12551       10/19       U       1       1       278030       1.520385         43       55       12552       10/19       U       1       1       35264       0.191653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |                |          |    | 1      |         |              |
| 43 55 12552 10/19 U 1 1 35264 0.191653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |                |          |    |        |         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |     |                |          |    |        |         |              |
| 44 56 12589 10/19 U 1 1 119406 0.652191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |     |                |          |    |        |         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |     |                |          |    | 1      |         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |     |                |          |    |        |         | 0.835053     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |     |                |          |    |        |         | 0.527453     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |     |                |          |    |        | 289912  | 1.585416     |
| 48 60 12593 10/19 U 1 1 555099 3.036863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48 | 60  | 12593 10/19    | U        | 1  | 1      | 555099  | 3.036863     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 3   | CCV            | Ū        |    |        | 918593  | 5.026368     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 1   |                |          |    |        |         | -0.000630    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3  |     |                | RB       |    |        |         | -0.001356    |

| Peak                                                        | ೦ಭರ                                        | Flags      |
|-------------------------------------------------------------|--------------------------------------------|------------|
|                                                             | 9, 190000012000000000000000000000000000000 |            |
| Ξ                                                           | ٥                                          |            |
| 3                                                           | -                                          | =-         |
| 3                                                           | ÷                                          | 31<br>81   |
| É                                                           |                                            |            |
| <u>.</u>                                                    | 2                                          | LO         |
| 3                                                           | ξ                                          | LO<br>BL   |
|                                                             | -                                          | ±c         |
| 12                                                          | 3                                          |            |
| 13                                                          | 31                                         |            |
| 15                                                          | 3 3                                        |            |
| 16                                                          | 34                                         |            |
|                                                             | 3 €                                        |            |
| - 3                                                         | 37<br>38                                   |            |
| -                                                           | 3.9                                        |            |
|                                                             | 40                                         |            |
| 2:                                                          | :                                          | 10<br>31   |
| 3                                                           |                                            | 31         |
| 27                                                          | 42                                         |            |
|                                                             | 43                                         |            |
| 30                                                          | 45                                         |            |
| 31                                                          | 45                                         |            |
| 33                                                          | 4 :<br>4 8                                 |            |
| 3 ÷                                                         | 49                                         |            |
| 36                                                          | = L<br>3                                   |            |
| 3 -                                                         | -                                          | 1.C<br>31  |
| 39                                                          | 51<br>51                                   | 2-         |
| 4:                                                          | 52                                         |            |
| 42                                                          | 53                                         |            |
| 43                                                          | 5.5                                        |            |
| ति ति ति ति ति ति ते ति ति ति ति ति ति ति ति ति ति ति ति ति | 56<br>57                                   |            |
| 4.5                                                         | 58                                         |            |
| 4 T                                                         | 59                                         |            |
| 43                                                          | 3                                          |            |
| 50                                                          | -                                          | 10<br>31   |
| =                                                           | £                                          | <b>5</b> _ |

|          |           |          |                         |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SOLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ance                                   | الكال)                                | (E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                    |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|-----------|----------|-------------------------|--------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .1       |           |          | <u>.</u>                | _                              | _                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                    |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | 0         | 0.2      | 0.1                     | 0.0                            | 0.1                                        | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5                                    | 0.6                                   | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>ن</u> ۔           | 7.0                                                                                                                                                                                                                                             | =======================================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>د</u><br>ت                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.4                                                                      | 1.5                                   | 1.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | 20.       | 20:      | 00                      | Õ                              | 00                                         | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                                     | Ö                                     | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Č                    | 00                                                                                                                                                                                                                                              | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                                                                       | Ů.                                    | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |           |          |                         | Ť-                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | <b>→</b> 5,                           | nc: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                    |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          | <del>-</del>            | -                              | o<br>Sarry                                 | over:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ก็กำ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 2 8 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         | <b>-</b> → }                   | yern∧<br>Σ                                 | over.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 501                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           | <b>-</b> |                         | 1                              | بند                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . <b></b>                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , -                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       | : '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |           |          |                         |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Œ                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + <sup>7</sup> c =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ο .                                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | - <b></b> |          |                         |                                | II<br>Blank                                | - <del></del> 0- 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b></b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - <b></b>            |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54                                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |           |          |                         |                                | <u> </u>                                   | 11.16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       | 1/- 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                    |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>-</b> | - <b></b> |          |                         |                                | ±-æ·~                                      | .e00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . <b></b> .          |                                                                                                                                                                                                                                                 | - <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . <b></b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . <b></b>                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 317.4                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         | 1 . 4                          | w                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         | ٠ ﻣــا                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         | 7                              | بحمير<br>2034ع                             | 4 DAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 128 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8308                                   | <br>I                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         | !                              | 12031<br>2001                              | . <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · ~ 0. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7056                                   | ·,<br><b>,</b>                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         | $\vdash$                       | <b>303</b>                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         | -                              |                                            | _100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7Q D/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 10.10                                |                                       | 7 DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <br>∨n. ⊿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 481                  | <br>06                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         | _                              | =                                          | ===                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1054                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         | $\vdash$                       | <u> </u>                                   | <b>→</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )<br>0540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                    |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          | ,                       |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | $\rightarrow$ $\stackrel{\sim}{\sim}$ | 0V-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                   |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       | . :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |           | •        |                         | 4.5                            | ii<br>CB∙                                  | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | Ŭ                                     | <b>-</b> v ¬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          | '-                      |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52                                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · <b></b> - ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                | ===                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 6618                                  | <b>o</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         | 5                              | ひっちょ                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | <u></u>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - <b></b> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - <b></b> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 1€                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       | ′0: 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                    |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          | 17675                   |                                | <del></del>                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | →ე<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         | -                              | ^0<br>126₹                                 | 58 D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y0: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 07.212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27 -                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>-</b>             |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <b></b> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | ı         | C/10/9   | 4                       |                                | <del>&gt; _</del>                          | 2671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0: 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70950                                  | 2                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                | + N<br>195                                 | 89 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AY0:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5618                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          | · ·                     | -                              | -• <u>,</u>                                | 590 t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DAYO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | : 70.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 05543                                  | 3                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b></b> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |           |          |                         | $\geq$                         | <u>+</u> 105                               | 91 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AYO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9983                                   | ü                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | •                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |           |          |                         | <u></u>                        | <u> </u>                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | ~č                                    | CV: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .8844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ÷6                   |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | <b></b> - |          |                         |                                | jee.                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del>99.</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - <b></b> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | -'                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                | ,                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54                                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | <b>034</b>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         | -                              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AYO:                                   | -2.40                                 | 358-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         | $\geq$                         | <b>•</b> 106                               | <u>0</u> 9 D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          | <b>-</b>                | -                              | <u> 1061</u>                               | 5 DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y0:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 849.                                   | <u>*</u><br>7.7                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <b></b> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                            | 1261                                  | 1 DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y0: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 326                  | 78                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                | <b>→</b> 7                                 | ₹612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 'O: 'O.'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7125                                   | 16                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         | _                              | <b>→</b>                                   | 1281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | YO: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .8555                                  | 26                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | <del>-</del>                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                | <del></del>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.22                                   | 757                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         | <u> → •</u>                    | 1262                                       | 22 DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | YO: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 497                                    | 48                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | <b>→</b> c                            | CY: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .8544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                    |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                | <u>0</u>                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                | <u>ф</u><br>GCB:                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                | <u>∃a</u> sel                              | in <u>@</u> : -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - •                                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                | Basel                                      | in <u>@</u> : -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.003<br>38 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3326<br>AY0:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.20                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | <del></del>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                | Basel                                      | in <u>e</u> : -<br>12639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000<br>38 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3326<br>AY0:<br>70: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.20<br>7872                           | 81                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                                                                                                                                                                                                                                 | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                | Basel                                      | in <u>e</u> : -<br>12639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000<br>38 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3326:<br>AYO:<br>70: 0.<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.20<br>7872<br>3404                   | 81<br>2                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>.</b>             |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         |                                | Basel                                      | in <u>e</u> : -<br>12639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000<br>38 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3326:<br>AYO:<br>70: 0.<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.20<br>7872                           | 81<br>2<br>Y0:9                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>.</b>             |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           |          |                         | INIMINIT                       | Basel                                      | ing: -<br>12639<br>2640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000<br>38 D<br>DAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3326<br>AY0:<br>70: 0<br>0, 0.6<br>1264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.20<br>7872<br>3404                   | 81<br>2<br>Y0:9                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78<br>.[859]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 72 -                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300                                                                      | )-6-4                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |           | A.<br>O  | Hyslells. Acure 1 Day O | Hyslells zercce<br>Acure Tests | Hyslulla zarcia Acure Teirs Day O 10/10/99 | Carry  Gerry  Garry  Garry  Basel  Basel  11-B  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203  1203 | Carryover:  Baseline:  Baseline:  Cal 0: 0.00  Baseline:  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00  Cal 0: 0.00 | Garryover: 0.01  Garryover: 0.00  Garryover: 0.00  Garryover: -0.00  Garryover: -0.00  Garryover: -0.00  Garryover: -0.00  Garryover: -0.00  Garryover: -0.00  Garryover: -0.00  Garryover: -0.00  Garryover: -0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.00  Garryover: 0.0 | ###################################### | ### Part                              | Carryover: 0.0142808 Carryover: 0.0142808 Carryover: -0.00270501 Baseline: -0.00332654 Cal 0: 0.00332654 Cal 0: 0.00332654 Cal 0: 0.00332654 Cal 0: 0.00332654 Cal 0: 0.00332654 Cal 0: 0.00332654 Cal 0: 0.00332654 Cal 0: 0.00332654 Cal 0: 0.00332654 Cal 0: 0.00493365 Cal 0: 0.00493365 Cal 0: 0.00493365 Cal 0: 0.00493365 Cal 0: 0.00332654 Cal 0: 0.00332654 Cal 0: 0.00332654 Cal 0: 0.00332654 Cal 0: 0.00332654 Cal 0: 0.00332654 Cal 0: 0.00332654 Cal 0: 0.00332654 Cal 0: 0.0032654 Cal 0: 0.0032654 Cal 0: 0.0032654 Cal 0: 0.0032654 Cal 0: 0.0032654 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 Cal 0: 0.0045034 C | Sync: 4  Carryover: 0.0142808 Carryover: 0.0032654 Easeline: -0.00332654 Easeline: -0.00332654 Easeline: -0.00332654  Cal 0: 0.00332654  Easeline: -0.00332654  Cal 0: 0.00332654  Cal 0: 0.00332654  Cal 0: 0.00332654  Cal 0: 0.00332654  Cal 0: 0.00332654  Cal 0: 0.00332654  Cal 0: 0.00332654  Cal 0: 0.00332654  Cal 0: 0.00332654  Cal 0: 0.00332654  Cal 0: 0.00332654  Cal 0: 0.00132654  Cal 0: 0.00132654  Cal 0: 0.00132654  Cal 0: 0.00132654  Cal 0: 0.00132654  Cal 0: 0.00132654  Cal 0: 0.00132654  Cal 0: 0.00132654  Cal 0: 0.00132654  Cal 0: 0.00132654  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.00166231  Cal 0: 0.0032654  Cal 0: 0.00166231  Cal 0: 0.0032654  Cal 0: 0.00166231  Cal 0: 0.0032654  Cal 0: 0.00166231  Cal 0: 0.0032654  Cal 0: 0.00166231  Cal 0: 0.0032654  Cal 0: 0.00166231  Cal 0: 0.0032654  Cal 0: 0.00166231  Cal 0: 0.0032654  Cal 0: 0.00166231  Cal 0: 0.00172764  Cal 0: 0.0032654  Cal 0: 0.0032654  Cal 0: 0.0032654  Cal 0: 0.0032654  Cal 0: 0.0032654  Cal 0: 0.0032654  Cal 0: 0.0032654  Cal 0: 0.0032654  Cal 0: 0.0032654  Cal 0: 0.0032654  Cal 0: 0.0032654  Cal 0: 0.0032654  Cal 0: 0.0032654  Cal 0: 0.0032654  Cal 0: 0.0032654  Cal 0: 0.0066231  Cal 0: 0.0066 | Garryover: 0.0142808 | Sync: 4.89892  Garryover: 0.0142808  Carryover: -0.00270501  Baseline: -0.00332654  Gaillo: 0.00332654  Gaillo: 0.00332654  Call 0: 0.00332654  Call 0: 0.00332654  Call 0: 0.00332654  Call 0: 0.00332654  Call 0: 0.00326602  CB: -0.00495355 | Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89892   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.89893   Sync: 4.8989 | Sync: 4.89892    Carryover: 0.0142808   Sync: 4.89892     Carryover: 0.00370501   Baseline: -0.00332654     Cal 0: 0.00332654   Cal 0: 0.00332654     Cal 0: 0.00332654   Cal 0: 0.00332654     Cal 0: 0.00332602     Cal 0: 0.0032654   Cal 0: 0.0032654     Cal 0: 0.0032654   Cal 0: 0.0032654     Cal 0: 0.0032654   Cal 0: 0.0032654     Cal 0: 0.0032654   Cal 0: 0.0032654     Cal 0: 0.0032654   Cal 0: 0.0032654     Cal 0: 0.00463355   Cal 0: 0.0032654     Cal 0: 0.00463355   Cal 0: 0.0032654     Cal 0: 0.00463355   Cal 0: 0.0032654     Cal 0: 0.00463355   Cal 0: 0.0032654     Cal 0: 0.00463355   Cal 0: 0.00332654     Cal 0: 0.00463355   Cal 0: 0.00332654     Cal 0: 0.00463355   Cal 0: 0.00332654     Cal 0: 0.00463355   Cal 0: 0.00463308     Cal 0: 0.0046335   Cal 0: 0.00463308     Cal 0: 0.0046335   Cal 0: 0.00463308     Cal 0: 0.0046335   Cal 0: 0.00463308     Cal 0: 0.0046335   Cal 0: 0.00463308     Cal 0: 0.0046335   Cal 0: 0.00463308     Cal 0: 0.0046335   Cal 0: 0.00463308     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.004635     Cal 0: 0.004635   Cal 0: 0.0 | Sync: 4,89892  Garryover: 0.0142808  Garryover: 0.00270501  Baseline: 0.00332654  Galo: 0.00332654  Galo: 0.00332654  Galo: 0.00332602  Garryover: 0.00332654  Galo: 0.00332602  Garryover: 0.00332654  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.0032602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.00332602  Galo: 0.003 | ### Sync: 4.89892  #### Sync: 4.89892  ################################# | Sync: 4.89892    Carryover: 0.014280b | Sync: 4.88692  Garryever: 0.0042808  Garryever: 0.00270501  Baseline: -0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.00332654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0032654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0036654  Gal: 0.0066531  Gal: 0.0066531  Gal: 0.0066531  Gal: 0.0066531 |

Reak Table: ammonia

File name: O: FLOW\_4\101299F.RST Date: Cotober 12, 1999 Operator: NVW

| Fea:                                         | ೦ಭರ                                          | Name                                                                                                                                                               | Type Dil                                 | Wit      | Height          | Calc. (mg/L) |
|----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------|-----------------|--------------|
|                                              |                                              |                                                                                                                                                                    |                                          |          |                 |              |
| -                                            | <b>:</b>                                     | Symo                                                                                                                                                               | SYNC 1                                   | -        | 564454          |              |
| Ž                                            | #<br>PTTB O O W P O O O O                    | Carryover                                                                                                                                                          | 00 :                                     | _        | 2027            |              |
| 3                                            | ÷                                            | Carryover                                                                                                                                                          | 00 1                                     |          | 72              | -0.002705    |
| -                                            | -                                            | Baseline                                                                                                                                                           |                                          | 7        | 8               | -0.003327    |
| =                                            | -                                            |                                                                                                                                                                    |                                          | · -      |                 |              |
| =                                            | U                                            | Baseline                                                                                                                                                           | R3 1                                     | · -      | C               |              |
| É                                            | -                                            | Cal C                                                                                                                                                              | 3 :                                      | . 1      | 766             |              |
| -                                            | 2                                            | Cal 1                                                                                                                                                              | 2 2                                      | <u>.</u> | 1151801         | 10.000001    |
| :                                            | -                                            | Blank                                                                                                                                                              |                                          | -        | -713            |              |
| _                                            | -                                            |                                                                                                                                                                    |                                          | -        | 1               |              |
| =                                            | -                                            | Baseline                                                                                                                                                           |                                          | -        | i               | -0.003327    |
|                                              | 3                                            | ICV<br>ICB<br>12031 DAY28<br>12032 DAY28                                                                                                                           | · · · · · · · · · · · · · · · · · · ·    | 2        | 5 <i>6</i> 3210 | 4.888124     |
|                                              | -                                            | 103                                                                                                                                                                | · _                                      | -        | -185            | -0.004933    |
|                                              | £ •                                          | ronar mawga                                                                                                                                                        | ••                                       | -        | 3397            |              |
|                                              | £2                                           | TECOL DATE                                                                                                                                                         |                                          | -        | 3053            |              |
| - <b>:</b>                                   | = 2                                          | 12032 DR126                                                                                                                                                        | -                                        | -        |                 |              |
| <u>:                                    </u> | £3                                           | 12033 DAY28                                                                                                                                                        | -                                        | _        | 3365            |              |
| 1.5                                          | £4                                           | 12034 DAY28                                                                                                                                                        |                                          | -        | 2666            | 0.019831     |
| ٠ <u></u>                                    | £ 3                                          | rongs mivos                                                                                                                                                        | ••                                       | •        | 2652            |              |
| - <del>-</del>                               | 5.5                                          | 12034 DAY28<br>12034 DAY28<br>12035 DAY28<br>10846 DAY0<br>10847 DAY0<br>10848 DAY0<br>10849 DAY0                                                                  |                                          | -        |                 | 1.139205     |
| -                                            | 1                                            | LUGES DAIL                                                                                                                                                         | -                                        | -        | 131553          | 1.139203     |
| _                                            | ŧ                                            | 10547 DAYO                                                                                                                                                         | -                                        | -        | 516340          |              |
| 1.5                                          | £ 3                                          | 10548 DAY0                                                                                                                                                         | T                                        | -        | 393699          | 3.468033     |
| 2:                                           | £ 5                                          | TORKA DIMO                                                                                                                                                         |                                          | •        | 187292          | 1.623291     |
|                                              |                                              |                                                                                                                                                                    |                                          | -        | 320812          | 2.782907     |
| <i>4</i> -                                   | -                                            | 2.33. Jmi.                                                                                                                                                         |                                          | _        |                 |              |
| 2 4                                          | 3                                            | CC3                                                                                                                                                                | 1                                        | _        | 563248          |              |
| 23                                           | -                                            | CC3                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·    | <u>-</u> | 192             | -0.001662    |
| Ξ                                            | -                                            | Baseline<br>10881 DAYO<br>10882 DAYO                                                                                                                               | EE :                                     | -        | Ξ               | -0.003327    |
| _<br>25                                      | -, - <sup>*</sup>                            | reser bays                                                                                                                                                         |                                          | -        | 191736          |              |
| 4 -                                          |                                              |                                                                                                                                                                    | -                                        | -        |                 |              |
| 2 €                                          | - 4                                          | LUBBY DAIL                                                                                                                                                         |                                          | <u>-</u> | 20094           |              |
| <b>2</b> -                                   | 73                                           | 12664 DAYC                                                                                                                                                         | <u> </u>                                 | <u>-</u> | -655            | -0.009012    |
| 2 =                                          | <u>-                                    </u> | 12665 DAYO                                                                                                                                                         | · ·                                      | 1        | 390790          | 3.390665     |
| 23                                           | - =                                          | 12666 DAYS                                                                                                                                                         |                                          | -        | 256086          | 2.220768     |
|                                              | 76                                           |                                                                                                                                                                    | -                                        | -        |                 |              |
| <i>:</i> .                                   |                                              | 12668 DAYO                                                                                                                                                         | _                                        | _        | 24824           | 0.212270     |
| 3 -                                          |                                              | 12671 DAYO<br>10589 DAYO<br>10590 DAYO                                                                                                                             |                                          | -        | 82076           | 0.709502     |
| 3.2                                          | - 3                                          | 10589 DAYO                                                                                                                                                         |                                          | -        | 41329           | 0.355618     |
| ::                                           | - =                                          | reser have                                                                                                                                                         | - <del></del>                            | -        | 58592           | 0.505543     |
| 34                                           | = -                                          |                                                                                                                                                                    | •                                        | -        |                 |              |
|                                              | = -                                          | 10591 DAYO                                                                                                                                                         | • •                                      | -        | 38378           | 0.329983     |
| 3 5                                          | 3                                            |                                                                                                                                                                    | <u>:</u>                                 | -        | 562789          | 4.854464     |
| <u>:</u> €                                   | -                                            | CC3                                                                                                                                                                |                                          | <u>:</u> | 775             | 0.003405     |
| : f<br>:                                     | -                                            | Page Time                                                                                                                                                          | 33 1                                     | -        | •               | -0.003327    |
| -<br>                                        | ē <u>.</u>                                   |                                                                                                                                                                    |                                          | -        |                 |              |
|                                              | = =                                          |                                                                                                                                                                    | _                                        | -        | 109196          | 0.945034     |
| ::                                           | £ 2                                          | 10593 DAYO                                                                                                                                                         | 1                                        | -        | 242593          | 2.103578     |
| ÷:                                           | E 3                                          | 10609 DAYO                                                                                                                                                         | · ·                                      | -        | 35412           | 0.304225     |
| <u>:                                    </u> | E 4                                          | reset bave                                                                                                                                                         |                                          | -        | 101344          | 0.876840     |
| 42                                           | ē 5                                          |                                                                                                                                                                    |                                          | :        |                 |              |
| 7.4                                          |                                              | 1.113 DRIV                                                                                                                                                         | -                                        | -        | 15104           | 0.127849     |
| 43                                           | <del>8 6</del>                               | letil Dair                                                                                                                                                         |                                          | -        | 498576          | 4.326778     |
| 44                                           | € -                                          | 12612 DAY:                                                                                                                                                         | -                                        | -        | 52423           | 0.712516     |
| 4.5                                          | E E                                          | 12613 DAYO                                                                                                                                                         | •                                        | -        | 98867           |              |
| 4.6                                          | 8.5                                          | COV<br>CCB<br>Baseline<br>10892 DAYO<br>10893 DAYO<br>10809 DAYO<br>10818 DAYO<br>10818 DAYO<br>12811 DAYO<br>12812 DAYO<br>12813 DAYO<br>12814 DAYO<br>12822 DAYO |                                          | -        | 141727          | 1.227565     |
|                                              |                                              |                                                                                                                                                                    | -                                        | _        | 141/2/          |              |
| -                                            | 9:                                           | -4144 Lai-                                                                                                                                                         |                                          |          | 22778           |              |
| ÷ē                                           | 3                                            | ~ - 1                                                                                                                                                              | :                                        | . 1      | 559331          |              |
| ÷                                            | -                                            | 003                                                                                                                                                                | :                                        |          | 188             |              |
| 3                                            |                                              | Baseline                                                                                                                                                           | RB : : : : : : : : : : : : : : : : : : : |          |                 | -0.003327    |
| <u>-</u>                                     | -<br>-                                       |                                                                                                                                                                    |                                          | -        |                 |              |
| =:                                           | <i>:</i> -                                   | 12638 DAYO                                                                                                                                                         |                                          | . 1      | 138983          |              |
| £2                                           | 92                                           | 12639 DAYO                                                                                                                                                         | <del>-</del>                             |          | 91032           |              |
| 3 3                                          | 93                                           | 12640 DAY0                                                                                                                                                         | :                                        |          | 73388           | 0 634042     |
|                                              | 9 4                                          | 12641 DAYO                                                                                                                                                         |                                          | -        | 306520          |              |
| <del>: :</del>                               | 7                                            |                                                                                                                                                                    |                                          |          |                 |              |

| Peak          | Cup       | Name | Type         | Dil | Жt | Height | Calc. | (mg/ī)                            |
|---------------|-----------|------|--------------|-----|----|--------|-------|-----------------------------------|
| 55<br>56<br>7 | <u> 1</u> | CCB  | U<br>U<br>RB | 1   |    | , 55   |       | 4.859718<br>0.003492<br>-0.003327 |

|                                                              | 0                                                                                 | Baseline       |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------|
| Peak                                                         | QuD                                                                               | Flags          |
| - (                                                          | 30001                                                                             | BT<br>PO<br>TO |
| 7<br>8<br>3                                                  | 2<br>0<br>0                                                                       | PD<br>PO       |
| 1                                                            | 3 -1 -1 2 3 4 5 6 7 8 9                                                           | <u>1</u> .0    |
| W                                                            | 70<br>3                                                                           | FO<br>FO       |
| 3<br>25<br>26                                                | 0<br>71<br>72                                                                     | 31,            |
| 27<br>28<br>29<br>33<br>33<br>34<br>56                       | 73456789033                                                                       | TO .           |
| 3 567890123456 890123456 44444444444444444444444444444444444 | 300001200811223456785081101234567890310120120145678903101<br>77777778 888888889 9 | 3 <u>7</u>     |
| 60 0)<br>4 (B) 13                                            | 1 0 91                                                                            | ET<br>TO       |



Peak Table: ammonia

File name: E: FLCW\_40102099E.RST Date: October 28, 1999 Operator: LKS

| Peak                                         | Cup                                         | Name                                                                 | Type Dil                               | Wt           |          | Height           | Calc. (mg/L) |
|----------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|----------------------------------------|--------------|----------|------------------|--------------|
| :                                            | 2                                           | Symo                                                                 | SMC                                    | :            | 1        | 1827617          | 10.001991    |
| -                                            | #<br>11 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Carryover                                                            | CC<br>CC                               | •            | 7        | 25041            | 0.136264     |
|                                              | -                                           | Carryover                                                            | 22                                     | <i>-</i>     | -        | 756              | 0.003350     |
| -                                            | -                                           | Baseline                                                             | RB                                     | -            | -        | , 35             | -0.000789    |
| <i>=</i>                                     | -                                           |                                                                      | 7.3                                    | <del>-</del> | -        | <u> </u>         |              |
| =                                            | Ü                                           | Baseline                                                             | R3                                     | -            | _        | 3                | -0.000789    |
| ŧ                                            | -                                           | Cal 3                                                                | C<br>C<br>T<br>RB                      | -            | -        | 288              |              |
| -                                            | 2                                           | Cal 1                                                                | 2                                      | <u>-</u>     | 2        | 1827253          | 10.00001     |
| £                                            | 2                                           | Blank                                                                |                                        | -            | -        | -47              | -0.301044    |
| 8                                            | 2                                           |                                                                      | 23                                     | <u>.</u>     | •        | 2                | -0.000789    |
|                                              | 2                                           | Baseline 10: 108 108 12609 10/19 12610 10/19 12611 10/20 12612 10/20 | ••                                     | -            | -        | 1820698          | 9.964125     |
|                                              |                                             |                                                                      |                                        | -            | -        | 474              | 0.001807     |
| <del></del>                                  | -                                           |                                                                      | -<br>                                  | -            | -        |                  |              |
| <u></u>                                      |                                             | 3                                                                    | •                                      | -            | -        | 946075           | 5.177200     |
| 13                                           | ŧΞ                                          | 12609 10/19                                                          | Ţ                                      | <u>:</u>     | _        | 19572            | 0.106333     |
| : ÷                                          | € 2                                         | 12610 10/19                                                          |                                        | <u>:</u>     | _        | 214916           | 1.175473     |
| 15                                           | €3                                          | 12811 10/20                                                          |                                        | <u>-</u>     | -        | 528736           | 2.893049     |
| ٠ ۽                                          | 64                                          | 12612 10/20                                                          | ••                                     | •            | -        | 113899           | 0.622594     |
| - <del>-</del>                               | £ 5                                         | 12613 10/20                                                          |                                        | -            | -        | 143349           | 0.783781     |
|                                              | £ 6                                         | 12614 10/20                                                          |                                        | -            | -        | 181478           | 0.992465     |
|                                              | - <del>-</del>                              | 12514 11/20                                                          | -                                      | <del>-</del> | _        | 19245            |              |
|                                              | 67                                          | 12622 15/25                                                          | -                                      | _            | _        |                  | 0.104540     |
| 2 [                                          | € €                                         | 12589 HA 10/20                                                       | Ü                                      | -            | _        | 107284           | 0.586392     |
| 2 <u>-</u>                                   | 69<br>70                                    | 12590 HA 10/20                                                       | ::                                     | <u>-</u>     | <u> </u> | 63518            | 0.346856     |
| 22                                           | 7.0                                         | 12891 HA 10/20                                                       | <u>;</u>                               | <u>:</u>     | -        | £2219            | 0.339743     |
| 23                                           | 3                                           | c <del>c:</del>                                                      | :                                      | _            | _        | 996983           | 5.455823     |
| 2÷                                           | -                                           | CC3                                                                  | <del></del>                            | -            | -        | 91               | -0.000289    |
| = .                                          | -                                           | Baseline                                                             | 23                                     | -            | =        | 7-               | -0.000769    |
| 3<br>2 <del>6</del>                          | - <del>-</del> -                            | 12692 HA 10/20                                                       | •••                                    | <del>-</del> | -        | 133525           | 0.730012     |
| 2 t                                          |                                             |                                                                      |                                        | -            | -        |                  |              |
| 2-                                           | · <b>4</b>                                  | 12593 HA 10/20                                                       | -                                      | <del>-</del> | -        | 3 £ 7 3 9 2      | 2.009997     |
| 2 5                                          | -3                                          | 12609 HA 10/20                                                       | Ţ                                      | -            | _        | 2840             | 0.014754     |
| 25                                           | - 4                                         | 12610 HA 10/20                                                       |                                        | <u>-</u>     | _        | 256203           | 1.401440     |
| 3:                                           | -5<br>-6                                    | 12615 HA 10/20                                                       |                                        | -            | -        | 15254            | 0.082697     |
| 3:                                           | - £                                         | 12664 HA 10/20                                                       | :-                                     | •            | -        | 3156             | 0.016483     |
| 32                                           |                                             | 12664 CT 10/20                                                       | ••                                     | •            | -        | 15207            | 0.082443     |
| 33                                           | 78                                          | 12665 HA 10/20                                                       | •                                      | -            | -        | 327542           | 1.791890     |
|                                              | 7 5                                         | 12665 CT 10'20                                                       |                                        | <del>-</del> | -        |                  |              |
| : <del>-</del>                               |                                             |                                                                      | . <u>.</u>                             | -            | -        | 245075           | 1.340539     |
| 3 5                                          | £ 0                                         | 12666 HA 10,20                                                       | Ţ                                      | <u>-</u>     | _        | 413889           | 2.264477     |
| 3 €                                          | 3                                           | CC:                                                                  | :                                      | <u>-</u>     | -        | 996484           |              |
| 37                                           | -                                           | 0.03                                                                 | -                                      | <u>.</u>     | -        | 423              | 0.001527     |
| Ξ                                            | -                                           | Baseline                                                             | 23                                     | <u>.</u>     | -        | 3                | -0.000789    |
| 7.2                                          | <u>.</u>                                    | 12666 CT 10/20                                                       |                                        | -            |          | 155879           |              |
| ÷:                                           | 3 <u>-</u><br>3 2                           | 12668 HA 10/20                                                       |                                        | -            | -        | 104857           | 0.573109     |
| - ·                                          | 5.2                                         | - 12000 ALR 10/20                                                    | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; |              | -        | 111728           | 0.373103     |
| 4:                                           | 83                                          | 12668 07 10,20                                                       | -<br>                                  | <del>.</del> | _        |                  |              |
| ÷ 2                                          | £ <b>4</b>                                  | 12671 HA 10/21                                                       | <u>.</u>                               | -            | -        | 34611            | 0.188643     |
| 43                                           | 8.5                                         | 12671 CT 10/20                                                       |                                        | <u>.</u>     | -        | 53855            | 0.304911     |
| <u>:                                    </u> | 3                                           | cc:                                                                  | ÷                                      | <u>.</u>     | -        | 53855<br>1010641 | 5.530580     |
| 4 5                                          | •                                           | CCE                                                                  | Ü                                      | <u>•</u>     | -        | 6481             | 0.034681     |
| 3                                            | =                                           | Baselime                                                             | RB                                     | -            |          |                  |              |
| -                                            | -                                           |                                                                      | •••                                    | -            | -        | _                | 0.000709     |

| Peak     | Cup | Flags |
|----------|-----|-------|
|          |     |       |
| <u>.</u> | 2   |       |
| 2        | 2   |       |
| :        | ~   |       |
| -        | -   |       |

| Peak                                                                                                                       | Cab                                       | Flags    |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------|
| الله مر<br>الله م                                                                                                          | J<br>0<br>0                               | BD       |
| - MB                                                                                                                       | 2002131234567<br>666666                   | LO<br>BL |
| 20<br>21<br>22<br>23<br>24<br>36<br>77<br>39<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | 00120021312345678903101234567890310       | ĽO<br>BĽ |
| 3 3 3 3 3 3 3 4 4 4 4 4 5 B                                                                                                | 78 79 0 3 1 0 1 2 3 4 5 3 1 0 8 8 8 8 8 8 | BL       |
| 44<br>45<br>B                                                                                                              | 3<br>1<br>0                               | BL       |

| •     |             |            |             |                |                 |                   |                   |                | Acs                        | crea             | nce (i           | μΑι) (     | E+06)        |              | _            |                |             |         |               | _            |                      |
|-------|-------------|------------|-------------|----------------|-----------------|-------------------|-------------------|----------------|----------------------------|------------------|------------------|------------|--------------|--------------|--------------|----------------|-------------|---------|---------------|--------------|----------------------|
|       |             |            |             |                |                 |                   |                   |                |                            |                  |                  |            |              |              |              |                |             |         |               |              |                      |
|       | 2           | 0.400      | 00%         | 0 200          | 0 100           | 0 000             | 2                 | <b>S</b>       | C                          | 0 400            | S                | 2          | 0            | о ноо        | 2            | _              | -           |         | <u> </u>      |              | 7                    |
|       | Š           | Ì          | Š           | Š              | Š               | Š                 | 0 100             | 0 200          | 0 300                      | Š                | 0 500            | 0 000      | 0 700        | Š            | 0 900        | 000            | 100         | .200    | .300          | 400          | 1.500                |
| _     | . =         |            | <del></del> |                |                 | <del>-</del>      |                   | <u> </u>       |                            |                  | _ <del>_</del> _ |            |              |              |              |                |             |         |               |              |                      |
| _     | •           |            |             |                |                 |                   |                   |                |                            |                  |                  |            |              |              |              |                |             |         |               |              |                      |
|       |             |            |             |                |                 |                   |                   | $\equiv$       |                            |                  | ==               |            |              |              |              |                | رة.<br>Sy   | /nc: 9  | .9946         | 6            | _                    |
|       |             |            |             |                |                 |                   | Çarry             | ove:           | C C3                       | 78611            | :                |            |              |              |              |                | •           |         |               |              | _                    |
|       |             |            |             |                |                 |                   | _                 |                | 0 003                      |                  |                  |            |              |              |              |                |             |         |               |              |                      |
|       |             | <b></b>    |             |                | . <b></b> .     |                   | _                 |                | 0.000<br>0.000             |                  |                  |            |              |              |              |                |             |         |               |              |                      |
|       |             |            |             |                |                 |                   |                   |                | 0.000<br>00121             |                  | ,65              |            |              |              |              |                | _,          |         |               |              |                      |
|       |             |            |             |                |                 |                   |                   |                |                            |                  | ===              |            |              |              |              |                | <b>→</b> ∂; | al 1: 1 | <b>O</b>      | ٠            |                      |
|       |             |            |             |                |                 |                   |                   |                | 00268                      |                  |                  |            |              |              |              |                | _           |         |               |              |                      |
|       |             |            |             |                |                 |                   | tase!             | ine -          | 0.000                      | 1216             | 85               | =          |              |              | <u></u>      |                | —•ૄે        | )<br>   | 0.0999        |              |                      |
| 113   |             |            | <b></b>     |                | . <b></b>       | •                 | EB: 4             | -G 5€          | 25689                      | 32 ·             |                  |            |              |              | <b>.</b>     |                |             |         |               |              |                      |
| Ξ     | :           |            | -           | 1 11           |                 |                   | <del>-</del>      |                |                            |                  |                  |            | CS: 5.:      | 3177         |              |                |             |         |               |              |                      |
|       |             |            | 12:         | <i>1</i> પક્રા | 2 <u>36</u> 6   |                   | 1254              | 6 HA           | 10/3                       |                  |                  |            |              | _            |              |                |             |         |               |              |                      |
|       |             |            | 20          | ) ;e           |                 | 5                 | → F.,             |                | 12<br>4A 10                |                  |                  |            | 2.5045       | 3            |              |                |             |         |               |              |                      |
|       |             |            | Üż          | y 10           | ,               | $\triangleright$  |                   |                | HA 10                      |                  |                  |            |              |              |              |                |             |         |               |              |                      |
|       |             |            | (4          | 9/29/          | (99)            | 1                 | <b>_</b>          | <u> 2</u> 556  | AH.O                       | وعمد             | 3:_0.9           | 24715      |              |              |              |                |             |         | <del></del>   |              | . <b>- i</b>         |
|       |             |            |             | ſ              |                 |                   |                   |                | 1 HA                       |                  |                  |            | :            |              |              |                |             |         |               |              |                      |
|       |             |            |             |                |                 |                   | <b>&gt;</b> √.º   | 252 H          | HA 10                      | /29: C           | .4269<br>: 0.74  | U038       |              |              |              |                |             |         |               |              |                      |
|       |             |            |             | - 1            |                 | $\geq$            | <b>→</b> == ;     | 5 <b>90</b> H  | 1A 10                      | /29: C           | 446              | 985        |              |              |              |                |             |         |               |              |                      |
| ,     |             |            |             |                |                 | $\geq$            |                   |                | <u>16 10</u>               |                  |                  | 336        |              |              |              |                |             |         |               |              |                      |
| ,,000 |             | <b>-</b> - | ·           |                | . <b></b> .     |                   | <u> </u>          |                | 3273                       |                  |                  |            | CV: 5        | 3758         | 31           |                |             |         |               |              |                      |
| 5     | :           |            |             |                |                 | <b>—</b>          | Bas <b>e</b>      | u.oc<br>ine: - | -0.000                     | 27<br>)1216      | 85               |            |              |              |              |                |             |         |               |              |                      |
|       |             |            |             |                |                 |                   | - C.              | 2592           | HA:                        | 0/29:            | 0.699            |            |              |              |              |                |             |         |               |              |                      |
|       |             |            |             |                |                 |                   | ₹12:              | 593 H          | 1A 10                      | /29: 0           | 2.4569           | 97<br>56   |              |              |              |                |             |         |               |              | =                    |
| _     |             |            |             | V              |                 | $\rightarrow$     | → ±26             | SOH            | A 107<br>IA 107            | 29: U.<br>29: C  | ∡585.<br>3417    | 59<br>193  |              |              |              |                |             |         |               |              | . =                  |
| Ξ     |             |            | <del></del> | //             | . <del></del> . |                   | <u> </u>          | 511 H          | ia 10/                     | 3110             | 3371             | 53         |              | <del>-</del> |              |                |             |         |               |              | · <u></u> <u>-</u> 2 |
| C .   |             |            | Bu          | 16 2 2<br>re D | : /CC &         |                   |                   |                | A 10/3                     |                  |                  |            |              |              |              |                |             |         |               |              |                      |
| 100   |             |            |             | 3/3.           |                 | 5                 | 1.26              | 2613<br>14 H/  | HA 1                       | 0/31:            | . 0.72<br>19441  | 8827<br>28 |              |              |              |                |             |         |               |              | 2                    |
| J     |             |            | •           | 13.72          |                 | $\geq$            | → <del>1</del> 2! | 522 F          | 1A 10                      | /31: C           | .426             | 32         |              |              |              |                |             |         |               |              | 2                    |
| Ė     | :           |            |             |                |                 | $\leq$            |                   |                | 4A 10                      |                  |                  | 082        |              |              |              |                |             |         |               |              | :                    |
|       |             |            | <b>-</b> -  | · · ·   ·      | , <b></b>       |                   | ~~~<br>~~~        |                | 03078                      | - <del></del>    |                  | 6          | CV: 5        | 404          | 84           |                |             |         |               |              | ·                    |
|       |             |            |             |                |                 |                   |                   |                | -0 000                     |                  | 386              |            |              |              |              |                |             |         |               |              |                      |
|       |             |            |             |                |                 |                   | <del>- 2</del>    | 2639           | HA 1                       | 0/31             | 0.75             |            |              |              |              |                |             |         |               |              |                      |
|       |             |            |             | $\downarrow$   |                 | $\leq$            |                   | •              | A 101                      |                  |                  |            |              |              |              |                |             |         |               |              | -                    |
|       |             |            | <del></del> | <del></del>    | <del></del>     | 5                 | i:<br>:254        |                | 41 HA<br>_11/2.            |                  |                  |            | ;<br>        |              |              |                |             |         |               | <b></b>      | . <b></b>            |
|       | - ,         |            |             |                | _               |                   | 4                 | <b>—</b>       | 2547                       | HA 1             | 1.72. 1          | .4965      | 5            | ·            | <del>-</del> | - <del>-</del> |             |         |               |              |                      |
|       |             |            |             |                |                 |                   | *                 |                | 11.2                       |                  |                  |            |              |              |              |                |             |         |               |              | 1                    |
|       |             |            |             |                |                 | -                 | _                 |                | . 11/2<br>. 11/2:          |                  |                  |            |              |              |              |                |             |         |               |              |                      |
|       |             |            |             |                |                 | <b>→</b>          |                   |                | 11/2                       |                  |                  |            |              |              |              |                |             |         |               |              |                      |
| 3     |             |            |             |                | . <b></b>       |                   | 255               | <u> 2 HA</u>   | 11/2                       | 0.04             | 7677             |            | <del>د</del> |              |              |                |             |         |               | <b></b>      |                      |
| 3     | 5           |            |             |                |                 |                   | <del></del>       |                | 00263                      | 2814             |                  |            | CCV          | 5.484        | 74           |                |             |         |               |              |                      |
|       |             |            |             |                |                 |                   |                   |                | -0 000                     |                  | 385              |            |              |              |              |                |             |         |               |              |                      |
|       |             |            |             |                |                 | <u>₹</u>          | 25                | 89 H           | A 117                      | 3: 0.2           | 29242            |            |              |              |              |                |             |         |               |              |                      |
|       |             |            |             |                |                 | <u> </u>          |                   |                | 11/3                       |                  |                  |            |              |              |              |                |             |         |               |              |                      |
|       |             | <b>.</b>   |             |                | <b></b> .       | ٠,٠               | _                 |                | . 11/3:<br>C11/3           |                  |                  |            | <b></b>      |              |              | ·              |             |         |               |              |                      |
|       |             |            |             |                |                 | <b>-</b>          |                   |                | 11/3                       |                  |                  |            |              |              |              |                |             |         |               |              |                      |
|       |             |            |             |                |                 |                   | <u>بخ</u>         | 1260           | 9 HA                       | 11/3             | 0.87             | 5302       |              |              |              |                |             |         |               |              |                      |
|       |             |            |             |                |                 | <u></u>           | #26<br>#26        | 10 H           | A 11/2<br>T 11/2           | 3: 0.2<br>3: 0.2 | 3231             | 1          |              |              |              |                |             |         |               |              | _                    |
| :     | <b>3</b> ,  |            |             |                |                 | ٠                 |                   |                | Γ 11/3                     |                  |                  |            |              |              |              |                |             |         |               |              | _                    |
|       | 2<br>5<br>5 |            |             |                |                 | $\stackrel{:}{=}$ |                   |                | -11/3                      |                  |                  | 7          | <u>g</u>     |              |              |                |             |         |               |              | <del></del> -        |
| :     | <u>.</u>    |            |             |                |                 | 4                 | <del>~</del>      | 0.00           |                            |                  |                  |            | CCV.         | 5.430        | 61           |                |             | Λ       | 0.03          | <b>7 ~ 1</b> | •                    |
|       |             |            |             |                |                 |                   | =                 |                | 1720<br><del>-0 00</del> 0 |                  | 385              |            | _            |              |              |                |             |         | $\frac{U}{U}$ | : ( ,[       |                      |
|       |             |            |             |                |                 |                   |                   | -              | •                          |                  |                  |            |              |              |              |                |             |         |               |              |                      |

Peak Table: ammonia

File name: E:\FLOW\_4\112399A.RST Date: November 23, 1999 Operator: LKS

| ak  | Cup | Name           | Type Dil | Wt  | H        | leight  | Calc. (mg/L)         |
|-----|-----|----------------|----------|-----|----------|---------|----------------------|
| 1   | 2   | Sync           | SYNC     | 1   | 1        | 1064292 | 9.994657             |
| 2   | 0   | Carryover      | CO       | 1   | 1        | 4045    | 0.037861             |
| 3   | 0   | Carryover      | CO       | 1   | 1        | 430     | 0.003921             |
| В   | 0   | Baseline       | RB       | 1   | 1        | 0       | -0.000122            |
| В   | 0   | Baseline       | RB       | 1   | 1        | 0       | -0.000122            |
| 6   | 1   | Cal 0          | С        | 1   | 1        | 26      | 0.000121             |
| 7   | 2   | Cal 1          | С        | 1   | 1        | 1064860 | 10.000000            |
| 8   | 0   | Blank          | Ŭ        | 1   | 1        | -272    | -0.002680            |
| В   | 0   | Baseline       | RB       | 1   | 1        | 0       | -0.000122            |
| 10  | 2   | ICV            | Ū        | 1   | ī        | 1075499 | 10.099907            |
| 11  | ī   | ICB            | Ū        | ī   | ĺ        | -261    | -0.002569            |
| 12  | 3   | LCS            | Ŭ        | 1   | ĺ        | 566267  | 5.317698             |
| 13  | 31  | 12546 HA 10/29 | Ü        |     |          | 11316   |                      |
| 14  | 32  | 12547 ha 10/29 |          | 1   | 1        |         | 0.106144             |
|     |     |                | Ŭ        | 1   | 1        | 266707  | 2.504527             |
| 15  | 33  | 12548 HA 10/29 | Ŭ        | 1   | 1        | 48514   | 0.455477             |
| 16  | 34  | 12549 HA 10/29 | U        | 1   | 1        | 69075   | 0.648565             |
| 17  | 35  | 12550 HA 10/29 | U        | 1   | l        | 98481   | 0.924715             |
| 18  | 36  | 12551 HA 10/29 | U        | 1   | 1        | 98974   | 0.929342             |
| 19  | 37  | 12552 HA 10/29 | U        | 1   | <u>1</u> | 45482   | 0.426997             |
| 20  | 38  | 12589 HA 10/29 | U        | 1   | 1        | 78912   | 0.740938             |
| 21  | 39  | 12590 HA 10/29 | U        | 1   | 1        | 47610   | 0.446985             |
| 22  | 40  | 12591 HA 10/29 | U        | 1   | 1        | 46955   | 0.440836             |
| 23  | 3   | ccv            | Ū        | 1   | 1        | 572454  | 5.375807             |
|     | 1   | CCB            | Ū        | ī   | ī        | 362     | 0.003273             |
|     | ō   | Baseline       | RB       | 1   | ī        | 0       | -0.000122            |
| 26  | 41  | 12592 HA 10/29 | U        | 1   | i        | 73488   | 0.690005             |
| 27  | 42  | 12593 HA 10/29 | U        |     |          | 48673   |                      |
|     |     |                |          | 1   | 1        |         | 0.456970             |
| 28  | 43  | 12609 HA 10/29 | U        | 1   | 1        | 27546   | 0.258559             |
| 29  | 44  | 12610 HA 10/29 | Ŭ<br>    | 1   | 1        | 36409   | 0.341793             |
| 30  | 45  | 12611 HA 10/31 | U        | 1   | 1        | 35915   | 0.337153             |
| 31  | 46  | 12612 HA 10/31 | Ŭ        | 1   | 1        | 20836   | 0.195546             |
| 32  | 47  | 12613 HA 10/31 | U        | 1   | <u>1</u> | 77622   | 0.728827             |
| 33  | 48  | 12614 HA 10/31 | U        | 1   | 1        | 20717   | 0.194428             |
| 34  | 49  | 12622 HA 10/31 | Ū        | 1   | 1        | 45410   | 0.426320             |
| 35  | 50  | 12638 HA 10/31 | U        | 1   | 1        | 49857   | 0.468082             |
| 36  | 3   | ccv            | U        | 1   | 1        | 575546  | 5.404839             |
| 37  | 1   | CCB            | Ū        | 1   | ı        | -315    | -0.003079            |
| В   | 0   | Baseline       | RB       | ı   | 1        | 0       | -0.000122            |
| 39  | 51  | 12639 HA 10/31 | Ŭ        | ī   | 1        | 80162   | 0.752680             |
| 40  | 52  | 12640 HA 10/31 | บี       | ī   | ī        | 27255   | 0.255831             |
| 41  | 53  | 12641 HA 10/31 | Ū        | 1   | 1        | 121018  | 1.136359             |
| 42  |     | 12546 HA 11/2  |          |     |          | 5056    |                      |
|     | 54  |                | U        | 1   | 1        |         | 0.047356             |
| 43  | 55  | 12547 HA 11/2  | U        | 1   | 1        | 159373  | 1.496553             |
| 44  | 56  | 12548 HA 11/2  | Ŭ        | 1   | 1        | 11375   | 0.106706             |
| 45  | 57  | 12549 HA 11/2  | Ŭ        | 1   | 1        | 5284    | 0.049505             |
| 46  | 58  | 12550 HA 11/2  | U        | 1   | 1        | 5509    | 0.051615             |
| 47  | 59  | 12551 HA 11/2  | U        | 1   | 1        | 11910   | 0.111724             |
| 48  | 60  | 12552 HA 11/2  | Ŭ        | 1 . | 1        | 5090    | 0.047677             |
| 1 Q | 3   | CCV            | U        | 1   | 1        | 584054  | 5.484735             |
|     | ı   | CCB            | Ū        | 1   | ī        | -15     | -0.000261            |
| В   | Ō   | Baseline       | RB       | ī   | ī        | 0       | -0.000122            |
| 52  | 61  | 12589 HA 11/3  | U        | 1   | 1        | 31152   | 0.292423             |
| 53  | 62  | 12509 HA 11/3  | Ŭ        | 1   | 1        | 7090    |                      |
| در  | 63  | 12590 HA 11/3  | Ū        | 1   | 1        | 4609    | 0.066463<br>0.043165 |
| 54  |     | 1/391 84 11/3  | 1.1      | 1   |          | 45014   | 0 044165             |

| Peak | Cup | Name          | Type Dil    | Wt  | Height | Calc. (mg/L) |
|------|-----|---------------|-------------|-----|--------|--------------|
| 5.5  | 64  | 12592 HA 11/3 | :           | :   | 7380   | 0.069180     |
| 5.6  | 65  | 12593 HA 11/3 | •           | - : | 3509   | 0.032834     |
| 57   | 66  | 12609 HA 11/3 | ••          |     | 93219  | 0.875302     |
| 5.8  | 67  | 12610 HA 11/3 | :           |     | 24751  | 0.232311     |
| 59   | €8  | 12611 CT 11/3 | :           | :   | 27450  | 0.257665     |
| €Đ   | 69  | 12612 CT 11/3 | <del></del> | 1   | 16613  | 0.155894     |
| 51   | 75  | 12613 CT 11/3 | ÷           | 1 : | 8835   | 0.082848     |
| 52   | 3   | CCV           | ::          | 1   | 578290 | 5.430609     |
| 63   | 1   | CCB           | ÷           | :   | 196    | 0.001721     |
| 5    | 0   | Baseline      | R3          | 1   | . 0    | -0.000122    |

| Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cup                     | Flags    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                       |          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                       |          |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                       |          |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                       | 31       |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ^                       | 31<br>31 |
| <u>۔</u><br>ج                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                       |          |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                       |          |
| <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                       | - ^      |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                       |          |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                       | 3_       |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                       | LC<br>LC |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                       | LC       |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                       |          |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31                      |          |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32                      |          |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                      |          |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34                      |          |
| - 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.5                     |          |
| - =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.5                     |          |
| - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 7                     |          |
| - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 /<br>3 n              |          |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |          |
| TOURDE TOUR COURT TOUR COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR STREET COURT BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD TOUR BUILD | 33                      |          |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                      |          |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                       |          |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                       |          |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | £                       | 31.      |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 -                     |          |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42                      |          |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43                      |          |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44                      |          |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4=                      |          |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.5                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . ~                     |          |
| 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - /<br>- <del>-</del> - |          |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75                      |          |
| 3 <del>1</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 3                     |          |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                      |          |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                       |          |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                       | LO<br>Bl |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ٥                       | 32       |
| 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51                      |          |
| 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52                      |          |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53                      |          |
| <del>-</del> - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54                      |          |
| 333B351234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |          |
| <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.5                     |          |
| 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 5                     |          |



Peak Table: ammonia

File name: F:\FLOW\_4\102799F.RST Date: October 28, 1999 Operator: NVW

| Peak        | Cup        | Name           | Type Dil          |   | Wt                                            | Height  | Calc. (mg/L) |
|-------------|------------|----------------|-------------------|---|-----------------------------------------------|---------|--------------|
|             | 2          | Symo           | SYNC              | - | יַר                                           | 1683774 | 9.302330     |
| Ž           | _<br>D     | Carryover      |                   | - | 1                                             | 26092   | 0.142000     |
|             | <u>ت</u> د | Carryover      | CC<br>CC          |   | -                                             | 362     | -0.000183    |
| (1) (I) (I) | 2          | Baseline       | RB                | - | <u>.                                     </u> | 0       | -0.002186    |
| 5           | ō          | Baseline       | RB                | - | _<br>1                                        | ō       | -0.002186    |
| 4           | •          | Cal 0          |                   | - | -                                             | 791     | 0.002186     |
| 7           | 2          | Cal 1          | C<br>C<br>U<br>RB | = | 7                                             | 1810026 | 10.000000    |
| £           | Ŧ.         | Blank          |                   | - |                                               | -2916   | -0.018301    |
| 5           | ř          | Baseline       | 22                | - | -<br>1                                        | C C     | -0.002186    |
| 8 B C       | 2          | ICV            |                   | - | 1                                             | 1814510 | 10.024775    |
|             | -          | ICB            | ••                | - | -                                             | -1504   | -0.010496    |
| 12          | -          | LCS            | ••                | - | •                                             | 975757  | 5.389835     |
| 13          | 4          | 12611 HA 10/21 | <del>.</del> .    | - | = = = = = = = = = = = = = = = = = = = =       | 391225  | 2.159720     |
|             | 92         | 12612 HA 10/21 |                   | - | 7                                             | 100062  | 0.550753     |
| 15          | 93         | 12613 HA 10/21 | ••                | = |                                               | 107998  | 0.594612     |
| • =         | 54         | 12614 HA 10/21 |                   | - | -                                             | 151302  | 0.833909     |
| <del></del> | 95         | 12622 HA 10/21 |                   | - | 7                                             | 16694   | 0.090064     |
| -<br>18     | 5 €        | 12638 HA 10/21 |                   | - |                                               | 166854  | 0.919846     |
| 19          | 97         | 12639 HA 10/21 | -                 | - | -                                             | 135945  | 0.749046     |
| 25          | 98         | 12640 HA 10/21 |                   | - | =                                             | 25243   | 0.137308     |
| 5-          | 99         | 12641 HA 10/21 |                   | - | -                                             | 367277  | 2.137903     |
| 22          | 100        | 12665 CT 10/21 | -                 | Ξ | ī                                             | 10124   | 0.053760     |
| 23          | 3          | CCV            |                   | - | Ξ                                             | 896232  | 4.950380     |
| 24          | :          | CC3            | :                 | - | Ī                                             | -1020   | -0.007825    |
|             | 2          | Baseline       | <b>RB</b>         | Ξ | Ī                                             | 9       | -0.002186    |
| 3<br>26     | 101        | 12668 10/21    | ••                | - |                                               | 31937   | 0.063780     |
| 27          | 102        | 12664 10/22    | •                 | - | ī                                             | 2526    | 0.011774     |
| 28          | 103        | 12565 10/22    | -                 | - | 1                                             | 377090  | 2.081606     |
| 25          | 104        | 12666 10/22    | ••                | - | 1                                             | 189860  | 1.046979     |
| 3.0         | 105        | 12668 10/22    |                   | - |                                               | 10183   | 0.054083     |
| 31          | 106        | 12671 10/22    | ••                | - | -                                             | 96333   | 0.530148     |
| 32          | 3          | ccv.           | ••                | - | 3                                             | 898288  | 4.961744     |
| 33          | 1          | CCB            | ••                | - | <u> </u>                                      | -1026   | -0.007857    |
| 3           | 3          | Baseline       | 7.3               | - | 1                                             | ٥       | -0.002186    |

| Peak | ರ್ವರ                                   | Flags          |
|------|----------------------------------------|----------------|
|      |                                        |                |
| •    | 2                                      |                |
| _    | _                                      |                |
| 4    | <b>-</b> '                             |                |
| 3    | ٥                                      | 10             |
| _    | _                                      |                |
| =    | -                                      | 22             |
| 3    | 9                                      | 10<br>31<br>31 |
| £    | 1                                      |                |
| 7    | 2                                      |                |
| 8    | D                                      | LO<br>BL       |
| 3    | Σ                                      | BL             |
| 30   | 2                                      |                |
| 11   | _                                      | LO             |
| 12   | 3                                      |                |
|      | 00000000000000000000000000000000000000 |                |
| 14   | 92                                     |                |
| 15   | 93                                     |                |

| Peak       | Cup | Flags |
|------------|-----|-------|
|            |     |       |
| 16         | 94  |       |
| 17         | 95  |       |
| īЯ         | 96  |       |
| <b>.</b> . | 97  |       |
| 20         | 98  |       |
| 21         | 99  |       |
| 22         | 100 |       |
| 23         | 3   |       |
| 24         | 1   | LO    |
| В          | 0   | BL    |
| 26         | 101 |       |
| 27         | 102 |       |
| 28         | 103 |       |
| 29         | 104 |       |
| 30         | 105 |       |
| 31         | 106 |       |
| 32         | 3   |       |
| 33         | 1   | LO    |
| į.         | ^   | DT    |

|          |                  |                                       | 10(12/99     |
|----------|------------------|---------------------------------------|--------------|
|          | A 22 /           | NVW                                   | JWW          |
| #        | ABS<br>Saugle ID | 40.5                                  | 40.5         |
|          | 2                |                                       |              |
| 1,       | 18589 0          | Y                                     | 7            |
| 2_       | 590 ¢            |                                       |              |
| 3.       | 591 0            |                                       |              |
| ٧.       | 592 2            |                                       | /            |
| _ 5.     | 593 3            | /                                     |              |
| <u> </u> | 10609 2          | · · · · · · · · · · · · · · · · · · · |              |
| 7.       | 10610 \$         | . \.                                  |              |
|          | 12615 0          | ··                                    |              |
| l D.     | 12611 8          | <i></i>                               |              |
| 11       | 613 0            |                                       | <del> </del> |
| 12.      | 61Y 2'           | 1                                     | μ<br>:       |
| 13       | 12672 0          | ;                                     |              |
| 14       | 17636 C          | _                                     |              |
| 15       | 12639 C          |                                       |              |
| lb       | 12640 0          | · · · · · · · · · · · · · · · · · · · | ·<br>·       |
| 17       | 17641 7          |                                       |              |
| 16.      | 12546 PW         |                                       | - \          |
| 19.      | 547 FW           | <u> </u>                              | •            |
| 26.      | 546 PW           | <b>V</b>                              | <i>√</i>     |
| - · · -  |                  | Nie                                   | Jun 150      |
|          |                  | E Comment                             | 13/12/99     |
|          |                  |                                       |              |

NVW 20.5 ppms <0.5 ppins 593 PW 10609 PW 611 PW 13, 613 PW 640 PW 641 PW 17. w 17666 PW 17666 PW N

|                                       | ABS                                   | NUW                                   | JWW                                   |
|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| #                                     | Sayde ID                              | 40.5 ppm                              | 20.5                                  |
|                                       |                                       |                                       | · · · · · · · · · · · · · · · · · · · |
|                                       | 12664 Pu                              | ·                                     |                                       |
| 2                                     | e43 65 A                              | V                                     |                                       |
| 3                                     | 12671 P                               | $\mathcal{W}$                         |                                       |
| <b>Y</b>                              | 16546 1                               | H/_                                   |                                       |
| 5                                     | 10542                                 |                                       |                                       |
| 6                                     | 10546                                 |                                       |                                       |
| >                                     | 10549                                 | $\mathcal{I}$                         |                                       |
| Ę                                     | 550                                   | 2                                     |                                       |
| 9                                     | 1                                     | $\Diamond$                            |                                       |
| $\omega$                              | 1552                                  |                                       |                                       |
| (1                                    | 12664 7                               | /_                                    |                                       |
| 12                                    | 665                                   | <b>,</b>                              |                                       |
| 13                                    | 666 2                                 | <i>,</i>                              |                                       |
| IJ                                    | 668                                   | /                                     |                                       |
| 15                                    | 671 9                                 | Ž.                                    |                                       |
| · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | i i i i i i i i i i i i i i i i i i i | 13/12/99                              |
|                                       | -                                     | 10/12/99                              | المالية ال                            |
| ···                                   |                                       |                                       |                                       |

| CI | ient: Menzie-Cura & Assoc. Project: 99033                                                                        | BTR: 3615                 |
|----|------------------------------------------------------------------------------------------------------------------|---------------------------|
| Da | ate sediments distributed to test chambers (100 mL h                                                             | omogenized sediment):     |
| •  | ate sediments distributed to test chambers (100 mL h<br><i>H. azteca</i> acute test: 10/6/99 / ١٥/١٤/٩٩; ALL SA. | MPLES JG - Acure reresis. |
| •  | C. tentans acute test: 10/6/99                                                                                   | 1. (                      |
| •  | H. azteca chronic test: 10/18/99; ALL SAMPLES JO                                                                 | s for LS                  |
| •  | H. azteca chronic test: 10/18/99; ALL SAMPLES JO<br>C. tentans chronic test: 10548, 12550, 12551; 10             | 18/99 JG for LS           |

10/28/29 - Lozden sodinents for exmeles (12548,12550, 12551, 12552,

| Sample<br>Number | porew<br>pH | porew<br>H2S | porew<br>Amm | Sediment Visual Characterization                                                                                                                                             |
|------------------|-------------|--------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12546            | 6.9         |              |              | Viscous mud, NO Overlying water                                                                                                                                              |
| 12547            | 7.0         |              |              | Liquid, fine mud, many freshwater  odstropoids  removed visible gastropoids                                                                                                  |
| 12548            |             |              |              |                                                                                                                                                                              |
| 12546            | 7-0         |              |              | Liquid mud, gastropads present, removed Those visible 10/6 Th                                                                                                                |
| 12549            | 7.0         |              |              | Soft mud, pine needles, some overlying water                                                                                                                                 |
| 12550            | 7.0         |              |              | Soft mud with overlying water fine need les                                                                                                                                  |
| 12551            | 7.0         |              |              | Soft mud with overlying water                                                                                                                                                |
|                  |             |              |              |                                                                                                                                                                              |
|                  |             |              |              |                                                                                                                                                                              |
| 12552<br>LCS     | miciolag    |              |              | EPA artificial control sediment (77% med. and fine sand; 17% kaolinite clay; 5% 0.5 mm-sieved peat; 1% CaCO3). Stored dry, then hydrated prior to addition to test chambers. |
|                  | 1           | 1            | 1            | 1                                                                                                                                                                            |

Reviewer: Date: 12/7/97
Laboratory: Agoatec Biological Sciences, South Burlington, Vermont

000030

| С | lient: Menzie                | Cura & Ass                  | oc. Pro                               | ject: 9903                                       | BTR: 3622 / 3629                                                                                                    |
|---|------------------------------|-----------------------------|---------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| D |                              |                             |                                       | -                                                | 100 mL homogenized sediment):                                                                                       |
| • | H. azteca ac                 |                             |                                       | 18/99 JE                                         | - TM                                                                                                                |
| • | C. tentans a                 |                             | 10/7/99                               |                                                  |                                                                                                                     |
| • | H. azteca ch<br>C. tentans c | ronic test:<br>hronic test: | 10/18/9                               | 9 : 185                                          | 92,12593,12609 TM Sieved to remove                                                                                  |
|   |                              |                             | <del></del>                           | <del>-                                    </del> | 14/2 146/41/2 - CACIONIA                                                                                            |
| - | <u> </u>                     |                             |                                       |                                                  | (for C.t. onl                                                                                                       |
| : | Sample<br>Number             | porew<br>pH                 | porew<br>H2S                          | porew Amm                                        | Sediment Visual Characterization                                                                                    |
| + | 12589                        |                             |                                       | <del></del>                                      |                                                                                                                     |
| _ |                              | 7.1                         |                                       | <u> </u>                                         | chrown much seawant with sticks a                                                                                   |
|   | 12590                        | 6,9                         |                                       | ائي .                                            | chrown mudde sediment with sticks as                                                                                |
| - | 12591                        | 69                          |                                       |                                                  | brown mud with ver material                                                                                         |
| - | <b>¥</b> 12592               | 7.1                         |                                       |                                                  | ak mous mus with little veg mote                                                                                    |
| - | 12593                        | 7.0                         |                                       |                                                  | biack watery mus w/petrolium-like odo                                                                               |
| : | 12609                        | 7.1                         |                                       |                                                  | thick sk. brown oshesive musi with                                                                                  |
| - | 12610                        | 12                          |                                       |                                                  | ak brown very Thick colesing materia                                                                                |
| ÷ |                              | 1.                          |                                       | <u> </u>                                         | W/some very                                                                                                         |
| - |                              |                             |                                       |                                                  | materia                                                                                                             |
|   |                              |                             | · · · · · · · · · · · · · · · · · · · |                                                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                             |
| 1 |                              |                             |                                       |                                                  |                                                                                                                     |
| - |                              |                             |                                       |                                                  |                                                                                                                     |
| : |                              |                             |                                       |                                                  |                                                                                                                     |
| : |                              |                             |                                       |                                                  |                                                                                                                     |
| _ |                              |                             |                                       |                                                  |                                                                                                                     |
| - |                              |                             |                                       |                                                  |                                                                                                                     |
| - |                              | ;                           | -                                     |                                                  |                                                                                                                     |
| - | <del></del>                  | <del>-i i</del>             |                                       | ·                                                |                                                                                                                     |
| - | 12615                        |                             |                                       | <del></del>                                      | EPA anificial control sediment (77% med. and fine sand;                                                             |
|   | LCS                          |                             |                                       |                                                  | 17% kaplinite clay: 5% 0.5 mm-sieved peat; 1% CaCO3). Stored dry, then hydrated prior to addition to test chambers. |
| _ |                              | ct porewater                |                                       | , san                                            | d pH, decant and preserve sulfide and ammonia nples.                                                                |

hasurvwt.doc

| Client: Menzie-Cura | & Assoc. | Project: | 99033 | BTR: | 3629 / 3633 |
|---------------------|----------|----------|-------|------|-------------|
|                     |          |          |       |      |             |

Pate sediments distributed to test chambers (100 mL homogenized sediment):

H. azteca acute test: 10/8/99
 C. tentans acute test: 10/8/99

*H. azteca* chronic test:*C. tentans* chronic test:

| Sample<br>Number | porew<br>pH | porew<br>H2S | porew<br>Amm | Sediment Visual Characterization                                                                               |
|------------------|-------------|--------------|--------------|----------------------------------------------------------------------------------------------------------------|
| 12611            | 6.8         |              |              | black mud w/leaf litter                                                                                        |
| 12612            | 7.7         |              |              | Fine Brown mud                                                                                                 |
| 12613            | 7.7         |              |              | Soft Brawn mud                                                                                                 |
| 12614            | 7.5         |              |              | Soft Brown mud                                                                                                 |
| 12638            | 7.6         |              |              | Soft Brown mud                                                                                                 |
| 12639            | 7.3         |              |              | sticks + leaves on top + through out conesive mud, dark                                                        |
| 12640            | 7.2         |              |              | Sticks + leaf litter<br>Dark thick mud                                                                         |
| 12641            | 72          |              |              | SOFT Brown mud                                                                                                 |
|                  |             |              |              |                                                                                                                |
|                  |             |              |              |                                                                                                                |
|                  |             |              |              |                                                                                                                |
|                  |             |              |              |                                                                                                                |
|                  |             |              |              |                                                                                                                |
| 12622            |             |              |              | EPA artificial control sediment (77% med. and fine sand; 17% kaolinite clay; 5% 0.5 mm-sieved peat; 1% CaCO3). |
| LCS              |             |              |              | Stored dry, then hydrated prior to addition to test chambers.                                                  |

Extract porewater, measure and record pH, decant and preserve sulfide and ammonia  $\dot{}$ 

Entered by: 11C Date: 10/8/99

Reviewer: \_\_\_\_\_\_ Date: \_\_\_\_\_\_.
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

hasurvwt.doc

| <u> </u>                     |                |           |  |
|------------------------------|----------------|-----------|--|
| Client: Menzie-Cura & Assoc. | Project: 99033 | BTR: 3641 |  |

Date sediments distributed to test chambers (100 mL homogenized sediment):

- H. azteca acute test: 10/9/99C. tentans acute test: 10/9/99
- H. azteca chronic test:C. tentans chronic test:

| Sample<br>Number   | porew<br>pH | porew<br>H2S | porew<br>Amm | Sediment Visual Characterization                                                                           |
|--------------------|-------------|--------------|--------------|------------------------------------------------------------------------------------------------------------|
| 12664              | 7.8         |              |              | fine Cohesire mad.                                                                                         |
| ·<br>•             |             |              |              |                                                                                                            |
| 12665              | 7.3         |              |              | tine soft mud                                                                                              |
|                    | _           | :            |              |                                                                                                            |
| 12666              | 7.5         |              |              | First. Sticky / Cohesive mud                                                                               |
| !                  |             | :            |              | :                                                                                                          |
| -12667-JG<br>12671 | 7.4         | ·            |              | fine; brown mud - chironomides                                                                             |
|                    |             |              |              |                                                                                                            |
|                    | :           |              |              |                                                                                                            |
| :                  | !<br>       |              |              |                                                                                                            |
|                    |             |              |              |                                                                                                            |
|                    |             |              |              |                                                                                                            |
|                    |             |              |              |                                                                                                            |
| 12668              |             |              |              | EPA artificial control sediment (77% med, and fine san 17% kaolinite clay; 5% 0.5 mm-sieved peat; 1% CaCO3 |
| LCS                |             |              |              | Stored dry, then hydrated prior to addition to test chamber                                                |

Extract porewater, measure and record pH, decant and preserve sulfide and ammonia samples.

Entered by: 3 Date: 15/9/99

Reviewer Date 12/8/99
Laboratory Aquated Biological Sciences, South Burlington Vermont

hasurvwt doc

## Preparation of Formulated Control Sediment for Freshwater Sediment Toxicity Tests

Procedure based on EPA/600/R-94/024

Batch No. 10/4 Preparation Date: 10/4/99 Prepared by: 116.

| Ingredient                | Amount (g) | Percent composition |
|---------------------------|------------|---------------------|
| Fine sand                 | 1848       |                     |
| Medium sand               | 924        | 77                  |
| Kaolinite clay            | 612        | 17                  |
| Blended and 0.3 mm sieved |            |                     |
| Canadian sphagnum peat    | 180        | 5                   |
| CaCO3                     | 36         | 1                   |
| Total                     | 3600       | 100                 |

Store well-mixed and dry in a sealed Rubbermaid box. Label by batch number. Store copy of this documentation in project file. Store original in Sed/Water preparation notebook.

Hydrate to a cohesive sediment consistency before use.

## \_ DAILY CHECKLIST FOR AUTOMATED DELIVERY SEDIMENT TOXICITY TESTS

#### Week of October 3, 1999

| ACTIVITY / DAY                                                                                                                        | ; Sun                         | Mon.                                  | Tues.                     | Wed.                                         | Thurs.                                | Fri.       | Sat.     |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------|---------------------------|----------------------------------------------|---------------------------------------|------------|----------|
|                                                                                                                                       |                               |                                       | <del>!</del> —            | <u>;                                    </u> | <u></u>                               |            | <u></u>  |
| Prior to noon fill reservoir (1L)                                                                                                     | s'V                           |                                       | /                         |                                              |                                       | V          |          |
| Noon delivery cycle                                                                                                                   |                               | · · · · · · · · · · · · · · · · · · · |                           |                                              |                                       |            | ·····    |
| solitier boxes filling?                                                                                                               |                               |                                       | /                         | <b>t</b>                                     | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | <b>√</b> _ |          |
| syringes filling?                                                                                                                     |                               | : 🗸                                   | <u></u>                   |                                              |                                       |            |          |
| needes flowing?                                                                                                                       | 1/                            | ! /                                   |                           |                                              | · /                                   | U.         |          |
| • beaker screens clear, flowing?                                                                                                      |                               |                                       | : /                       | V                                            |                                       | · //       |          |
| • oranage to waste oil?                                                                                                               |                               | <b>/</b> ,                            |                           | <b>/</b>                                     | 7,                                    | V          |          |
| • empty waste buckets?                                                                                                                |                               |                                       | V                         |                                              | V                                     | V          |          |
| Test monitoring                                                                                                                       |                               |                                       |                           |                                              |                                       |            |          |
| • test temperature oid?                                                                                                               |                               | · V                                   |                           | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \        |                                       | 1          |          |
| • 0.0. ox?                                                                                                                            | V                             |                                       | . /_                      |                                              |                                       |            |          |
| sneck for floating organisms                                                                                                          | <b>U</b>                      | <b>V</b>                              | V/                        | V                                            | V                                     | 1/         |          |
| • feeding completed?                                                                                                                  |                               |                                       | ; 🗸                       | i V                                          |                                       | 1/         | V        |
| Additional activities  Phor to manight fill reservors (12)  Check sedment water supply                                                |                               |                                       |                           | V                                            | <b>Y</b>                              | V          |          |
| Corrective Action /                                                                                                                   |                               |                                       | <del></del>               | <u> </u>                                     |                                       | :          | <u> </u> |
| Comments                                                                                                                              |                               |                                       | :                         | :                                            |                                       | 1          |          |
| Initials/Date                                                                                                                         | 16 13                         | 75 pla                                | 16/5                      | اران<br>مارد                                 | 25.07                                 | TO Y       | ye 10/   |
| Procedure: All operating systems are in progress. Correct action on this form. If project Documentation form) and incomplete actions. | ive action m<br>-specific doc | iust be taki<br>umentatio             | en whenev<br>ה is require | er appropr                                   | iate. Docu                            | ment com   | ective   |
| Comments:                                                                                                                             |                               |                                       |                           |                                              |                                       |            |          |
|                                                                                                                                       |                               |                                       |                           |                                              |                                       |            |          |
|                                                                                                                                       |                               |                                       |                           |                                              |                                       |            |          |

Reviewer \_\_\_\_\_\_ Date \_\_\_\_\_ (248)49 Laboratory, Aquateo Biological Sciences, South Burlington, Vermont

### DAILY CHECKLIST FOR AUTOMATED DELIVERY SEDIMENT TOXICITY TESTS

Week of October 10, 1999

| ACTIVITY / DAY                                                                                  | Sun.         | Mon.                                  | Tues.                                 | Wed.        | Thurs.                                | Fri.         | Sat.         |  |
|-------------------------------------------------------------------------------------------------|--------------|---------------------------------------|---------------------------------------|-------------|---------------------------------------|--------------|--------------|--|
|                                                                                                 |              |                                       |                                       |             |                                       |              |              |  |
| Prior to noon fill reservoirs (1L)                                                              | ~            |                                       | V                                     | \ <u></u>   |                                       | <b>/</b>     | V            |  |
|                                                                                                 |              |                                       |                                       |             |                                       |              |              |  |
| Noon delivery cycle                                                                             |              |                                       |                                       |             | ,                                     |              |              |  |
| • splitter boxes filling?                                                                       | V            | /                                     | V,                                    | · · /       | V                                     | /            |              |  |
| • syringes filling?                                                                             | \_/          | V                                     | V                                     |             | V                                     | /            | /            |  |
| • needles flowing?                                                                              |              | 1                                     | V                                     | V.          | V                                     | /            | /            |  |
| • beaker screens clear, flowing?                                                                |              |                                       | V.                                    | 1           | 1                                     | /            | V            |  |
| drainage to waste ok?                                                                           | 1/           | 1                                     | V                                     | 1/          | V/                                    | /            |              |  |
| empty waste buckets?                                                                            | 11           |                                       | ./                                    |             |                                       |              |              |  |
| <del></del>                                                                                     |              | <u> </u>                              |                                       | <u>'</u>    | ·                                     | <u>i</u>     | ·            |  |
| Test monitoring                                                                                 |              | ,                                     |                                       |             | ,                                     |              |              |  |
| • test temperature ok?                                                                          |              |                                       | V                                     | 1           | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |              |              |  |
| • D.O. pk?                                                                                      |              |                                       | 1/                                    | 1/1         | (R3) /                                |              | V            |  |
| check for floating organisms                                                                    | ¥1) (1×      |                                       |                                       | V           |                                       | 1            | 1./_         |  |
| • feeding completed?                                                                            |              |                                       | V                                     | V           | V                                     | 1/           |              |  |
|                                                                                                 |              | · · · · · · · · · · · · · · · · · · · | <del></del>                           | · <u> </u>  |                                       |              |              |  |
| Additional activities                                                                           |              |                                       | _                                     | ,           |                                       | ,            |              |  |
| Prior to midnight fill reservoirs (1L)                                                          |              | 1/2                                   |                                       | 1./         |                                       | 1/           | V            |  |
| Check sediment water supply                                                                     |              |                                       |                                       |             |                                       | 1            | V            |  |
|                                                                                                 |              | <del></del>                           |                                       | ·           | <u></u>                               |              | <del></del>  |  |
| Corrective Action /<br>Comments                                                                 |              |                                       | · · · · · · · · · · · · · · · · · · · |             |                                       |              |              |  |
| •                                                                                               | / w =        |                                       |                                       |             |                                       |              |              |  |
|                                                                                                 | m S          | 7/2/11                                | 15. 15                                | 1000        | Tm                                    | HG.          | 76-          |  |
| Initials/Date                                                                                   | 10110        | 10/11                                 | 10/20                                 | 10/13       | 014                                   | 10/15        | 10/16        |  |
|                                                                                                 |              | <del></del>                           | · · · · · · · · · · · · · · · · · · · | <del></del> | <del> </del>                          | <del>/</del> | <del> </del> |  |
| Procedure: All operating system                                                                 | ns listed al | bove must                             | be checke                             | ed on a dai | ly basis wh                           | en sedime    | ent toxicity |  |
| ests are in progress. Corrective action must be taken whenever appropriate. Document corrective |              |                                       |                                       |             |                                       |              |              |  |

<u>Procedure</u>: All operating systems listed above must be checked on a daily basis when sediment toxicity tests are in progress. Corrective action must be taken whenever appropriate. Document corrective action on this form. If project-specific documentation is required, write a brief description (on Project Documentation form) and include with the test data package.

| Comments: | " ( ar/4         |                |          |               |
|-----------|------------------|----------------|----------|---------------|
| K1)       | 12 591 Vall reps | had floaters   | 10/10 Tm | Squirted Them |
|           | down most s      | peined to be   | living   |               |
| (xid)     | 7 1              | id floorers ic |          |               |

3) 12666 Ha and (+. got an extra monval renewal 13/14 Jun pm

Reviewer Date /2/8/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

seddelfw.doc 0 0 0 8 6

### DAILY CHECKLIST FOR AUTOMATED DELIVERY SEDIMENT TOXICITY TESTS

Week of October 17, 1999

| ACTIVITY / DAY                 |             |                                       |             |                                        |        |         |      |
|--------------------------------|-------------|---------------------------------------|-------------|----------------------------------------|--------|---------|------|
| ACTIVITY DAT                   | Sบก.        | . Моп.                                | Tues.       | Wed.                                   | Thurs. | Fri.    | Sat. |
| Prior to noon fill reservoirs  |             | : <u>/</u>                            |             |                                        |        |         | /    |
| loon delivery cycle            |             |                                       |             | . 1                                    |        |         | _    |
| spiliter bases filling?        |             | : /                                   |             | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |        | V       |      |
| sympes filling?                |             | _/                                    |             | J,                                     |        |         |      |
| needes flowing?                |             |                                       |             | V                                      |        |         | 1/   |
| beater screens clear, flowing? |             | /                                     |             | $\overline{}$                          | /      |         |      |
| crainage to waste old?         |             |                                       |             |                                        |        |         |      |
| errory weste ouckers of which  |             |                                       |             |                                        |        | VV      | 1/1/ |
| Test monitoring Digital        |             | <del>, , ,</del>                      |             |                                        |        |         |      |
| 2.0. ox?                       |             |                                       |             |                                        |        | 1       |      |
| check for floating organisms   | <del></del> | · · · · · · · · · · · · · · · · · · · | <del></del> |                                        |        |         |      |
| feeding completed?             | <del></del> | 10                                    |             |                                        |        |         |      |
| Additional activities          |             |                                       |             | /,                                     | V      | 1       |      |
|                                |             |                                       | : 🗸         |                                        |        | $\in V$ | 1    |
| TECK SECRETE WERE SLIDBY       |             |                                       |             | •                                      |        |         |      |
| Corrective Action /            |             |                                       | !           |                                        | 1      | 1       |      |
| Corrective Action /            |             | م ا                                   |             | 36                                     | 35     |         |      |

Documentation form) and include with the test data backage.

Comments: ( Harris reach test set yet are field or lay - 1 (day

Mor to crazant and trans) ( reliables

Expersive with the test data backage.

Experie was for H.2. change = Line / Recor Mose = Recon Water Secondary

Reviewer \_\_\_\_\_\_ Date 1.2/8/99
Laboratory Adulates Biological Sciences South Burlington Vermont

000087

## DAILY CHECKLIST FOR AUTOMATED DELIVERY SEDIMENT TOXICITY TESTS

#### Week of October 24, 1999

| ACTIVITY / DAY                                                                                                                                 | Sun.                                      | Mon.                            | Tues.                     | Wed.           | Thurs.       | Fri.       | Sat.        |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------|---------------------------|----------------|--------------|------------|-------------|
| Prior to noon fill reservoirs (1L)                                                                                                             |                                           | /                               | V                         |                |              | V          |             |
| Noon delivery cycle                                                                                                                            |                                           |                                 |                           |                |              |            |             |
| splitter boxes filling?                                                                                                                        |                                           |                                 | IV                        |                | 1 V          | V          |             |
| • syringes filling?                                                                                                                            |                                           | 1                               |                           | 1              |              | V          |             |
| needles flowing?                                                                                                                               |                                           |                                 |                           | V.             | V            | V,         |             |
| beaker screens clear, flowing?                                                                                                                 | V                                         | 1                               | 1                         | V              | ·//          | 1          |             |
| dirainage to waste ok?                                                                                                                         | 1                                         | J N                             | 1                         | Y/             | }            | / /        |             |
| empty waste buckets?                                                                                                                           | VIV                                       | VV                              | YJ                        | $\overline{V}$ | VV           | V V        |             |
| Test monitoring                                                                                                                                | <del>,</del>                              | · · · · · · · · · · · · · · · · | <del>,</del>              | \<br>          | ,            | \<br>      |             |
| test temperature ok?                                                                                                                           |                                           | V                               | l V                       | V              | V            |            | 1           |
| • D.O. ok?                                                                                                                                     |                                           | 1/                              |                           | \ <u>/</u>     | V/_          | V          |             |
| check for floating organisms                                                                                                                   |                                           | V/                              |                           | W              | Y            | <u>//</u>  | ./          |
| feeding completed?                                                                                                                             | <u>/</u>                                  | V                               |                           |                |              | 1 2        | <u></u>     |
| Additional activities                                                                                                                          |                                           | _                               |                           |                |              | _          |             |
| Prior to midnight fill reservoirs (1L)                                                                                                         |                                           |                                 |                           | IV.            | 1            | 11/        |             |
| Check sediment water supply                                                                                                                    |                                           |                                 |                           |                | <b>\</b>     |            |             |
| <u> </u>                                                                                                                                       |                                           |                                 |                           | · ·            |              |            | <del></del> |
| Corrective Action /<br>Comments                                                                                                                |                                           |                                 |                           |                |              |            |             |
|                                                                                                                                                | 1/2                                       |                                 | EM -                      | mag            | <del>/</del> | 1          |             |
| Initials/Date                                                                                                                                  | 10/24                                     | 11/0/2                          | Mare                      | (0)35          | 10 38<br>11  | 10/30      | 10/30/16    |
| Procedure: All operating system tests are in progress. Corrective action on this form. If project-sp Documentation form) and include Comments: | ns listed al<br>e action m<br>pecific doc | ust be take<br>umentatio        | en whenev<br>n is require | er appropr     | iate. Docu   | iment corr | ective      |
|                                                                                                                                                |                                           |                                 |                           |                |              |            |             |
|                                                                                                                                                |                                           |                                 |                           |                |              |            |             |

Reviewer \_\_\_\_\_ Date 12 | 8/99 Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

seddelfw.doc

### DAILY CHECKLIST FOR AUTOMATED DELIVERY SEDIMENT TOXICITY TESTS

Week of October 31, 1999

|                                                                                                                                      |                          |                                               |                                        | 1915          | 1 == 3     | F-:                                     | <u></u> |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------|----------------------------------------|---------------|------------|-----------------------------------------|---------|
| ACTIVITY / DAY                                                                                                                       | Sun.                     | Mon.                                          | Tues.                                  | Wed.          | Thurs.     | Fri.                                    | Sat     |
| 50.000                                                                                                                               | <del>/</del>             | <u>,                                     </u> |                                        |               |            | - 7.                                    |         |
| Prior to noon fill reservoirs (1L)                                                                                                   | <u> </u>                 |                                               | <u> </u>                               | $\checkmark$  | V          | $\checkmark$                            |         |
| Noon delivery cycle                                                                                                                  |                          |                                               |                                        |               |            |                                         |         |
| • splitter bores filling?                                                                                                            | . 🗸                      | · /                                           | 1 🗸                                    | <b>V</b>      | V          |                                         | /       |
| * synnges filling?                                                                                                                   |                          | /                                             | · /                                    | <u> </u>      |            |                                         |         |
| • needles flowing?                                                                                                                   |                          |                                               | 1 /                                    | · /           |            | V                                       |         |
| beaker screens clear, flowing?                                                                                                       | ·                        | V /                                           |                                        |               | ! <b>/</b> |                                         |         |
| crainage to waste ox?                                                                                                                | \ <u>\</u>               | 1 1                                           | v 4 1                                  |               | ·          | $y_1$                                   | 4.      |
| empty waste buckets?                                                                                                                 | VIV                      | $\sqrt{ }$                                    | VV                                     | ノレ            | VIV        | V 1V                                    | VV      |
| Test monitoring                                                                                                                      |                          |                                               | ······································ |               |            |                                         |         |
| • test temperature ok?                                                                                                               | V                        | V                                             |                                        |               |            | /                                       | 1       |
| • 0.0 ok?                                                                                                                            |                          | . V                                           | <u> </u>                               | <b>/</b>      |            |                                         |         |
| check for floating organisms                                                                                                         |                          |                                               |                                        | / /           | V          |                                         | //      |
| • feeding completed?                                                                                                                 | V                        | V                                             | 1/                                     | $\overline{}$ |            | <b>V</b>                                | V       |
| Additional activities                                                                                                                |                          |                                               | j                                      |               |            |                                         |         |
| Prior to midnight fill reservoirs (11)                                                                                               |                          | $\sqrt{}$                                     |                                        | V             | 1          |                                         |         |
| Check sediment water supply                                                                                                          | V                        | · V                                           |                                        |               |            |                                         | -       |
|                                                                                                                                      |                          |                                               |                                        |               |            |                                         |         |
| Corrective Action /<br>Comments                                                                                                      |                          |                                               |                                        |               |            | · • • • • • • • • • • • • • • • • • • • |         |
| Initials/Date                                                                                                                        | 15/31                    | 11/17                                         | S THE THE                              | m             |            | 11/5                                    | 11/6    |
| Procedure: All operating system tests are in progress. Corrective on this form, if project-specific aboutmentation form) and include | e action mi<br>documenta | ust be take<br>ition is regi                  | n wheneve<br>Bred, white               | er appropri   | ate. Docu  | ment corre                              |         |
| Comments: 11/5/99/mia-                                                                                                               | Hat rene                 | سنه بنوند                                     | ري وي                                  | لحتيتك        | ्रितीव     | ਲਿੰ≅ਾਂ (                                | 05:20   |
| · Nhoo                                                                                                                               | mene: 3                  | _                                             |                                        | 5.00 H/F      |            | 11/6                                    |         |

Reviewe: \_\_\_\_\_ Date \_12/8/99 seggethin doc

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont



## Reference Toxicant Control Chart Hyalella azteca in Potassium chloride (mg/L)

|        |          | Organism |                 |        |                    |        | · · · · · · · · · · · · · · · · · · · |
|--------|----------|----------|-----------------|--------|--------------------|--------|---------------------------------------|
| Test   | Test     | Age      | 96-Hr.          | Mean   | Lower              | Upper  | Organism                              |
| Number | Date     | (Days)   | LC50            | LC50   | Limit              | Limit  | Source                                |
| · n    | 12/20/97 | :0       | 250 000         | 250 00 |                    |        | Env. Consult & Testing                |
| 2      | 04/15/98 | 5        | 340,198         | 295 10 | 157.54             | 422.66 | Env. Consult & Testing                |
| 3      | 04:17/98 | 13       | 340 198         | 310.13 | 20 <del>5</del> 98 | 414.28 | Env. Consult & Testing                |
| 4      | 08/04/98 | -4       | 561 231         | 372 91 | 107 80             | 63E 02 | Env. Consult & Testing                |
| 5      | 05/22/98 | •:       | 353,553         | 369 04 | 138 79             | 599.28 | Env. Consult & Testing                |
| £      | 09/13/98 | • •      | 347 163         | 365 39 | 158 58             | 572 10 | Env. Consut & Testing                 |
| -      | 1072578  | •2       | 324 210         | 359 5* | 168 26             | 550 76 | Env. Consult & Testing                |
| ٤      | 11113/98 | •:       | 183 717         | 337 53 | -21.20             | 553 87 | Env. Consult & Testing                |
| ş      | 02/19/99 | ş        | 353 <i>5</i> 53 | 339 31 | 136 67             | 541.95 | Env. Consult & Testing                |
| •3     | 05/13/99 | 8        | 280,615         | 333 44 | 13E E1             | 52E 07 | Env. Consult & Testing                |
| ••     | 06/21/99 | •2       | 353 553         | 335 27 | 150 23             | 520.31 | Env. Consult & Testing                |
| •2     | 06/25/99 | *4       | 297 302         | 332 ** | 154 32             | 509 89 | Env. Consult & Testing                |
| •3     | 062699   | 13       | 250 616         | 328 15 | - 55 55            | 500.74 | Env. Consult & Testing                |
| -4     | 07/02/99 | -        | 198 425         | 318 88 | .35 .7             | 498 £2 | Emil Consult & Testing                |
| •5     | 07/07/99 | ŧ        | 376 929         | 322 55 | 145 93             | 49E B4 | Env. Consult & Testing                |
| •=     | 07/07/99 | -        | -76 7           | 313 -5 | 12E 73             | 498 77 | Aquatic Research Organism             |
| - 7    | 09/13/99 | ••       | 250 000         | 310 00 | 28.21              | 491.80 | Aduatic Research Organism             |
| - 5    | 10/08/99 | 9        | 210,224         | 304 45 | .21 93             | 456 99 | Aduatic Research Organism             |
| •\$    | 1073/99  | 13       | 280 616         | 303 20 | 125.48             | 480 93 | Aquano Research Organism              |
| 20     | 10.73/99 | 9        | 353 553         | 305 72 | 131.28             | 4BC 17 | Aquatic Research Organism             |



## Hyalella azteca Chronic Survival, Growth and Reproduction Toxicity Tests Conducted on Sediment Samples from the Solutia Site, Sauget, Illinois

Reference BTRs 3615, 3622, 3629, 3633, 3641, 3643

Prepared for:
Menzie-Cura & Associates
1 Courthouse Lane, Suite 2
Chelmsford, MA 01824



Prepared by: **Aquatec Biological Sciences**75 Green Mountain Drive
South Burlington, Vermont



## **Aquatec Biological Sciences**









BTRS 3615, 3622, 3629, 3633, 3641, 3643

PROJECT: 99033

I have reviewed this data package, which was completed under my supervision. This data package is complete, and to the best of my ability, accurately reflects the conditions and the results of the reported tests.

John W. Williams

Toxicity Laboratory Manager

/2 / 23/99 Date

I have reviewed and discussed this data package with the responsible laboratory manager. Based on this review, the data package was, to the best of my knowledge and belief, conducted in accordance with established company quality assurance procedures.

Philip C. Downey, Ph.D.

Director

12/3/199 Date

#### TABLE OF CONTENTS

| EXECUTIVE SUMMARY   | 1 |
|---------------------|---|
| INTRODUCTION        | 2 |
| METHODS             | 2 |
| PROTOCOL DEVIATIONS | 4 |
| RESULTS             | 4 |
| QUALITY ASSURANCE   | 5 |

#### LIST OF APPENDICES

| APPENDIX A: | RESULTS OF WHOLE SEDIMENT TOXICITY TESTS                                         |
|-------------|----------------------------------------------------------------------------------|
| APPENDIX B: | CHAIN-OF-CUSTODY DOCUMENTATION                                                   |
| APPENDIX C: | LABORATORY DOCUMENTATION AND DATA ANALYSES FOR<br>Hyalella azteca TOXICITY TESTS |
| APPENDIX D: | RESULTS OF STANDARD REFERENCE TOXICANT TESTS                                     |

#### **EXECUTIVE SUMMARY**

# 100.1HA Amphipod, Hyalella azteca, 42-day Chronic Survival, Growth, and Reproduction Test Conducted October 19 - December 3, 1999 for Menzie-Cura & Associates Solutia Site, Sauget Illinois

| Lab<br>Test<br>ID | Sample<br>ID              | Day 28<br>Mean<br>Survival<br>(%) | Day 28<br>Mean Dry<br>Weight<br>(mg) | Day 35<br>Mean<br>Survival<br>(%) | Day 42<br>Mean<br>Survival<br>(%) | Day 42<br>Mean Dry<br>Weight<br>(mg) | Day 42<br>Mean Number<br>of Neonates/<br>Female |
|-------------------|---------------------------|-----------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------|-------------------------------------------------|
| 12546             | BTOX-C-1                  | 93                                | 0.766                                | 92                                | 87                                | 0.510                                | 11.5                                            |
| 12547             | BTOX-C-2                  | 88                                | 0.456                                | 76                                | 73                                | 0.489                                | 3.7                                             |
| 12548             | BTOX-C-3                  | 90                                | 0.656                                | 80                                | 76                                | 0.402                                | 3.3                                             |
| 12549             | BTOX-D-1                  | 89                                | 0.571                                | 85                                | 84                                | 0.414                                | 5.1                                             |
| 12550             | BTOX-D-2                  | 87                                | 0.684                                | 85                                | 81                                | 0.428                                | 4.0                                             |
| 12551             | BTOX-D-3                  | 80                                | 0.731                                | 79                                | 79                                | 0.400                                | 3.5                                             |
| 12552             | Laboratory Control        | 55                                | 0.982                                | 51                                | 46                                | 0.231                                | 0.6                                             |
| 12589             | BTOX-B-1                  | 23*                               |                                      | 8*                                | 8*                                |                                      |                                                 |
| 12590             | BTOX-B-1 (Dup)            | 22*                               |                                      | 26*                               | 26*                               |                                      |                                                 |
| 12591             | BTOX-B-2                  | Acute                             | Toxicity                             |                                   | -                                 |                                      |                                                 |
| 12592             | BTOX-B-3                  | 49*                               |                                      | 40*                               | 39*                               | -                                    |                                                 |
| 12593             | BTOX-B-M                  | 88                                | 0.481                                | 89                                | 85                                | 0.348                                | 1.6                                             |
| 12609             | E-1 Dead Creek            | 72 <b>°</b>                       |                                      | 63*                               | 56*                               |                                      |                                                 |
| 12610             | E-2 Dead Creek            | 97                                | 0.612                                | 94                                | 91                                | 0.462                                | 4.6                                             |
| 12611             | E-3 Dead Creek            | 67*                               |                                      | 53                                | 50°                               |                                      |                                                 |
| 12612             | <b>BP-1 Borrow Pit</b>    | 93                                | 0.594                                | 88                                | 83                                | 0.380                                | 4.1                                             |
| 12613             | BP-1 (Dup) Borrow Pit     | 89                                | 0.636                                | 80                                | 75                                | 0.423                                | 4.2                                             |
| 12614             | <b>BP-3 Borrow Pit</b>    | 95                                | 0.470                                | 86                                | 84                                | 0.322                                | 5.3                                             |
| 12615             | Laboratory Control        | 62                                | 0.296                                | 36                                | 33                                | 0.299                                | 1.8                                             |
| 12622             | Laboratory Control        | 55                                | 0.501                                | 38                                | 35                                | 0.377                                | 4.0                                             |
| 12638             | BP-2 Borrow Pit           | 82                                | 0.563                                | 74                                | 73                                | 0.390                                | 4.3                                             |
| 12639             | F1 Dead Creek             | 91                                | 0.639                                | 89                                | 84                                | 0.397                                | 4.8                                             |
| 12640             | F2 Dead Creek             | 90                                | 0.554                                | 74                                | 70                                | 0.447                                | 3.8                                             |
| 12641             | F3 Dead Creek             | 89                                | 0.661                                | 85                                | 76                                | 0.406                                | 4.8                                             |
| 12664             | Prairie DuPont            | 90                                | 0.443                                | 83                                | 79                                | 0.346                                | 2.6                                             |
| 12665             | Praire Dupont 2           | 89                                | 0.648                                | 85                                | 80                                | 0.498                                | 6.2                                             |
| 12666             | Reference Creek           | 70°                               |                                      | 64                                | 65                                | 0.459                                | 2.3                                             |
| 12668             | <b>Laboratory</b> Control | 73                                | 0.477                                | 65                                | 59                                | 0.293                                | 2.2                                             |
| 12671             | Ref 2-2 Ref Borrow Pit    | 87                                | 0.458                                | 85                                | 83                                | 0.351                                | 3.4                                             |

<sup>\*</sup> A statistically significant reduction in the response was observed (relative to a corresponding Reference Site response. P<0.05):

<sup>--</sup> When a significant reduction in survival on Days 28 or 42 was detected, mean dry weight and reproduction data were only reported in Appendix A (See Results)

#### **INTRODUCTION:**

Samples were received for toxicity testing at Aquatec Biological Sciences of 75 Green Mountain Drive, South Burlington, Vermont. The results of the following tests are reported:

Client:

Menzie-Cura & Associates

Facility/Location:

Dead Creek / Sauget, Illinois October 4 - October 9, 1999

Initial Sampling Date: Testing Dates:

October 19 - December 3, 1999

Tests Conducted:

Amphipod, Hyalella azteca, Chronic 42-day

Survival, Growth, and Reproduction

#### METHODS:

#### **Toxicity Tests**

The procedures followed in conducting these toxicity tests were based on <u>draft</u> methods described by the USEPA (EPA 600/R-98/XXX [new number pending]). Test conditions for *Hyalella azteca* are listed in Table 1. Testing was completed in four separate groupings based upon chronological sequencing from the time of sediment collection. The objective for the test groupings was to complete the 10-day acute tests prior to expiration of a project-specific 14-day sediment storage time so that subsequent chronic toxicity tests could be started within a 14-day time frame. The acute toxicity results were reported separately (Aquatec Biological Sciences, December 1999).

Sediments were loaded into beakers for chronic testing within one day after completion of the acute toxicity tests, therefore, the objective of starting all tests within 14-days from the time of collection was accomplished for all samples. Chronic toxicity testing with *Hyalella azteca* was initiated for all samples received because some acute toxicity retests were also being started concurrently. Chronic toxicity testing for the first testing group was initiated on October 19, 1999. The second testing group was initiated on October 20, 1999. The third testing group was initiated on October 21, 1999. The fourth testing group was initiated on October 22, 1999. After the conclusion of the acute retests, chronic testing of Sample 12591 was suspended on Day 16 because acute toxicity was confirmed and then verified by examination of several replicates from the chronic test replicates.

A laboratory control (artificial sediment) was included with each testing group. Amphipods, seven days old, obtained from Aquatic Research Organisms were used for chronic toxicity tests.

Test organisms were exposed for 28 days to sediment samples. On Day 28, surviving amphipods were assessed for survival (all replicates) and growth (by dry weight, four replicates). Organisms from eight replicates were shifted to water only exposure for subsequent survival, growth, and reproduction (neonate production) assessment.

Chronic toxicity tests were ended on Day 42. Overlying water was renewed either automatically or manually. For those samples/replicates renewed automatically, the renewal cycle was programmed for midnight and noon of each day. For samples/replicates renewed manually, the renewal cycle was performed at approximately 7:00 a.m. and 7:00 p.m. daily. Documentation of renewals and renewal system checks is located in Appendix C. At the conclusion of the sediment exposure any additional amphipods recovered during Quality Assurance repicks were included in the Day 28 replicate survival assessment, but were not included in the replicate growth assessment.

#### Sediment Preparation

The samples were stored refrigerated and in the dark whenever they were not being used in preparation for testing. Sediments distributed in test beakers were examined for the presence of indigenous organisms that were removed when observed. Also, large pieces of vegetative material (e.g., leaf litter, sticks, grass) were removed if observed. Qualitative observations regarding the sediment type and indigenous organisms removed were recorded. The laboratory control sediment (artificial sediment) was prepared following formulations specified in the USEPA protocols and then hydrated prior to distribution to test chambers. Sediments were then distributed to individual replicate test chambers, overlying water was added, and the overlying water renewal system was activated. The unused portion of each sample (in the original sample container) was returned to refrigerated storage.

#### Statistical Analyses

Laboratory Control survival was variable and generally below the 28-day <u>draft</u> protocol target limits (This variability may reflect limitations of the USEPA recommended sediment formulation for adequately supporting *Hyalella azteca* survival and growth over extended periods of time.). Statistical comparisons were made against appropriate reference sites since this evaluation would provide more relevant biological comparisons.

Survival of the original amphipods and production of neonates was evaluated on Days 35 and 42. On the Day 35 assessment, the number of original amphipods were counted (alive) in the test beakers while the neonates were removed for enumeration. On Day 42 the original amphipods were removed and weighed, while the additional neonates produced were enumerated. Occasionally, the number of original amphipods counted on Day 35 was lower than those counted on Day 42, due in a large part to underestimation of Day 35 original amphipods associated with the variability of counting live swimming organisms. Statistical analysis of the Day 35 survival data was conducted on the observed counts.

Test data were evaluated for normality and equality of variance and the grouped data (See Results for statistical groupings.) were tested by appropriate parametric or non-parametric multiple comparison statistical tests to identify significant reductions in the response relative to the site-specific reference sample. Proportion surviving data were transformed (Arcsin square-root) before analysis. Statistical significance for any sample was based upon the most sensitive endpoint observed.

#### **PROTOCOL DEVIATIONS:**

Several test replicates were excluded from the data tabulations and statistical analysis because of apparent discrepancies in the number of test organisms allocated to these replicates. The affected test replicates included: Samples 12546 (Replicates C and D); 12551 (Replicate C); 12590 (Replicate K); and, 12610 (Replicate E).

Sample 12550, Replicate F apparently had an initial allocation of eleven amphipods rather then

Sample 12593 exhibited *Hyalella azteca* acute toxicity in the retest series. Replicate L of the *Hyalella azteca* chronic test for this sample was examined on Day 15. Surviving amphipods were recovered in this replicate, therefore the chronic toxicity test was continued. Replicate L was removed from the testing system and excluded from the analysis of chronic data.

Some minor recording discrepancies in the number of amphipods surviving versus the number of amphipods weighed occurred: 12662 Replicate K (Day 28 seven surviving, six weighed); 12638 Replicate C (Day 42 nine surviving, eight weighed); 12640 Replicate C (Day 42 five surviving, six weighed); 12640 Replicate H (Day 42 seven surviving, eight weighed); and, 13641 D (Day 42 seven surviving, nine weighed). Data were tabulated and statistical analyses were performed using the recorded data.

#### **RESULTS:**

Summary result tabulations for the *Hyalella azteca* whole sediment toxicity tests are located in Appendix A.

Statistical Group 1 Results (Lotic, creek habitat): The combined responses for samples 12664 (Prairie DuPont) and 12665 (Prairie Dupont 2) were used as reference site data for statistical comparisons. Two computer runs were conducted due to limitations associated with the statistical software (A limited number of samples can be analyzed concurrently).

The first computer run included samples 12549 (BTOX-D-1). 12550 (BTOX-D-2), 12551(BTOX-D-3), 12609 (E-1 Dead Creek). 12610 (E-2 Dead Creek). 12611 (E-3 Dead Creek). 12639 (F-1 Dead Creek). 12640 (F2 Dead Creek). and 12641 (F3 Dead Creek). Sample 12609 exhibited statistically significant reductions in mean survival on Days 28, 35, and 42. Sample 12611 exhibited statistically significant reductions in mean survival on Days 28 and 42.

This second computer run of statistical analyses included samples 12546 (BTOX-C-1), 12547 (BTOX-C-2), 12548 (BTOX-C-3), 12589 (BTOX-B-1), 12590 (BTOX-B-1 Dup), 12592 (BTOX-B-1), 12590 (BTOX-B-1 Dup), 12592 (BTOX-B-1), 12590 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12592 (BTOX-B-1 Dup), 12

3), 12593 (BTOX-B-M), and 12666 (Reference Creek). Samples 12589, 12590, and 12592 exhibited statistically significant reductions in mean survival on Days 28, 35, and 42. Sample 12666 exhibited a statistically significant reduction in mean survival on Day 28.

Statistical Group 2 Results (Lentic, pond habitat): Sample 12671 (Ref 2-2 Ref Borrow Pit) was used as the reference site for statistical comparisons. This statistical group included samples 12612 (BP-1 Borrow Pit), 12613 (BP-1 (Dup) Borrow Pit), 12614 (BP-3 Borrow Pit) and, 12638 (BP-2 Borrow Pit). None of the samples in this statistical group exhibited statistically significant reductions in the responses evaluated.

#### **QUALITY ASSURANCE:**

A standard reference toxicant SRT test was conducted concurrently with a representative batch of *Hyalella azteca*. The resulting LC50 value fell within control chart limits and was viewed as being acceptable.

#### Summary of Statistical Tests and Probabilities

BTR:

3615

|               |         | <u>Survival</u> |                 |                       |                          |            | <u>Gr</u>       | <u>owth</u>           |                          | Neonate Production |                 |                       |               |  |  |  |  |
|---------------|---------|-----------------|-----------------|-----------------------|--------------------------|------------|-----------------|-----------------------|--------------------------|--------------------|-----------------|-----------------------|---------------|--|--|--|--|
|               |         | Proportion      | F-Test<br>Equal | T-Test<br>Statistical | Statistically            | Average    | F-Test<br>Equal | T-Test<br>Statistical | Statistically            | Average neonates/  | F-Test<br>Equal | T-Test<br>Statistical | Statistically |  |  |  |  |
| <u>Day 28</u> |         | Surviving       | Variance        | Probability           | Significant <sup>1</sup> | Weight(mg) | Variance        | Probability           | Significant <sup>1</sup> | female             | Variance        | Probability           | Significant   |  |  |  |  |
| 12552         | Control | 0.55            |                 |                       |                          | 0.982      |                 |                       |                          |                    |                 |                       |               |  |  |  |  |
| 12546         | Sample  | 0.93            | 0.061           | 0.005                 |                          | 0.766      | 0.026           | 0.056                 |                          |                    |                 |                       |               |  |  |  |  |
| 12547         | Sample  | 0.88            | 0.669           | 0.000                 |                          | 0.456      | 0.183           | 0.003                 | •                        |                    |                 |                       |               |  |  |  |  |
| 12548         | Sample  | 0.90            | 0.742           | 0.000                 |                          | 0.656      | 0.905           | 0.040                 | *                        |                    |                 |                       |               |  |  |  |  |
| 12549         | Sample  | 0.89            | 0.192           | 0.000                 | -                        | 0.571      | 0.244           | 0.008                 | •                        |                    |                 |                       |               |  |  |  |  |
| <u>Day 35</u> |         |                 |                 |                       |                          |            |                 |                       |                          |                    |                 |                       |               |  |  |  |  |
| 12552         | Control | 0.51            |                 |                       |                          |            |                 |                       |                          |                    |                 |                       |               |  |  |  |  |
| 12546         | Sample  | 0.92            | 0.282           | 0.025                 |                          |            |                 |                       |                          |                    |                 |                       |               |  |  |  |  |
| 12547         | Sample  | 0.76            | 0.292           | 0.011                 |                          |            |                 |                       |                          |                    |                 |                       |               |  |  |  |  |
| 12548         | Sample  | 0.80            | 0.447           | 0.020                 |                          |            |                 |                       |                          |                    |                 |                       |               |  |  |  |  |
| 12549         | Sample  | 0.85            | 0.134           | 0,001                 |                          |            |                 |                       |                          |                    |                 |                       |               |  |  |  |  |
| Day 42        |         |                 |                 |                       |                          |            |                 |                       |                          |                    |                 |                       |               |  |  |  |  |
| 12552         | Control | 0.46            |                 |                       |                          | 0.231      |                 |                       |                          | 0.6                |                 |                       |               |  |  |  |  |
| 12546         | Sample  | 0.87            | 0.383           | 0.025                 |                          | 0.510      | 0.750           | 0.000                 |                          | 11.5               | 0.038           | 0.000                 |               |  |  |  |  |
| 12547         | Sample  | 0.73            | 0.475           | 0.014                 |                          | 0.489      | 0.725           | 0.000                 |                          | 3.7                | 0.157           | 0.002                 |               |  |  |  |  |
| 12548         | Sample  | 0.76            | 0.548           | 0.024                 |                          | 0.402      | 0.086           | 0.000                 |                          | 3.3                | 0.106           | 0.006                 |               |  |  |  |  |
| 12549         | Sample  | 0.84            | 0.112           | 0.001                 |                          | 0.414      | 0.039           | 0.000                 |                          | 5.1                | 0.189           | 0.000                 |               |  |  |  |  |
|               | •       |                 |                 |                       |                          |            |                 |                       |                          |                    |                 |                       |               |  |  |  |  |

<sup>1. \*</sup> A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05)

#### Amphipod, Hyalella azteca, Chronic Toxicity Test Results

#### Menzie-Cura Dead Creek 99033

BTR 3615 Aquatec Biological Sciences

|        |                |             | T            |                |             | Day J          | 8 Date         |             |            |         | they 39 theirs they de theirs |                            |            |          |            |                    | Pay        | 15 + 4/ No | production ! | Pala      | Day 45 throath Date |          |                |                |                                        |                      |            |
|--------|----------------|-------------|--------------|----------------|-------------|----------------|----------------|-------------|------------|---------|-------------------------------|----------------------------|------------|----------|------------|--------------------|------------|------------|--------------|-----------|---------------------|----------|----------------|----------------|----------------------------------------|----------------------|------------|
|        |                |             | j            |                | Mean        | Irollal Roal   | Total (by      |             | Me an Wil  | Mean Wi | 1                             |                            |            |          | l          |                    | Mean       |            | }            |           | Mean                | Mean     | [              |                |                                        | Marin Wi             | 84a au 144 |
| Sample |                | Stat        |              | Proportion     | Proportion  | Weight         | Weight         | (Ir gardeme | within Rep | Repo 14 |                               | Proportion                 | Mean       | Hamber   | ) . •      | Fraparlian         | tu vival / | •          |              | 8 Females | Neangles            | Nechales | Indial Pan     | Total day      | -                                      |                      | Replaces   |
| 12552  | Ropticata<br>A | Cause<br>10 | - Seminarion | 6 ac           | arts strait | (~8)           | (m8)           | Weight      | (mg)       | (mg)    | Burstyting                    | Bus viving<br>a 7a         | Bus viv at | Heander  | Startisbag | Survivorg<br>0 70  | Escapio    | Manueles   | Meanutes     | 1800      | / Female            | / Bampis | WI (mg)        | Mi (mb)        | Monthood                               | (72)                 | ψ·H        |
|        |                | 10          | ,            | 0 70           |             |                |                |             |            |         |                               | 0 00                       |            | ŏ        | 6          | 0 00               |            | ă          | 1 :          | ,         | 00                  |          | 31 30          | 33 07<br>00 0  | ,                                      | 0 747<br>0 000       |            |
|        | e              | 10          |              | 6 80           |             |                |                |             |            |         |                               | b 40                       |            | •        | ١ ٠        | 0 60               |            | •          |              | ī         | 0.0                 |          | 1477           | 78 14          | ă                                      | 0.273                |            |
|        | D<br>fr        | 10          | 1 .          | n /n<br>n 60   |             |                |                |             |            |         | !                             | 0 60<br>0 60               |            | •        | •          | 0.00               |            | 0          | 1 '          | 1         | 10                  |          | #44            | 27 66          | 4                                      | 0.717                |            |
|        | ;              | 10          |              | 0 60           |             |                |                |             |            |         | 1:                            | 0 40                       |            |          | 1:         | 0 40<br>0 40       |            | 6          | } ′          | ,         | 3 4                 |          | 24.01          | 24.16          | •                                      | 0 100                |            |
|        | a              | 10          |              | 0 00           |             |                |                |             |            |         |                               | 0 50                       |            | Ö        | 1          | 0 10               |            |            | 1 %          | 4         | 66                  |          | 27 23<br>28 10 | 20 16<br>20 70 | •                                      | 0 330                |            |
|        | 11             | tó          | ! !          | 0.70           |             |                |                |             |            |         | ,                             | 0 /0                       | 0 61       | ,        | ,          | 0 70               | 0 44       | ٥          | ( )          | 4         | 0 4                 | 0.6      | 36 31          | 20 66          | ;                                      | 0 170                | 0.321      |
|        | 1              | 10          | 1 ;          | 0 40<br>0 30   |             | 24 28<br>23 53 | 26 47<br>26 46 | •           | 0 6/7      |         | 1                             |                            |            |          | 1          |                    |            |            | Į            |           |                     |          | 1              | -              |                                        |                      |            |
|        | . i            | 10          |              | 0 40           |             | 24 62          | <b>70 48</b>   |             | 1 708      |         | }                             |                            |            |          | 1          |                    |            |            | ]            |           |                     |          | 1              |                |                                        |                      |            |
|        | t t            | 10          | ١,٠          | 0.50           | 0 25        | 20 D)          | 34 30          | i           | 10/2       | 0 66/   | 1                             |                            |            |          | [          |                    |            |            | ł            |           |                     |          | Í              |                |                                        |                      |            |
| 12546  | A              | 10          | 10           | 1 00           |             |                |                |             |            |         | 10                            | 1 00                       |            | 71       |            | 0 80               |            | 14         | 50           | 4         | • •                 |          | 20 10          | 31.06          |                                        | n she                |            |
|        |                | 16          | 10           | 1 00           |             |                |                |             |            |         | •                             | D <b>90</b>                |            | 7        | •          | 0 80               |            | 24         | 34           | 4         | • 0                 |          | 20 14          | 26 10          | i                                      | 0 685                |            |
|        | ,<br>b         | 10<br>10    | 1 :          |                |             |                |                |             |            |         | 1 :                           |                            |            |          | 1 :        | •                  |            | •          | ł ·          | •         | •                   |          | 1 .            |                | •                                      |                      |            |
|        | ï              | 10          |              | n 90           |             |                |                |             |            |         |                               | 0.00                       |            | 40       | 1 .        | 0.00               |            | 41         | ,,,          |           | 17.0                |          | 1              |                | •                                      |                      |            |
|        | •              | In          | 10           | § 695          |             |                |                |             |            |         |                               | f1 900                     |            | 11       | 1          | 11 80              |            | 7,         | 1 77         | ``        | 11.0                |          | 20 73<br>27 01 | 31 54          | •                                      | 12 5 54<br>(1 5 5 ft |            |
|        | f4             | <b>† 17</b> |              | s) 100         |             |                |                |             |            |         |                               | 0.00                       |            | \$0      | ٠.         | rr det             |            | 11         | 51           | á         | • •                 |          | 14 47          | 30.00          |                                        | 0.487                |            |
|        | **             | 10          | 10           | 1 00           |             | J4 No          | 12.11          | 10          | 0 //4      |         |                               | n <b>9</b> 0               | 0.01       | 29       | ٠ ا        | O Bo               | 11 #7      | 10         | 46           | 4         | 13.0                | 11.6     | 25.41          | 20 DB          | •                                      | et Aces              | 0.510      |
|        | i              | 10          | 1 7          | 0 /0           |             | 74 15          | 30 17          | ï           | 0 426      |         |                               |                            |            |          | l          |                    |            |            | ĺ            |           |                     |          | 1              |                |                                        |                      |            |
|        | R .            | 10          |              | 0.90           |             | 25.41          | 11 90          | •           | 0 /10      |         | 1                             |                            |            |          | l          |                    |            |            | }            |           |                     |          | l              |                |                                        |                      |            |
|        | i,             | 10          |              | 0 90           | 0.07        | J6 96          | 13.57          | •           | a 144      | D /66   | ł                             |                            |            |          | ļ          |                    |            |            | l .          |           |                     |          | l              |                |                                        |                      |            |
| 17547  | A .            | 10          | 16           | 1 (10)         |             |                |                |             |            |         | in.                           | 1 00                       |            |          | 10         | I no               |            | 11         | 74           | ,         | 3.4                 |          | 2/ 36          | 11 58          | 10                                     | 0.421                |            |
|        | Ĉ              | 10          | 1 :          | () <b>(94)</b> |             |                |                |             |            |         | 1:                            | 0 90<br>0 90               |            | 16<br>34 | 1 :        | 0 60<br>0 60       |            | ti<br>D    | 16           |           | 16                  |          | 25.97          | an es          |                                        | # 411                |            |
|        | Ü.             | 10          | 10           | 1.00           |             |                |                |             |            |         | ] ;                           | n / 0                      |            | 14       | ١ :        | 0.60               |            | 0          | 14           | ;         | 70                  |          | 24.73          | /9 40<br>30 84 | :                                      | D 441<br>D 865       |            |
|        | ,              | 10          |              | 0 80           |             |                |                |             |            |         | ,                             | n M0                       |            | 0        | ١ ،        | 0.40               |            | q          | n            | ;         | 0.0                 |          | 22.02          | 24 41          | - 7                                    | 0.403                |            |
|        | •              | 10          | 10           | 1.00           |             |                |                |             |            |         |                               | n <b>60</b>                |            | 4        | ۸ ا        | 0 80               |            | 14         | 70           | 4         | <b>9</b> 0          |          | 28 13          | 28 91          | Á                                      | 0.425                |            |
|        | 4              | 10<br>10    | l :          | 0 90<br>0 70   |             |                |                |             |            |         | , ,                           | 0 80<br>0 70               | 0.78       | 4        | l !        | n /n               |            | A          |              | •         | 71                  |          | 27 92          | 30.03          | ,                                      | D 429                |            |
|        | ,              | 10          | l :          | 0.00           |             | 21.55          | 27.42          | h           | 0.430      |         | ( ′                           | 0 /0                       | 11 / 16    |          | ł ′        | 0.70               | n / )      | 16         | 74           | •         | 4 8                 | 37       | 29 47          | 30.27          | ,                                      | П <b>А</b> Ч./       | 0.488      |
|        | i              | 10          | ) :          | 0.00           |             | 22.65          | 71 01          |             | 0.401      |         | ļ                             |                            |            |          | Į          |                    |            |            | }            |           |                     |          | l              |                |                                        |                      |            |
|        | R              | 10          | ٠,           | 0 90           |             | 77.00          | 24 184         | •           | n 1/7      |         | l                             |                            |            |          |            |                    |            |            | ł            |           |                     |          |                |                |                                        |                      |            |
|        | L.             | 10          | 10           | 1.00           | 0.88        | 24 BO          | 28 89          | 1p          | 0.479      | በ ልካቶ   | ĺ                             |                            |            |          | ł .        |                    |            |            | }            |           |                     |          |                |                |                                        |                      |            |
| 17548  | 2              | 10<br>10    | 10           | 1.00           |             |                |                |             |            |         | 10                            | 1.00                       |            | 18<br>21 | 10         | a An<br>Lao        |            | 10<br>13   | 7A<br>14     | 2         | 1 A<br>0 O          |          | 24 87          | 79 39<br>29 04 |                                        | II 448               |            |
|        | ,              | 10          | 1 5          | 0.10           |             |                |                |             |            |         | 1 '''                         | 0.10                       |            | 6        | l "        | 0.10               |            | ינו<br>ח   | , ,          | ō         | 9.0                 |          | 25 63<br>26 58 | 27 O1          | 10                                     | 0.141                |            |
|        | ö              | 10          | 10           | 1.00           |             |                |                |             |            |         | 10                            | 1.00                       |            | 13       | ,          | 0 90               |            | 18         | - 11         | 9         | 4.7                 |          | 1111           | 74 68          | ė                                      | 0 110                |            |
|        |                | tn.         |              | a <b>m</b> a   |             |                |                |             |            |         |                               | 0.90                       |            | 1        | •          | n Acı              |            | 11         | 17           | 4         | 1 0                 |          | 78 19          | 11 49          | n                                      | 0.411                |            |
|        |                | 10          | ! :          | 0.90           |             |                |                |             |            |         | <b>!</b> :                    | 0 <b>00</b><br>0 <b>00</b> |            | 5<br>17  |            | n na<br>1 10       |            | 74         | 1 4          | ,         | 3 D<br>4 #          |          | 24 (1)         | 21 13          |                                        | 0.485                |            |
|        | 11             | 10          | 10           | 100            |             |                |                |             |            |         | l :                           | 0.80                       | 0.00       | 4        | ,          | 0.00               | 0.79       | Ţ,         | 1 ;;         | 3         | 4 9                 | 33       | 29 AZ<br>24 93 | 14 21<br>76 /5 | 11                                     | 0.410<br>0.370       | 0.407      |
|        | 1              | 10          | 10           | 1 00           |             | /h /a          | 1/ 94          | 10          | 0.474      |         |                               |                            |            |          | 1          |                    |            |            | [            | -         |                     | •        | 1              |                |                                        |                      |            |
|        | i              | 1n          | ı î          | n <b>n</b> n   |             | 74.16          | 30 #1          | R           | 0.044      |         | [                             |                            |            |          | ł          |                    |            |            | 1            |           |                     |          |                |                |                                        |                      |            |
|        | R              | 10          | •            | n en           |             | 7% B%          | 11 1/1         |             | 0 070      |         | 1                             |                            |            |          | l          |                    |            |            | 1            |           |                     |          | (              |                |                                        |                      |            |
|        | !              | 10          | 10           | 1 00           | () (41)     | 25.52          | 10 84          | 10          | 0 5 17     | 0.058   | 10                            | 1 00                       |            | ia       | 10         | i oā               |            | 14         | 1 11         | 4         | 4.7                 |          | 7/ 07          | 10 /8          | 1n                                     | 0.571                |            |
| 17549  | A .            | 10          |              | 0.00           |             |                |                |             |            |         | 1 7                           | 0.00                       |            | 4        | 7          | 0.80               |            | 4          | 10           | í         | 10                  |          | 27 10          | 30 89          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | D 4R4                |            |
|        | ë.             | 10          | 1 .          | 0.80           |             |                |                |             |            |         | ,                             | 0.70                       |            | 21       |            | n an               |            | 71         | 44           | •         | 8.6                 |          | 74 01          | 22 AA          |                                        | 0 469                |            |
|        | ŧ)             | 10          | 10           | 1 00           |             |                |                |             |            |         | 1                             | 0.00                       |            | 1        |            | a ta               |            | ۸          | ! !          | ?         | 3.4                 |          | 26.48          | 10 41          | !                                      | 0.434                |            |
|        | t t            | In          | 10           | 1 00           |             |                |                |             |            |         | 1:                            | 04 t)<br>04 t)             |            | 14       |            | ti bei<br>fi bei   |            | 14         | 10           | 7         | 1 D<br>4 O          |          | 20 11<br>24 98 | 28 14<br>28 17 |                                        | # 3A1<br># 1/6       |            |
|        | 1.             | 10          | 10           | 0 00<br>0 00   |             |                |                |             |            |         |                               | 0 00                       |            | 19       | ı          | 17 dec)<br>(1 dec) |            | 9          | 10           | 4         | 7.4                 |          | JA 80          | 17 17          | ,                                      | n 197                |            |
|        | 11             | 10          | ;            | 0.00           |             |                |                |             |            |         | ļ ,                           | 0 76                       | 0.05       |          | 7          | 0.70               | 0.84       | 27         | 78           | •         | 5.6                 | 4.1      | 24 04          | 78 Att         | ,                                      | D 4 16               | 0.414      |
|        | ï              | 10          | ;            | 0.00           |             | 74 fi4         | 10 10          | 6           | 0.508      |         | }                             |                            |            |          |            |                    |            |            | Į.           |           |                     |          | (              |                |                                        |                      |            |
|        | 1              | 10          | . •          | n A0           |             | 27.33          | 10 /1          |             | 0.473      |         | 1                             |                            |            |          | l          |                    |            |            | i            |           |                     |          | 1              |                |                                        |                      |            |
|        | K              | 10          | 1 '          | 0 10<br>0 90   | 0.69        | 26 ID<br>25 87 | 11 68<br>31 69 | ,           | 0 641      | 0.5/1   | ł                             |                            |            |          |            |                    |            |            | 1            |           |                     |          | }              |                |                                        |                      |            |
|        |                | 10          | _ <u> </u>   | 0 10           |             |                | 31.79          |             |            | _""     | ـــــــ                       |                            |            |          |            |                    |            |            |              |           |                     |          |                |                |                                        |                      |            |

Replicate excluded from analysis. See Protocol Deviations.

15/5

## **Summary of Statistical Tests and Probabilities**

BTR:

|                         |                             |                         | <u>Su</u>                   | <u>rvival</u>                        |                                           |                         | <u>Gr</u>                   | <u>owth</u>    |                                           | N                              | eonate                      | <b>Producti</b>                      | on                           |
|-------------------------|-----------------------------|-------------------------|-----------------------------|--------------------------------------|-------------------------------------------|-------------------------|-----------------------------|----------------|-------------------------------------------|--------------------------------|-----------------------------|--------------------------------------|------------------------------|
| <u>Day 28</u>           |                             | Proportion<br>Surviving | F-Test<br>Equal<br>Variance | T-Test<br>Statistical<br>Probability | Statistically<br>Significant <sup>1</sup> | Average<br>Weight(mg)   | F-Test<br>Equal<br>Variance |                | Statistically<br>Significant <sup>1</sup> | Average<br>neonates/<br>female | F-Test<br>Equal<br>Variance | T-Test<br>Statistical<br>Probability | Statistically<br>Significant |
| 12552<br>12550<br>12551 | Control<br>Sample<br>Sample | 0.55<br>0.87<br>0.80    | 0.844<br>0.863              | 0.000<br>0.001                       |                                           | 0.982<br>0.684<br>0.731 | 0.854<br>0.217              | 0.066<br>0.045 | •                                         |                                |                             |                                      |                              |
| Day 35                  |                             |                         |                             |                                      |                                           |                         |                             |                |                                           |                                |                             |                                      |                              |
| 12552                   | Control<br>Sample           | 0.51<br>0.85            | 0.800                       | 0.003                                |                                           |                         |                             |                |                                           |                                |                             |                                      |                              |
| 12550<br>12551          | Sample                      | 0.79                    | 0.498                       | 0.004                                |                                           |                         |                             |                |                                           |                                |                             |                                      |                              |
| Day 42                  | į.                          |                         |                             |                                      |                                           |                         |                             |                |                                           |                                |                             |                                      |                              |
| 12552                   | Control                     | 0.46                    |                             | 0.004                                |                                           | 0.231                   | 0.440                       | 0.000          |                                           | . 0.6                          | 0.000                       | 0.005                                |                              |
| 12550<br>12551          | Sample<br>Sample            | 0.81<br>0.79            | 0.978<br>0.617              | 0.004<br>0.003                       |                                           | 0.428<br>0.400          | 0.143<br>0.022              | 0.000<br>0.000 |                                           | 4.0<br>3.5                     | 0.036<br>0.344              | 0.005<br>0.001                       |                              |

<sup>1. ^</sup> A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05)

|          |          |                | 1          |                         |                          | Day 1          | 1041           |                       |                |          | [          | Day 1                   | Data             |          |                      | (tay 4                      | Pale                  |          | Day                 | 15 + 4) A+        | production           | Dala                 |                         | Per                    | 4) Grewth | (hat e              |                  |
|----------|----------|----------------|------------|-------------------------|--------------------------|----------------|----------------|-----------------------|----------------|----------|------------|-------------------------|------------------|----------|----------------------|-----------------------------|-----------------------|----------|---------------------|-------------------|----------------------|----------------------|-------------------------|------------------------|-----------|---------------------|------------------|
|          |          |                | ł          |                         | Mean                     | Indian Real    |                |                       |                | Mean Wil | 1          |                         |                  |          |                      |                             | Mean                  |          | 1                   |                   | Mean                 | Mean                 | i                       |                        |           | Me on Wil           | Ma on Wi         |
| Bampio   | Rophisto | Gaust<br>Court | Sim strang | Frapartion<br>Surviving | Proportion<br>Eurysystem | (mg)           | (mg)           | Organisms<br>Waspined | me)            | Rept ( ( | turning    | fraportion<br>furviving | Moan<br>Gurvival | Heanites | Eurotopa<br>Eurotopa | Proportion<br>Surviving     | Susyte of /<br>Sample | Heangles | Telai 6<br>Nonnaiss | Francisco<br>(Res | Heanales<br>/ Female | Heanales<br>/ Gample | trillal Pan<br>Wil (mg) | Fetal dry<br>Will (mg) | Organisms | wellen flag<br>(mg) | Maphaelas<br>A M |
| 13667    | À        | 16             |            | 0.00                    | •                        |                |                | •                     | 1 27           |          | ,          | 6 70                    |                  | 6        | 1                    | à 10 °                      |                       | 6        | ٥                   | , ,               | 0.0                  |                      | 31 30                   | 37.01                  | 7         | 6 767               | - "              |
|          | e<br>C   | 10<br>10       | 1 4        | 0                       |                          |                |                |                       |                |          | 1:         | 0 00<br>0 60            |                  | 0        |                      | 0 00<br>0 60                |                       | 0        | 1 :                 | 0                 | 00                   |                      | 0 00<br>26 77           | 0 00<br>20 36          | ٠         | 0 113               |                  |
|          | ů.       | 10<br>10       | 1 6        | q /d<br>0 <b>1</b> 0    |                          |                |                |                       |                |          |            | 4 <b>6</b> 8            |                  | 3        | 4                    | 9 60                        |                       | •        | 1                   | 1                 | 1.0                  |                      | 24 64                   | 27 66                  | i         | 0 313               |                  |
|          | ÷        | 10             | ,          | 0 10                    |                          |                |                |                       |                |          |            | 0 50                    |                  | 0        |                      | 0 40<br>0 40                |                       | •        | ,                   | ;                 | 3 6                  |                      | 25 01<br>27 23          | 36 16<br>38 14         | :         | 0 206<br>0 233      |                  |
|          | n.       | 10             | <b>;</b>   | 0 <b>0</b> 0            |                          |                |                |                       |                |          | 1          | 0 50<br>0 7 <b>0</b>    |                  | ٥        | 3                    | 8 10                        |                       |          | •                   | ,                 | 0.0                  |                      | 26 10                   | 20.70                  | 1         | 0.730               |                  |
|          | 7        | 10             | 1 4        | 0 40                    |                          | 24.28          | 24 67          | 4                     | 0.677          |          | 1 ′        | 0 /4                    | a 41             | ,        | ·                    | 9 70                        | 6 44                  | ۰        | ,                   | 4                 | 0 1                  | 0 4                  | 20 31                   | 26 55                  | ,         | 0 170               | n 211            |
|          |          | 10             | 1          | 0.50                    |                          | 23 43<br>24 62 | <b>36 46</b>   | 1                     | 0.077          |          | 1          |                         |                  |          |                      |                             |                       |          | 1                   |                   |                      |                      | )                       |                        |           |                     |                  |
|          | ī        | 10             | 1 ;        | 0.40<br>0.50            | በ ዓሳ                     | 74 67<br>29 07 | 39.45<br>34.38 | 4                     | 1 300          | 0 90 /   | 1          |                         |                  |          |                      |                             |                       |          | 1                   |                   |                      |                      | ļ                       |                        |           |                     |                  |
| 1/110    | A        | 10<br>19       |            | 0.00                    |                          |                |                |                       |                |          | 1 .        | 1 60                    |                  | +1       | 4                    | U <b>60</b>                 |                       | •        | ,,                  | ,                 | * 4                  |                      | 21.07                   | JA 51                  | •         | 0.538               |                  |
|          | e e      | 10             | 10         | 1 00<br>0 /0            |                          |                |                |                       |                |          | 10         | 9 /6                    |                  | 1/       | 1 10                 | t <i>tet</i><br>h <b>an</b> |                       | 10       | 12                  | ,                 | 9 O<br>1 O           |                      | 21 63                   | JR 06<br>J4 4 J        | 10        | 0.417               |                  |
|          | b        | 10             | 1          | n /a                    |                          |                |                |                       |                |          | ,          | 0.70                    |                  | 3        | ,                    | 0.70                        |                       | 10       | n n                 | i                 | 47                   |                      | 23.47                   | 24 DJ                  | ;         | 0.364               |                  |
|          | ;        | 10             | 10         | 1 10<br>( <b>0</b> 0    |                          |                |                |                       |                |          | 10         | 1 00 1<br>0 1 1         |                  | ,        | 10                   | 1 (MC)<br>1 (MC)            |                       |          | 1 ;                 | •                 | 0.4                  |                      | 22 04<br>27 01          | )6 a6<br>51 06         | 10<br>10  | 0 164<br>0 404      |                  |
|          | rs.      | 10             | 10         | 1.00                    |                          |                |                |                       |                |          | 10         | 1.00                    |                  | 4        | 16                   | i no                        |                       | ï        | 15                  | á                 | 1.0                  |                      | 75.41                   | 79 17                  | ln.       | ri 196              |                  |
|          | H<br>!   | 10<br>10       | 10         | 0 /0<br>1 00            |                          | 28 15          | 32.15          | 10                    | ti 1480        |          | } '        | 0 /0                    | 0 86             | 1        | '                    | 4 /4                        | 0.81                  | 29       | 177                 | •                 | 4.0                  | 4.0                  | ,,,,,                   | 30 47                  | ,         | 0.453               | 0.428            |
|          | i        | 10             | •          | 0 80                    |                          | 21.81          | 27 15          | •                     | 1 044          |          | 1          |                         |                  |          |                      |                             |                       |          | l                   |                   |                      |                      | ŀ                       |                        |           |                     |                  |
|          | 1        | 10             | ) :        | 0 90<br>0 90            | 0.87                     | 20 MB<br>27 M2 | 11 45          | •                     | 0 518<br>0 574 | 0.664    | ł          |                         |                  |          |                      |                             |                       |          | ł                   |                   |                      |                      | 1                       |                        |           |                     |                  |
| 12991    | Ā        | 10             | in         | 1.00                    |                          |                |                |                       |                |          | 10         | 1 00                    |                  | 19       | in                   | 1 (81                       |                       |          | 1.0                 | ,                 | 11                   |                      | 21 44                   | 21.11                  | In        | 0.1/1               |                  |
|          | 6        | 10             |            | n <b>9</b> 0            |                          |                |                |                       |                |          | <b>}</b> : | 0.60                    |                  | :        | •                    | (1 BK)                      |                       | "        | /"                  | •                 | 3.8                  |                      | 22,74                   | 28.07                  | •         | 0.437               |                  |
|          | ti       | 10             | 10         | 1 00                    |                          |                |                |                       |                |          | 1:         | n en                    |                  | 1        | *                    | 13 847                      |                       | 14       | 19                  |                   | 2.5                  |                      | 27 84                   | 11.00                  | •         | 0.161               |                  |
|          | ļ        | 10             | 1:         | 0 MH<br>0 MH            |                          |                |                |                       |                |          | } :        | 0 A0                    |                  | ;        | 1 ,                  | (1 %))<br>(1 Mil)           |                       | 17       |                     | 1                 | 10                   |                      | 2/37                    | 70 71<br>11 44         | ٠,        | PAFO                |                  |
|          | ů.       | In             | ,          | n /n                    |                          |                |                |                       |                |          | 1 1        | 0.60                    |                  | 111      | î                    | 0.00                        |                       | •        | 19                  | ,                 | 4.1                  |                      | 1133                    | 74 94                  | •         | 0.437               |                  |
|          | 11       | 10<br>10       | ] ;        | () (f()<br>() (6))      |                          | /4 <b>1</b> /1 | JR 64          | •                     | 0.617          |          | } "        | D 1901                  | 0 /4             | 1        | "                    | (1 PH)                      | n /#                  | •        | } ^                 | ,                 | 7.0                  | 11                   | 1131                    | 10.62                  |           | 11 4 10             | 11 41#1          |
|          | i        | 10             | •          | n wa                    |                          | 23.15          | 79 79          | •                     | 0 887          |          | 1          |                         |                  |          | ,                    |                             |                       |          | l                   |                   |                      |                      | }                       |                        |           |                     |                  |
|          | K.       | 10<br>10       | 1 :        | 0 AO<br>0 MB D          | () MI3                   | 74 BD<br>37 WB | 20 85<br>20 41 | •                     | 0 #25<br>0 #04 | 0 / 31   | 1          |                         |                  |          | ì                    |                             |                       |          | 1                   |                   |                      |                      | 1                       |                        |           |                     |                  |
|          |          | ,,,            | 1          |                         | .,                       | ,,,,,,         | •-•            |                       |                |          | ł          |                         |                  |          |                      |                             |                       |          | ì                   |                   |                      |                      | }                       |                        |           |                     |                  |
|          |          |                | 1          |                         |                          |                |                |                       |                |          | ł          |                         |                  |          | }                    |                             |                       |          | 1                   |                   |                      |                      | ł                       |                        |           |                     |                  |
|          |          |                | ļ          |                         |                          |                |                |                       |                |          | 4          |                         |                  |          | ]                    |                             |                       |          | 1                   |                   |                      |                      | ł                       |                        |           |                     |                  |
|          |          |                | ļ          |                         |                          |                |                |                       |                |          | ì          |                         |                  |          | <b>,</b>             |                             |                       |          | i                   |                   |                      |                      | 1                       |                        |           |                     |                  |
|          |          |                | }          |                         |                          |                |                |                       |                |          | ļ          |                         |                  |          | 1                    |                             |                       |          | ſ                   |                   |                      |                      | ł                       |                        |           |                     |                  |
|          |          |                | 1          |                         |                          |                |                |                       |                |          | ł          |                         |                  |          | ĺ                    |                             |                       |          | Ì                   |                   |                      |                      | i                       |                        |           |                     |                  |
|          |          |                | 1          |                         |                          |                |                |                       |                |          | 1          |                         |                  |          | (                    |                             |                       |          | (                   |                   |                      |                      | 1                       |                        |           |                     |                  |
|          |          |                | ]          |                         |                          |                |                |                       |                |          | 1          |                         |                  |          | ]                    |                             |                       |          | ł                   |                   |                      |                      | ł                       |                        |           |                     |                  |
| ,        | ,        |                | )          |                         |                          |                |                |                       |                |          | h          |                         |                  |          | 1                    |                             |                       |          | 1                   |                   |                      |                      | 1                       |                        |           |                     |                  |
|          | `        |                | 1          |                         |                          |                |                |                       |                |          | ł          |                         |                  |          | ļ                    |                             |                       |          | i                   |                   |                      |                      | 1                       |                        |           |                     |                  |
| · -      |          |                | l l        |                         |                          |                |                |                       |                |          |            |                         |                  |          | )                    |                             |                       |          | į .                 |                   |                      |                      | 1                       |                        |           |                     |                  |
| <u> </u> | )        |                |            |                         |                          |                |                |                       |                |          | }          |                         |                  |          | }                    |                             |                       |          | l                   |                   |                      |                      | 1                       |                        |           |                     |                  |
| -        | )        |                | 1          |                         |                          |                |                |                       |                |          | 1          |                         |                  |          | }                    |                             |                       |          | l                   |                   |                      |                      | 1                       |                        |           |                     |                  |
|          | )        |                | 1          |                         |                          |                |                |                       |                |          | 1          |                         |                  |          | 1                    |                             |                       |          | 1                   |                   |                      |                      | 1                       |                        |           |                     |                  |
|          | _        |                | 1          |                         |                          |                |                |                       |                |          | 1          |                         |                  |          | I                    |                             |                       |          | ł                   |                   |                      |                      | 1                       |                        |           |                     |                  |
|          | _        |                | 1          |                         |                          |                |                |                       |                |          | ł          |                         |                  |          | 1                    |                             |                       |          | 1                   |                   |                      |                      | 1                       |                        |           |                     |                  |
|          |          |                | 1          |                         |                          |                |                |                       |                |          | 1          |                         |                  |          | 1                    |                             |                       |          | ł                   |                   |                      |                      | 1                       |                        |           |                     |                  |
|          |          |                | ļ          |                         |                          |                |                |                       |                |          | l .        |                         |                  |          | ł                    |                             |                       |          | l                   |                   |                      |                      | 1                       |                        |           |                     |                  |

<sup>\*</sup> Replicate excluded from analysis. See Protocol Deviations.

## Summary of Statistical Tests and Probabilities

BTR:

|                                           |                                                 |                                      | Sui                              | rvival                               |                                             |                                           | Gr                               | owth                                 |                                             | N                               | eonate                                               | Producti                             | on                                          |
|-------------------------------------------|-------------------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|---------------------------------------------|-------------------------------------------|----------------------------------|--------------------------------------|---------------------------------------------|---------------------------------|------------------------------------------------------|--------------------------------------|---------------------------------------------|
| <u>Day 28</u>                             |                                                 | Proportion<br>Surviving              | F-Test<br>Equal<br>Variance      | T-Test<br>Statistical<br>Probability | Statistically<br>Significant <sup>1,3</sup> | Mean<br>Weight(mg)                        | F-Test<br>Equal<br>Variance      | T-Test<br>Statistical<br>Probability | Statistically<br>Significant <sup>1,3</sup> | Mean<br>Neonates/<br>Female     | F-Test<br>Equal<br>Variance                          | T-Test<br>Statistical<br>Probability | Statistically<br>Significant <sup>1,3</sup> |
| 12615<br>12589<br>12590<br>12592<br>12593 | Control<br>Sample<br>Sample<br>Sample<br>Sample | 0.62<br>0.23<br>0.22<br>0.49<br>0.88 | 0.332<br>0.083<br>0.122<br>0.030 | 0.001<br>0.010<br>0.178<br>0.000     | :                                           | 0.296<br>0.255<br>0.723<br>0.304<br>0.481 | 0.034<br>0.001<br>0.031<br>0.493 | 0.363<br>0.120<br>0.472<br>0.001     |                                             |                                 |                                                      |                                      |                                             |
| Day 35                                    |                                                 |                                      |                                  |                                      |                                             |                                           |                                  |                                      |                                             |                                 |                                                      |                                      |                                             |
| 12615<br>12589<br>12590<br>12592<br>12593 | Control<br>Sample<br>Sample<br>Sample<br>Sample | 0.36<br>0.08<br>0.26<br>0.40<br>0.89 | 0.515<br>0.138<br>0.159<br>0.066 | 0.001<br>0.200<br>0.364<br>0.000     | •                                           |                                           |                                  |                                      |                                             |                                 |                                                      |                                      |                                             |
| Day 42                                    |                                                 |                                      |                                  |                                      |                                             |                                           |                                  |                                      |                                             |                                 |                                                      |                                      |                                             |
| 12615<br>12589<br>12590<br>12592<br>12593 | Control<br>Sample<br>Sample<br>Sample<br>Sample | 0.33<br>0.08<br>0.26<br>0.39<br>0.85 | 0.689<br>0.087<br>0.082<br>0.382 | 0.001<br>0.271<br>0.316<br>0.000     |                                             | 0.299<br>0.084<br>0.195<br>0.234<br>0.348 | 0.168<br>0.030<br>0.833<br>0.338 | 0.000<br>0.066<br>0.032<br>0.053     | •                                           | 1.8<br>0.0<br>0.1<br>0.0<br>1.6 | NA <sup>2</sup><br>0.000<br>NA <sup>2</sup><br>0.192 | 0.032<br>0.037<br>0.032<br>0.434     | :<br>:                                      |

<sup>1. \*</sup> A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05).

<sup>2.</sup> There were not enough sample and/or control response variability to conduct a meaningful F-Test.

<sup>3.</sup> If the F-Test result was significant (relative to the Laboratory Control, P<0.05), the T-Test was performed using unequal variances.

# Amphipod, *Hyalella azteca*, Chronic Toxicity Test Results

#### Menzie-Cura Dead Creek 99033

BTR 3622 Aquatec Biological Sciences

|                 |                |          | ı   |                         |                                 | Day J                   | t bala              | -                          |                |                             | · ·          | (Pay 31                 | DM4               |                    |                  | Day 4                   | f that a                      |               | Den | / 35 + 47 R+       | production                   | Data                         |                | Per                   | 4) Chrandh               | Data           |            |
|-----------------|----------------|----------|-----|-------------------------|---------------------------------|-------------------------|---------------------|----------------------------|----------------|-----------------------------|--------------|-------------------------|-------------------|--------------------|------------------|-------------------------|-------------------------------|---------------|-----|--------------------|------------------------------|------------------------------|----------------|-----------------------|--------------------------|----------------|------------|
| Bample          |                | 91 art   |     | Proportion<br>Surviving | Mean<br>Proportion<br>Surviving | Initial final<br>Weight | total (by<br>Weight | g<br>thegantoms<br>Watghed | militan Bay    | Mean Wi<br>Reps I (<br>(mg) | d the strong | Proportion<br>Survivino | Me an<br>Survival | Mumber<br>Heanales | e<br>four viving | Proportion<br>Survivina | Mean<br>for vival /<br>fample | e<br>Hennales |     | 8 Females<br>/ Rep | Mean<br>Neanates<br>/ Famile | Mean<br>Heanates<br>/ Sample | Indial Fan     | Telefaby<br>Williams  | d<br>Organisms<br>Washad |                |            |
| Mumber<br>17615 | Rophi alo<br>A | Eaurit   |     | 0 60                    | - to many                       | (mg)                    | (mg)                |                            | . (mg)         | . (*****                    | 1            | a ja                    |                   | ٥                  | 7                | 0.10                    | i indu                        | 4             | o   |                    | 0.0                          |                              | 30 60          | 11.74                 | - 77.47.2                | 10.11          | <b>2</b> " |
|                 | e<br>E         | 10       | ;   | 0 60<br>0 30            |                                 |                         |                     |                            |                |                             |              | 6 30<br>0 16            |                   | b                  | ;                | 0 10<br>0 10            |                               | 6             | 1 : | ,                  | 30                           |                              | 25.64<br>26.74 | 24 84<br>27 02        | 3                        | 0 400<br>0 200 |            |
|                 | ũ              | 10       | •   | 0.00                    |                                 |                         |                     |                            |                |                             | •            | 0 60                    |                   | •                  | •                | 0 60                    |                               | ,             | 11  | ÷                  | 2.6                          |                              | 27 47          | 20.00                 | i                        | n 23A          |            |
|                 | f              | 10       | 1 : | 0 30                    |                                 |                         |                     |                            |                |                             | ;            | 0 30<br>0 60            |                   | ,                  | l :              | 0 <b>(0</b>             |                               | 0             | ,   | ,                  | 0 0<br>7 1                   |                              | 24 54<br>24 54 | 27 03<br>28 18        | }                        | 0 225<br>0 242 |            |
|                 | å              | 10       | ;   | 4 60                    |                                 |                         |                     |                            |                |                             | •            | 0 60                    |                   | ò                  | ã                | 0 30                    |                               | 0             | 0   | ì                  | 0.0                          |                              | 24.44          | 26 28                 | i                        | 0 311          |            |
|                 | "              | 16<br>18 | 1:  | 0 60<br>0 00            |                                 | 24 /3                   | 70 50               |                            | 0 118          |                             | <b>'</b>     | 0 50                    | 0.14              | 1)                 | ١ ٠              | 0 40                    | 0 31                          | 10            | "   | ,                  | 7.3                          | 1.0                          | 27 47          | 20 05                 | •                        | 0 345          | 0.700      |
|                 | i              | 10       | •   | 0.00                    |                                 | 26.74                   | 20 51               | ě                          | 0.334          |                             |              |                         |                   |                    |                  |                         |                               |               |     |                    |                              |                              |                |                       |                          |                |            |
|                 |                | 10       | 1 : | 0 <b>to</b>             | 0.67                            | 31 67<br>25 80          | 24 26<br>27 70      | •                          | 0 124          | 0.794                       | ŀ            |                         |                   |                    |                  |                         |                               |               |     |                    |                              |                              |                |                       |                          |                |            |
| 1/100           | À              | 10       | ;   | 0.00                    | ,                               | ,,,,,,                  | ,                   | ,                          |                | .,                          | •            | 0.00                    |                   | n                  | •                | n nn                    |                               | 0             | n   | ų                  | n a .                        |                              | 0.00           | i oo                  | n                        | to twee        |            |
|                 | n              | in       | 1   | 0 10                    |                                 |                         |                     |                            |                |                             | ' '          | 0.70                    |                   | n                  | ,                | n #n                    |                               | 0             | 0   | ,                  | 0.0                          |                              | 24.60          | 25.01                 |                          | 0.708          |            |
|                 | b              | to<br>to | '   | o jin<br>n nn           |                                 |                         |                     |                            |                |                             | 1 6          | n /n                    |                   | 0                  | ,                | 0 NO                    |                               | 0             | n   | ,                  | 0 B                          |                              | // Mi<br>0.00  | 11 11<br>0 00         | ,                        | n 211<br>n pno |            |
|                 | Ť              | 10       | 0   | 0 00                    |                                 |                         |                     |                            |                |                             |              | p <b>0</b> 0            |                   | 0                  |                  | o no                    |                               | a             | 0   | 0                  | 0.0                          |                              | n on           | 0.00                  | b                        | o me           |            |
|                 | <i>f</i> (1)   | 16<br>16 | 1 % | n ≱n<br>n pan           |                                 |                         |                     |                            |                |                             | ;            | 0.00                    |                   | n<br>n             | ;                | n <b>/n</b>             |                               | 0             | 0   | ,                  | 00                           |                              | 22.76<br>0.00  | 23 /4<br>0 00         | ,                        | n 236<br>n 000 |            |
|                 | 11             | 10       | n   | 0.00                    |                                 |                         |                     |                            |                |                             |              | 0 00                    | 0.08              | n                  |                  | n on                    | n <b>na</b>                   | 0             | ۰   | n                  | 0.0                          | 0.0                          | D 00           | 0.00                  | n                        | 0 (84)         | 0 1984     |
|                 | ,              | 10       | , , | 0 00<br>9 70            |                                 | 13 NO<br>24 NO          | n on                | ,                          | 0 000<br>0 248 |                             | l            |                         |                   |                    | J                |                         |                               |               | ]   |                    |                              |                              | ]              |                       |                          |                |            |
|                 | i              | 10       |     | 0 90                    |                                 | 29 67                   | 17 11               | 8                          | 0 520          |                             |              |                         |                   |                    |                  |                         |                               |               | l   |                    |                              |                              | ļ              |                       |                          |                |            |
| 1/500           |                | 10<br>10 | !   | 0.00                    | 0 /1                            | 27.30                   | 20-35               | •                          | 0 246          | a 396                       | ١,           | 0 10                    |                   | 0                  | ١,               | n 10                    |                               | n             |     |                    | o á                          |                              | 24 52          | 25.89                 | ,                        | 0 121          |            |
| 1/500           | ĥ              | 10       | ;   | h da                    |                                 |                         |                     |                            |                |                             | 6            | n na                    |                   | 0                  |                  | 0.00                    |                               | ٥             |     | o                  | 0.6                          |                              | 0.00           | 0.00                  | n                        | 0.000          |            |
|                 | r<br>          | 10       | 7 0 | 0.70                    |                                 |                         |                     |                            |                |                             | 1 ;          | n 00                    |                   | n                  | '                | 0 ( O                   |                               | 0             | 0   | 0                  | 00                           |                              | 2/ \$1         | 28 14<br>0.00         | ,                        | 0 170<br>0 000 |            |
|                 | , D            | 10<br>10 | l ° | 0 (10)<br>0 (10)        |                                 |                         |                     |                            |                |                             | n            | 0.00                    |                   | n                  | 0                | 0.00                    |                               | 0             | ä   |                    | 0.0                          |                              | 0 00           | 0.00                  | D                        | n nno          |            |
|                 | •              | 10       | 10  | 1.00                    |                                 |                         |                     |                            |                |                             | ;            | 0 MA                    |                   | n<br>n             | ,                | 0 <b>0</b> 0<br>0 10    |                               | 1 0           | ;   | •                  | 0 A<br>0 D                   |                              | 28 80<br>23 97 | 11 <i>13</i><br>25 02 | •                        | 0 175<br>0 150 |            |
|                 | 11             | 10<br>10 | ;   | n 10<br>n 40            |                                 |                         |                     |                            |                |                             | ;            | 0.40                    | 0.74              | n                  | ;                | n 40                    | 0.26                          | 0             | n   | i                  | 0.0                          | 0 1                          | n'n            | 29.10                 | i                        | 0.741          | n 194      |
|                 |                | 10       | 1   | 0.10                    |                                 | J# JO                   | JA 50               | !                          | 1 100<br>0 8/0 |                             |              |                         |                   |                    |                  |                         |                               |               |     |                    |                              |                              |                |                       |                          |                |            |
|                 | ,              | 10       | !   | n to                    |                                 | 71.74                   | 74 81               | :                          | · #/0          |                             |              |                         |                   |                    |                  |                         |                               |               | ì   |                    |                              |                              | l              |                       |                          |                |            |
|                 | ï              | 10       | 0   | 0.00                    | 0.27                            | 0.00                    | 0.00                | n                          | 0.000          | n //1                       | ١,,,         |                         |                   | n                  | 10               | 1 00                    |                               | 0             | ١,  | ,                  | n o                          |                              | 25 08          | 28 m                  | 10                       | 0.101          |            |
| 17597           | A .            | 10<br>10 | 10  | 1 nn<br>11 50           |                                 |                         |                     |                            |                |                             | "            | 1 00<br>0 40            |                   | 0                  | 1"               | 0.40                    |                               | 'n            | 'n  | í                  | 0.0                          |                              | 75.94          | 2A B4                 | 4                        | 0.775          |            |
|                 | Ë              | In       | 1 1 | 0.10                    |                                 |                         |                     |                            |                |                             | } !          | 0 10                    |                   | n<br>0             | 1 :              | 0 10                    |                               | n             | 'n  | 3                  | 0 0<br>0 0                   |                              | 28 88<br>27 25 | 20 B7<br>28 12        | 1                        | 0.110          |            |
|                 | n              | 10<br>10 | 1 ; | 0 50<br>0 20            |                                 |                         |                     |                            |                |                             | 1;           | 0 40<br>0 70            |                   | 0                  | ;                | n 40<br>n 70            |                               | n             | ő   | ;                  | 90                           |                              | 28 52          | 7A 5                  | ;                        | n 190          |            |
|                 | ř              | 10       | 1 ; | 0.20                    |                                 |                         |                     |                            |                |                             |              | n #n                    |                   | 0                  | 1                | 0.70                    |                               | 0             | 0   | ,                  | 0 O                          |                              | 79 70<br>24 34 | 30 11<br>28 48        | 7                        | 0 /14<br>0 110 |            |
|                 | ø              | 10       | 1 : | 0.70                    |                                 |                         |                     |                            |                |                             | ;            | 0 20<br>0 70            | n 4n              | n<br>n             | ;                | 0 IO                    | 0.39                          | t)<br>D       | "   | 1                  | 00                           | 0.0                          | 79.90          | // en                 | ;                        | 0 700          | a / 14     |
|                 | ;              | 10       | ;   | 13 <b>0</b> 43          |                                 | 11 (W)                  | n un                | n                          | ti new         |                             | •            | -                       |                   |                    | 1                |                         |                               |               | 1   |                    |                              |                              | 1              |                       |                          |                |            |
|                 | 1              | 111      | 10  | 1 100                   |                                 | /4 file                 | 10 //               | 111                        | 0.51           |                             |              |                         |                   |                    |                  |                         |                               |               | 1   |                    |                              |                              |                |                       |                          |                |            |
|                 | , X            | 10<br>10 | 1 6 | n /n<br>n 60            | 0.49                            | /0 4ñ<br>/4 01          | 20.12               |                            | a 363          | 0 104                       |              |                         |                   |                    | 1                |                         |                               |               |     | _                  | 25.                          |                              | l              |                       |                          |                |            |
| 1/487           | Ā              | 10       | !   | 0.90                    |                                 |                         |                     |                            |                |                             | :            | 0 90<br>0 90            |                   | n<br>n             | l :              | 0 90<br>0 80            |                               | ,             | '   | ,                  | 0.4                          |                              | 28 41<br>28 44 | 31 00<br>30 60        |                          | n 198<br>n 781 |            |
|                 | N<br>C         | 10<br>10 | :   | 0.90                    |                                 |                         |                     |                            |                |                             | :            | 0.80                    |                   | 'n                 | ,                | 0.70                    |                               | n             | ñ   | i                  | 0 0                          |                              | 23 2A          | 25.78                 | 1                        | 0.101          |            |
|                 | n              | 10       | 10  | 1 00                    |                                 |                         |                     |                            |                |                             | <b>!</b> :   | 0 80<br>0 80            |                   | 4                  | 1:               | 04 t)<br>08 t)          |                               | 7             | 10  | 9                  | 2 2<br>3 6                   |                              | 27 84<br>74 87 | 70 28<br>31 84        | :                        | 0 1/A          |            |
|                 | t<br>t         | 10<br>10 | :   | 0.00                    |                                 |                         |                     |                            |                |                             | ;            | 0 MO<br>0 MO            |                   | í                  | :                | 0.90                    |                               | 10            | 110 | í                  | 3.0                          |                              | 26.77          | 28 /B                 | •                        | 0.114          |            |
|                 | á              | 10       | 10  | 1 00                    |                                 |                         |                     |                            |                |                             | 10           | 1 00                    |                   | h<br>O             | 10               | 1 00<br>0 00            | 0.85                          |               | ;   | 4                  | 15                           | 1.6                          | 25 91<br>27 03 | 29 M<br>20 76         | 10                       | 0 1/1<br>0 2/6 | D 148      |
|                 | 11             | 10<br>10 | 1:  | 0 90<br>0 90            |                                 | 23.03                   | 2/61                |                            | 0.498          |                             | ∣ '          | 0 10                    | 0 40              | u                  | '                | U MI                    | 17 84                         | •             | '   | •                  |                              |                              | ""             | ,-,-                  | -                        |                |            |
|                 | ;              | 10       | , , | 0.70                    |                                 | 24 03                   | 28.08               | ,                          | 0.450          |                             |              |                         |                   |                    | 1                |                         |                               |               |     |                    |                              |                              |                |                       |                          |                |            |
| <u>ب</u>        | K              | 10       | !   | 0.00                    |                                 | 24 19                   | 28 64               | •                          | 0 494          | 0 481                       | 1            |                         |                   |                    |                  |                         |                               |               | 1   |                    |                              |                              | <u> </u>       |                       |                          |                |            |
| $\bigcirc$      | t              | 10       | 1   | •                       | 0 68                            | •                       | •                   |                            | - —            | 0 781                       | └──          |                         |                   |                    | •                |                         |                               |               |     |                    |                              |                              |                |                       |                          |                |            |

<sup>\*</sup> Replicate excluded from analysis. See Protocol Deviations.

Summary of Statistical Tests and Probabilities

BTR:

|                         |                             |                         | Su                          | rvival                               |                              |                         | Gr                          | owth                                 |                              | N                           | eonate                      | <b>Producti</b>                      | on                           |
|-------------------------|-----------------------------|-------------------------|-----------------------------|--------------------------------------|------------------------------|-------------------------|-----------------------------|--------------------------------------|------------------------------|-----------------------------|-----------------------------|--------------------------------------|------------------------------|
| <u>Day 28</u>           |                             | Proportion<br>Surviving | F-Test<br>Equal<br>Variance | T-Test<br>Statistical<br>Probability | Statistically<br>Significant | Mean<br>Weight(mg)      | F-Test<br>Equal<br>Variance | T-Test<br>Statistical<br>Probability | Statistically<br>Significant | Mean<br>Neonates/<br>Female | F-Test<br>Equal<br>Variance | T-Test<br>Statistical<br>Probability | Statistically<br>Significant |
| 12615<br>12609<br>12610 | Control<br>Sample<br>Sample | 0.62<br>0.72<br>0.97    | 0.723<br>0.000              | 0.140<br>0.000                       |                              | 0.296<br>0.688<br>0.612 | 0.490<br>0.333              | 0.000<br>0.000                       |                              |                             |                             |                                      |                              |
| <u>Day 35</u>           |                             |                         |                             |                                      |                              |                         |                             |                                      |                              |                             |                             |                                      |                              |
| 12615<br>12609<br>12610 | Control<br>Sample<br>Sample | 0.36<br>0.63<br>0.94    | 0.509<br>0.039              | 0.004<br>0.000                       |                              |                         |                             |                                      |                              |                             |                             |                                      |                              |
| Day 42                  |                             |                         |                             |                                      |                              |                         |                             |                                      |                              |                             |                             |                                      |                              |
| 12615<br>12609<br>12610 | Control<br>Sample<br>Sample | 0.33<br>0.56<br>0.91    | 0.718<br>0.195              | 0.011<br>0.000                       |                              | 0.299<br>0.660<br>0.462 | 0.026<br>0.395              | 0.000<br>0.000                       |                              | 1.8<br>9.5<br>4.6           | 0.054<br>0.532              | 0.002<br>0.043                       |                              |

<sup>1.</sup> A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05).

| 1                |                                      |                                                    | ļ                                        |                                                                                             |              | Day J                            | (tata                            |                           |                                  |                             |                                           | (1ey 11                                                              | trate            |                                          |                                   | Day 4                                                        | l trata                      |                               | (1ay                                               | 14 · 42 ft o               | production                                       | Dela                         |                                                                      | Pay                                                                  | 4) Greath                                 | Data                                                                          |       |
|------------------|--------------------------------------|----------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------|--------------|----------------------------------|----------------------------------|---------------------------|----------------------------------|-----------------------------|-------------------------------------------|----------------------------------------------------------------------|------------------|------------------------------------------|-----------------------------------|--------------------------------------------------------------|------------------------------|-------------------------------|----------------------------------------------------|----------------------------|--------------------------------------------------|------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------|-------|
| Sample<br>Humber | A spike at a                         | Elast<br>Enumi                                     |                                          | Proportion<br>But viving                                                                    | Proportion   | trattal Boal<br>Walghii<br>[mg]  | for at Dry<br>Worlds<br>(mg)     | 8<br>Organisms<br>Weighed | Mean Wi<br>within Rep<br>(mg)    | Mean Wi<br>Report L<br>[mg] | prisivid<br>•                             | Proportion<br>Surviving                                              | Mean<br>Survival | Mamber<br>Nempales                       | g<br>Surviving                    | Proportion<br>for string                                     | Mean<br>Survival /<br>Sample | e<br>Neenates                 | Talal 8<br>Neonales                                | d Fomales<br>/ Rop         | Mean<br>Heanates<br>/ Female                     | Mean<br>Heanales<br>/ Sample | Indial Pan<br>WI (mg)<br>Số liố                                      | Wi (mg)                                                              | e<br>Organisms<br>Walgiod                 |                                                                               |       |
| 13016            | A<br>B<br>t<br>D<br>F<br>F<br>G<br>H | 16<br>16<br>16<br>16<br>16<br>16<br>16             | 3                                        | 8 96<br>6 46<br>6 30<br>6 90<br>6 80<br>6 80<br>6 80<br>6 80<br>6 80<br>6 80<br>6 80<br>6 8 | •            | 76 73<br>76 74<br>75 67          | 20 60<br>20 61<br>24 20          |                           | 0 118<br>0 234<br>0 134          |                             | 3 1 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0 y6<br>0 30<br>0 10<br>0 50<br>0 50<br>0 50<br>0 60<br>0 60         | 0 14             | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 7<br>3<br>1<br>6<br>7<br>6<br>3   | 0 10<br>0 10<br>0 10<br>0 50<br>0 70<br>0 60<br>0 30<br>0 40 | 0 11                         | 0 3 0 0 0 10                  | 0 4 6 11 0 7 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7       | )<br>0<br>4<br>)<br>1<br>2 | 000000000000000000000000000000000000000          | 10                           | 36 56<br>25 66<br>26 74<br>27 47<br>26 68<br>26 68<br>27 47          | 31 75<br>24 84<br>27 02<br>28 40<br>27 03<br>28 14<br>24 28<br>24 85 | 3 1 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0 174<br>0 400<br>0 200<br>0 200<br>0 274<br>0 275<br>0 277<br>0 362<br>0 363 | 0 799 |
| 13000            | # 1                                  | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | , , , , , , , , , , , , , , , , , , , ,  | 0 Ad<br>0 Bd<br>0 Bd<br>0 Ad<br>0 Ad<br>0 Ad<br>0 Ad<br>1 Dd<br>0 Bd<br>0 Bd                | n <b>n</b> a | 76 18<br>75 07                   | 27 76<br>27 76                   | ì                         | n 117                            | n <b>706</b>                | 4 , , , , , , , , , , , , , , , , , , ,   | 0 80<br>0 80<br>0 70<br>0 50<br>0 50<br>0 40<br>0 40<br>0 70<br>0 80 | n 4)             | 4<br>14<br>J<br>49<br>0<br>0<br>16<br>70 | 8<br>8<br>4<br>7<br>8             | 0 80<br>0 80<br>0 60<br>0 60<br>0 40<br>0 20<br>0 60         | D 56                         | 70<br>51<br>17<br>0<br>4<br>0 | 14<br>R5<br>10<br>48<br>11<br>r1<br>r1<br>r4<br>r4 | 1 1 1 2 4 4                | 6 6<br>13 0<br>6 3<br>18 0<br>13 0<br>5 0<br>4 0 | • •                          | JF 70<br>JF 47<br>JF 20<br>JF 71<br>JF 02<br>JF 01<br>JF 06<br>JF 74 | 10 68<br>11 80<br>20 07<br>20 10<br>27 15<br>23 27<br>28 66<br>28 27 | 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4   | 11 424<br>13 55 5<br>13 635<br>13 633<br>13 633<br>13 667<br>13 67<br>13 67   | o AAc |
| 17816            | и<br>п<br>п<br>п<br>п<br>п           | 10<br>10<br>10<br>10<br>10<br>10<br>10             | 10<br>3<br>6<br>10<br>6<br>10<br>7<br>10 | 1 00<br>0 30<br>0 40<br>1 00<br>0 90<br>1 00<br>1 00<br>1 00<br>1 00<br>1 00                | n / 3        | AA es<br>(ш As                   | 11 78<br>29 80                   | )<br>)                    | D /W3<br>D ARF                   | o <b>4ea</b>                | 0<br>9<br>0<br>10<br>4<br>10              | 0 90<br>0 80<br>0 80<br>1 00<br>1 00<br>1 00<br>1 00                 | D 84             | 5.1<br>0<br>18<br>9<br>•<br>15<br>7      | 0<br>0<br>0<br>0<br>0<br>10<br>10 | 0 90<br>0 90<br>0 90<br>0 90<br>0 90<br>1 00<br>1 00<br>1 00 | η •1                         | 4<br>1<br>4<br>8<br>47<br>0   | 15<br>5<br>75<br>17<br>5<br>5<br>7                 | 4<br>3<br>4                | 30<br>10<br>50<br>43<br>                         |                              | 70 06<br>28 90<br>25 97<br>24 93<br>26 19<br>27 99<br>28 80          | 34 85<br>30 29<br>30 29<br>30 09<br>29 08<br>39 60<br>17 83<br>30 17 | 0<br>0<br>0<br>0<br>1<br>10               | 0 511<br>0 400<br>0 400<br>0 461<br>0 476<br>0 404<br>0 377                   | n 482 |
|                  | I<br>J<br>R<br>L                     | +n<br>+n<br>+n                                     | 10<br>10                                 | 1 00<br>0 90<br>1 00<br>1 00                                                                | n v/         | 25 17<br>71 76<br>71 01<br>74 /1 | 30 71<br>28 45<br>10 85<br>11 14 | 10<br>B<br>18             | O 484<br>O 870<br>O 807<br>O 641 | 0.812                       |                                           |                                                                      |                  |                                          |                                   |                                                              |                              |                               |                                                    |                            |                                                  |                              |                                                                      |                                                                      |                                           |                                                                               |       |
|                  | 000000                               |                                                    |                                          |                                                                                             |              |                                  |                                  |                           |                                  |                             |                                           |                                                                      |                  |                                          |                                   |                                                              |                              |                               |                                                    | -                          | ·····                                            |                              |                                                                      | .e. iz                                                               |                                           |                                                                               |       |

12/23

<sup>\*</sup> Replicate excluded from analysis. See Protocol Deviations.

## **Summary of Statistical Tests and Probabilities**

BTR:

|                                           |                                                 |                                      | Sui                              | vival                                |                                             |                                           | Gr                               | owth .                               |                              | <u>N</u>                        | eonate                           | Production                           | on on                        |
|-------------------------------------------|-------------------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|---------------------------------------------|-------------------------------------------|----------------------------------|--------------------------------------|------------------------------|---------------------------------|----------------------------------|--------------------------------------|------------------------------|
| <u>Day 28</u>                             |                                                 | Proportion<br>Surviving              | F-Test<br>Equal<br>Variance      | T-Test<br>Statistical<br>Probability | Statistically<br>Significant <sup>1,2</sup> | Mean<br>Weight(mg)                        | F-Test<br>Equal<br>Variance      | T-Test<br>Statistical<br>Probability | Statistically<br>Significant | Mean<br>Neonates/<br>Female     | F-Test<br>Equal<br>Variance      | T-Test<br>Statistical<br>Probability | Statistically<br>Significant |
| 12622<br>12611<br>12612<br>12613<br>12614 | Control<br>Sample<br>Sample<br>Sample<br>Sample | 0.55<br>0.67<br>0.93<br>0.89<br>0.95 | 0.749<br>0.010<br>0.002<br>0.001 | 0.183<br>0.000<br>0.001<br>0.000     |                                             | 0.501<br>0.569<br>0.594<br>0.636<br>0.470 | 0.446<br>0.381<br>0.485<br>0.644 | 0.282<br>0.107<br>0.129<br>0.347     |                              |                                 |                                  |                                      |                              |
| Day 35                                    |                                                 |                                      |                                  |                                      |                                             |                                           |                                  |                                      |                              |                                 | ٠                                |                                      |                              |
| 12622<br>12611<br>12612<br>12613<br>12614 | Control<br>Sample<br>Sample<br>Sample<br>Sample | 0.38<br>0.53<br>0.88<br>0.80<br>0.86 | 0.438<br>0.460<br>0.491<br>0.205 | 0.165<br>0.000<br>0.001<br>0.000     |                                             |                                           |                                  |                                      |                              |                                 |                                  |                                      |                              |
| Day 42                                    |                                                 |                                      |                                  |                                      |                                             |                                           |                                  |                                      |                              |                                 |                                  |                                      |                              |
| 12622<br>12611<br>12612<br>12613<br>12614 | Control<br>Sample<br>Sample<br>Sample<br>Sample | 0.35<br>0.50<br>0.83<br>0.75<br>0.84 | 0.381<br>0.335<br>0.866<br>0.176 | 0.171<br>0.000<br>0.002<br>0.000     |                                             | 0.377<br>0.369<br>0.380<br>0.423<br>0.322 | 0.054<br>0.879<br>0.525<br>0.136 | 0.453<br>0.468<br>0.161<br>0.049     |                              | 4.0<br>3.2<br>4.1<br>4.2<br>5.3 | 0.829<br>0.068<br>0.461<br>0.143 | 0.330<br>0.471<br>0.448<br>0.182     |                              |

A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05).</li>
 If the F-Test result was significant (relative to the Laboratory Control, P<0.05), the T-Test was performed using unequal variances.</li>

|                   |           |                  | i          |                       |            | Day 2          | Date 1         |             |                |         | 1          | Day 34       | PMs           |          |             | Day 4                | ) () al a    |            | Day      | 35 + 47 Rec | production ( | Data     | T              | Day            | 4) Grauth | Date                  |        |
|-------------------|-----------|------------------|------------|-----------------------|------------|----------------|----------------|-------------|----------------|---------|------------|--------------|---------------|----------|-------------|----------------------|--------------|------------|----------|-------------|--------------|----------|----------------|----------------|-----------|-----------------------|--------|
|                   |           |                  |            |                       | Moan       | Indial Book    | Tetal Dry      |             | Mean Wi        | Mean Wi |            |              |               |          |             |                      | Mean         |            |          |             | Mean         | Mean     | 1              |                |           | Me an Wi              | Mean W |
| Sample            |           | Staff            |            |                       | Proportion | Weight         | Weight         | Organisms u | -              |         |            | Fraparlian   | Mean          | Mumber   | . •         | Proportion           |              | . •        |          |             | Hennales     |          | Initial Pan    |                | Organisms |                       |        |
| Mumber<br>17677   | Rophs ate | Count            | grit speak | Burviving<br>0.30     | gin same   | (              | (mg)           | MoiBheig    | ( <b>**#</b> ) | 100     | gin strand | But viving   | <b>Europe</b> | Heenales | gris sisted | G 10                 | Sample       | Hemales    | Meanatre | /Rep        | / Female     | / Sample | WI (mg)        | WI (mg)        | Weighed   | [mg] _                | A - H  |
| 17077             | â         | 10               | 1 ;        | 0 70                  |            |                |                |             |                |         | ;          | 0 70         |               | ā        | ;           | 0 70                 |              | ä          |          | ī           | 4.0          |          | 24.25          | 25 M           | ;         | 6 304                 |        |
|                   | Ć         | 10               | •          | 0 90                  |            |                |                |             |                |         | ,          | 0 70         |               | •        |             | 0 60                 |              | ,          | 16       | 2           | 7 6          |          | 24 56          | 26 47          | •         | 0.330                 |        |
|                   | n         | 10               | •          | 0 80                  |            |                |                |             |                |         | 1 :        | 0 10<br>0 10 |               | •        | 1 :         | 0 IB                 |              | 0          | 1 6      | 6           | 00           |          | 26 17<br>23 47 | 26 60<br>24 18 | :         | 0.430                 |        |
|                   | í         | 10               | '          | 0 80                  |            |                |                |             |                |         | ;          | 0 50         |               | ă        |             | 0 10                 |              | •          | Ö        | ĭ           | 40           |          | 24 50          | 20 14          |           | 0 112                 |        |
|                   | 6         | 10               | 1 1        | 0 50                  |            |                |                |             |                |         |            | 0.60         |               | •        |             | 0.60                 |              | 4          | 13       | ,           | 6.6          |          | 24 67          | 29 17          | ٨         | 0.417                 |        |
|                   | 11        | 10               | '          | n /a                  |            |                | 24 74          |             | o too          |         | 1 •        | n 60         | 0.18          | •        | •           | 0 60                 | 0.15         | 21         | 74       | 1           | n /          | 4 0      | 25.17          | <i>11</i> 00   | A         | n 105                 | n 1//  |
|                   |           | 10               | 1 !        | () 10<br>() <b>10</b> |            | 24 40<br>24 02 | 78 DA          | •           | 0 449          |         | l .        |              |               |          |             |                      |              |            | l        |             |              |          | 1              |                |           |                       |        |
|                   | •         | 10               | ;          | 0 /0                  |            | /1 44          | 11 01          | Á           | n AuA          |         | ſ          |              |               |          |             |                      |              |            |          |             |              |          |                |                |           |                       |        |
|                   | 1         | In               | 4          | 9 60                  | 0.55       | 71.17          | JA 70          | 4           | o <b>586</b>   | ባ ነው፤   | 1 .        |              |               | _        |             |                      |              |            | Ι.       |             |              |          | l              |                |           |                       |        |
| 17611             | ^         | In<br>10         | 1 '        | 0 f0<br>0 f0          |            |                |                |             |                |         | 1:         | 0 40<br>0 Mg |               |          | :           | n 40<br>0 00         |              | 41         |          | 1           | 07           |          | 25.01          | 20 m5<br>20 41 | :         | n 43er                |        |
|                   |           | 10               | ",         | 0.10                  |            |                |                |             |                |         | 1 7        | 0.70         |               | ī        | 1 7         | 0.10                 |              | n          | ;        | ō           | 0.0          |          | 79.93          | 26.11          | ī         | 0.580                 |        |
|                   | ü         | 10               | ) ;        | 0.80                  |            |                |                |             |                |         | ) ;        | 0.70         |               | 0        | 4           | 0.60                 |              |            | •        | 3           | 11           |          | 76.11          | 70.31          | 4         | 0 111                 |        |
|                   | i i       | 10               |            | (5 00)                |            |                |                |             |                |         | !          | 0 00         |               | •        | •           | n (40)<br>n (80)     |              | 21         | I A      | ,           | 77           |          | 25 10          | 76 75<br>000   | •         | 0 150<br>0 <b>000</b> |        |
|                   |           | 10               | 0          | 0.00                  |            |                |                |             |                |         | 1 :        | D DO<br>D 40 |               | ,        | 0 4         | n mn<br>n 4n         |              | n<br>4     | 1 :      | ,           | 29           |          | 74 44          | 28 80          |           | n mm<br>n 460         |        |
|                   | 11        | 10               | ا ا        | 0.47                  |            |                |                |             |                |         | 1 :        | 0.60         | 0.51          | ;        | ,           | n Bri                | 0.50         | 'n         | 10       | 4           | 7.5          | 12       | J4 10          | 11 47          | Ä         | 0.154                 | n 160  |
|                   | 1         | 10               |            | Q AQ                  |            | 11.01          | 25 M 1         | 4           | 0.700          |         |            |              |               |          |             |                      |              |            | l        |             |              |          |                |                |           |                       |        |
|                   | 1         | 10               | ) •        | 0 90                  |            | 77.17          | 25.57<br>25.87 | •           | 0 1/2<br>0 455 |         |            |              |               |          |             |                      |              |            |          |             |              |          | i              |                |           |                       |        |
|                   |           | 10<br>10         | l :        | 0 00                  | 0.47       | 22 21<br>22 99 | JA 01          | •           | 0.650          | 0 540   | 1          |              |               |          | 1           |                      |              |            | 1        |             |              |          | 1              |                |           |                       |        |
| 12812             | Ä         | 10               |            | 0 90                  |            | ••             | • • •          |             |                |         |            | n Bo         |               | 4        |             | O 80                 |              |            | 14       | 1           | 47           |          | J4 A1          | aî ón          | •         | 0.184                 |        |
|                   | n         | 10               |            | 0.90                  |            |                |                |             |                |         |            | 0 80<br>1 00 |               | 1        | l '.        | 0 /0<br>0 MO         |              | 17         | 70<br>77 | •           | 70           |          | 24 RO<br>26 RS | 27 58<br>28 97 | <u>'</u>  | n 107<br>n 200        |        |
|                   | r<br>     | 10               | 10         | 1 00                  |            |                |                |             |                |         | 10         | 0.60         |               | ,        | ;           | 0.60                 |              | ';'        | I "      | į           | 20           |          | 74 /9          | 28 m1          | -         | 0.540                 |        |
|                   | t t       | in<br>in         | 10         | 0 /D<br>1 DO          |            |                |                |             |                |         | 10         | 1 00         |               | 11       | lΩ          | i no                 |              | ,          | 18       | 4           | 4.5          |          | 78.97          | 10 43          | 10        | 0.108                 |        |
|                   | ì         | in.              |            | n An                  |            |                |                |             |                |         |            | n An         |               | 1        |             | 0.80                 |              |            | 111      | 4           | 13           |          | 28 14<br>7/ 99 | 78 98<br>30 71 |           | . 0.155               |        |
|                   | 1,3       | 10               | 10         | i no                  |            |                |                |             |                |         | 10         | 1 00         | 0.89          | •        | 1           | n en<br>int          | 0.61         | A          | 11       | :           | 3 <b>0</b>   | 4.1      | 26 16          | 20 #2          | 10        | D 347                 | 0.380  |
|                   | 14        | 10<br>10         | 10         | 0 90<br>0 90          |            | 25.01          | 11.50          |             | 0 621          |         | 1 "        |              | 17 (4.4)      | •        | "           |                      |              | ·          | 1 "      | -           |              |          | '              |                |           |                       |        |
|                   | ;         | 10               | 10         | 1 00                  |            | 24 29          | /0 10          | 10          | 0.410          |         |            |              |               |          |             |                      |              |            | 1        |             |              |          | 1              |                |           |                       |        |
|                   | ĸ         | in               | 10         | 1 00                  |            | 74 45          | 01.13          | 10          | 0.887          |         | 1          |              |               |          | 1           |                      |              |            |          |             |              |          | 1              |                |           |                       |        |
|                   | t .       | 10               | In         | 1 00                  | 0.01       | 72 IN          | 70 h7          | In          | 0.579          | 0.504   | ١.         | 0.80         |               | 1        | ١ ,         | 0.60                 |              | 11         | 10       |             | 4.0          |          | 24 82          | 76 <b>08</b>   | 4         | 0 160                 |        |
| 17811             | A         | 10               | 10         | 1 00                  |            |                |                |             |                |         | 10         | 1 00         |               | i        | in          | i nn                 |              | 19         | 14       | 4           | 0.0          |          | 75 SR          | 70 70          | 10        | n 1/1                 |        |
|                   | ,         | 10               | 10         | 0.00                  |            |                |                |             |                |         |            | 0 00         |               | 0        |             | 0.00                 |              | 16         | 16       | •           | 7 0          |          | 29 07          | 79 14          | •         | 0 141                 |        |
|                   | n         | 10               |            | 0 90                  |            |                |                |             |                |         | !          | 0.60         |               |          | "           | n wn<br>n Vn         |              | 12         | 10       | - }         | # 0<br># 0   |          | 24 41          | 10 01<br>28 17 | ,         | () 051                |        |
|                   | F .       | t n              | •          | 0 00                  |            |                |                |             |                |         | 1:         | 0.40         |               | ï        | 1 :         | 0.00                 |              | 16         | 20       | i i         | 40           |          | 78 98          | 30 18          | n         | n 16#                 |        |
|                   | , r       | 10<br>10         | :          | 0 60                  |            |                |                |             |                |         | Ä          | 0 80         |               | i        |             | 0 80                 |              | •          | ii ii    | 3           | 37           |          | 27.40          | 10 /9          |           | 0.474                 |        |
|                   | 11        | 10               | ,          | 0 80                  |            |                |                |             |                |         |            | 0.00         | 0.80          |          | '           | 0.70                 | n /5         |            | 14       | 3           | 4.7          | 4.2      | 24 18          | 29.13          | ,         | 0.450                 | 0.471  |
|                   | ı         | ŧn               |            | 0 00                  |            | 77.61          | 27 14          | •           | 0 181<br>0 881 |         | i .        |              |               |          | 1           |                      |              |            | 1        |             |              |          |                |                |           |                       |        |
|                   | 1         | 10               | !          | 0.90                  |            | 22 48          | 10 /A<br>27 OA | 10          | 0 460          |         |            |              |               |          |             |                      |              |            | 1        |             |              |          | 1              |                |           |                       |        |
|                   | K.        | 10<br>10         | 10         | 0.00                  | 6 80       | // ""<br>/1 18 | 30 08          | ñ           | 0 411          | 0.636   |            |              |               |          |             |                      |              |            | 1        |             |              |          |                |                |           |                       |        |
| 1/814             | À         | 10               | 10         | 1 00                  |            | •              |                |             |                |         | 1 ?        | n 76         |               | 1        | !           | n Wh<br>0 <b>8</b> A |              | <i>)</i> 1 | 74<br>10 | ,<br>,      | 4 A<br>3 3   |          | 26.74<br>28.95 | 70 0A<br>31 1A | •         | 0 15A<br>0 200        |        |
|                   | n         | 10               |            | 0 40                  |            |                |                |             |                |         | 1 ;        | 0 90<br>0 70 |               | ,        | ;           | 0.70                 |              |            | 1 14     | ŝ           | 47           |          | 24 74          | 20 14          | ī         | 0 146                 |        |
|                   | (.<br>D   | f <i>a</i><br>10 | 1:         | 0 90<br>0 90          |            |                |                |             |                |         | 1 6        | 0 60         |               | 7        | •           | 0.90                 |              | 26         | 30       | ŝ           | 6 0          |          | 25.25          | 20 07          | •         | 0.402                 |        |
| 0                 | E<br>E    | 10               | 1 6        | 100                   |            |                |                |             |                |         | 10         | 1 00         |               | i        | ,           | 0 /6                 |              | 70         | 39       | 4           | • •          |          | 76 76<br>33 88 | 27 01          | ?         | 0 764<br>0 700        |        |
|                   | F         | 10               |            | 0 90                  |            |                |                |             |                |         |            | 0 90         |               | 13       | 10          | 0.00                 |              | 14<br>27   | 27<br>28 | 5           | 5 4<br>4 0   |          | 27 98<br>24 25 | 30 34<br>27 25 | 6<br>10   | 0.300<br>u 3aa        |        |
| $\bigcirc$        | a         | 10               | 10         | 1 00                  |            |                |                |             |                |         | 10         | 1 00<br>0 80 | 0.86          | 3        | ',          | 0.70                 | (1 <b>84</b> | ,,<br>6    | "        | 'n          | 45           | 5.3      | 24 50          | 26 45          | ;         | 0.279                 | 0.122  |
| $\langle \rangle$ | H         | 10<br>10         | 10         | 1 00<br>1 00          |            | 21 10          | 26 76          | 10          | 0.538          |         | "          | to the       | 1, 11,1       | •        |             |                      |              | -          | '        | -           |              |          | 1              |                |           |                       |        |
| ت                 | ;         | 10               | 10         | 1 00                  |            | 22 60          | 26.02          | 10          | 0 342          |         |            |              |               |          | 1           |                      |              |            | 1        |             |              |          |                |                |           |                       |        |
|                   | ĸ         | 10               |            | 0 80                  |            | 23 07          | 27.05          |             | 0 400          |         | 1          |              |               |          | l .         |                      |              |            | ł        |             |              |          | 1              |                |           |                       |        |
| <b></b>           | L         | 10               | 10         | 1 00                  | 0.95       | 24 53          | 29 57          | 10          | 0 504          | 0 470   | I          |              |               |          | -           |                      |              |            | ı        |             |              |          |                |                |           |                       | 2113   |

## **Summary of Statistical Tests and Probabilities**

BTR:

|               |         |                         | <u>Sur</u>        | <u>vival</u>               |                                             |                       | <u>Gr</u>         | <u>owth</u>                | N                   | eonate            | <b>Production</b>          | on                           |
|---------------|---------|-------------------------|-------------------|----------------------------|---------------------------------------------|-----------------------|-------------------|----------------------------|---------------------|-------------------|----------------------------|------------------------------|
|               |         |                         | F-Test            | T-Test                     |                                             |                       | F-Test            | T-Test                     | Mean                | F-Test            | T-Test                     | <del></del>                  |
| <u>Day 28</u> |         | Proportion<br>Surviving | Equal<br>Variance | Statistical<br>Probability | Statistically<br>Significant <sup>1,2</sup> | Average<br>Weight(mg) | Equal<br>Variance | Statistical<br>Probability | Neonates/<br>Female | Equal<br>Variance | Statistical<br>Probability | Statistically<br>Significant |
| 12622         | Control | 0.55                    |                   |                            |                                             | 0.501                 |                   |                            |                     |                   |                            |                              |
| 12638         | Sample  | 0.82                    | 0.203             | 0.006                      |                                             | 0.563                 | 0.740             | 0.219                      |                     |                   |                            |                              |
| 12639         | Sample  | 0.91                    | 0.007             | 0.000                      |                                             | 0.639                 | 0.786             | 0.060                      |                     |                   |                            |                              |
| 12640         | Sample  | 0.90                    | 0.007             | 0.001                      |                                             | 0.554                 | 0.620             | 0.245                      |                     |                   |                            |                              |
| 12641         | Sample  | 0.89                    | 0.011             | 0.001                      |                                             | 0.661                 | 0.912             | 0.055                      |                     |                   |                            |                              |
| <u>Day 35</u> |         |                         |                   |                            |                                             |                       |                   |                            |                     |                   |                            |                              |
| 12622         | Control | 0.38                    |                   |                            |                                             |                       |                   |                            |                     |                   |                            |                              |
| 12638         | Sample  | 0.74                    | 0.728             | 0.003                      |                                             |                       |                   |                            |                     |                   |                            |                              |
| 12639         | Sample  | 0.89                    | 0.190             | 0.000                      |                                             |                       |                   |                            |                     |                   |                            |                              |
| 12640         | Sample  | 0.74                    | 0.005             | 0.002                      |                                             |                       |                   |                            |                     |                   |                            |                              |
| 12641         | Sample  | 0.85                    | 0.116             | 0.000                      |                                             |                       |                   |                            |                     |                   |                            |                              |
| <u>Day 42</u> |         |                         |                   |                            |                                             |                       |                   |                            |                     |                   |                            |                              |
| 12622         | Control | 0.35                    |                   |                            |                                             | 0.377                 |                   |                            | 4.0                 |                   |                            |                              |
| 12638         | Sample  | 0.73                    | 0.550             | 0.002                      |                                             | 0.390                 | 0.372             | 0.394                      | 4.3                 | 0.271             | 0.418                      |                              |
| 12639         | Sample  | 0.84                    | 0.342             | 0.000                      |                                             | 0.397                 | 0.024             | 0.260                      | 4.8                 | 0.081             | 0.269                      |                              |
| 12640         | Sample  | 0.70                    | 0.036             | 0.002                      |                                             | 0.447                 | 0.876             | 0.051                      | 3.8                 | 0.440             | 0.470                      |                              |
| 12641         | Sample  | 0.76                    | 0.215             | 0.001                      |                                             | 0.406                 | 0.400             | 0.202                      | 4.8                 | 0.107             | 0.277                      |                              |

<sup>1. \*</sup> A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05).

<sup>2.</sup> If the F-Test result was significant (relative to the Laboratory Control, P<0.05), the T-Test was performed using unequal variances.

|             |            |             |               |                      | •          | Day 1          | i Data                       |          |                |               |            | Pay 36                       | Data     |          |         | they 4               | (late  |          | Day        | 36 + 43 R | production | Date                                  | T .            | Pay            | 4) Grewth | Ďate.            | -     |
|-------------|------------|-------------|---------------|----------------------|------------|----------------|------------------------------|----------|----------------|---------------|------------|------------------------------|----------|----------|---------|----------------------|--------|----------|------------|-----------|------------|---------------------------------------|----------------|----------------|-----------|------------------|-------|
|             |            |             |               |                      | Mean       | tulisi Basi    | Tatal Day                    |          | Maan Wil       | Mean Wi       |            |                              |          |          |         |                      | Mean   |          |            |           | Mean       | Mean                                  |                |                |           |                  |       |
| Sample      |            | <b>5141</b> |               | Proportion           |            | Weight         | Weight                       | -        |                | Reps 14       |            | Propertion                   | Mean     | Humber   |         | Proportion           |        | •        | 1 1 1 1    | d Females |            |                                       | Indial Pen     | Teld de        | Organisms | Mean William Rea |       |
| Mumber      | Apple at a | Court       | <b>Surrey</b> | Surviving            | Sur viving | (mg)           | (mg)                         | Weighed  | (~0)           | ( <b>~0</b> ) | grantered. | Burviving                    | Burvival | Hennales | am same | But viving           | Bampio | Hennates | Nemales    | /Rep      | / Female   | / Sample                              | WI (mg)        | WI (mg)        | Weight    | Imel             | A H   |
| 13633       | A          | 10          | 1 :           | 0.70                 |            |                |                              |          |                |               | 1 ;        | 6 76<br>6 76                 |          |          | l !     | 6 16<br>0 30         |        |          |            |           | 0.0        |                                       | 33.12          | 1116           | ï į       | 0.420            |       |
|             | ë          | 10          | :             | 0 90                 |            |                |                              |          |                |               | ;          | 0 70                         |          | ï        | I .     | 0 60                 |        | ;        | 1 1        | ;         | 4 O<br>7 S |                                       | 25 23<br>24 56 | 76 84<br>36 47 | ?         | 0 104<br>0 170   |       |
|             | Ð          | 10          |               | 0 00                 |            |                |                              |          |                |               | ١ .        | 0 10                         |          | ä        | ï       | 0 10                 |        |          | 4          | ė         | 00         |                                       | 1417           | 20 40          | ï         | 8 4 10           |       |
|             | ŧ          | 10          | ! !           | 0 20                 |            |                |                              |          |                |               | 1 !        | 0 10                         |          | ٥        | 1       | 0 10                 |        | 0        | ٥          | 0         | 0.0        |                                       | 23.67          | 24 18          | i         | 0 810            |       |
|             | ^          | 10          | 1:            | 0 <b>0</b> 0         |            |                |                              |          |                |               | l :        | 0 <b>5</b> 0<br>0 <b>6</b> 0 |          | •        | !       | 0 <b>6</b> 0         |        | :        | 12         | ,         | 4.0        |                                       | 24 44          | 20 14          | •         | 0 31)            |       |
|             | н          | 10          | ;             | 0 70                 |            |                |                              |          |                |               | ;          | 0 60                         | 0 34     |          |         | 0 60                 | 0.35   | ,<br>,   | 11         | ,         | 4 6        | 4.0                                   | 24 67<br>25 17 | 30 17<br>27 00 | :         | 0.417            | n 1// |
|             | 1          | 10          | 1 1           | 0 10                 |            | <b>34 40</b>   | 24 74                        | •        | 0 340          |               |            |                              |          |          | _       |                      |        | •        | 1 "        | •         |            | • • •                                 | ''''           | ,, 50          | •         | U M71            | " "   |
|             |            | 10          | l :           | 0 00                 |            | 34 03          | 78 06                        | •        | 0 448          |               | İ          |                              |          |          | ]       |                      |        |          |            |           |            |                                       | i              |                |           |                  |       |
|             | , R        | 10          | 1 '           | 0 70<br>0 00         | 0.45       | 23 44<br>23 17 | 21 01<br>24 10               | •        | 0 606<br>0 500 | 0 501         |            |                              |          |          |         |                      |        |          |            |           |            |                                       | l              |                |           |                  |       |
| 126 28      | À          | 10          | 1 7           | 0.40                 |            | ••••           |                              | -        |                |               | ١ ،        | 0 40                         |          |          |         | 0.40                 |        | ,        | 1 ,        |           | 10         |                                       | 26.41          | )# 00          |           | 0.645            |       |
|             | n          | In          | 1 /           | 0 70                 |            |                |                              |          |                |               | ,          | 0.70                         |          | ,        | ,       | 0.70                 |        | 16       | 25         | 4         | 41         |                                       | 20 87          | 17.81          | ,         | 0.423            |       |
|             | ¢ .        | 10          | 10            | 1 00                 |            |                |                              |          |                |               | 10         | 1 00                         |          | •        | ٠ ا     | 0.00                 |        | 20       | ,,         | •         | 4.6        |                                       | 27.24          | 10 14          |           | 0 144            |       |
|             | 0          | 10          | 1:            | 0 90                 |            |                |                              |          |                |               | l :        | 0 90<br>0 80                 |          | 14       | l :     | 0 80                 |        | 11       | 4/         | •         | 7.6        |                                       | 29 40          | 12.41          | •         | 0.114            |       |
|             |            | 10          |               | 0 90<br>0 90         |            |                |                              |          |                |               | :          | 0 40                         |          | ;        | l :     | 0 80<br>0 78         |        | 17       | 16         | 1         | 4 6        |                                       | 29 O1          | 30 87          | •         | 0 141            |       |
|             | í.         | 10          | ;             | 0 90                 |            |                |                              |          |                |               | ;          | 0 00                         |          | ;        | I .     | 0.00                 |        | 18       | 20         | i         | 40         |                                       | 25 04          | 28 84<br>26 03 |           | 0 190<br>0 110   |       |
|             | 11         | 10          |               | 0 40                 |            |                |                              |          |                |               |            | 0 60                         | 0 74     | ò        | 6       | 0 50                 | 0.73   | 0        | 0          | 1         | 0.0        | 4.3                                   | 25 48          | # 01           | ī         | 0 104            | 0.100 |
|             | 1          | 10          | 10            | 1 00                 |            | 10 61          | 74 81                        | 10       | 0.445          |               | İ          |                              |          |          |         |                      |        |          |            |           |            |                                       |                |                |           |                  |       |
|             |            | 10<br>10    | 10            | 1 00<br>0 <b>9</b> 0 |            | 21 5A<br>22 00 | 24 94<br>31 70               | 10<br>•  | 0 140<br>0 613 |               | Ì          |                              |          |          |         |                      |        |          |            |           |            |                                       |                |                |           |                  |       |
|             |            | 10          | l :           | 0.00                 | 0.87       | 2) 12          | 29 50                        | •        | 0 819          | D 563         | ŀ          |                              |          |          | 1       |                      |        |          |            |           |            |                                       |                |                |           |                  |       |
| 12839       |            | 10          | 10            | 100                  |            |                |                              | -        |                |               | 10         | ioò                          |          | 4        | 1ó      | 1.00                 |        | 14       | 18         | 1         | àô.        | · · · · · · · · · · · · · · · · · · · | 70 00          | ıj îà          | 10        | 0 114            |       |
|             |            | 10          |               | 0 80                 |            |                |                              |          |                |               |            | 0.80                         |          | 1        |         | n no                 |        | 14       | 17         | 3         | 4.7        |                                       | ж м            | 20 87          |           | 0 4 IA           |       |
|             | r.         | 10          | •             | n 90                 |            |                |                              |          |                |               |            | 0.00                         |          | 0        | •       | 0.00                 |        | •        | 4          | 3         | 7.0        |                                       | 27.41          | 28 17          | •         | 0 417            |       |
|             | ņ          | 10          | :             | n MO<br>0 90         |            |                |                              |          |                |               | :          | 0 90                         |          | 4        | l '.    | n /o<br>o <b>n</b> o |        | 11<br>21 | 10         | 3         | 4.7        |                                       | 25.17          | 28 41<br>28 42 | ,         | († 10A<br>(† 41B |       |
|             |            | 10          | 10            | 100                  |            |                |                              |          |                |               | 10         | 1 00                         |          | ;        | ;       | 0.00                 |        | (        | 7          | 7         | 35         |                                       | 25 00          | 28 16          | :         | 0 1/3            |       |
|             | Ġ          | 10          | "             | 0.90                 |            |                |                              |          |                |               | ï          | 0.70                         |          | ,        | Á       | 0.60                 |        | 12       | 14         | ;         | 7.0        |                                       | 25 46          | 77 89          | 4         | 0.477            |       |
|             | 21         | 10          | 10            | 1.00                 |            |                |                              |          |                |               | 10         | 1 00                         | D 99     | 4        | 10      | 1 00                 | 0.84   | •        | ] 11       | 4         | 3.3        | 4.9                                   | 72 BA          | 28 57          | 10        | n 101            | 0.197 |
|             | 1          | 10          |               | 0.80                 |            | 71 70          | 2A 47                        | •        | D 479          |               | 1          |                              |          |          |         |                      |        |          |            |           |            |                                       | l              | •              |           |                  |       |
|             | ,          | 10<br>10    | 10            | 0.00                 |            | 71 04<br>78 01 | 10 <b>98</b><br>17 <b>98</b> | ₽<br>In  | D 797<br>D 827 |               |            |                              |          |          | 1       |                      |        |          |            |           |            |                                       | l              |                |           |                  |       |
|             | î          | 10          | 10            | 1 00                 | n e i      | /4 90          | 30 59                        | 10       | D 569          | D 639         |            |                              |          |          |         |                      |        |          |            |           |            |                                       |                |                |           |                  |       |
| 17040       | À          | in.         | 1 1           | 0.80                 | ** - *     | •,             | - •.                         | •        |                |               | ,          | 0.70                         |          | 1        | ' '     | 0.70                 |        | j -      | •          | 7         | 40         |                                       | 70 10          | 33 16          | ì         | ő ša <i>l</i>    |       |
|             | R          | 10          |               | 0.00                 |            |                |                              |          |                |               |            | O 00                         |          | 10       |         | 0.00                 |        | 74       | 19         | 4         | 0.0        |                                       | 27 94          | 10 64          |           | 0 11#            |       |
|             | c          | 10          |               | 0.90                 |            |                |                              |          |                |               | ! !        | 0.00                         |          | 6        | 1 2     | 0 <b>00</b>          |        | 17       | 10         | 3         | 73         |                                       | 76 49          | 79 13<br>30 50 | :         | n 4n#<br>n 5n+   |       |
|             | p          | 10          | l :           | 0 90                 |            |                |                              |          |                |               | ;          | 0 <b>80</b><br>0 70          |          | 10       | ,       | 0.70                 |        | 25       | 11         | ,,        | 9.0        |                                       | 27 20          | 30 90<br>79 41 | ;         | 0.450            |       |
|             | ,          | 10          | ;             | 0.90                 |            |                |                              |          |                |               | ,          | 0 70                         |          | n        |         | 0.60                 |        | ij       | ;          | 1         | 0.7        |                                       | 21 98          | 74 18          |           | 0 111            |       |
|             | i,         | 10          | ,             | 0.00                 |            |                |                              |          |                |               | •          | 0.00                         |          | 4        |         | n <b>nn</b>          |        |          | - 11       | •         | 7.4        |                                       | 74 34          | 21 24          | A         | 0.101            |       |
|             | 10         | 10          | 10            | 1.00                 |            |                |                              |          |                |               | •          | 0.80                         | 0.74     | 1        | 1 '     | n /n                 | n /u   | 17       | 15         | 3         | 4.0        | 1.6                                   | 2/ 20          | 10 48          |           | 0.410            | 0.447 |
|             | !          | 10          | 10            | 1.00                 |            | 74 BN<br>74 B7 | 10 61<br>20 04               | 10<br>10 | 0 496<br>0 437 |               |            |                              |          |          | 1       |                      |        |          | l          |           |            |                                       | I              |                |           |                  |       |
|             | ,          | 10<br>10    | 10            | 1 00<br>0 70         |            | 24 M7<br>22 24 | 20 04<br>26 68               | 10       | 0.417          |               | I          |                              |          |          | I       |                      |        |          | 1          |           |            |                                       | 1              |                |           |                  |       |
|             | ĩ          | 10          | 10            | 1 00                 | 0.00       | 25 07          | 10 65                        | 10       | 0.546          | 0.954         | 1          | _                            | _        |          |         |                      |        |          | l .        |           |            |                                       |                |                |           | -4.5             |       |
| 17441       | À          | 10          |               | 0.90                 |            |                |                              |          |                |               | •          | 0.00                         |          | ń        | • `     | 0.00                 |        | 17       | [ <u>i</u> |           | 40         |                                       | 27 20          | 3n 47          |           | 0.180            |       |
|             | M          | 10          | 10            | 1.00                 |            |                |                              |          |                |               | 10         | 1 00                         |          | •        | ! !     | 0.60                 |        | ))<br>)A | 111        | •         | 43         |                                       | 25.43          | 28 81<br>30 51 |           | 0.4/3            |       |
|             | Ç          | 10          | 10            | 1 00                 |            |                |                              |          |                |               | :          | 0 <b>9</b> 0                 |          | ()<br>A  | ,       | 0 MO<br>0 /0         |        | 7R<br>10 | 7A<br>76   | - :       | 43         |                                       | 26 28<br>22 64 | 76 AA          | •         | 0 470            |       |
|             | D<br>F     | 10          | "             | 00 1                 |            |                |                              |          |                |               | ;          | 0 00                         |          | ï        |         | 0 90                 |        | 14       | l ñ        | Ä         | 43         |                                       | 23 45          | 2A 66          | •         | 0 344            |       |
|             | j          | 10          | ] ;           | 0 70                 |            |                |                              |          |                |               | j          | 0.70                         |          | ,        | 6       | 6 60                 |        | 6        |            | 3         | 27         |                                       | 24 39          | 28 64          | 5         | 0.450            |       |
|             | G.         | 10          |               | 0.00                 |            |                |                              |          |                |               |            | 0 80                         |          | . !      | ! !     | 0.70                 |        | "        | 20         | •         | 70         | _                                     | 24 57          | 27 86          | ,         | 0 4//            |       |
| _           | 16         | 10          | 1 0           | 0.80                 |            |                |                              |          |                |               | ' '        | 0 70                         | 0 85     | 3        | ,       | 0.70                 | 0.76   | ٩        | <b>'</b>   | 4         | 3.3        | 4.6                                   | 25 58          | 26 09          | ,         | 0 357            | 0.406 |
| <b>-</b>    | !          | 10          | 10            | 1 00                 |            | 22 53<br>21 80 | 28 22<br>28 97               | 10<br>8  | 0 589<br>0 574 |               |            |                              |          |          |         |                      |        |          | I          |           |            |                                       | ŀ              |                |           |                  |       |
| )<br>)<br>) | J<br>K     | 10<br>10    | 1:            | 0 90<br>0 90         |            | 21 BO<br>21 B1 | 27 78                        | ï        | 0 663          |               |            |                              |          |          | l       |                      |        |          | I          |           |            |                                       |                |                |           |                  |       |
|             | î          | 10          | 1 .           | 0 60                 | 0.89       | 25 18          | 31 88                        | í        | 0 638          | 0.661         |            |                              |          |          | l       |                      |        |          | 1          |           |            |                                       | I              |                |           |                  |       |

**Summary of Statistical Tests and Probabilities** 

BTR:

|               |         |                         | <u>Su</u>                   | <u>rvival</u>                        |                                           |                    | <u>Gr</u>                   | <u>owth</u>                          |              | N                           | eonate                      | <b>Production</b>                    | on                           |
|---------------|---------|-------------------------|-----------------------------|--------------------------------------|-------------------------------------------|--------------------|-----------------------------|--------------------------------------|--------------|-----------------------------|-----------------------------|--------------------------------------|------------------------------|
| Day 28        |         | Proportion<br>Surviving | F-Test<br>Equal<br>Variance | T-Test<br>Statistical<br>Probability | Statistically<br>Significant <sup>1</sup> | Mean<br>Weight(mg) | F-Test<br>Equal<br>Variance | T-Test<br>Statistical<br>Probability | 13           | Mean<br>Neonates/<br>Female | F-Test<br>Equal<br>Variance | T-Test<br>Statistical<br>Probability | Statistically<br>Significant |
| 12668         | Control | 0.73                    |                             |                                      |                                           | 0.477              |                             |                                      | <del>-</del> |                             |                             |                                      |                              |
| 12664         | Sample  | 0.90                    | 0.559                       | 0.012                                |                                           | 0.443              | 0.439                       | 0.312                                |              |                             |                             |                                      |                              |
| 12665         | Sample  | 0.89                    | 0.237                       | 0.014                                | ı <b>÷</b>                                | 0.648              | 0.940                       | 0.036                                |              |                             |                             |                                      |                              |
| 12666         | Sample  | 0.70                    | 0.780                       | 0.333                                |                                           | 0.613              | 0.992                       | 0.070                                |              |                             |                             |                                      |                              |
| 12671         | Sample  | 0.87                    | 0.334                       | 0.034                                |                                           | 0.458              | 0.423                       | 0.389                                |              |                             |                             |                                      |                              |
| <u>Day 35</u> |         |                         |                             |                                      |                                           |                    |                             |                                      |              |                             |                             |                                      |                              |
| 12668         | Control | 0.65                    |                             |                                      |                                           |                    |                             |                                      |              |                             |                             | ,                                    |                              |
| 12664         | Sample  | 0.83                    | 0.763                       | 0.046                                |                                           |                    |                             |                                      |              |                             |                             |                                      |                              |
| 12665         | Sample  | 0.85                    | 0.521                       | 0.030                                |                                           |                    |                             |                                      |              |                             |                             |                                      |                              |
| 12666         | Sample  | 0.64                    | 0.786                       | 0.438                                |                                           |                    |                             |                                      |              |                             |                             |                                      |                              |
| 12671         | Sample  | 0.85                    | 0.480                       | 0.022                                |                                           |                    |                             |                                      |              |                             |                             |                                      |                              |
| <u>Day 42</u> |         |                         |                             |                                      |                                           |                    |                             |                                      |              |                             |                             |                                      |                              |
| 12668         | Control | 0.59                    |                             |                                      |                                           | 0.293              |                             |                                      |              | 2.2                         |                             |                                      |                              |
| 12664         | Sample  | 0.79                    | 0.942                       | 0.014                                |                                           | 0.346              | 0.270                       | 0.266                                |              | 2.6                         | 0.684                       | 0.316                                |                              |
| 12665         | Sample  | 0.80                    | 0.965                       | 0.014                                |                                           | 0.498              | 0.018                       | 0.009                                |              | 6.2                         | 0.067                       | 0.001                                |                              |
| 12666         | Sample  | 0.65                    | 0.449                       | 0.249                                |                                           | 0.459              | 0.573                       | 0.001                                |              | 2.3                         | 0.015                       | 0.483                                |                              |
| 12671         | Sample  | 0.83                    | 0.744                       | 0.007                                |                                           | 0.351              | 0.133                       | 0.196                                |              | 3.4                         | 0.135                       | 0.113                                |                              |

<sup>1 \*</sup> A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05).

<sup>2</sup> If the F-Test result was significant (relative to the Laboratory Control, P<0.05), the T-Test was performed using unequal variances.

## Amphipod, *Hyalella azteca*, Chronic Toxicity Test Results

#### Menzie-Cura Dead Creek 99033

BTR 3641 Aquatec Biological Sciences

|               |           |          |            |                             |            | Day I          | ê (Pate        |                |                 |         |            | Day 3             | Pale      |          |          | liey 4               | ) (talle |          | Day      | 35 + 47 R | er eduction | Deta     |                | (1ay              | 41 Grawth | thata          |       |
|---------------|-----------|----------|------------|-----------------------------|------------|----------------|----------------|----------------|-----------------|---------|------------|-------------------|-----------|----------|----------|----------------------|----------|----------|----------|-----------|-------------|----------|----------------|-------------------|-----------|----------------|-------|
|               |           |          | •          |                             | Man        | Initial Roal   | Total (by      |                | Me an Wil       | Mean Wi |            |                   |           |          | 1        |                      | Moan     |          | 1        |           | Mean        | Mean     |                |                   |           | Mean Wi        | Ma 10 |
| ample         |           | tiet.    |            | Proportion                  | Proportion | Weight         | Weight         | th gantems     |                 | Ropels  |            | Frapariton        | Mar an    | Manhor   |          | Proportion           |          |          | 10448    | # Females | Heenales    |          | trattal Pan    | Total day         | Organisms |                |       |
| <b>Limber</b> | Replicate | Count    | Sur vising | Bursting                    | the viving | (mg)           | (mg)           | Weighod        | (mg)            | (mg)    | for viving | Burviving         | Sup vival | Heanales | mind     | Burstising           | Sample   | Hennales | Henneles | / Rop     | / female    | / Bampte | W (me)         | W (mg)            | Weight    |                | A H   |
| 17060         | A         | 10<br>10 | l :        | 6 to                        |            |                |                |                |                 |         | l ;        | 6 56              |           | ,        | 1 :      | à €ô<br>0 <b>6</b> 0 |          |          | ,-       | ;         | 70          |          | ##<br>##       | 36 43<br>28 12    |           | 0.330          |       |
|               | ë.        | 10       | 10         | 1 00                        |            |                |                |                |                 |         | l ;        | 0 00              |           | ;        |          | 0 00                 |          | ;        | 1 10     | Š         | ) )         |          | 24 14          | 21 24             | :         | 0.334          |       |
|               | Ď         | 10       | ,          | 0 /0                        |            |                |                |                |                 |         |            | 0 60              |           | •        | 4        | 0.40                 |          | 10       | 116      | á         | 10          |          | 74 07          | 24.73             | - 7       | 0 186          |       |
|               | ŧ         | 16       | in.        | 1.00                        |            |                |                |                |                 |         | 10         | 1 00              |           | 3        |          | 0 90                 |          | ,        | 4        | 1         | 1.7         |          | 27 50          | <b>79 86</b>      | 4         | 0.700          |       |
|               | f         | 10<br>10 | 1 1        | 0 <b>0</b> 0<br>0 70        |            |                |                |                |                 |         | l '        | 0 70              |           | •        | l '      | 0 70                 |          | )        |          | •         | 13          |          | 79 79          | 30 07             | 1         | 0 244          |       |
|               | 11        | 10       | 1 5        | 0 30                        |            |                |                |                |                 |         |            | 0 10              | 0 64      | 1        | l ;      | 0 60                 | 0 60     | 10       | "        | •         | 33          |          | KK             | 27.00             | 4         | 0 101          |       |
|               | ï         | 10       |            | 0 60                        |            | 25.07          | 20 64          | 4              | 0.613           |         | 1 -        |                   |           | •        | 1 1      |                      |          | •        | 1 "      | •         | 0.0         | "        | 31 M           | )) <del>1</del> 4 | 3         | 0 200          | 0.201 |
|               | 1         | 10       |            | 0 00                        |            | 25.00          | 38 11          | •              | 0 337           |         |            |                   |           |          | l        |                      |          |          | •        |           |             |          | l              |                   |           |                |       |
|               | ĸ         | 10       | •          | 0 80                        |            | 24 47          | 20.37          | •              | 0 461           |         |            |                   |           |          | ĺ        |                      |          |          | i        |           |             |          | ì              |                   |           |                |       |
| 12664         |           | 10<br>10 | ,,         | 0 70<br>1 00                | 0 /3       | 24 <b>60</b>   | 20 03          | ,              | 0 4//           | 0 477   | ۱.         | 0 90              |           |          | ١.       | 0 80                 |          |          |          | _         |             |          |                | 1 1-              |           |                |       |
|               | ñ         | 10       | 10         | 1 00                        |            |                |                |                |                 |         | 10         | 100               |           | ;        | 1 :      | 0.00                 |          | )<br>10  | 1 .      | •         | 13          |          | 13 6K<br>10 FK | 31 /a<br>20 02    |           | 0 200          |       |
|               | ι.        | 10       |            | 0 90                        |            |                |                |                |                 |         |            | a <b>60</b>       |           | ,        |          | 0.80                 |          | ,        | 10       | •         | 11          |          | 2/ 94          | 10 12             |           | n 110<br>n 141 |       |
|               | D         | 10       | 10         | 1 00                        |            |                |                |                |                 |         |            | (1 <b>80</b>      |           | 11       |          | a <b>80</b>          |          | 11       | 177      | •         | • • •       |          | 23.47          | M 28              | ï         | 0 151          |       |
|               | •         | 10       |            | 0.00                        |            |                |                |                |                 |         | l •        | 0.00              |           | 0        | •        | 0.00                 |          | 1        | ,        | 3         | 0 5         |          | 27 M           | 11 00             |           | 0.185          |       |
|               |           | 10<br>10 | 10         | 1 00<br>0 40                |            |                |                |                |                 |         | :          | 0 40              |           | * ;      | l :      | D 001<br>0 40        |          | •        | ''       |           | 24          |          | 36 63          | 17.11             | •         | 0.344          |       |
|               | 11        | 10       | I :        | 0.00                        |            |                |                |                |                 |         | ;          | 0.00              | 0.83      | 4        | l :      | 0 00                 | n /9     | 11       | 1 14     | ,         | 3 G         | 2.0      | 76 97<br>79 78 | 78-21<br>12-11    | 1         | 0 110          | 0 146 |
|               | 1         | 10       | •          | 0 00                        |            | 17.26          | 78 BB          | •              | D \$34          |         |            |                   |           |          |          |                      | -        |          |          | -         | ٠.          | • •      | 1              |                   | •         | 17 104         |       |
|               | ,         | 10       | •          | 0 90                        |            | )) BB          | 27.11          | •              | 0 4/ /          |         |            |                   |           |          | Į.       |                      |          |          |          |           |             |          |                |                   |           |                |       |
|               | *         | 10<br>10 | 10         | 0 90<br>1 00                | () (0)     | 75-23<br>74-10 | 78 MA<br>78 15 | 10             | 0 1/0<br>0 40ft | 0 441   |            |                   |           |          | l        |                      |          |          |          |           |             |          |                |                   |           |                |       |
| 12005         |           | 10       | 10         | 1 00                        | 17 043     | /4 10          | /*             | 10             | 444             | 0 441   |            | 0 10              |           | ,        |          | 0.00                 |          | 14       |          |           | è o         |          | 24 80          | 29 a1             |           | 0.407          |       |
|               | ñ         | 10       | 10         | 1.00                        |            |                |                |                |                 |         | - 11       | 1 10              |           | i)       | ii       | 1 10                 |          | 21       | 33       | Ä         | 0.3         |          | 27.27          | 11.53             | 11        | 0.18/          |       |
|               | t:        | 10       | 10         | 1 00                        |            |                |                |                |                 |         | 10         | 1 00              |           | 11       | •        | 0.00                 |          | 16       | 48       | 4         | . 0         |          | 75 55          | 26 /8             |           | 0.4/1          |       |
|               | D         | 10       |            | 0.90                        |            |                |                |                |                 |         | 1 :        | 0 80<br>0 80      |           | 1        | l :      | 0 80                 |          | 17       | 19       | 4         | 3.0         |          | 25 47          | 20 65             |           | 0.504          |       |
|               | :         | 10<br>10 | l ;        | 0 <b>80</b><br>0 /0         |            |                |                |                |                 |         | ;          | 0.70              |           | ;        | ! ;      | 0 <b>8</b> 0<br>0 70 |          | #<br>24  | 14       | ,         | 7 A         |          | 25 00<br>23 30 | 10 44<br>28 12    | •         | 0.608          |       |
|               | 'n        | 10       | .          | 0.90                        |            |                |                |                |                 |         | •          | 0.00              |           | i        | i i      | D SO                 |          | ;        | ia       | - 1       | 17          |          | 77.57          | 10 84             | é         | D 580          |       |
|               | **        | to       | ,          | 0 /0                        |            |                |                |                |                 |         |            | 0.60              | 0.65      |          |          | D BO                 | n Ma     | 10       | 18       | 1         | 4.1         | 4.2      | 21.70          | 28 50             | •         | 0.701          | G 408 |
|               | ı         | 10       | ١ •        | 0.90                        |            | 22.47          | 27.44          | •              | 0.552           |         |            |                   |           |          |          |                      |          |          |          |           |             |          |                |                   |           |                |       |
|               | <u>'</u>  | in<br>In | 10         | 0.00                        |            | 76 22<br>74 10 | 11 /B<br>17 11 | <b>9</b><br>10 | D 686<br>D 783  |         |            |                   |           |          | ļ        |                      |          |          | Ì        |           |             |          |                |                   |           |                |       |
|               | ì         | 10       | 10         | 1 00                        | 0.00       | 22.00          | 28 30          | In             | 0.970           | 0.648   |            |                   |           |          |          |                      |          |          | ì        |           |             |          | [              |                   |           |                |       |
| 1/646         | À         | 10       | 4          | 0.40                        |            | ••             |                |                |                 |         | ٠,         | n 10              |           | n        | ١,       | n in                 |          | , i      | 1.7      | 7         | 0.9         | ·- · —   | 79 (1          | 10 98             | 1         | 0.871          |       |
|               | n         | In       | •          | 0.00                        |            |                |                |                |                 |         | *          | n No              |           | 4        |          | (1 80)               |          | 4        | 12       | 4         | 0.0         |          | 21.50          | 27.15             |           | 0.458          |       |
|               |           | 10       | in.        | 1 00                        |            |                |                |                |                 |         | "          | 0 %0<br>0 %0      |           | ,        | 10       | 1 00<br>0 50         |          | 3        | l :      | ,         | 1 D         |          | 21.71<br>24.04 | 78 9A<br>28 18    | 10        | 0 375<br>0 424 |       |
|               | . "<br>E  | 10<br>10 | 1 :        | 0 AO<br>0 AO                |            |                |                |                |                 |         | ;          | 0.40              |           | - 1      | ;        | 0.50                 |          | ï        | 1 ;      | ;         | 0.7         |          | 2R 74          | 10 91             |           | n 414          |       |
|               | ,         | 10       |            | 0.60                        |            |                |                |                |                 |         | ,          | n /n              |           | 10       | ,        | 0.70                 |          | 11       | 21       | 2         | 10 5        |          | 24 A2          | 78 SS             | ,         | 0.419          |       |
|               | ri        | 10       | •          | 0.00                        |            |                |                |                |                 |         |            | 0 80              |           | q        | ٠,       | 0.60                 |          | 1        | ١ ١      | 4         | 0.3         |          | 27 14          | 10 07             |           | N 4/8          |       |
|               | н         | 10       | 1 1        | 0.40                        |            |                |                |                | 0.474           |         | •          | 0.60              | 0 64      | n        | l *      | 0.60                 | n #5     | 4        | l ¹      | 3         | 13          | ,,       | 70 88          | 11 //             | 4         | 0.487          | 0.450 |
|               | - 1       | 10<br>10 | 1 ;        | 0 <b>00</b>                 |            | 25 83<br>26 53 | 70 H1<br>30 76 | •              | 0 /40           |         | 1          |                   |           |          | l        |                      |          |          | i        |           |             |          |                |                   |           |                |       |
|               | Ŕ         | 10       | ;          | 0.00                        |            | /4 815         | /B 49          | n              | 0.003           |         | i          |                   |           |          | l        |                      |          |          |          |           |             |          |                |                   |           |                |       |
|               | ,         | 10       |            | 0 60                        | 0.70       | 25.74          | 30 43          | n              | O 649           | 0.613   | Ι.         |                   |           |          | i .      |                      |          | · -      |          |           | 7.7         |          | 73             |                   |           |                |       |
| 174/1         | A         | 10       |            | 0.60                        |            |                |                |                |                 |         | !          | o ța<br>ae a      |           |          | 1 :      | D 40<br>D 80         |          | 12       | :        | 7         | 4 N<br>7 O  |          | 79 18<br>28 67 | 10 58<br>11 47    | 1         | 0 150<br>0 150 |       |
|               | ,         | 10<br>10 | 10         | 0 <b>9</b> 0<br>1 <b>00</b> |            |                |                |                |                 |         | 1 10       | 1 00              |           | ,        | 100      | 1 00                 |          | 26       | ;;       | á         | 12          |          | 74 10          | 27 45             | 10        | 0 114          |       |
|               | b         | 10       | 10         | 0.00                        |            |                |                |                |                 |         | "          | 0 90              |           | n        | •        | 0 00                 |          | 0        | ٥        | 7         | 0.0         |          | 21.19          | 74 \$7            | •         | n sen          |       |
|               | ř.        | 10       |            | 0 90                        |            |                |                |                |                 |         | •          | 0 00              |           | 10       |          | 0.00                 |          | 17       | n        | 9         | 4.4         |          | 20 62          | 11 04             | •         | 0 160          |       |
|               | t         | 10       | 10         | 1.00                        |            |                |                |                |                 |         | ! :        | 1) 9/1            |           | 4        |          | f1 (5f)              |          |          | 1 .      | 3         | 30          |          | 29 20          | 76.00             |           | 0.348          |       |
|               | ra<br>    | In       |            | () 0()                      |            |                |                |                |                 |         | i :        | t) (et)<br>(1 (0) | 0.65      | 1        | :        | 0 00<br>0 80         | 0.81     | 13       | l '*     | 9         | 10          | 34       | 30 01<br>24 77 | 11 67<br>27 14    | :         | 0 401<br>0 706 | 0.161 |
|               | 11        | 10       | 10         | 1 00<br>0 90                |            | J1 60          | 2# 14          | •              | 0.516           |         | . "        | 17 1997           |           | ,        | l "      | u m.                 |          | "        | l '      | •         |             |          | l              | •                 | -         |                |       |
|               | j         | 10       |            | 0.60                        |            | // 49          | 35 43          | Ā              | 0.490           |         |            |                   |           |          | 1        |                      |          |          | İ        |           |             |          | 1              |                   |           |                |       |
|               | ĸ         | 10       |            | 0.80                        |            | 26.25          | 79 96          |                | 0 464           |         |            |                   |           |          | ŀ        |                      |          |          | l        |           |             |          |                |                   |           |                |       |
|               | ı L       | 10       | v          | 0.00                        | 0.07       | 74 M4          | 20 00          |                | 0 161           | () 45R  | <u> </u>   |                   |           |          | <u> </u> |                      |          |          |          |           |             |          |                |                   |           |                |       |

RHB 12/23 Title: MC Dead Creek Ha Chronic - Prarie vs D,E,F - D28 S

pdefha8s Transform: ARC SINE(SQUARE ROOT(Y))

Chi-Square Test for Normality

#### Actual and Expected Frequencies

| INTERVAL | <-1.5  | -1.5 to <-0.5 | -0.5 to 0.5 | >0.5 to 1.5 | >1.5   |
|----------|--------|---------------|-------------|-------------|--------|
|          |        |               |             |             |        |
| EXPECTED | 8.7100 | 31.4600       | 49.6600     | 31.4600     | 8.7100 |
| OBSERVED | 10     | 28            | 41          | 49          | 2      |

(p-value = 0.0019)Chi-Square = 17.0301

Critical Chi-Square = 13.277 (alpha = 0.01 , df = 4) = 9.488 (alpha = 0.05 , df = 4)

Data FAIL normality test (alpha = 0.01). Try another transformation.

- The first three homogeneity tests are sensitive to non-normality and should not be performed with this data as is.

Title: MC Dead Creek Ha Chronic - France vs D.E.F - D28 S
File: pdefha6s Transform: ARC SINE(SQUARE ROOT(Y))

Bartlett's Test for Homogeneity of Variance

Calculated BI statistic = 31.9155 (p-value = 0.0002)

Data FAIL B1 homogeneity test at 0.01 level. Try another transformation.

Critical B = 21.6660 (alpha = 0.01, df = 9)

= 16.9190 (alpha = 0.05, df = 9)

Using Average Degrees of Freedom

(Based on average replicate size of 13.90)

Calculated B2 statistic = 35.8140 (p-value = 0.000)

Data FAIL B2 homogeneity test at 0.01 level. Try another transformation.

Title: MC Dead Creek Ha Chronic - Prarie vs D,E,F - D28 S

File: pdefha8s Transform: ARC SINE(SQUARE ROOT(Y))

wilcoxon's Rank Sum Test w/ Bonferroni Adjustment Ho: Control<Treatment

| GROUP | IDENTIFICATION | TRANSFORMED<br>MEAN | RANK<br>SUM | CRIT.<br>VALUE | REPS | SIG<br>0.05 |
|-------|----------------|---------------------|-------------|----------------|------|-------------|
| 1     | 12664/5        | 1.2601              |             |                |      |             |
| 2 .   | 12549          | 1.2464              | 206.00      | 145            | 12   |             |
| 3     | 12550          | 1.2104              | 203.00      | 145            | 12   |             |
| 4     | 12551          | 1.1304              | 145.50      | 126            | 11   |             |
| 5     | 12609          | 1.0301              | 138.00      | 145            | 12   | *           |
| 6     | 12610          | 1.3676              | 246.50      | 126            | 11   |             |
| 7     | 12611          | 0.9721              | 141.00      | 145            | 12   | *           |
| 8     | 12639          | 1.2697              | 217.50      | 145            | 12   |             |
| 9     | 12640          | 1.2582              | 211.50      | 145            | 12   |             |
| 10    | 12641          | 1.2464              | 206.00      | 145            | 12   |             |

Critical values are 1 tailed ( k = 9 )

Title: MC Dead Creek HA Chronic - Prarie vs D.E.F - D28 G

NC TRANSFORMATION Transform: File: pdefha8g

Shapire - Wilk's Test for Normality

D = 0.6397W = 0.9566

Critical W = 0.9240 (alpha = 0.01 , N = 44) W = 0.9440 (alpha = 0.05 , N = 44)

Data PASS normality test [alpha = 0.01]. Continue analysis.

Title: MC Dead Creek HA Chronic - Prarie vs D.E.F - D28 G
File: pdefha8g Transform: NO TRANSFORMATION

Bartlett's Test for Homogeneity of Variance

Calculated B1 statistic = 8.2709 (p-value = 0.5071)

Data PASS B1 homogeneity test at 0.01 level. Continue analysis.

Critical B = 21.6660 (alpha = 0.01, df = 9)

= 16.9190 (alpha = 0.05, df = 9)

Using Average Degrees of Freedom

(Based on average replicate size of 4.40)

Calculated B2 statistic = 8.2198 (p-value = 0.5122)

Data PASS B2 homogeneity test at 0.01 level. Continue analysis.

Title: MC Dead Creek HA Chronic - Prarie vs D.E.F - D28 G

File: pdefha8g Transform: NO TRANSFORMATION

#### ANOVA Table

| SOURCE         | DF         | SS     | MS     | F      |
|----------------|------------|--------|--------|--------|
| Between        | 9          | 0.1749 | 0.0194 | 1.0325 |
| Within (Error) | 34         | 0.6397 | 0.0188 |        |
| Total          | <b>4</b> 3 | 0.8146 |        |        |

(p-value = 0.4351)

Since F < Critical F FAIL TO REJECT Ho: All equal (alpha = 0.05)

Title: MC Dead Creek HA Chronic - Prarie vs D,E,F - D28 G

File: pdefha8g Transform: NO TRANSFORMATION

| N. J         | Bonferroni | t-Test | - | TABLE 1 | OF 2 | ? | Но: | Contro | ol <tr< th=""><th>eatme</th><th>nt</th><th></th></tr<> | eatme | nt |   |
|--------------|------------|--------|---|---------|------|---|-----|--------|--------------------------------------------------------|-------|----|---|
| <del>-</del> |            |        |   |         |      |   |     |        |                                                        |       |    | _ |

| GROUP | IDENTIFICATION | TRANSFORMED<br>MEAN | MEAN CALCULATED IN<br>ORIGINAL UNITS | t STAT  | SIG<br>0.05 |
|-------|----------------|---------------------|--------------------------------------|---------|-------------|
| 1     | 12664/5        | 0.5451              | 0.5451                               |         |             |
| 2     | 12549          | 0.5715              | 0.5715                               | -0.3140 |             |
| 3     | 12550          | 0.6840              | 0.6840                               | -1.6533 |             |
| 4     | 12551          | 0.7307              | 0.7307                               | -2.2099 |             |
| 5     | 12609          | 0.6885              | 0.6885                               | -1.7069 |             |
| 6     | 12610          | 0.6120              | 0.6120                               | -0.7961 |             |
| 7     | 12611          | 0.5688              | 0.5688                               | -0.2813 |             |
| 8     | 12639          | 0.6393              | 0.6393                               | -1.1206 |             |
| 9     | 12640          | 0.5538              | 0.5538                               | -0.1027 |             |
| 10    | 12641          | 0.6610              | 0.6610                               | -1.3795 |             |

Bonferroni t critical value = 2.6857 (1 Tailed, alpha = 0.05, df = 9,34)

Title: MC Dead Creek HA Chronic - Prarie vs D,E,F - D28 G

File: pdefha8g Transform: NO TRANSFORMATION

|      | Bonferroni t | -Test - | TABLE :        | 2 OF 2                           | Ho: Contro      | l <treatment< th=""></treatment<> |
|------|--------------|---------|----------------|----------------------------------|-----------------|-----------------------------------|
| GROU | P IDENTIF    | CATION  | NUM OF<br>REPS | MIN SIG DIFF<br>(IN ORIG. UNITS) | % OF<br>CONTROL | DIFFERENCE<br>FROM CONTROL        |
| 1    |              | 12664/5 | 8              |                                  |                 |                                   |
| 2    |              | 12549   | 4              | 0.2256                           | 41.4            | -0.0264                           |
| 3    |              | 12550   | 4              | 0.2256                           | 41.4            | -0.1389                           |
| 4    |              | 12551   | 4              | 0.2256                           | 41.4            | -0.1856                           |
| 5    |              | 12609   | 4              | 0.2256                           | 41.4            | -0.1434                           |
| 6    |              | 12610   | 4              | 0.2256                           | 41.4            | -0.0669                           |
| 7    |              | 12611   | 4              | 0.2256                           | 41.4            | -0.0236                           |
| 8    |              | 12639   | 4              | 0.2256                           | 41.4            | -0.0941                           |
| 9    |              | 12640   | 4              | 0.2256                           | 41.4            | -0.0086                           |
| 10   |              | 12641   | 4              | 0.2256                           | 41.4            | -0.1159                           |

Title: MC Dead Creek HA Chronic -Prarie vs D.E.F- D35 S

pdefha5s Transform: ARC SINE SQUARE ROOT(Y)) File:

Chi-Square Test for Normality

Actual and Expected Frequencies

INTERVAL <-1.5 -1.5 to <-0.5 -0.5 to 0.5 >0.5 to 1.5 >1.5 EXPECTED 5.7620 20.8120 CBSERVED 4 27 32.8520 20.8120 5.7620

29 23

Chi-Square = 4.3843 (p-value = 0.3565)

Critical Chi-Square = 13.277 (alpha = 0.01 , df = 4)

= 9.488 (alpha = 0.05 , df = 4)

Data PASS normality test [alpha = 0.01]. Continue analysis.

Title: MC Dead Creek HA Chronic -Prarie vs D,E,F- D35 S
File: pdefha5s Transform: ARC SINE(SQUARE ROOT(Y))

Bartlett's Test for Homogeneity of Variance

Calculated B1 statistic = 23.1196 (p-value = 0.0059)

Data FAIL B1 homogeneity test at 0.01 level. Try another transformation.

\_\_\_\_\_.

Critical B = 21.6660 (alpha = 0.01, df = 9) = 16.9190 (alpha = 0.05, df = 9)

\_\_\_\_\_

Using Average Degrees of Freedom (Based on average replicate size of 8.60)

Calculated B2 statistic = 23.8757

(p-value = 0.0045)

Data FAIL B2 homogeneity test at 0.01 level. Try another transformation.

Title: MC Dead Creek HA Chronic -Prarie vs D.E,F- D35 S

File: pdefha5s Transform: ARC SINE (SQUARE ROOT(Y))

Wilcoxon's Rank Sum Test w/ Bonferroni Adjustment Ho: Control<Treatment

| GROUP | IDENTIFICATION | TRANSFORMED MEAN | RANK<br>SUM   | CRIT.<br>VALUE | REPS | SIG<br>0.05 |
|-------|----------------|------------------|---------------|----------------|------|-------------|
| 7     | 12664/5        | 1.1701           |               |                |      |             |
| 2     | 12549          | 1.1872           | 100.50        | 58             | 8    |             |
| 3     | 12550          | 1.1885           | 103.00        | 58             | 8    |             |
| 4     | 12551          | 1.1078           | 70.5 <b>0</b> | 45             | 7    |             |
| 5     | 12609          | 0.9173           | 55.00         | 58             | 8    | *           |
| 6     | 12613          | 1.3189           | 111.50        | 45             | 7    |             |
| 7     | 12611          | 0.8058           | 59.50         | 58             | 8    |             |
| В     | 12639          | 1.2425           | 112.00        | 58             | 8    |             |
| و     | 12640          | 1.0360           | 65.00         | 58             | 8    |             |
| 10    | 12641          | 1.1872           | 100.50        | 58             | 8    |             |

Critical values are 1 tailed ( k = 9 )

Title: MC Dead Creek HA Chronic -Prarie vs D,E,F- D42 S

File: pdefha2s Transform: ARC SINE(SQUARE ROOT(Y))

Chi-Square Test for Normality

Actual and Expected Frequencies

\_\_\_\_\_\_

Chi-Square = 8.5316

(p-value = 0.0739)

Critical Chi-Square = 13.277 (alpha = 0.01 , df = 4) = 9.488 (alpha = 0.05 , df = 4)

\_\_\_\_\_\_

Data PASS normality test (alpha = 0.01). Continue analysis.

Data PASS B2 homogeneity test at 0.01 level. Continue analysis.

Title: MC Dead Creek HA Chronic -Prarie vs D,E,F- D42 S

File: pdefha2s Transform: ARC SINE(SQUARE ROOT(Y))

# ANOVA Table

| SOURCE         | DF | SS     | MS     | F      |
|----------------|----|--------|--------|--------|
| Between        | 9  | 1.6975 | 0.1886 | 4.1806 |
| Within (Error) | 76 | 3.4288 | 0.0451 |        |
| Total          | 85 | 5.1262 |        |        |
|                |    |        |        |        |

(p-value = 0.0002)

Critical F = 2.6500 (alpha = 0.01, df = 9.76) = 2.0055 (alpha = 0.05, df = 9.76)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: MC Dead Creek HA Chronic -Prarie vs D.E.F- D42 S

pdefha2s Transform: ARC SINE(SQUARE ROOT(Y))

| Bonferroni t-Test | - | TABLE 1 OF 2 | Ho: Control <treatment< th=""></treatment<> |
|-------------------|---|--------------|---------------------------------------------|
|-------------------|---|--------------|---------------------------------------------|

| GROUP | IDENTIFICATION | TRANSFORMED<br>MEAN | MEAN CALCULATED IN ORIGINAL UNITS | TRANS<br>t STAT | SIG<br>0.05 |
|-------|----------------|---------------------|-----------------------------------|-----------------|-------------|
| 1     | 12664/5        | 1.1093              | 0.7875                            |                 |             |
| 2     | 12549          | 1.1695              | 0.8375                            | -0.6546         |             |
| 3     | 12550          | 1.1627              | 0.8125                            | -0.5814         |             |
| 4     | 12551          | 1.1137              | 0.7857                            | -0.0461         |             |
| 5     | 12609          | 0.8508              | 0.5625                            | 2.8103          | *           |
| 6     | 12610          | 1.2753              | 0.9143                            | -1.7254         |             |
| 7     | 12611          | 0.7749              | 0.5000                            | 3.6352          | *           |
| В     | 12639          | 1.1767              | 0.8375                            | -0.7333         |             |
| 9     | 12640          | 2.9958              | 0.7000                            | 1.2336          |             |
| 10    | 12641          | 1.0766              | 0.7625                            | 0.3546          |             |

Bonferroni t critical value = 2.6029 (1 Tailed, alpha = 0.05, df = 9,76)

Title: MC Dead Creek HA Chronic -Prarie vs D,E,F- D42 S

File: pdefha2s Transform: ARC SINE(SQUARE ROOT(Y))

|      | Bonferroni t-Test - | TABLE 2        | 2 OF 2                           | Ho: Contro      | l <treatment< th=""></treatment<> |
|------|---------------------|----------------|----------------------------------|-----------------|-----------------------------------|
| GROU | P IDENTIFICATION    | NUM OF<br>REPS | MIN SIG DIFF<br>(IN ORIG. UNITS) | % OF<br>CONTROL | DIFFERENCE<br>FROM CONTRO         |
| 1    | 12664/5             | 16             |                                  |                 |                                   |
| 2    | 12549               | 8              | 0.2176                           | 27.1            | -0.0500                           |
| 3    | 12550               | 8              | 0.2176                           | 27.1            | -0.0250                           |
| 4    | 12551               | 7              | 0.2286                           | 28.5            | 0.0018                            |
| 5    | 12609               | 8              | 0.2176                           | 27.1            | 0.2250                            |

12551 7 12609 8 12610 7 12611 8 12639 8 12640 8 12641 8 28.5 27.1 28.5 27.1 0.2286 -0.1268 0.2176 0.2875 27.1 0.2176 -0.0500 0.2176 27.1 0.0875 0.2176 27.1 0.0250

Title: MC Dead Creek HA Chronic -Prarie vs D,E,F- D42 G
Transform: NO TRANSFORMATION

Chi-Square Test for Normality

#### Actual and Expected Frequencies

| INTERVAL | <-1.5  | -1.5 to <-0.5 | -0.5 to 0.5 | >0.5 to 1.5 | >1.5   |
|----------|--------|---------------|-------------|-------------|--------|
| ÷        |        |               |             |             |        |
| EXPECTED | 5.7620 | 20.8120       | 32.8520     | 20.8120     | 5.7620 |
| OBSERVED | 3      | 26            | 27          | 26          | 4      |

(p-value = 0.2405)Chi-Square = 5.4917

Critical Chi-Square = 13.277 (alpha = 0.01 , df = 4) = 9.488 (alpha = 0.05 , df = 4)

Data PASS normality test (alpha = 0.01). Continue analysis.

Data FAIL B2 homogeneity test at 0.01 level. Try another transformation.

Title: MC Dead Creek HA Chronic -Prarie vs D,E,F- D42 G

File: pdefha2g Transform: NO TRANSFORMATION

| Wilcoxon's | Rank | Sum | Test | w/ | Bonferro | ni    | Adjustment | Ho:    | Control <treatment< th=""><th></th></treatment<> |   |
|------------|------|-----|------|----|----------|-------|------------|--------|--------------------------------------------------|---|
|            |      |     |      |    |          |       |            |        |                                                  | - |
|            |      |     |      |    | 3453337  | T 3.T | אדונ בי    | OD T 1 | n ara                                            |   |

| GROUP | IDENTIFICATION | MEAN IN<br>ORIGINAL UNITS | RANK<br>SUM | CRIT.<br>VALUE | REPS | SIG<br>0.05 |
|-------|----------------|---------------------------|-------------|----------------|------|-------------|
| 1     | 12664/5        | 0.4219                    |             |                |      |             |
| 2     | 12549          | 0.4139                    | 106.00      | 58             | 8    |             |
| 3     | 12550          | 0.4280                    | 113.50      | 58             | 8    |             |
| 4     | 12551          | 0.3997                    | 86.00       | 45             | 7    |             |
| 5     | 12609          | 0.6602                    | 147.00      | 58             | 8    |             |
| 6     | 12610          | 0.4624                    | 102.00      | 45             | 7    |             |
| 7     | 12611          | 0.3694                    | 95.50       | 58             | 8    |             |
| 8     | 12639          | 0.3968                    | 105.00      | 58             | 8    |             |
| 9     | 12640          | 0.4471                    | 114.00      | 58             | 8    |             |
| 10    | 12641          | 0.4063                    | 99.00       | 58             | 8    |             |

Critical values are 1 tailed ( k = 9 )

Title: MC Dead creek HA Chronic -Prarie vs D.E.F- D42 Nechates

pdefha2n Transform: NO TRANSFORMATION File:

Chi-Square Test for Normality

Actual and Expected Frequencies

INTERVAL <-1.5 -1.5 to <-0.5 -0.5 to 0.5 >0.5 to 1.5

EXPECTED 5.7620 20.8120 32.8520 20.8120 >1.5 20.8120 5.7620 EXPECTED 5.7620 20.8120 OBSERVED 2 28

19 30

(p-value = 0.2302) Chi-Square = 5.6101

Critical Chi-Square = 13.277 (alpha = 0.01 , df = 4)

= 9.488 (alpha = 0.05 , df = 4)

\_\_\_\_\_\_

Data PASS normality test (alpha = 0.01). Continue analysis.

Title: MC Dead creek HA Chronic -Prarie vs D,E,F- D42 Neonates

File: pdefha2n Transform: NO TRANSFORMATION

Bartlett's Test for Homogeneity of Variance

<u>-</u>

Calculated B1 statistic = 17.5394 (p-value = 0.0409)

Data PASS B1 homogeneity test at 0.01 level. Continue analysis.

\_\_\_\_\_.

Critical B = 21.6660 (alpha = 0.01, df = 9) = 16.9190 (alpha = 0.05, df = 9)

\_\_\_\_\_

Using Average Degrees of Freedom (Based on average replicate size of 8.60)

Calculated B2 statistic = 17.8599

(p-value = 0.0368)

Data PASS B2 homogeneity test at 0.01 level. Continue analysis.

Title: MC Dead creek HA Chronic -Prarie vs D.E.F- D42 Neonates

File: pdefha2n Transform: NO TRANSFORMATION

#### ANOVA Table

| SOURCE         | DF | SS       | MS      | F      |
|----------------|----|----------|---------|--------|
| Between        | 9  | 226.8432 | 25.2048 | 2.8493 |
| Within (Error) | 76 | 672.2918 | 8.8459  |        |
| Total          | 85 | 899.1350 |         |        |
|                |    |          |         |        |

(p-value = 0.0060)

Critical F = 2.6500 alpha = 0.01, df = 9,76) = 2.0055 alpha = 0.05, df = 9,76)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: MC Dead creek HA Chronic -Prarie vs D, E, F- D42 Neonates

File: pdefha2n Transform: NO TRANSFORMATION

|       | Bonferroni t-Test - | TABLE 1 OF 2        | Ho: Control                       | l <treatme< th=""><th>nt</th></treatme<> | nt          |
|-------|---------------------|---------------------|-----------------------------------|------------------------------------------|-------------|
| GROUP | IDENTIFICATION      | TRANSFORMED<br>MEAN | MEAN CALCULATED IN ORIGINAL UNITS | t STAT                                   | SIG<br>0.05 |
| 1     | 12664/5             | 4.3625              | 4.3625                            |                                          |             |
| 2     | 12549               | 5.0750              | 5.0750                            | -0.5532                                  |             |
| 3     | 12550               | 3.9625              | 3.9625                            | 0.3106                                   |             |
| 4     | 12551               | 3.5000              | 3.5000                            | 0.6399                                   |             |
| 5     | 12609               | 9.5125              | 9.5125                            | -3.9988                                  |             |
| 6     | 12610               | 4.5714              | 4.5714                            | -0.1550                                  |             |
| 7     | 12611               | 3.2000              | 3.2000                            | 0.9027                                   |             |
| 8     | 12639               | 4.8500              | 4.8500                            | -0.3785                                  |             |
| 9     | 12640               | 3.8375              | 3.8375                            | 0.4076                                   |             |
| 10    | 12641               | 4.8375              | 4.8375                            | -0.3688                                  |             |

Bonferroni t critical value = 2.6029 (1 Tailed, alpha = 0.05, df = 9,76)

Title: MC Dead creek HA Chronic -Prarie vs D, E, F- D42 Neonates

File: pdefha2n Transform: NO TRANSFORMATION

Bonferroni t-Test - TABLE 2 OF 2 Ho: Control<Treatment

|       |                | NUM OF | MIN SIG DIFF     | % OF    | DIFFERENCE   |
|-------|----------------|--------|------------------|---------|--------------|
| GROUP | IDENTIFICATION | REPS   | (IN ORIG. UNITS) | CONTROL | FROM CONTROL |
| 7     | 12664/5        | 16     |                  |         |              |
| 2     | 12549          | 8      | 3.3521           | 76.8    | -0.7125      |
| 3     | 12550          | 8      | 3.3521           | 76.8    | 0.4000       |
| 4     | 12551          | 7      | 3.5081           | 80.4    | 0.8625       |
| 5     | 12609          | 8      | 3.3521           | 76.8    | -5.1500      |
| 6     | 12610          | 7      | 3.5081           | 80.4    | -0.2089      |
| 7     | 12611          | 8      | 3.3521           | 76.8    | 1.1625       |
| 8     | 12639          | 8      | 3.3521           | 76.8    | -0.4875      |
| 9     | 12640          | 8      | 3.3521           | 76.8    | 0.5250       |
| 10    | 12641          | 8      | 3.3521           | 76.8    | -0.4750      |

Title: MC Dead Creek HA Chonic - PDP vs Ref,B,C - D28s Transform: ARC SINE(SQUARE ROOT(Y)) File: pdprha8s Chi-Square Test for Normality \_\_\_\_\_\_ Actual and Expected Frequencies INTERVAL <-1.5 -1.5 to <-0.5 -0.5 to 0.5 >0.5 to 1.5 >1.5 ---------------28.0720 44.3120 EXPECTED 7.7720 28.0720 7.7720 29 44 CBSERVED 34 Chi-Square = 4.1040 'p-value = 0.3921) Critical Chi-Square = 13.277 (alpha = 0.01 , df = 4) = 9.488 (alpha = 0.05 , df = 4)

Data PASS normality test .alpha = 0.01. Continue analysis.

Title: MC Dead Creek HA Chonic - PDP vs Ref,B,C - D28s
File: pdprha8s Transform: ARC SINE(SQUARE ROOT(Y))

Describerta Mart for Hammarian of Hamilana

Bartlett's Test for Homogeneity of Variance

Calculated B1 statistic = 31.3315 (p-value = 0.0001)

Data FAIL B1 homogeneity test at 0.01 level. Try another transformation.

\_\_\_\_\_\_

Critical B = 20.0902 (alpha = 0.01, df = 8) = 15.5073 (alpha = 0.05, df = 8)

\_\_\_\_\_\_

Using Average Degrees of Freedom (Based on average replicate size of 12.89)

Calculated B2 statistic = 30.7628 (p-value = 0.0002)

Data FAIL B2 homogeneity test at 0.01 level. Try another transformation.

Title: MC Dead Creek HA Chonic - PDP vs Ref,B,C - D28s
File: pdprha8s Transform: ARC SINE(SQUARE ROOT(Y))

Wilcoxon's Rank Sum Test w. Bonferroni Adjustment Ho: Control<Treatment -

| GROUP | IDENTIFICATION | TRANSFORMED<br>MEAN | RANK<br>SUM | CRIT.<br>VALUE | REPS | SIG<br>0.05 |
|-------|----------------|---------------------|-------------|----------------|------|-------------|
| 1     | 12664/5        | 1.2601              |             |                |      |             |
| 2     | 12666          | 1.0103              | 131.00      | 147            | 12   | *           |
| 3     | 12589          | 0.4453              | 85.00       | 147            | 12   | *           |
| 4     | 12590          | 0.4544              | 85.50       | 127            | 11   | *           |
| 5     | 12592          | C.7827              | 130.50      | 147            | 12   | *           |
| 6     | 12593          | 1.2294              | 171.00      | 127            | 11   |             |
| 7     | 12546          | 1.3047              | 190.00      | 108            | 10   |             |
| £     | 12547          | 1.2314              | 208.50      | 147            | 12   |             |
| è     | 12548          | 1.2765              | 243.50      | 147            | 12   |             |

Critical values are 1 tailed ( k = 8 )

Title: MC Dead Creek HA Chronic - Prarie vs Ref, B, C - D28 G

File: pdprha8g Transform: NO TRANSFORMATION

Shapiro - Wilk's Test for Normality

D = 1.5059W = 0.9172

Critical W = 0.9160 (alpha = 0.01 , N = 38) W = 0.9380 (alpha = 0.05 , N = 38)

\_\_\_\_\_

Data PASS normality test (alpha = 0.01). Continue analysis.

Data FAIL B2 homogeneity test at 0.01 level. Try another transformation.

Title: MC Dead Creek HA Chronic - Prarie vs Ref, B, C - D28 G

File: pdprha8g Transform: NO TRANSFORMATION

| Wilcoxo                    | n's Rank Sum Test w/                                          | Bonferroni Adju                                                    | stment                                             | Ho: Con                  | trol <tre< th=""><th>atment</th></tre<> | atment      |
|----------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|--------------------------|-----------------------------------------|-------------|
| GROUP                      | IDENTIFICATION                                                | MEAN IN<br>ORIGINAL UNITS                                          | RANK<br>SUM                                        | CRIT.<br>VALUE           | REPS                                    | SIG<br>0.05 |
| 1<br>2<br>3<br>4<br>5<br>6 | 12664/5<br>12666<br>12589<br>12590<br>12592<br>12593<br>12546 | 0.5451<br>0.6135<br>0.2550<br>0.7233<br>0.3040<br>0.4807<br>0.7662 | 32.00<br>14.00<br>22.00<br>14.00<br>14.00<br>39.00 | 11<br>11<br>6<br>11<br>6 | 4<br>4<br>3<br>4<br>3                   |             |
| 8<br>9                     | 12547<br>12548                                                | 0.4555<br>0.6565                                                   | 21.00<br>32.00                                     | 11<br>11                 | 4<br>4                                  |             |

Critical values are 1 tailed ( k = 8 )

Title: MC Dead Creek HA Chronic - Prarie vs Ref, B,C - D35 S

File: pdprha5s Transform: ARC SINE(SQUARE ROOT(Y))

Chi-Square Test for Normality -----

Actual and Expected Frequencies

INTERVAL <-1.5 -1.5 to <-0.5 -0.5 to 0.5 >0.5 to 1.5 >1.5 EXPECTED 5.2260 18.8760 29.7960 18.8760 5.2260 OBSERVED 4 18 38 13 5

Chi-Square = 4.4261 (p-value = 0.3514)

Critical Chi-Square = 13.277 /alpha = 0.01 , df = 4)

= 9.488 |alpha = 0.05 , df = 4|

\_\_\_\_\_

Data PASS normality test alpha = 0.01). Continue analysis.

Title: MC Dead Creek HA Chronic - Prarie vs Ref, B,C - D35 S

File: pdprha5s Transform: ARC SINE(SQUARE ROOT(Y))

Bartlett's Test for Homogeneity of Variance

Calculated B1 statistic = 27.4848 (p-value = 0.0006)

Data FAIL B1 homogeneity test at 0.01 level. Try another transformation.

Critical B = 20.0902 (alpha = 0.01, df = 8) = 15.5073 (alpha = 0.05, df = 8)

\_\_\_\_\_\_

Using Average Degrees of Freedom (Based on average replicate size of 8.67)

Calculated B2 statistic = 29.9957 (p-value = 0.0002)

Data FAIL B2 homogeneity test at 0.01 level. Try another transformation.

Title: MC Dead Creek HA Chronic - Frarie vs Ref, B,C - D35 S

File: pdprha5s Transform: ARC SINE(SQUARE ROOT(Y))

Critical values are 1 tailed , k = 8 %

Title: MC Dead Creek HA Chronic - Parie vs Ref, B, C - D42 S

File: Transform: ARC SINE(SQUARE ROOT(Y)) pdprha2s

Chi-Square Test for Normality

### Actual and Expected Frequencies

| INTERVAL | <-1.5  | -1.5 to <-0.5 | ~0.5 to 0.5 | >0.5 to 1.5 | >1.5   |
|----------|--------|---------------|-------------|-------------|--------|
|          |        |               |             |             |        |
| EXPECTED | 5.2260 | 18.8760       | 29.7960     | 18.8760     | 5.2260 |
| OBSERVED | 3      | 26            | 26          | 17          | 6      |

Chi-Square = 4.4215(p-value = 0.3520)

Critical Chi-Square = 13.277 (alpha = 0.01 , df = 4) = 9.488 (alpha = 0.05 , df = 4)

Data PASS normality test (alpha = 0.01). Continue analysis.

Title: MC Dead Creek HA Chronic - Parie vs Ref, B, C - D42 S

File: pdprha2s Transform: ARC SINE(SQUARE ROOT(Y))

|      |                | mp and popular      | Danie       | CDIM           |      | 0.70        |
|------|----------------|---------------------|-------------|----------------|------|-------------|
| ROUP | IDENTIFICATION | TRANSFORMED<br>MEAN | RANK<br>SUM | CRIT.<br>VALUE | REPS | SIG<br>0.05 |
| 1    | 12664/5        | 1.1093              |             |                |      |             |
| 2    | 12666          | 0.9567              | 73.00       | 58             | 8    |             |
| 3    | 12589          | 0.2731              | 36.00       | 58             | 8    | *           |
| 4    | 12590          | 0.5041              | 49.00       | 58             | 8    | *           |
| 5    | 12592          | 0.6679              | 56.00       | 58             | 8    | *           |
| 6    | 12593          | 1.1840              | 113.50      | 58             | 8    |             |
| 7    | 12546          | 1.2017              | 85.00       | 34             | 6    |             |
| 8    | 12547          | 1.0358              | 82.00       | 58             | 8    |             |
| 9    | 12548          | 1.0753              | 102.50      | 58             | 8    |             |

Critical values are 1 tailed ( k = 8 )

(p-walue = 0.0112)

Data PASS B2 homogeneity test at 0.01 level. Continue analysis.

Calculated B2 statistic = 19.7821

Title: MC Dead Creek HA Chronic - Prarie vs Ref, B, C- D42 G

File: pdprha2g Transform: NO TRANSFORMATION

Wilcoxon's Rank Sum Test w/ Bonferroni Adjustment Ho: Control<Treatment

| GROUP | IDENTIFICATION | MEAN IN<br>ORIGINAL UNITS | RANK<br>SUM | CRIT.<br>VALUE | REPS | SIG<br>0.05 |
|-------|----------------|---------------------------|-------------|----------------|------|-------------|
| 1     | 12664/5        | 0.4221                    |             |                |      |             |
| 2     | 12666          | 0.4590                    | 119.00      | 58             | 8    |             |
| 3     | 12589          | 0.0839                    | 39.00       | 58             | 8    | *           |
| 4     | 12590          | 0.1951                    | 51.00       | 58             | 8    | *           |
| 5     | 12592          | 0.2344                    | 45.50       | 58             | 8    | *           |
| 6     | 12593          | 0.3483                    | 80.00       | 58             | 8    |             |
| 7     | 12546          | 0.5100                    | 91.00       | 34             | 6    |             |
| 8     | 12547          | 0.4895                    | 126.00      | 58             | 8    |             |
| 9     | 12548          | 0.4015                    | 100.50      | 58             | 8    |             |

Critical values are 1 tailed (k = 8)

Title: MC Dead Creek HA Chronic - Prarie vs Ref, B, C - D42 Neon Transform: NO TRANSFORMATION pdprha2n Chi-Square Test for Normality Actual and Expected Frequencies INTERVAL <-1.5 -1.5 to <-0.5 -0.5 to 0.5 >0.5 to 1.5 >1.5 -----------------------18.8760 5.2260 10 6 16.8760 19 29.7960 EXPECTED 5.2260 OBSERVED 1 42 \_\_\_\_\_\_ p-value = 0.0128) Chi-Square = 12.7051 Critical Chi-Square = 13.277 (alpha = 0.01 , df = 4) = 9.488 (alpha = 0.05 , df = 4)

Data PASS normality test (alpha = 0.01). Continue analysis.

Title: MC Dead Creek HA Chronic - Prarie vs Ref, B, C - D42 Neon

File: pdprha2n Transform: NO TRANSFORMATION

Jartley's Test for Homogeneity of Variance Bartlett's Test for Homogeneity of Variance

\_\_\_\_\_\_

These two tests can not be performed because at least one group has zero variance.

Data FAIL to meet homogeneity of variance assumption. Additional transformations are useless.

Title: MC Dead Creek HA Chronic - Prarie vs Ref, B, C - D42 Neon

File: pdprha2n Transform: NO TRANSFORMATION

 Wilcoxon's Rank Sum Test w Bonferroni Adjustment
 Ho: Control<Treatment</th>

 MEAN IN ORIGINAL UNITS
 RANK SUM
 CRIT.
 SIG

 GROUP IDENTIFICATION
 ORIGINAL UNITS
 SUM
 VALUE
 REPS
 0.05

 1
 12664/5
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625
 4.3625

Critical values are 1 tailed ( k = 8 )

Title: MC 99033 Chronic HA - Ref Borrow Pit to Borrow Pit Refs

File: 3641ha8s Transform: ARC SINE(SQUARE ROOT(Y))

Chi-Square Test for Normality

#### Actual and Expected Frequencies

\_\_\_\_\_

Chi-Square = 10.0208

(p-value = 0.0401)

Critical Chi-Square = 13.277 (alpha = 0.01 , df = 4) = 9.488 (alpha = 0.05 , df = 4)

\_\_\_\_\_

Data PASS normality test (alpha = 0.01). Continue analysis.

Title: MC 99033 Chronic HA - Ref Borrow Fit to Borrow Fit Refs
File: 3641ha8s Transform: ARC SINE(SQUARE ROOT(Y))

Bartlett's Test for Homogeneity of Variance

Calculated B1 statistic = 7.8013 (p-value = 0.0991)

Data PASS B1 homogeneity test at 0.01 level. Continue analysis.

Critical B = 13.2767 (alpha = 0.01, df = 4)

= 9.4877 (alpha = 0.05, df = 4)

Title: MC 99033 Chronic HA - Ref Borrow Pit to Borrow Pit Refs

File: 3641ha8s Transform: ARC SINE(SQUARE ROOT(Y))

\_\_\_\_\_\_

## ANOVA Table

|                |    |        | •        |           |
|----------------|----|--------|----------|-----------|
| SOURCE         | DF | SS     | MS       | F         |
| Between        | 4  | 0.2459 | 0.0615   | 2.3931    |
| Within (Error) | 55 | 1.4127 | 0.0257   |           |
| Total          | 59 | 1.6585 |          |           |
|                |    |        | n-value) | = 0 0616) |

(p-value = 0.0616)

Critical F = 3.6809 (alpha = 0.01, df = 4.55) = 2.5397 (alpha = 0.05, df = 4.55)

Since F < Critical F FAIL TO REJECT Ho: All equal (alpha = 0.05)

Title: MC 99033 Chronic HA - Ref Borrow Pit to Borrow Pit Refs

File: 3641ha8s Transform: ARC SINE(SQUARE ROOT(Y))

| Dunnett's Test - | TABLE 1 OF 2 | Hc:Control <treatment< th=""></treatment<> |
|------------------|--------------|--------------------------------------------|
|------------------|--------------|--------------------------------------------|

| GROUP | IDENTIFICATION | TRANSFORMED<br>MEAN | MEAN CALCULATED IN ORIGINAL UNITS | TRANS<br>T STAT | SIG<br>0.05 |
|-------|----------------|---------------------|-----------------------------------|-----------------|-------------|
|       |                |                     |                                   |                 |             |
| ÷     | 12671<br>12612 | 1.2175<br>1.3108    | 0.8667<br>0.9333                  | -1.4264         |             |
| 3     | 12613          | 1.2425              | 0.8917                            | -0.3824         |             |
| 4     | 12638          | 1.1555              | 0.8167                            | 0.9464          |             |
| 5     | 12614          | 1.3323              | 0.9500                            | -1.7549         |             |

Dunnett critical value = 2.2300 [1 Tailed, alpha = 0.05, df [used] = 4.40) (Actual df = 4.55)

Title: MC 99033 Chronic HA - Ref Borrow Pit to Borrow Pit Refs

File: 3641ha8s Transform: ARC SINE(SQUARE ROOT(Y))

|       | Dunnett's Test - | TABLE 2 C | F 2 Ho                           | ::Control< | Treatment    |
|-------|------------------|-----------|----------------------------------|------------|--------------|
| GROUP | IDENTIFICATION   | REPS      | MIN SIG DIFF<br>(IN CRIG. UNITS) | CONTROL    | FROM CONTROL |
| •     | :267             | • 5       |                                  | •          |              |

 1
 12671
 12

 2
 12612
 12
 0.1095
 12.4
 -0.0667

 3
 12613
 12
 0.1095
 12.4
 -0.0250

 4
 12638
 12
 0.1095
 12.4
 0.0500

 5
 12614
 12
 0.1095
 12.4
 -0.0833

Title: MC Dead Creek Chronic HA - Borrown Pit - D28 G File: 3641HA8g Transform: NO TRANSFORMATION

Shapiro - Wilk's Test for Normality

D = 0.1769 W = 0.9512

Critical W = 0.8680 (alpha = 0.01 , N = 20)

W = 0.9050 (alpha = 0.05, N = 20)

\_\_\_\_\_\_

Data PASS normality test (alpha = 0.01). Continue analysis.

Title: MC Dead Creek Chronic HA - Borrown Pit - D28 G
File: 3641HA8g Transform: NC TRANSFORMATION

Bartlett's Test for Homogeneity of Variance

Calculated B1 statistic = 4.1758 (p-value = 0.3827)

Data PASS B1 homogeneity test at 0.01 level. Continue analysis.

Critical B = 13.2767 (alpha = 0.01, df = 4)
= 9.4877 (alpha = 0.05, df = 4)

Title: MC Dead Creek Chronic HA - Borrown Pit - D28 G

File: 3641HA8g Transform: NO TRANSFORMATION

#### ANOVA Table

|                |    | •      |          |             |
|----------------|----|--------|----------|-------------|
| SOURCE         | DF | SS     | MS       | F           |
| Between        | 4  | 0.0966 | 0.0242   | 2.0482      |
| Within (Error) | 15 | 0.1769 | 0.0118   |             |
| Total          | 19 | 0.2735 |          |             |
|                |    |        | (p-value | e = 0.1389) |

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4.15)

Since F < Critical F FAIL TO REJECT Ho: All equal (alpha = 0.05)

Title: MC Dead Creek Chronic HA - Borrown Pit - D28 G

Transform: NC TRANSFORMATION File: 3641HA8g

| ,     | Dunnett's Test -      | TABLE 1 OF 2                            | Ho:Control<                       | Treatment |             |
|-------|-----------------------|-----------------------------------------|-----------------------------------|-----------|-------------|
| GROUP | IDENTIFICATION        | TRANSFORMED , MEAN                      | MEAN CALCULATED IN ORIGINAL UNITS | T STAT    | SIG<br>0.05 |
| 1     | 12671                 | 0.4578                                  | 0.4578                            |           |             |
| 2     | 12612                 |                                         | C.5943                            | -1.7776   |             |
| 3     | 12613                 | 0.6358                                  | 0.6358                            | -2.3180   |             |
| 4     | 12638                 | 0.5 <b>63</b> 3                         | 0.5633                            | -1.3739   |             |
| 5     | 12614                 | 0.4705                                  | 0.4705                            | -0.1660   |             |
|       | t critical value = 2. | • • • • • • • • • • • • • • • • • • • • |                                   |           |             |

Title: MC Dead Creek Chronic HA - Borrown Pit - D28 G

Transform: NC TRANSFORMATION Transform: File: 3641HA8g

| Dunnett's Test - |                                           | TABLE 2 OF 2   |                                      | Ho:Control <treatment< th=""></treatment<> |                                          |  |
|------------------|-------------------------------------------|----------------|--------------------------------------|--------------------------------------------|------------------------------------------|--|
| GROUP            | IDENTIFICATION                            | NUM OF<br>REPS | MIN SIG DIFF<br>(IN ORIG. UNITS)     | % OF<br>CONTROL                            | DIFFERENCE<br>FROM CONTROL               |  |
| 2 3 4 5          | 12671<br>12612<br>12613<br>12638<br>12614 | 4 4 4 4 4      | 0.1812<br>0.1812<br>0.1812<br>0.1812 | 39.6<br>39.6<br>39.6<br>39.6               | -0.1365<br>-0.1780<br>-0.1055<br>-0.0128 |  |

Title: MC Dead Creek Chronic HA - Borrow Pit - D35 S

File: 3641ha5s Transform: ARC SINE(SQUARE ROOT(Y))

Shapiro - Wilk's Test for Normality

Shapiro - Wirk's lest for Normality

D = 1.4376W = 0.9513

Critical W = 0.9190 (alpha = 0.01 , N = 40) W = 0.9400 (alpha = 0.05 , N = 40)

------

Data PASS normality test (alpha = 0.01). Continue analysis.

Title: MC Dead Creek Chronic HA - Borrow Pit - D35 S
File: 3641ha5s Transform: ARC SINE SQUARE ROOT(Y))

Bartlett's Test for Homogeneity of Variance

Calculated B1 statistic = 1.0306 (p-value = 0.9051)

Data PASS B1 homogeneity test at 0.01 level. Continue analysis.

Critical B = 13.2767 (alpha = 0.01, df = 4)
= 9.4877 (alpha = 0.05, df = 4)

Title: MC Dead Creek Chronic HA - Borrow Pit - D35 S

File: 3641ha5s Transform: ARC SINE(SQUARE ROOT(Y))

# ANOVA Table

| -              |    | •      |            |         |
|----------------|----|--------|------------|---------|
| SOURCE         | DF | SS     | MS         | F       |
| <br>Between    | 4  | 0.1592 | 0.0398     | 0.9691  |
| Within (Error) | 35 | 1.4376 | 0.0411     |         |
| <br>Total      | 39 | 1.5968 |            |         |
| <br>           |    |        | (p-value = | 0.4367) |

Critical F = 3.9082 (alpha = 0.01, df = 4.35) = 2.6415 (alpha = 0.05, df = 4.35)

Since F < Critical F FAIL TO REJECT Ho: All equal (alpha = 0.05)

Title: MC Dead Creek Chronic HA - Borrow Pit - D35 S File: 3641ha5s Transform: ARC SINE(SQUARE ROOT(Y)) File:

|                       |                                           | <b></b>                                        |                                                | Ho:Control <treatment< th=""></treatment<> |          |  |
|-----------------------|-------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------|----------|--|
| GROUP I               | DENTIFICATION                             | TRANSFORMED<br>MEAN                            | MEAN CALCULATED IN<br>CRIGINAL UNITS           | TRANS<br>T STAT                            | SIG 0.05 |  |
| :<br>2<br>3<br>4<br>5 | 12671<br>12612<br>12613<br>12638<br>12614 | 1.1937<br>1.2320<br>1.1279<br>1.0582<br>1.2076 | 0.8500<br>0.8750<br>0.8000<br>0.7375<br>0.8625 | -0.3772<br>0.6493<br>1.3378<br>-0.1367     |          |  |

Dunnett critical value = 2.2500 /1 Tailed, alpha = 0.05, df [used] = 4,30) (Actual df = 4,35)

Title: MC Dead Creek Chronic HA - Borrow Pit - D35 S

File: Transform: ARC SINE(SQUARE ROOT(Y)) 3641ha3s

|         | Dunnett's Test -                          | TABLE 2 0 | OF 2 Ho                              | ::Control<                           | Treatment                              |
|---------|-------------------------------------------|-----------|--------------------------------------|--------------------------------------|----------------------------------------|
| GROUP   | IDENTIFICATION                            |           | MIN SIG DIFF<br>(IN CRIG. UNITS)     | % CF<br>CONTROL                      | DIFFERENCE<br>FROM CONTROL             |
| 2 3 4 5 | 12671<br>12612<br>12613<br>12638<br>12614 |           | 0.1880<br>0.1880<br>0.1880<br>0.1880 | 21.7<br>21.7<br>21.7<br>21.7<br>21.7 | -0.0250<br>0.0500<br>0.1125<br>-0.0125 |

Title: MC Dead Creek HA Chronic - Borrow Pit - D42 S

Transform: ARC SINE(SQUARE ROOT(Y)) 3641ha2s File:

Shapiro - Wilk's Test for Normality

D = 1.5486W = 0.9444

Critical W = 0.9190 (alpha = 0.01 , N = 40)

W = 0.9400 (alpha = 0.05, N = 40)

Data PASS normality test (alpha = 0.01). Continue analysis.

-,---

Title: MC Dead Creek HA Chronic - Borrow Pit - D42 S
File: 3641ha2s Transform: ARC SINE SQUARE ROOT(Y))

Bartlett's Test for Homogeneity of Variance

Calculated B1 statistic = 1.6357 (p-value = 0.8024)

Data PASS B1 homogeneity test at 0.01 level. Continue analysis.

Critical B = 13.2767 (alpha = 0.01, df = 4)

Title: MC Dead Creek HA Chronic - Borrow Pit - D42 S

File: 3641ha2s Transform: ARC SINE(SQUARE ROOT(Y))

## ANOVA Table

| SOURCE         | DF | SS     | MS     | F      |
|----------------|----|--------|--------|--------|
| Between        | 4  | 0.1207 | 0.0302 | 0.6818 |
| Within (Error) | 35 | 1.5486 | 0.0442 |        |
| Total          | 39 | 1.6693 |        |        |
|                |    |        |        |        |

(p-value = 0.6093)

Critical F = 3.9082 (alpha = 0.01, df = 4.35) = 2.6415 (alpha = 0.05, df = 4.35)

Since F < Critical F FAIL TO REJECT Ho: All equal (alpha = 0.05)

Title: MC Dead Creek HA Chronic - Borrow Fit - D42 S

File: 3641ha2s Transform: ARC SINE(SQUARE ROOT(Y))

| Dunnett's Test - |                | TABLE 1 OF 2        | Ho:Control <treatment< th=""></treatment<> |                 |             |  |
|------------------|----------------|---------------------|--------------------------------------------|-----------------|-------------|--|
| GROUP            | IDENTIFICATION | TRANSFORMED<br>MEAN | MEAN CALCULATED IN<br>CRIGINAL UNITS       | TRANS<br>T STAT | SIG<br>0.05 |  |
| ·                | 12671          | 1.1634              | 0.6250                                     |                 |             |  |
| 2                | 12612          |                     | 0.8250                                     | 0.0421          |             |  |
| 3                | 12613          | 1.0727              | 0.7500                                     | 0.8628          |             |  |
| 4                | 12638          | 1.0383              | 0.7250                                     | 1.1891          |             |  |
| 5                | 12614          | 1.1727              | 0.8375                                     | -0.0885         |             |  |

Title: MC Dead Creek HA Chronic - Borrow Pit - D42 S

File: 3641ha2s Transform: ARC SINE(SQUARE ROOT(Y))

| Dunnett's Test - |                | TABLE 2 OF 2   |                                | Ho:Control <treatment< th=""></treatment<> |                            |  |
|------------------|----------------|----------------|--------------------------------|--------------------------------------------|----------------------------|--|
| GROUP            | IDENTIFICATION | NUM OF<br>REPS | MIN SIG DIFF<br>IN ORIG. UNITS | % CF<br>CONTROL                            | DIFFERENCE<br>FROM CONTROL |  |
| :                | 12671          | £              |                                |                                            |                            |  |
| 2                | 12612          | <del>5</del>   | 0.2035                         | 24.1                                       | 0.0000                     |  |
| 3                | 12613          | ê              | 0.2035                         | 24.1                                       | 0.0750                     |  |
| 4                | 12638          | Ē              | 0.2035                         | 24.1                                       | 0.1000 <b>—</b>            |  |
| 5                | 12614          | £              | 0.2035                         | 24.1                                       | -0.0125                    |  |

Title: MC Dead Creek HA Chronic - Borrow Pit - D42 G

File: 3641ha2g Transform: NO TRANSFORMATION

Shapiro - Wilk's Test for Normality

D = 0.2110W = 0.7981

Critical W = 0.9190 (alpha = 0.01 , N = 40) W = 0.9400 (alpha = 0.05 , N = 40)

Data FAIL normality test (alpha = 0.01). Try another transformation.

Warning - The first three homogeneity tests are sensitive to non-normality and should not be performed with this data as is.

Title: MC Dead Creek HA Chronic - Borrow Pit - D42 3
File: 3641ha2g Transform: NC TRANSFORMATION

Bartlett's Test for Homogeneity of Variance

Calculated B1 statistic = 12.0775 (p-value = 0.0168)

Data PASS B1 homogeneity test at 0.01 level. Continue analysis.

Critical B = 13.2767 (alpha = 0.01, df = 4)
= 9.4877 (alpha = 0.05, df = 4)

Title: MC Dead Creek HA Chronic - Borrow Pit - D42 G

File: 3641ha2g Transform: NO TRANSFORMATION

| Steel's Many-One Rank | Test - | Ho: Control <treatment< th=""></treatment<> |
|-----------------------|--------|---------------------------------------------|
|-----------------------|--------|---------------------------------------------|

| GROUP                 | IDENTIFICATION                            | MEAN IN<br>ORIGINAL UNITS                      | RANK<br>SUM                      | CRIT.<br>VALUE                   | DF                   | SIG<br>0.05 |
|-----------------------|-------------------------------------------|------------------------------------------------|----------------------------------|----------------------------------|----------------------|-------------|
| 1<br>2<br>3<br>4<br>5 | 12671<br>12612<br>12613<br>12638<br>12614 | 0.3511<br>0.3804<br>0.4231<br>0.3904<br>0.3224 | 74.00<br>87.00<br>73.00<br>53.00 | 47.00<br>47.00<br>47.00<br>47.00 | 8.00<br>8.00<br>8.00 |             |

Critical values are 1 tailed ( k = 4 )

Title: MC Dead Creek HA Chronic - Borrow Pit - D42 Neonates

File: 3641ha2n Transform: NO TRANSFORMATION

Shapiro - Wilk's Test for Normality

D = 171.0025W = 0.9663

Critical W = 0.9190 (alpha = 0.01 , N = 40) W = 0.9400 alpha = 0.05 , N = 40)

\_\_\_\_\_\_

Data PASS normality test alpha = 0.01%. Continue analysis.

Title: MC Dead Creek HA Chronic - Borrow Fit - D42 Neonates
File: 3641ha2n Transform: NO TRANSFORMATION

Bartlett's Test for Homogeneity of Variance

Calculated B1 statistic = 1.5641 (p-value = 0.8152)

Data PASS B1 homogeneity test at 0.01 level. Continue analysis.

Critical B = 13.2767 (alpha = 0.01, df = 4)
= 9.4877 (alpha = 0.05, df = 4)

Title: MC Dead Creek HA Chronic - Borrow Pit - D42 Nechates

File: 3641ha2n Transform: NO TRANSFORMATION

ANOVA Table

| SCURCE         | DF | SS       | MS     | F      |
|----------------|----|----------|--------|--------|
| Between        | 4  | 14.9375  | 3.7344 | 0.7643 |
| Within (Error) | 35 | 171.0025 | 4.8858 |        |
| Total          | 39 | 185.9400 |        |        |

 $\{p\text{-value} = 0.5556\}$ 

Since F < Critical F FAIL TO REJECT Ho: All equal (alpha = 0.05)

Title: MC Dead Creek HA Chronic - Borrow Pit - D42 Neonates

File: 3641ha2n Transform: NO TRANSFORMATION

| ll i                  | Dunnett's Test -                          | TABLE 1 OF 2                                   | Ho:Control<                                    | reatment                                 |             |
|-----------------------|-------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------|-------------|
| GROUP                 | IDENTIFICATION                            | TRANSFORMED<br>MEAN                            | MEAN CALCULATED IN<br>ORIGINAL UNITS           | T STAT                                   | SIG<br>0.05 |
| 1<br>2<br>3<br>4<br>5 | 12671<br>12612<br>12613<br>12638<br>12614 | 3.4125<br>4.0750<br>4.1750<br>4.2750<br>5.3125 | 3.4125<br>4.0750<br>4.1750<br>4.2750<br>5.3125 | -0.5994<br>-0.6899<br>-0.7804<br>-1.7192 |             |

Dunnett critical value = 2.2500 (1 Tailed, alpha = 0.05, df [used] = 4,30)

(Actual df = 4,35)

Title: MC Dead Creek HA Chronic - Borrow Pit - D42 Neonates

File: 3641ha2n Transform: NO TRANSFORMATION

|                       | Dunnett's Test -                          | TABLE 2 O             | F 2 Ho                               | :Control<                    | Treatment                                |
|-----------------------|-------------------------------------------|-----------------------|--------------------------------------|------------------------------|------------------------------------------|
| GROUP                 | IDENTIFICATION                            | NUM OF<br>REPS        | MIN SIG DIFF<br>(IN ORIG. UNITS)     | % OF<br>CONTROL              | DIFFERENCE<br>FROM CONTROL               |
| 1<br>2<br>3<br>4<br>5 | 12671<br>12612<br>12613<br>12638<br>12614 | 8<br>8<br>8<br>8<br>8 | 2.4867<br>2.4867<br>2.4867<br>2.4867 | 72.9<br>72.9<br>72.9<br>72.9 | -0.6625<br>-0.7625<br>-0.8625<br>-1.9000 |

| Page | $\sim 1$ |  |
|------|----------|--|
| FULC | Ol       |  |
|      |          |  |

## **Aquatec Biological Sciences**

Chain-of-Custody Record

75 Green Mountain Drive South Burlington, VT 05403 TEL; (802) 860-1638 (1) FAX; (802) 658-3189

| COMPANY INFORMATION                   |             | COMPAN     | <br>IY'S PRO.   | JECT INFORM     | IATION   |           | SHIPPING INFORMATION                                                       | -          |           | ME/CON<br>PRESEI | _           |          |               |
|---------------------------------------|-------------|------------|-----------------|-----------------|----------|-----------|----------------------------------------------------------------------------|------------|-----------|------------------|-------------|----------|---------------|
|                                       |             |            |                 |                 |          |           |                                                                            |            | <u> </u>  | THE GILL         |             | <u>-</u> |               |
| Name: Menzie Cura & Associates        | 11,         | roject Nan | ne: <u>Deac</u> | l Creek Sedim   | ent Tox  | Carrier:  |                                                                            | 40C        |           | ļ                |             |          | 1             |
| Address: One Courthouse Lane, Suite 2 | 2           |            |                 |                 | į        | Į         |                                                                            |            |           |                  |             | _        | 1_ 1          |
| Chelmsford, MA 01824                  | Þ           | roject Nun | nber: <u>99</u> | 033             |          | Airbill N | umber:                                                                     | plastic    |           |                  |             |          |               |
| Telephone: (978) 453-4300             | s           | ampler Na  | ler Name(s):    |                 |          |           | Present                                                                    |            | l         |                  |             |          |               |
| Facsimile: (978) 453-7260             |             |            | 1               |                 | Date Sh  | ipped:    |                                                                            | _          | _         | _                | _           |          |               |
| Contact Name: Ken Cerreto, Ph.D.      |             |            |                 |                 |          |           |                                                                            | Lgat       |           |                  | '           |          | }             |
|                                       | c           | )uote #;   | 3/99            | Client Code;N   | MENGUR   | Hand Do   | elivered:No                                                                | J. S.      |           |                  |             |          | !             |
|                                       | COLL        | CTION      |                 | <del></del>     |          | <u>"</u>  |                                                                            |            |           | } <del></del>    | <del></del> |          | <del>  </del> |
| SAMPLE IDENTIFICATION                 | DATE        | TIME       | GRVB            | COMPOSITE       | MATRIX   |           | ANALYSIS / REMARKS                                                         |            | NUMB      | ER OF            | CONTAI      | NERS     | ' I           |
|                                       | 1.1         |            |                 |                 | Sediment | 1 '       | ella azteca 10-d Survival & Growth                                         | /          |           | <u> </u>         |             |          |               |
| 2Thx C                                | 10%         |            |                 | \               |          | 1 '       | ella azlaca 42 day Chronic Toxicity                                        | 1/         | -0,4      |                  |             |          |               |
| BTOX-C-1<br>BTOX-C-1-2                | 17          |            |                 | No. 1           |          |           | omus tentans 10-d Survival & Growt<br>ronomus tentans Chronic Toxicity     | '  /       | i ''      |                  |             |          |               |
| 0                                     |             |            |                 |                 | Sediment | _         | alla azlaca 10-d Survival & Growth                                         |            |           |                  |             |          |               |
| K77)x_ ( 1-7                          | 10/1        |            |                 |                 |          | Hyale     | ella aztaca 42-day Chronic Toxicity                                        | 1/         | T=0,C.    | 1                |             |          |               |
| (2)(4)(-C-12)                         | 17          |            |                 | 1/              |          |           | omus tentans 10-d Survival & Growt                                         | ן י        | [-0,0]    | 1                |             |          |               |
|                                       |             |            |                 |                 | Sedlment |           | rononus tentans Chronic Toxicity                                           | -          |           |                  |             |          |               |
|                                       | Ì           |            |                 |                 | Seamon   |           | alla azloca 10-d Survival & Growth<br>ella azloca 42-day Chronic Toxicity  |            | ľ         |                  |             |          |               |
|                                       |             |            |                 |                 |          | 1 '       | omus tentans 10-d Survival & Growll                                        | ,          |           |                  |             |          | i 1           |
|                                       |             |            |                 |                 |          | 1         | ronomus tentans Chronic Toxicity                                           | İ          |           |                  |             |          |               |
|                                       |             | -          |                 |                 | Sedimont | Hynl      | alla aztaca 10-d Survival & Growth                                         | -          | i         |                  |             |          |               |
|                                       |             | 1          |                 |                 |          | Hyale     | ella azteca 42-day Chronic Toxicity                                        |            |           |                  |             |          | 1 1           |
|                                       | !           | 1          |                 |                 |          | 1         | imus fantains 10 d Survival & Growth                                       | ۱ ا        |           |                  |             |          | 1 1           |
|                                       |             |            |                 |                 |          |           | ronomus tentans Chronic Toxicity                                           |            |           |                  |             |          |               |
|                                       | ŀ           | 1 1        |                 |                 | Sediment | 1 '       | ella azleca 10-d Survival & Growth                                         | 1          |           |                  | !           | i        | i l           |
|                                       |             |            |                 |                 |          |           | olla azleca 42-day Chronic Toxicily<br>Omus tantans 10-d Survival & Growll |            |           |                  |             | 1        | i             |
|                                       |             |            |                 |                 |          | 1         | ronomus tentans Chronic Toxicity                                           |            |           |                  |             | - 1      |               |
| Relinquished by: (signsfure)          | DATE        | TIME       | Receiv          | ed by: (signati | ıro)     | N         | IOTES TO SAMPLER(S): We recomme                                            |            |           |                  |             |          | Juring        |
| Venneth Monato                        | 0/4/19      |            |                 | w Divise        |          | 5         | hipment. Please cover sample labels                                        | with clear | lape (lal | ools are         | iol water   | rproof)  |               |
| Relinquished by: (signature)          | DVIE        | TIME       | Receiv          | ed by: (signali | 1(1:)    | N         | lotes to Lab: Cooler ambient tem                                           | erature    | upon da   | elivery:         | 0(          | 3        |               |
| 9                                     | 0/5/39      | 10:0       | 7               | , , ,           | •        | 1         | $\rightarrow$ $\sim$ 1                                                     |            |           | _                |             |          |               |
| Delia de la Calculatival              | DATE        | TIME       |                 | ed by: (signate | wal      |           | 5 (20/2/015                                                                |            |           |                  |             |          | ļ             |
| Relinquished by: (signature)          | OMIC        | I IIVIE    | THE COLOR       | co oy. (agnati  |          |           |                                                                            |            |           |                  |             |          |               |
|                                       |             |            |                 |                 |          | -         |                                                                            |            |           |                  |             |          | ]             |
| C\99033\V\COC1.doc                    | <del></del> |            |                 | <del></del>     |          |           |                                                                            |            |           |                  |             |          |               |

# Aquatec Biological Sciences Chain-of-Clistody'Record



75 Gronn Mountain Drive South Builington, VI 0540 161: (802) 860-1638 FAX: (802) 658-3188

| COMPANY INFORMATION                                                | COMPAN                  | 9775 PRO | л су ил ови              | MOLLON             | SHIPPING INLORMATION                                                                                                                                                    |                                             | AUJOV<br>I   |                                       | TAINI R | 14147         |             |
|--------------------------------------------------------------------|-------------------------|----------|--------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------|---------------------------------------|---------|---------------|-------------|
| Name Menzie Cura & Associates Address One Courthouse Lane, Soile 2 | Project Nac             | ne Dea   | d Creek Godin            | nor Lox            | Coulei                                                                                                                                                                  | 4ºG                                         |              |                                       |         |               |             |
| Chelmsford, MA 01824                                               | Project No              | nbar. 99 | 0033                     |                    | Airbill Number.                                                                                                                                                         |                                             |              | F                                     |         |               | * . ~ ~ ~ ~ |
| Telephone (978) 453 4300                                           | Sampler Na              | mie(s):  |                          |                    | , <del></del> ,                                                                                                                                                         | plastic                                     |              |                                       |         | 1             |             |
| Lacsimile (978) 453-7260                                           |                         |          |                          |                    | Date Shipped                                                                                                                                                            |                                             |              | · · · · · · · · · · · · · · · · · · · |         |               | ٠.          |
| Contact Name - Ken Cerreto, Ph D                                   | İ                       |          |                          |                    |                                                                                                                                                                         | 1 gal                                       |              |                                       |         |               |             |
|                                                                    | Quote #                 | 3/99     | Client Code              | ML NGUR            | Hand Delivered Yes No                                                                                                                                                   | 1 ',,,,,                                    |              |                                       |         |               |             |
| C                                                                  | OLLICTION               |          | 1                        | ,                  | <u>'</u>                                                                                                                                                                | ·                                           |              |                                       |         | g81.796 8 5 1 |             |
| SAMPLE IDENTIFICATION (7)                                          | VII-   HMI              | GRAB     | COMPOSITE                | MATRIX             | ANALYSIS / RL MARKS                                                                                                                                                     |                                             | NUMB         | LROF                                  | CONTA   | MURG .        |             |
| BTOX- (-3 2 )                                                      | 4                       |          |                          | Sedlment<br> -<br> | Hyddalla azlaca 10 d Survival & Growth<br>Hyddalla azlaca 42 day Chronic Toxicity<br>Chironomus tentaris 10 d Survival & Growth<br>Chironomus tentaris Chronic Toxicity | /                                           | <i>ī</i> :0η |                                       |         |               |             |
| BTOX - 0-3 19                                                      | 4                       |          |                          | Sydmant            | Hyalalla aztaca 10 d Survival & Growth<br>Hyalalla aztaca 42 day Chronic Loxicity<br>Chironomus tantans 10 d Survival & Growth<br>Chironomus tantans Chronic Loxicity   | /                                           | ī.o.ŋ        |                                       |         |               |             |
| BTOX-0-3-2 (1)                                                     | 4                       |          |                          | Sadhaant           | Hyntalla aztaen 10 d Survival & Growth<br>Hyntalla aztaen 42 day Chronic Toxicity<br>Chironomus tantans 10 d Survival & Growth<br>Chironomus tantans Chronic Toxicity   | /                                           | T=0.5        |                                       |         |               |             |
| PSOX (-2-7 "/                                                      | ,  <br>.(               |          |                          | Sadiment           | Hyalalla nzlaca 10 d Survival & Growth<br>Hyalalla nzlaca 42 day Chronic Foxicity<br>Chironomus lantans 10 d Survival & Growth<br>Chironomus lantans Chronic Toxicity   |                                             | Tuol         |                                       |         |               |             |
| BTOX- (-2                                                          |                         |          |                          | Sadiment           | Hyalalla aztoca 10 d Survival & Growth<br>Hyalalla aztoca 42 day Chronic Loxicity<br>Chironomus tantans 10 d Survival & Growth<br>Chironomus tantans Chronic Loxicity   | /                                           | T=0.5        |                                       |         |               |             |
| Relinquished by (signatura) DA                                     | (15) TIME<br>(15) 17 OC |          | ad by, (signal           | (110)              | NOTES TO SAMPLER(S): We recomme shipment. Please cover sample labels v                                                                                                  |                                             |              |                                       |         |               | ming        |
| Religioushed by (signatura) DA                                     | / ·                     |          | rod by: (signal          |                    | Notes to Lab: Cooler ambient temp                                                                                                                                       | erature                                     | upon da      | livery:                               | o(      | :             |             |
| Reinquished by. (signature)                                        | 199 /0:00<br>TE TIME    | Receiv   | NA AS<br>rad by: (signal | (ma)               | 3 600/945                                                                                                                                                               | '                                           | <u></u> =    | · · · · · · · · · · · · · · · · · · · |         |               |             |
| C199033/VICC>~ 1 doc                                               |                         | l        |                          |                    |                                                                                                                                                                         | erren en                |         |               |             |

|      | - |   |
|------|---|---|
| Page | o | Ī |
|      |   |   |

# Aquatec Biological Sciences Chain-of-Custody Record

| <br>    |          |       | 75 Gre  | een Mo   | unlain D<br>Ion, VT<br>50:1638<br>58:3189 | rive  |
|---------|----------|-------|---------|----------|-------------------------------------------|-------|
|         | KIMI .   | 310.8 | South   | Durling  | ilon, VT                                  | 05403 |
| 7.11    | DY STATE |       | OTEL::( | 802) 80  | 30:1638                                   |       |
| (1,000) | 111,496  | 的情况证  | 5FAX!(  | (802).G: | 58:3109                                   | •     |

| COMPANY INFORMATION                                                  | COWLVNI               | 'S PROJECT INFOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ΜΛΤΙΟΝ   | SHIPPING INFORMATION                                                                                                                                                    |           |         | ME/CONTAIN<br>PRESERVAT |         |
|----------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|-------------------------|---------|
| Name: Menzie Cura & Associates                                       | Project Name          | e: Dend Greek Sedir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nent Tox | Garrier:                                                                                                                                                                | -40C      |         |                         |         |
| Address: One Courthouse Lane, Suite 2 Chelmsford, MA 01824           | 1                     | ber: <u>99033</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | Airbill Number:                                                                                                                                                         | plastic   | _       |                         |         |
| Telephone: <u>(978) 453-4390</u><br>Facsimile: <u>(978) 453-7260</u> | Sampler Nan           | ne(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | Date Shipped:                                                                                                                                                           |           | _       |                         |         |
| Contact Name. Ken Cerreto, Ph.D.                                     | Quote #:              | 3/99 Client Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MENCUR   | Hand Delivered:YesNo                                                                                                                                                    | 1 gal     |         |                         |         |
| SAMPLE IDENTIFICATION DA                                             | LLECTION  <br>TE TIME | GRAB COMPOSITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MATRIX   | ANALYSIS / REMARKS                                                                                                                                                      | <u> </u>  | NUMB    | ER OF CON               | TAINERS |
| BTOX- D - 2 10/                                                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sediment | Hyalella azlaca 10-d Survival & Growth<br>Hyalella azlaca 42-day Chronic Toxicity<br>Chironomus tantans 10-d Survival & Growth<br>Chironomus tentans Chronic Toxicity   | /         | T=0,5   |                         |         |
| BTOX-D-Z-Z 10/                                                       | /                     | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sediment | Hyalella azteca 10-d Survival & Growth<br>Hyalella azteca 42-day Chronic Toxicity<br>Chironomus tentans 10-d Survival & Growth<br>Chironomus tantans Chronic Toxicity   | /         | T.o. S  |                         |         |
| PAPOX-D-1                                                            | /                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sediment | Hyalella azteca 10-d Survival & Growth<br>Hyalella azteca 42-day Chronic Toxicity<br>Chironomus tentans 10-d Survival & Growth<br>Chironomus tentans Chronic Toxicity   |           | Γ=0.5   |                         |         |
| 610X D 1-2 1/                                                        | /                     | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sediment | Hyalalla aztaca 10-d Survival & Growth<br>Hyalalla aztaca 42-day Chronic Loxicity<br>Chironomus tantans 10-d Survival & Growth<br>Chironomus tantans Chronic Toxicity   | 1         | Γ-0,5   |                         |         |
| BTOX- C-3 1%                                                         | /                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sediment | Flyalalla aztaca 10 d Survival & Growth<br>Flyalalla aztaca 42-day Chronic Toxicity<br>Chironomus tantans 10 d Survival & Growth<br>Chironomus tantans Chronic Toxicity | (         | F-015   |                         |         |
| Relinquished by (signature) DAT                                      | E TIME 19:00          | Received by: (signa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lure)    | NOTES TO SAMPLER(S): We recommen<br>shipment. Please cover sample labels w                                                                                              |           |         |                         |         |
| Relinquished by: (signature) DAT                                     | 99 10:00              | Received by: (signal CKALC) (Signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (signal Received by: (s | -        | Notes to Lab: Cooler ambient tempe                                                                                                                                      | eralure ( | upon de | elivery:                | _oC     |
| Relinquished by: (signature)  C199033WCOC1 doc                       | E TIME                | Received by: (signa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ine)    | > 000.15                                                                                                                                                                |           |         |                         |         |

| ANALYSIS REQUEST AND CL                                                                                                   | G-HVICES, ING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 - 1700, Cafforte Avenue Tsavaniali Ca<br>L. 17636 fodestral Plaza Unive Tallahasa<br>L. 1414 (SW. 17th Avenue Decided Boni<br>L. 1900 Cakeside Diive, Medide Al., 1669,<br>L. 1674, Phenjamic Head, Canto, 100 - Jane<br>L. 100 Alpha Diive Tanlo (170 - Decheba | 500-11-12-801 Phone (004) 078-1229<br>6-11-13-14-2 Phone (054) 421-7400<br>3 Phone (534) 666-663<br>903-11-336-14 Phone (013) 005-742 | 4 for (904) 878 9504<br>0 for (954) 421 2584<br>3 for (334) 666 6696<br>7 for (833) 885 7039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linear teachers and the same teachers                                                                                     | 110.11 C. 110.0   100 HIMBER<br>648/3<br>1010.0 1798-453-4300<br>110.11 PRODUCT MANAGER<br>C. 1 CONTROL (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAILIEX WOLL XV                                                                                                                                                                                                                                                    | LOUIRED ANALYSI S                                                                                                                     | PACI CH CH CHILL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTR |
| 10/5-/99 9:45 BIOX.                                                                                                       | 8-1 (vupi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NUMBERIOR CONTAIN  D.  CO.  CO.  CO.  CO.  CO.  CO.  CO.                                                                                                                                                                                                           | DERESONMENTED                                                                                                                         | III MATIK'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| HELINOUISHED BY (SIGNATURE)  HELINOUISHED BY (SIGNATURE)  HECEIVED BY (SIGNATURE)  HECEIVED FOR LABORATORY BY (SIGNATURE) | and a common contract and the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the | TORY USE ONLY                                                                                                                                                                                                                                                      | ECHVEDBY (SIGNATURE)  LABORATORY REMARKS:                                                                                             | Mac CAB (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### CHAIN OF CUSTODY RECORD

| Project No.   Project Mame:                                                               | Project Location:                                             | The section of the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to the Contract to |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 648B Souget-AlaI- Dead Grock                                                              | Sougel/Cahokia III                                            | MENZIE-GURA & ASSOCIATES, INC.  1 COURTHOUSE LANE, SUITE 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                           | Analyses Required                                             | CHELMSFORD, MA 01824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DATE: 10/6/99                                                                             |                                                               | TEL: 978/453-4300 FAX: 978/453-7260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SAMPLERS Chemine, K. Fogorty.                                                             | 3 to 5 to 5 to 5 to 5 to 5 to 5 to 5 to                       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| T Tmo                                                                                     | No. of S                                                      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SAMPLE ID Date Comp. Grato Station Locations  Fig. 1 19/4/20 9:50 Dead Comp. Sect. Fig. 1 | A ×                                                           | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| E-1 19679 - 9:50 Dead Crasp-Scd. 5                                                        | A X                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E-3 (2)0 V                                                                                | \                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3P-1 11:30 Donow P. T                                                                     | 2 X<br>2 X/                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3P/(v.pc) 11:30                                                                           | A X                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Respondshed fly: (Stupaturk)  (At-M14M)   NAME   10/6/99   1900                           | Hoselved By: (Signature) Date Time  -Karana Minor 10/7/77/020 | Romarks:<br>Note () Harleca/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Relinquished By: (Signature) Dale Time                                                    | Received By: (Signature)   Date   Time                        | C. Lentans acute/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Relinquished By: (Signature) Date Time                                                    | Received By: (Signature) Date Time                            | Note () Harlera/<br>C. Lentans acule/<br>Conomic sediment/<br>-10 KICITY Healts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Aquatech                                                                                  | Phone:                                                        | 10 KICITY HEALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Contact Person: Phil. Downey                                                              | =117                                                          | a b l m i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Via Feder in 3 coolers

(00 let 1/2 Jens = 3, 18 - 83 + E3 (00 let 1/2 Jens = 3, 20 - BAFF 1 0F) (00 let 1/3 Jens = 2, 50 F)

|                                                                                    |                                                | (441/)                  | in cir ca:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PLODA BEC                     | CHU  |          |                                                                                                                           |
|------------------------------------------------------------------------------------|------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------|----------|---------------------------------------------------------------------------------------------------------------------------|
| DATE 10/ 1/99  SAMPLERS C. N. C                                                    |                                                | <i>I</i>                | Project Countl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on. /Called Sally Analyses Re |      | *        | MENZIE-GURA & ASSOCIATES, ING<br>1 COURTHOUSE LANE, SUITE 2<br>CHELMSCORD, MA 01824<br>TEE: 970/453-4300 FAX 970/453-7260 |
|                                                                                    | Station Locations  Burnow Vil  Dead Could with | ·                       | No, of<br>Containurs<br>ਜ਼ਰ<br>ਜ਼ਰ<br>ਜ਼ਰ<br>ਹੈ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | が                             |      |          | NOTES  CLCI COCO CLCO CLCO                                                                                                |
|                                                                                    |                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |      |          | (00 (6 ) ) 3 3 0 c                                                                                                        |
| Helinquished try: (Signature)  Keenhearma a Jugardy  Helinquished try: (Signature) | 10/ 1/44<br>Date                               | Thun<br>(6 (21)<br>Hann | 13,0,000 try (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 (51),000 | (100)<br>(100)<br>(100)       | KIRI | 45 10:30 | Romarks: 2<br>Some un B coolons                                                                                           |
| Laboratory: NguaYech                                                               | tinin                                          | limm                    | iteceived thy: (51g)<br>Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | () a | e Hane   |                                                                                                                           |
| Contact Person: Phil Down                                                          | 4                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>.</u>                      |      |          |                                                                                                                           |

## CHAIN OF CUSTODY RECORD

| Project No.                |                         |          |             | C . J Av            | con "I"        | Project Local        |                                          | . 1    | 7       | <br>71 |               | MENZIE-CURA & ASSOCIATES, INC.                           |
|----------------------------|-------------------------|----------|-------------|---------------------|----------------|----------------------|------------------------------------------|--------|---------|--------|---------------|----------------------------------------------------------|
| 6460                       | 1710                    | 9 V      |             | - Sauged Av         | ٠ لـ ا بـ      | Sauget-Cohokis, III. |                                          |        |         |        |               | 1 COURTHOUSE LANE, SUITE 2                               |
| DATE: 10/                  | 18/90                   | /        |             |                     |                |                      | Anal                                     | yses R | oquired |        | r             | CHELMSFORD, MA 01024 TEL: 970/453-4300 FAX: 970/453-7260 |
|                            |                         |          | ), (        | Foroily             |                | No. of               | 1201. 9 1.<br>1200. 1200.<br>1200. 1200. |        |         |        |               |                                                          |
| SAMPLE ID                  | Date                    | Comp.    | Grah        | Station Locations   |                | Containers           | 103                                      |        |         |        |               | NOTES                                                    |
| byc-1                      | 10/5/2                  | 9:30     |             | Received du Pont    |                | J                    | X                                        |        |         |        |               |                                                          |
| PDC-3                      |                         | 11:20    |             | 10 11               |                | 2                    | X                                        |        |         |        |               |                                                          |
| <del>M2-1</del>            | W                       | 116:30   |             | Rof Creck           |                |                      | - <i>-</i>                               |        |         |        |               |                                                          |
|                            |                         |          |             |                     |                |                      |                                          |        |         |        |               |                                                          |
|                            |                         |          |             |                     |                |                      |                                          |        |         |        |               |                                                          |
|                            | ļ                       |          |             |                     | <del></del>    |                      |                                          |        |         |        | ·             |                                                          |
|                            |                         |          |             |                     |                |                      |                                          |        |         |        |               |                                                          |
| ····                       | Ì                       |          |             |                     |                |                      |                                          |        |         |        | ·             | ,                                                        |
|                            |                         |          |             |                     |                |                      |                                          |        |         |        |               |                                                          |
|                            |                         |          |             |                     | <del></del>    |                      |                                          |        |         |        |               |                                                          |
|                            |                         |          |             |                     |                |                      | -                                        |        |         |        | <del></del>   |                                                          |
|                            |                         |          |             |                     |                |                      |                                          |        |         |        | - <del></del> |                                                          |
|                            |                         |          |             |                     |                |                      |                                          |        |         |        |               |                                                          |
|                            |                         |          |             |                     | ·              |                      |                                          |        |         |        |               |                                                          |
|                            | l                       | <u> </u> | <del></del> |                     |                |                      |                                          |        |         |        | 11000         | Remarks:                                                 |
| official stand fly:        | : (Signatur<br>: LAND ( | 2/01     | M           | 128 10/8/99<br>1018 | 15/30          | Recolved By: (Sig    | maturn)                                  |        |         | Date   |               | a coolens via Feder                                      |
| elinguished By:            | (Signatur               | e)       | 6           | 10/3/99             | 11me<br>101,30 | Received By: (Sig    | maline)<br>Alba                          | 1      |         | Date   | Time          | Fripping 611 NO                                          |
| elinquished By:            | : (Signatui             | e)       |             | Dale                | Time           | Received Dy: (Sig    | ma(ure)                                  |        |         | Date   | Time          | 5. pping 61/ NO<br>811399 409571                         |
| _aboratory:                | Agu                     | atech    |             |                     |                | Phone:               |                                          |        |         |        |               | 1                                                        |
| Laboratory:<br>Contact Per | son/ y                  | hil J    | )171,15     | neey                |                |                      |                                          |        |         |        |               |                                                          |
|                            |                         |          |             | ()                  |                | Carlo                | 11                                       | -/     | 100     | *      | ·             |                                                          |

Cooler H- 1°C

PAGE OF

#### CHAIN OF CUSTODY RECORD

| ſ  |                                      | Project          |        | -      |                    |                   | Project Locat                          | lon;                                 |                         |       |              |              |                                                    |
|----|--------------------------------------|------------------|--------|--------|--------------------|-------------------|----------------------------------------|--------------------------------------|-------------------------|-------|--------------|--------------|----------------------------------------------------|
|    | ·                                    |                  | d (no  | e.1 e  | Sauget Aven        | $\mathcal{I}^{*}$ | Sungel                                 |                                      |                         |       |              | · := .:= ==: | 1 COURTHOUSE LANE, SUITE 2<br>CHELMSFORD, MA 01824 |
| ŀ  | DATE 10/                             | 199              |        |        |                    |                   |                                        | 1.00                                 | 7                       | ]     | j            | =            | TEL: 978/453-4300 FAX: 978/453-7260                |
|    | •                                    |                  | 17 211 | , K.   | · Forgonti         |                   |                                        | 37                                   |                         |       |              |              |                                                    |
|    | SAMPLE ID                            | Data             | Comp.  | Grati  | Station Locations  |                   | No. of<br>Containers                   | 1 x 3                                |                         |       |              |              | NOTES                                              |
| 01 | Refa-a                               | 10/7/11          | 10:30  |        | Daparence Bottom D | ) i <i>I</i>      | انہ                                    |                                      |                         |       |              |              |                                                    |
|    | ·                                    |                  |        |        |                    |                   |                                        |                                      |                         |       |              |              |                                                    |
|    | -                                    |                  |        |        |                    |                   |                                        |                                      |                         |       |              |              |                                                    |
|    |                                      |                  |        |        |                    |                   |                                        |                                      |                         |       |              |              |                                                    |
|    |                                      |                  |        |        |                    |                   |                                        |                                      |                         |       |              |              |                                                    |
|    |                                      |                  |        | =      |                    |                   |                                        |                                      |                         |       |              |              |                                                    |
|    |                                      |                  |        |        |                    |                   |                                        | :                                    |                         | -     |              |              | (C10-1) (), (), ()                                 |
| 10 | Keelne                               | (31ym)(1)<br>(2) | 10031  | ny     | 19/9/94            | 12:30             | Herelved By: (Blg<br>Berelved By: (Slg |                                      |                         |       | Date         | 1 Ime        | Romarko:<br>Somt Via OS NIV<br>Countles To Counta  |
|    | telingulahed By:<br>telingulahed By: |                  | V      |        | Date               |                   | Received By: (5tg                      | ra s era augs 😅 😙                    | ≖ale: (επιέ             |       | im or images | l lesso      | County 10 County                                   |
|    | _aboratory:                          |                  |        |        |                    | ļ                 | Phone:                                 |                                      |                         | ····· |              |              |                                                    |
|    | Contact Pers                         | on: E            | atech  | אינטטצ |                    |                   |                                        | ter delice along milds tor 1 —ab- 14 | arabi kon - eranda a vi |       |              |              |                                                    |

PAGE | OF |

Project: 99033 Dead Creek BTR: 3615 Client: Menzie-Cura & Assoc. Test Start: October 19, 1999 Day 28: November 16, 1999

|             |       |          | 11/16/99 |          | Repick   | Total     | #<br>Weighed | Init Pan<br>Wt. | Total                                          |
|-------------|-------|----------|----------|----------|----------|-----------|--------------|-----------------|------------------------------------------------|
| Sample      | Repl. | # Alive  | Init.    | Repick # | Init.    | Surv      |              | 1771.           | Dry Wt.                                        |
| 12546       | A     | 10       | RB       |          |          | 1023      | <u> </u>     |                 | <del>-</del>                                   |
|             | В     | 10       | 7(2      |          |          | 10        | <del>-</del> | -               | -                                              |
| *           |       | 0        | RB       | 0        | RB       | 0         | <u> </u>     | -               |                                                |
| *           |       | 18       | 16       |          |          | 18        | <u> </u>     | -               | ļ <u>-</u>                                     |
|             | E     | 9        | 70       |          |          | <u> </u>  | <u>-</u>     | -               | -                                              |
|             | F     | 10       | 7777     | -        |          | 10        | <u>-</u>     |                 | -                                              |
|             | G     | 9_       | IM       |          |          | 9         |              |                 | -                                              |
|             | H *   | _ i      | 196      |          |          | 10        | <u>-</u>     | -               | -                                              |
|             | 1     | 10       | RB       |          |          | 10        | 10           | 24.59           | <u>32.33                                  </u> |
|             | J     | 7_       | J        | 0        |          | 7         | 7            | 24 35           | 30.13                                          |
|             | K     | 9        | 7        |          |          | 9         | 9            | 25.41           | 31.88                                          |
|             | L     | 9        | 16-      |          |          | 9         | 9            | 26.86           | 33.57                                          |
| 12547       | Α     | 10       | RB       |          | ~        | 10        | -            | -               | _                                              |
| 1 m W - 7 ! | В     | 4        | RB       |          |          | 9         | -            | -               |                                                |
|             | C     | <u> </u> | RB       |          |          | 9         | -            | _               | -                                              |
|             | D     | 10       | Tm       |          |          | 10        | -            | -               | _                                              |
|             | E     | 8        | TM       |          | RB       | 8         | -            | _               |                                                |
|             | F     | 10       | Tim      |          |          | 10        | _            | -               | -                                              |
| ,           | G     | 9        | 76       |          |          | 9         |              | _               | -                                              |
| ′           | H     |          | RR       |          | RB       | 5         | -            | -               | -                                              |
|             |       | a        | 36       |          |          | 9         | 9            | 23.55           | 27.42                                          |
|             | j     | 9 4000   |          |          |          | 9         | 9            | 22.62           |                                                |
|             | K     | 7,100    | RB       | 0        |          | 5         | 5            | 23.08           | 2494                                           |
|             | L     | 10       | m        |          |          | 10        | 10           | 24.60           | 28.89                                          |
|             |       |          | ''''     |          |          |           |              |                 | 100.01                                         |
| 12548       | Α     | 10       | TM       |          |          | 10        | <del>-</del> | -               | -                                              |
|             | В     | 10       | RB       |          |          | 10        | -            | -               | -                                              |
|             | C     | +3       | ₹G-      |          | <u></u>  | 3         | -            | <u>-</u>        | -                                              |
|             | D     | 10       | RB       |          |          | 10        | -            | -               | -                                              |
|             | Eigag |          | RB       |          | <u> </u> | 9         | -            | -               | -                                              |
|             | F     | 9        | 76       |          |          | 9         | <del>-</del> | -               | -                                              |
|             | G     | 10       | RIS      |          |          | <u>[D</u> | <u>-</u>     | -               | -                                              |
|             | Н     | 10       | <u> </u> |          |          | 10        | <u>-</u>     | <u>-</u>        | -                                              |
|             | 1     | 10       | TM       |          | <u> </u> | 10        | 10           | 28.70           | 3294                                           |
|             | J     | 3        | TM       | 0        |          | 8         | 8            | 24.16           | 30,91                                          |
|             | K     | 9        | RB       |          |          | 9         | 9            | 27.33           | 33.38                                          |
|             | L.    | 10       | m        |          |          | 10        | 10           | 25.52           | 30.84                                          |

Fungal growth on top of sediment; also a dead Triputidax formel, 76

Date: 142495

Date: 15/22/95 Reviewer: haday28.occ

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

R zero Lound rape C but 20 in my 1) - marks in OCO 2085 The

| Client: Menzie-Cura & Assoc. | Project: 99033 Dead Creek    | BTR: 3615                 |
|------------------------------|------------------------------|---------------------------|
|                              | Test Start: October 19, 1999 | Day 28: November 16, 1999 |

| ج<br>العدرية | 0               | Donl     | # A I                       | 11/16/99           | D ! - ! - # | Repick        | Total       | #<br>Weighed    | Init Pan<br>Wt.  | Total        |                 |
|--------------|-----------------|----------|-----------------------------|--------------------|-------------|---------------|-------------|-----------------|------------------|--------------|-----------------|
| ٦            | Sample<br>12549 | Repl.    | # Alive                     | Init.              | Repick #    | Init.         | Surv        |                 |                  | Dry Wt.      |                 |
| ļ            | 12045           | В        | 4                           | RB                 |             |               | 9           | <del>-</del>    | _                | _            |                 |
| 1            |                 | C        | 8                           | RIS                | 0           | 76-147        | 8           | <del></del>     | _                | -            |                 |
| Ì            |                 | D        | 0                           | 7)(-               |             | 20 //         | 70          | -               | <u>-</u>         | _            |                 |
| ł            |                 | E        | 10                          | RB                 | -           |               | 10          | -               | -                | _            | ·               |
| 1            |                 | F        | 10                          | TM                 |             |               | 10          | -               | -                | -            |                 |
|              |                 | G        | 9                           | .16                | )           |               | 9           | -               | -                | -            |                 |
| 1            |                 | Н        | 8                           | TM                 | 3           | RB11/17       | 8           | -               | _                | _            |                 |
|              |                 | 1        | 9                           | TM                 |             |               | 9           | 9               | 24.64            | 29.75        |                 |
|              |                 | J        | S                           | 76                 | - 0         |               | 8           | 8               | 27.33            | 30.71        |                 |
| 1            |                 | K        | 7                           | 76                 | 0           |               | 7           | 7               | 29.10            | 33.68        |                 |
| L            |                 | L        | વ                           | RB                 |             |               | 9           | 9               | 25,92            | 31.69        |                 |
| Γ            | 12550           | Α        | 6                           | JG                 |             |               | 6           | -               | -                | -            | l               |
|              |                 | В        | 10                          | 36                 |             | ~             | 10          | -               | -                | <del>-</del> |                 |
|              |                 | С        | 7                           | RIS                | 0           | JG1/17        | 7           | -               | -                | -            |                 |
|              |                 | D        | 7                           | RB                 | D           | RBW.          | , 7         | -               | -                | -            |                 |
| ı            |                 | E        | 10                          | RB                 |             |               | 10          | -               | -                | -            |                 |
|              |                 | F        | li                          | 76                 |             |               | U           | -               | -                | -            |                 |
|              |                 | G        | 10                          | RB                 |             |               | 19          | -               | -                | -            |                 |
| 7            |                 | Н        | 4                           | JG-                |             |               | 7           |                 | -                | -            | ew <sup>q</sup> |
| -            |                 | 1        | 10                          | RB                 | _           | _             | 10          | 10              | 26.35            | 32.15        | (2 m. 53 al     |
| - [          |                 | J        | 8                           | 15                 | 0           |               | 8           |                 | 21.83            | 27.15        | Xeli, Vinesh    |
| ١            |                 | K        | 9                           | Tm                 |             |               |             | 9               | 26.99            | 31.65        | Harry Man 11/28 |
| L            |                 | <u> </u> | 9                           | JG                 |             |               | 9           | 9               | 27.82            | 32.99        |                 |
| Γ            | 12551           | Α        | 10                          | 36                 |             |               | 0           | -               | -                | -            |                 |
| J            |                 | В        | 9                           | TM                 |             |               | 9           | -               | -                | -            |                 |
| ł            | ·               | C X      | 20                          | >6                 |             |               | 8           | -               | -                | -            |                 |
|              |                 | D        | 10 10                       | RB                 |             |               | iQ          | -               | -                | -            |                 |
| 1            |                 | E        | 96                          | 16                 |             |               | 6           | -               | -                | <b>-</b>     |                 |
| ١            |                 | F        | 9                           | 16                 |             |               | 9           | -               | -                |              |                 |
|              |                 | G        | 7                           | Tm                 | 0           | RBIN          | _7          |                 | -                |              |                 |
| -            |                 | H        | 56                          | 30                 |             |               | 8           | <u>-</u>        | -                | -            |                 |
| ł            |                 | -        | <u> </u>                    | TM                 | 0           | ····          | <u>(</u> 0  | <u></u>         | 29.97            |              |                 |
|              |                 | J        | 9                           | TM                 | <u> </u>    |               | 9           | 9               | 23.15            | 29.29        |                 |
|              |                 | K        | <u>(o</u>                   | $\frac{\eta_1}{2}$ | 0,          |               | 6           | 9               | 24 90            | 29.85        |                 |
| ļ            | Polonia C       | C: Init  | 8                           | RB                 | ) Final (   | 20 /          | ٥           | 8<br>Palanas As | 22.98            | 29.41        |                 |
| ł            | Balance C       |          | ial (20 mg =<br>ം വ് emp(°C | 14.98<br>) 80°C 11 |             |               | 1.98)       | Balance As      |                  | Init.        | n               |
| ł            |                 |          | ms in Replica               |                    |             | ater only exp | osure. Orga | nisms in Rep    | licates I - L to |              |                 |
|              |                 |          |                             |                    |             |               |             |                 | DE, 40           |              |                 |

haday28.doc Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Client: Menzie-Cura & Assoc. Project: 99033 Dead Creek BTR: 3615

Test Start: October 19, 1999 Day 28: November 16, 1999

| Sample    | Repl.            | # Alive       | 11/16/99<br>Init. | Repick #      | Repick<br>Init. | Total<br>Surv | #<br>Weighed | Init Pan<br><b>W</b> t. | Total<br>Dry Wt. |           |
|-----------|------------------|---------------|-------------------|---------------|-----------------|---------------|--------------|-------------------------|------------------|-----------|
| 12552     | Α ,              | 8             | TM                | 0             | JEIN            | 7.8           | -            | -                       | -                | ]         |
|           | Branc            | 2             | RB                | ٥             | JG-1/17         | 2             | -            | -                       | -                | ]         |
|           | С                | 9             | RB                | 0             | JG11/17         | 8             | -            | -                       | <u> </u>         | ]         |
|           | D                | 7             | TM                | O             | RB 1m           | 7             | -            |                         |                  |           |
|           | E                | 5             | RB                | D             | 16417           | 5             | -            |                         | <u>-</u>         |           |
|           | F                | 5             | JG                | 0             | RB11/-          | 5             |              | -                       | -                | ]         |
|           | G                | 8             | TM                | 0             | KBMU            | 8             |              |                         | -                |           |
|           | Н                |               | RB                | O             | R34n            | 7             | -            | -                       | -                | Ì         |
|           |                  | 4             | TM                | <u> </u>      | ,               | 4             | 4            | 24.28                   | 36.97            | 1         |
|           | J                | 3             | २८                | Ć.            |                 | 3             | 3            | 23.53                   | 26.46            |           |
|           | K                | 4_            | m                 | <u>C</u> ,    |                 | 4             | 4            | 3462                    | 29.45            |           |
|           | <u>L</u>         | 5             | JG                | C             | /               | 5             | 5_           | 29.02                   | 34.38            |           |
|           | Α                |               |                   | <del></del>   |                 |               | -            | _                       | -                | 1         |
|           | В                |               |                   |               |                 |               | -            | / -                     | -                |           |
| •         | С                |               |                   |               |                 |               | -/           | _                       | -                | [         |
| 1         | D                |               |                   |               |                 |               |              | -                       | -                | · ·       |
|           | E                |               |                   |               |                 |               | / -          | -                       | <u>-</u>         |           |
| <b>[</b>  | F                |               |                   |               |                 |               | -            | <u>-</u>                | -                |           |
|           | G                |               |                   |               |                 |               | -            | -                       | -                |           |
|           | Н                |               |                   |               |                 |               | <u> </u>     | <u> </u>                | -                | `         |
|           | 1                |               |                   |               |                 |               |              | ····                    |                  |           |
|           | J                |               |                   | - <u></u> -   |                 |               |              |                         |                  | ]         |
|           | K                |               |                   |               |                 |               |              |                         |                  |           |
|           | L                |               | ·                 |               |                 |               |              |                         |                  |           |
|           | Α                |               | !                 |               |                 |               | -            | <del>-</del>            | <del>-</del>     | I         |
|           | В                |               |                   |               |                 |               | _            | <del>  -</del>          | -                | 1         |
|           | C                |               | <del></del>       |               |                 |               | -            | _                       | _                | 1         |
|           | D                |               |                   |               |                 |               | -            | -                       | _                | 1.        |
|           | E                |               |                   |               |                 |               | -            | -                       | -                | i         |
|           | F                | -             |                   |               |                 |               | -            | <del>-</del>            | <del>-</del>     | 1         |
|           | D<br>E<br>F<br>G |               | /                 |               |                 | <del></del>   | -            | <del></del>             | <u> </u>         | 1         |
|           | Н                | /             | 1                 |               |                 |               | -            | <del>-</del>            | -                | ĺ         |
|           | 1                | /_            |                   | _             | -               |               |              | •                       |                  | 1         |
|           | J                |               |                   |               |                 |               |              |                         | <del></del>      |           |
|           | K                |               |                   |               |                 |               |              |                         |                  | 1         |
|           | L                |               |                   |               |                 |               |              |                         |                  | 1         |
| Balance C |                  | al (20 mg =   |                   |               |                 | (45)          | Balance As   |                         |                  | ·         |
|           |                  | . «Temp(°C    |                   | nt 7m         |                 |               | , √Temp(     |                         | Init. 77         |           |
| Comments  | Crganise         | ns in Replica | ites A - H tra    | nsferred to w | ater only expos | sure. Orga    | nisms in Rep | licates I - L 1         | o dry weight     | analysis. |

Reviewer \_\_\_\_\_ Date. 12/21/49
haday28 doc
Laboratory Aquatec Biological Sciences, South Burkington, Vermont

#### Amphipod (*Hyalella azteca*) Chronic Toxicity Test Days 35 and 42 Survival, Reproduction, and Dry Weight Data

Client: Menzie-Cura & Assoc. Project: 99033 Dead Creek BTR: 3615

Test Start: 10/19/99 Test End: 11/30/99

| ٦          |                        | Day 35<br>(11/23/99) |                   |                   |             | -                |               | Day<br>(11/3      | / 42<br>0/99) |                          |                  |
|------------|------------------------|----------------------|-------------------|-------------------|-------------|------------------|---------------|-------------------|---------------|--------------------------|------------------|
| ľ          | Sample                 | Rep                  | #<br>Adults       | #<br>Neona<br>tes | #<br>Adults | #<br>Femai<br>es | #<br>Males    | #<br>Neona<br>tes | #<br>Weighed  | Init Pan<br>Wt.          | Total Dry<br>Wt. |
| t          | 12546                  | A<br>B               | -10               | 23                | Z           | 6                | d             | 36                | 3408          | 28,18                    | 31.05            |
| 1          | *                      | С                    | 9                 | <del>-</del>      | <u> </u>    | 4                | 4             | 29                | 7608          | 20.34                    | 25.10            |
|            |                        | D<br>E               | 17                | 24                | 16          | 8                | 8             | 17                | 16            | 26.73                    | 30.14            |
|            |                        | F                    | 9                 | 42<br>33          | 9           | 55               | 4             | 43<br>24          | 9             | 26,73                    | 31.54            |
|            |                        | GН                   | 9                 | 30<br>29          | 9           | 6                | <u>ろ</u><br>5 | 27                | 9             | 25.62                    | 30.00<br>29.99   |
| þ          | 12547                  | Α                    |                   | 2                 | 10          | -1               | 3             |                   | 10            | 27,35                    | 31.58            |
|            | 12041                  | В                    | 8 10              | 15                | 10          | <i>y</i> (a      | a             | 92                | 8             | 25.57                    | 29.03            |
| 1          |                        | C<br>D               | 248               | 14                | 3           | 5<br>2           | 3             | 0                 | 8             | 25.71                    | 29.40<br>30.84   |
|            |                        | Е                    | A5                | 0                 | 4           | ſ                | 3             | 0                 | 4             | 22.82                    | -24.43           |
| 1          | (                      | F<br>G               | 8                 | 6                 | \$          | 4                | 3             | 14<br>5           | 3             | 25.13                    | 28-53<br>30.92   |
| السا       | !<br>                  | Н                    | 7                 | 8                 | 7           | 5                | <u>a</u>      | 16                | 7             | 25,67                    | 30.27            |
| T          | 12548                  | Α                    | <u>i0</u>         | 18                | 9,          | S                | 3             | 10                | 8             | 24.82                    | 28.39            |
| 1          |                        | B<br>C               | 10                | 21                | 10          | 0                | 4             | 13                | 10<br>i       | 2563                     | 29.04            |
| ļ          |                        | D                    | 10                | 13                | 9           | _5_              | 4             | 18                | 9             | 23,71                    | 26.68            |
|            |                        | E<br>F               | 16/28             | 5                 | 8           | 2                | 4             |                   | 8             | 28,19                    | 31.48            |
|            |                        | G<br>H               | 8                 | 17                | 11          | <del>9</del> 3   | 2             | 26                | 1118          | 29,62                    | 34.23            |
| F          | 12549                  | A                    | 10                | 5                 | G           |                  | <u>3</u>      | 15                | 1 (           | 27.07                    | 26.75<br>30.78   |
|            | 12549                  | В                    | 9                 | 16<br>5           | 8           | <u>5</u><br>a    | <u>5</u>      | 5                 | 8             | 27.18                    | 30.89            |
|            |                        | C<br>D               | 8                 | 23                | 8           | 19 م             | <u>3</u>      | 21                | 8             | 25.91                    | 29.66            |
|            |                        | Е                    | B.89.             | 9                 | 9           | 6                | 2             | 9                 | 9             | 25.11                    | 28.36            |
|            |                        | F<br>G               | 189               | 14                | 9           | 5                | 4             | 16                | $\frac{q}{a}$ | 24,96                    | 32.37            |
|            |                        | Н                    | 7                 | 1:                | 7           | 5                | 2             | 27                | 7             | 26,55                    | 29,60            |
|            | Day 35 In<br>Balance C |                      |                   |                   |             | Final (20        |               | y 42 Initia       |               | 1   30   9  <br>Asset #: | TM JG            |
| سا<br>.الس | Date/time              | In/1/30              | <u>/6:40</u> Тетр | (°C) 82           | _ Init. <   | JG-              | Date/tim      | ie out 16         | 30 ia) Tem    | p(°C) 79°                | Init. TM         |

Reviewer: JG Date: M249.

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

A see dy 28 data

# Amphipod (*Hyalella azteca*) Chronic Toxicity Test Days 35 and 42 Survival, Reproduction, and Dry Weight Data

Client: Menzie-Cura & Assoc. Project: 99033 Dead Creek BTR: 3615

Test Start: 10/19/99 Test End: 11/30/99

|           |          | _           | / 35<br>(3/99) -  |             |                  |                                              | Day<br>(11/3      | / 42<br>0/99) |                 |                  |
|-----------|----------|-------------|-------------------|-------------|------------------|----------------------------------------------|-------------------|---------------|-----------------|------------------|
| Sample    | Rep      | #<br>Adults | #<br>Neona<br>tes | #<br>Adults | #<br>Femal<br>es | #<br>Males                                   | #<br>Neona<br>tes | #<br>Weighed  | Init Pan<br>Wt. | Total Dry<br>Wt. |
| 12550     | Α        | G           | 11                | 5           | a                | 3                                            | 8                 | 5             | 23,82           | 26.51            |
|           | В        | 10          | 17                | 10          | 7                | 3                                            | 18                | 10            | 123,93          | 28.05            |
|           | C        | 7_          | 3                 | 6           | <u>ર</u><br>5    | 4                                            | 3                 | <u> 6</u>     | 21.63           | 24.42            |
|           | D        | 7           | 3                 | 7           |                  | <u>a</u>                                     | 18                | <del></del>   | 21,47           | 24.02            |
|           | E        | 10          | 0                 | 10          | 5                | 5                                            | 9                 | 10_           | 22.04           | 25.98            |
|           | F        | 11          | 7                 | 10          | 5                | .5                                           | _0_               | 10_           | 27.01           | 31.05            |
| -         | G        | 0           | 4                 | 10          | (e               | 4                                            | 7                 | 10            | 25,41           | 29.37            |
|           | Н        | - 1         | - !               | 7           | 5                | ュ                                            | 29                | 7             | 27.51           | 30.67            |
| 12551     | Α        | 10          | 16                | 10          | 7                | 3                                            | 7                 | 10            | 23.66           | 27.37            |
| <br>      | В        | 8           | 7                 | -9          |                  | 4                                            | 21                | 7             | 32.74           | 26.67            |
|           | С        | 19          | 4                 | 1900        | 152              | 75.4                                         | 22                | 19            | 22.84           | 26.97            |
| į         | D        | 9           | 3                 | 9           | 8                | 1                                            | 14                | 9             | 27.84           | 31.09            |
|           | E        | 6           | 1                 | 5           | _3               | 2                                            | 5                 | 5             | 27.37           | 29.21            |
|           | F        | 8           | 7                 | 8           | 6                | 2                                            | 12                | 3             | 27.92           | 31.04            |
|           | G        | 6           | 10                | 6           | 3                | <u>  3                                  </u> | 9                 | 6             | 22.35           | 24.94            |
|           | Н        | 8           | 1                 | 8           | 3                | 5_                                           | 5                 | 8             | 27,31           | 30.82            |
| 12552     | Ā        | 7-          | 0                 | 7           | 3                | 4                                            | 0                 | 7             | 31,20,          | 23.07            |
|           | <u>B</u> | 0           | 0                 |             |                  |                                              |                   |               |                 |                  |
|           | C        | 6           | 0                 | 6           |                  | <u> </u>                                     | _0_               | 6             | 26.72           | 28.36            |
|           | D        | 5           | 3                 | 0           | _3               | _3_                                          | _Q_               | 6             | 26.56           | 27.95            |
|           | E        |             |                   | 4           | <u>a</u>         | <u>2</u>                                     | <u>_</u>          | 4             | 25.01           | 26.19            |
|           | F        | 5           | 0                 | 7           | _4_              | 0_                                           | <u> </u>          | 3             | 27:23           |                  |
|           | G<br>H   | <u>ع</u>    |                   | 3           | +                | 1                                            | <u> </u>          | 3             | B.10            | 28.79            |
|           | <u></u>  | <del></del> | 2                 | <u></u>     | <u> </u>         | 3                                            | <u> </u>          | <u>+</u>      | 26,31           | 28.55            |
|           | Α        |             |                   |             |                  |                                              |                   |               | 1               |                  |
|           | В        |             |                   |             |                  |                                              |                   |               |                 |                  |
|           | С        |             |                   |             |                  |                                              |                   |               |                 |                  |
|           | D        |             |                   |             | <u>.</u>         |                                              |                   |               |                 |                  |
|           | E        |             |                   |             |                  |                                              |                   |               |                 |                  |
|           | F        | <br>        |                   |             |                  |                                              |                   |               | !               |                  |
|           | G        | <u> </u>    |                   | ļ           | <del></del>      |                                              |                   |               |                 |                  |
|           | Н        |             |                   |             |                  |                                              |                   |               | <u>:</u>        |                  |
| Day 35 In |          |             | 23 JM             |             |                  |                                              | y 42 Initia       | is / Date:    |                 | 2 JE             |
| Balance C |          | itial (20 m |                   | )<br>Init   | Final (20        |                                              | )                 | Balance       |                 | C Init The       |
| Date/time | 1/1      | Temp        | X-C)              | Init.       |                  | Date/tim                                     | ne out ; s 3      | c 124 Tem     | p(°C) 74        | " Init. 7M       |

Laboratory Aquatec Biological Sciences, South Burkington, Vermont

|           |              | Initial D                      | ry Weight Data              | · · · · · · · · · · · · · · · · · · · |                              |
|-----------|--------------|--------------------------------|-----------------------------|---------------------------------------|------------------------------|
| Replicate | #<br>Weighed | Initial Boat<br>Weight<br>(mg) | Final Dry<br>Weight<br>(mg) | <i>Mean</i> Wt.<br>within Rep<br>(mg) | Mean Wt.<br>Reps I-L<br>(mg) |
| 1         | 10           | 34.93                          | 36.75                       | 0.182                                 |                              |
| 2         | 10           | 39.47                          | 41.06                       | 0.159                                 |                              |
| 3         | 10           | 33.28                          | 35.05                       | 0.177                                 |                              |
| 4         | 10           | 31.92                          | 33.69                       | 0.177                                 |                              |
| 5         | 10           | 35.86                          | 37.65                       | 0.179                                 |                              |
| 6         | 10           | 31.28                          | 33.01                       | 0.173                                 |                              |
| 7         | 10           | 36.13                          | 37.90                       | 0.177                                 |                              |
| 8         | 10           | 40.46                          | 42.30                       | 0.184                                 | 0.176                        |

### Hyalella azteca Initial Dry Wt.

| Project: Ha    | 10/19 Chronin |          |  |
|----------------|---------------|----------|--|
| Culture ID: 10 | 112           | Age: 7 à |  |

| Replicate | Number of<br>Organisms weighed | Initial Pan Weight<br>(mg) | Final Pan Weight (mg) |
|-----------|--------------------------------|----------------------------|-----------------------|
| 1         | 10                             | 34.928                     | 36.75                 |
| 2         | 10                             | 59.472                     | 41.06                 |
| 3         | 10                             | 65 678                     | 35.05                 |
| 4         | 10                             | 31.922                     | 33.69                 |
| 5         | 10                             | 35 85F                     | 37.65                 |
| 6         | 10                             | 3, 276                     | 33.0)                 |
| 7         | 10                             | 36. 129                    | 37.90                 |
| 8         | 10                             | B40 40 40.456              | 42.30                 |
| Initials: |                                |                            |                       |
| Date:     |                                |                            |                       |
|           |                                |                            |                       |

| Balance QC:     | Initial (20 mg = | 1996      | Final (20 | mg = 19.96 ).     | Balance Asset #:  |       |
|-----------------|------------------|-----------|-----------|-------------------|-------------------|-------|
| Date/time In/2/ | Temp(°C.         | 829C Init | 93        | Date/time out /25 | 12:00 Temp(°C) So | Init. |
| Comments:       |                  |           |           | 1                 |                   |       |

Reviewer Date 12/29
haintwit doc
Laboratory Aquatec Biological Sciences South Burkington, Vermont

#### **Organism Holding and Acclimation**

| Species: Hyalella azteca     | Date Received: 10/15/99 No. Rec. 900 |
|------------------------------|--------------------------------------|
| Supplier: ARO                | Hatch Date: 10/12/99                 |
| Apparent Conditon: Excellent | Culture ID: 10/12                    |

Acclimation / Holding Procedures: Transfer to holding culture boxes, add laboratory water. Acclimate to water to be used for testing (sediment overlying water formulation). Aerate lightly. Water change once (50%) weekly.

<u>Daily Feeding</u>: 1:1 mix of *Selenastrum /* YCT, 1-3 mL (maintain hint of green algal coloration on culture box bottom). Also, pinch of ground Tetrafin/Ceraphyll. Do not allow excess food/fungus to accumulate.

Monitoring: Examine over a light box daily, record apparent condition. Temperature daily; pH, D.O, on Mon., Weds., Fri., (miniumum). Conductivity weekly.

Test starts: record date, time, initials for sediment test and SRT test starts.

| 1999           |             |              |              |                | Cond         |               | Water           |            |             |
|----------------|-------------|--------------|--------------|----------------|--------------|---------------|-----------------|------------|-------------|
| Date           | Fed         | Temp         | pН           | D.O.           | uct.         |               | Chg.            | Age (Days) | Init.       |
| · <del>-</del> | T 2         |              | ,            |                | <del>,</del> | ,             | - 1             |            | <del></del> |
| 10/15          | YELTC       | 15.7         |              |                | <u> </u>     |               | Added           | 3          | 17C         |
| <del></del>    | T           | <del></del>  | <del>,</del> |                |              | <del>y</del>  | 171             | T          | <del></del> |
| 10/16          | XTsel       | 22.7         | <u> </u>     | <u> </u>       | <u> </u>     | <u> </u>      |                 | 4          | JG          |
|                | K           | 000          |              | 1              | T            | <del>,</del>  |                 |            | т = =       |
| 10/17          | YCTSel.     | 99'9-        | 8.(          | 8.3            | 1,000        |               | <u></u>         | 5          | JG          |
| 10/18          | Finhn       | 20.1         | · · · · · ·  | 1              | 1            | r <del></del> | Added           | 16         |             |
| 10/10          | 1,6,7-11    | 22.4         | <u> </u>     | L              | <u> </u>     |               | riaceo          | 6          | <u> </u>    |
| 10/19          | 627         | 22.9         | 8.0          | 8.5            | 800          | Γ             | 1               | 7          | 148         |
| 10/10          | <u> </u>    | laa.         | 0.0          |                | 1000         | <u> </u>      |                 |            | <u> </u>    |
| 10/20          |             |              |              | · <del>-</del> |              |               | T               | 8          | 1           |
|                |             |              | · · · · · ·  | <u> </u>       |              | <del></del>   | _ <del></del> _ | I          |             |
| - <del></del>  |             |              |              |                |              |               |                 |            | T           |
|                |             |              |              |                |              |               |                 |            |             |
|                |             |              |              |                |              |               |                 |            |             |
|                |             |              |              |                |              |               |                 |            |             |
|                |             |              |              |                | <u> </u>     |               | <u> </u>        |            |             |
|                |             |              |              | ,              | <del></del>  |               | <del></del> -   |            |             |
| <del> </del>   | <u></u>     | L            | <u> </u>     |                |              |               |                 |            | <u> </u>    |
|                |             |              |              |                |              |               |                 | T          |             |
|                | <u></u>     |              |              | l              | L            |               |                 |            | <u> </u>    |
|                | <del></del> | <del> </del> |              | <del></del>    | <del></del>  |               | <del></del>     | т          | Т           |
|                | <u> </u>    | L            | <u> </u>     |                | 1.,          | observed      |                 | <u> </u>   | <u></u>     |

<sup>\*</sup> N = normal, appear healthy. Record # dead if any observed.

Sediment test start (Date/time/Init.) 10/19/99 18100 SRT test start: (Date/time/init.)



Organism History

I.

## Aquatic Research Organisms

### DATA SHEET

| Species:          | Hyale//g azteca                                                                   |
|-------------------|-----------------------------------------------------------------------------------|
| Source:           | Lab reared Field collected                                                        |
|                   | Hatch date 10/12-199 Receipt date                                                 |
|                   | Lot number 10 1299 HA Strain ARO                                                  |
|                   | Brood Origination USFWS MO                                                        |
| II. Water Qu      | ality                                                                             |
|                   | Temperature 24 °C Salinity ppt DO 7.6                                             |
|                   | pH 7.4 Hardness Ppm                                                               |
| III. Culture C    | Conditions                                                                        |
|                   | System: FW STATK (CARUS)                                                          |
|                   | Diet: Flake Food V Phytoplankton Trout Chow V                                     |
|                   | Brine Shrimp Rotifers Other                                                       |
|                   | Prophylactic Treatments:                                                          |
|                   | Comments: 424 HRS OLD AT COLLECTION                                               |
|                   |                                                                                   |
| IV. Shipping      | -                                                                                 |
|                   | Client: ARUATCH BIOLONAOC# of Organisms: 9001                                     |
|                   | Carrier:                                                                          |
| Biologist:        | Atom Sintali                                                                      |
|                   | 10/16                                                                             |
| (5 <sup>3</sup> 3 | 10/16<br>Temp=22.7°C<br>1-800-927-1650 Fa)- JG                                    |
| 120,200           | PO Box 1271 • One Lafayette Road • Hampton, NH 03842 • (603) 926-1650 (1000) 1000 |
| PH 7720300        | Added Sed, Recon. 420 T= 22.2.c                                                   |
| 4EN FED           | VCT/Sel/TC PHES.13 FED                                                            |

| oject: Menzi | e-Cura & Associates | Pro   | ject: 99 | 033 De | ad Cree | k .   |        | BTR: 3 | 615 Tes | st Start | 10/19/9 | 9                  |
|--------------|---------------------|-------|----------|--------|---------|-------|--------|--------|---------|----------|---------|--------------------|
|              |                     |       |          |        |         | Day   | of Ana | ysis   |         |          |         |                    |
| Sample       | Parameter           | 0     | 1        | 2      | 3       | 4     | 5      | 6      | 7       | 8        | 9       | 10                 |
| 12546        | T (°C)              | 23.1  | 225      | 22.4   | 21.6    | 22.6  | 222.5  | 3      | 122.8   | 22.4     | 21.9    | 229                |
|              | рН                  | 7.8   | Ce       |        | 7.7     |       | _      | 7.6    | _       | 7.7      |         | 7.                 |
|              | DO (mg/L)           | 7.2   | 6470     | 7.0    | 6.2     |       |        | 6.1    |         | 5.9      |         | 5.8                |
|              | Conductivity        | 450   | X        | X      | Х       | Х     | Х      | Х      | 300     | X        | Х       | X                  |
| 12547        | T (°C)              | 23.2  | 22-2     | 22.3   |         |       |        |        |         |          |         | 20.7               |
|              | рН                  | 7.6   |          |        | 7.5     |       |        | 7.5    |         | 7.5      |         | 7.                 |
|              | DO (mg/L)           | 6.5   | 5.49     | 5,5    | 5.1     | _     |        | 5,4    |         | 5.2      |         | 5.7                |
|              | Conductivity        | 430   | X        | ×      | Х       | Х     | Х      | Х      | 310     | Х        | X       | Х                  |
| 12548        | T (°C)              | 23.4  | 22.20    | 22.4   |         |       |        |        |         |          |         | )<br>)<br>)<br>(1) |
|              | рН                  | 7.7   |          |        | 7.6     |       |        | 7.5    |         | 7.5      |         | 7.5                |
|              | DO (mg/L)           | 6.2   | 5-750    | 010    | 5.3     | _     |        | 5.7    |         | 2.2      |         | 5:6                |
|              | Conductivity        | 400   | Х        | Х      | Х       | Х     | X      | X      | 300     | X        | Х       | Х                  |
| 12549        | T (°C)              | 23.2  | 22.19    | 22.2   |         |       |        |        |         |          |         | 22 7               |
|              | рН                  | 7.8   | 7,       | _      | 7.7     |       |        | 78     |         | 8.0      |         | 8.3                |
|              | DO (mg/L)           | 6.8   | 6,300    | 6.7    | 6.2     |       |        | 6.4    |         | 6.0      |         | 5.8                |
|              | Conductivity        | 390   | X        | Х      | Х       | Х     | Х      | Х      | 290     | X        | Х       | X                  |
| <del></del>  | Init./Date (1999):  | 10/19 | 10/20    | 19/21  | 19/22   | 19/23 | 19/24  | 10/25  | 19/26   | 19/27    | 19/28   | 10/29              |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 40, and end of test.

Edwar List

Review: \_\_\_\_\_ Date: 12/22/49

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

|        | -Cura & Associates |                   |       |       | ad Cree |       |        |       |       | 7. 0.0 | 10/19/9                                          |            |
|--------|--------------------|-------------------|-------|-------|---------|-------|--------|-------|-------|--------|--------------------------------------------------|------------|
|        |                    |                   |       |       |         | Day   | of Ana | lysis |       |        |                                                  |            |
| Sample | Parameter          | 0                 | 1     | 2     | 3       | 4     | 5      | 6     | 7     | 8      | 9                                                |            |
| 12550  | T (°C)             | 22.3              | 22.80 | 122 < | 1       |       |        |       |       |        | <del>                                     </del> | در         |
|        | pН                 | 7.9               | -     | ·—    | 7.7     |       |        | 1.8   | 78    | 7.8    |                                                  | 8          |
|        | DO (mg/L)          | 7.3               | 6.600 | 7.0   | 6.5     |       |        | 6.6   | - A   | 57     | <del> </del>                                     | 5          |
|        | Conductivity       | 380               | x \   | X     | X       | ×     | ×      | ×     | 290   | X      | X                                                | 1          |
| 12551  | T (°C)             | 22.7              | 22.2  | 22.0  |         |       |        |       |       |        | †                                                | <u>ට</u> බ |
|        | pH                 | 7.9               | 70    | _     | 7.8     | _     |        | 17.8  | 79)   | 7.9    |                                                  | 8          |
|        | DO (mg/L)          | 6.4               | 1.3   | 6.7   | 6.5     |       |        | 0.1   | 5.81  | 15.8   |                                                  | 5          |
|        | Conductivity       | 380               | X     | X     | X       | Х     | X      | X     | 300   | Х      | X                                                |            |
| 12552  | T (°C)             | 22.0              | 22.8  | 22.1  |         |       |        |       |       |        |                                                  | ))<br>/    |
|        | pH                 | 7.6               |       | _     | 7.8     |       |        | 79    |       | 7.9    |                                                  | 7          |
|        | DO (mg/L)          | 8.7               | 7.7   | 7,5   | 7.4     |       | _      | 7.5   |       | 7.4    |                                                  | (          |
|        | Conductivity       | 420               | X     | X     | X       | Х     | X      | X     | 300   | X      | X                                                | 7          |
| 12549  | T (°C)             |                   |       |       |         |       |        |       |       |        |                                                  |            |
| 0      | pН                 |                   |       |       |         |       |        |       |       |        |                                                  |            |
|        | DO (mg/L)          |                   |       |       |         |       |        |       |       |        |                                                  | 1          |
|        | Conductivity       | A * (W) (B) W W W | Х     | X     | X       | X     | X      | Х     |       | X      | X                                                |            |
|        | Init./Date (1999): | 10/19             | 10/20 | 19/21 | 10/22   | 19/23 | 10/24  | 10/25 | 19/26 | 10/27  | 10/28                                            | 19/        |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 29, 49, and end of test.

Date: 12/22/99

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| ect: Menzie | -Cura & Associates | Pro    | ject: 99 | uss De | ad Cree   |      |         |            | 75 105 | Start. | 10/19/9 | 9   |
|-------------|--------------------|--------|----------|--------|-----------|------|---------|------------|--------|--------|---------|-----|
|             |                    |        |          |        |           | Day  | of Anal | ıysıs<br>— |        | _      |         |     |
| Sample      | Parameter          | 11     | 12       | 13     | 14        | 15   | 16      | 17         | 18     | 19     | 20      |     |
| 12546       | T (°C)             | 22.8   | 22.7     | 23.3   | 22.3      | 23.8 | 23.7/21 | 22/22      | 22.7/  | 219    | 22.3    | 77  |
|             | рН                 |        |          | 69     | <b>X</b>  | 7.8  |         | 7.8        | / 2    |        | 7.6     |     |
|             | DO (mg/L)          |        |          | 7.3    |           | 6,5  |         | 6.4        |        |        | 6.6     |     |
|             | Conductivity       | Х      | Х        | Х      | 310       | Х    | X       | X          | Х      | X      | 310     | ļ - |
| 12547       | T (°C)             | 222/   |          |        |           |      | ,       |            |        |        |         |     |
|             | pН                 |        |          | 74     |           | 7.6  |         | 7.6        |        |        | 7,4     |     |
|             | DO (mg/L)          |        |          | 7.0    |           | 6,2  |         | 64         |        |        | 6,4     |     |
|             | Conductivity       | X      | Х        | X      | 320/      | Х    | Х       | Х          | Х      | Х      | 310     |     |
| 12548       | T (°C)             | 22.0/8 |          |        |           |      |         |            |        |        |         |     |
|             | pH                 |        |          | 7.5    |           | 75   |         | 7.5        |        |        | 7.5     |     |
|             | DO (mg/L)          |        |          | 7,3    |           | 5,9  |         | (2)        |        |        | 6.7     |     |
|             | Conductivity       | X      | Х        | Х      | 320       | X    | Х       | X          | Х      | Х      | 320     |     |
| 12549       | T (°C)             | 22.623 |          |        |           |      |         |            |        |        |         |     |
|             | рн                 |        |          | 7.9    |           | 7.7  |         | 77         |        |        | 7,6     |     |
|             | DO (mg/L)          |        | /        | 7,2    |           | 6,4  |         | 6.8        |        |        | 6.7     |     |
|             | Conductivity       | Х      | Х        | Х      | 320       | Х    | X       | Х          | Х      | Х      | 330     | ı   |
|             | Init./Date (1999): | 10/30  | 10/3/    | 11/12  | 11/2<br>m | 11/3 | 11/4    | 11/5       | 11/6   | 1/m.   | 11/8    | 14  |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 40, and end of test

281

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| ject: Me <u>nzie</u>                  | -Cura & Associates | Pro   | ect: 98 | 033 De | d Cree        |       | of Ana |      | 615 Tes | t Start | 10/19/99 | )     |
|---------------------------------------|--------------------|-------|---------|--------|---------------|-------|--------|------|---------|---------|----------|-------|
| Sample                                | Parameter          | 11    | 12      | 13     | 14            | 15    | 16     | 17   | 18      | 19      | 20       | 2     |
| 12550                                 | T (°C)             | 22.5  | _       |        |               |       |        |      |         |         |          |       |
|                                       | pH                 |       |         | 7.8    |               | 7.7   |        | 7.7  |         |         | 7.7      |       |
|                                       | DO (mg/L)          |       | _       |        |               | 7.2   |        | 6,3  |         |         | 65       |       |
|                                       | Conductivity       | X     | X       | X      | 220           | X     | ×      | X    | X       | ×       | 330      | >     |
| 12551                                 | T (°C)             | 224   |         |        |               |       |        |      |         |         |          |       |
|                                       | pН                 |       |         | 8,0    | ,             | 7.9   | ,      | 7.8  |         |         | 7.7      |       |
|                                       | DO (mg/L)          |       |         | 6,9    | ************* | 7.0   |        | 6.3  |         |         | 6.3      |       |
|                                       | Conductivity       | X     | X       | X      | 335           | , X   | X      | X    | X       | X       | 340      | 7     |
| 12552                                 | T (°C)             | 23.1  |         |        |               |       |        |      |         |         |          |       |
|                                       | pН                 |       |         | 7.9    | İ             | 7.9   | Ì      | 78   |         |         | 7.8      |       |
|                                       | DO (mg/L)          |       |         | 7.9    |               | 7,2   |        | 74   |         |         | 72       |       |
|                                       | Conductivity       | X     | X       | x'     | 320           | X     | X      | X    | Х       | X       | 320      | · · > |
| · · · · · · · · · · · · · · · · · · · | T (°C)             |       |         |        |               |       |        |      |         |         |          |       |
|                                       | рН                 |       |         |        |               |       |        |      |         |         |          |       |
|                                       | DO (mg/L)          |       |         |        |               |       |        |      |         |         |          |       |
|                                       | Conductivity       | ×     | ×       | X      |               | X     | X      | X    | Х       | X       |          | 7     |
|                                       | Init./Date (1999): | 10/80 | 10/31   | 146    | 1/1/2         | 11/3- | 11/4   | 11/5 | 11/6    | 13/7    | 11/8_    | 4     |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 49, and end of test.

Review: Date: 14249
haenvchr.doc

L-1 pratory: Aquatec Biological Sciences, South Burlington, Vermont

28 J

|        |                    |          |       |       |       | Day    | of Anal |         | 615 Tes |        |         |    |
|--------|--------------------|----------|-------|-------|-------|--------|---------|---------|---------|--------|---------|----|
| Sample | Parameter          | 22       | 23    | 24    | 25    | 26     | 27      | 28      | 29      | 30     | 31      | Τ  |
| 12546  | T (°C)             | 22.7/129 | 22.1/ | 220   | 23.62 | 22.2.9 | 22.1    | 27.3/27 | 12.8    | V35 4  | 23.7/12 | 12 |
|        | рН                 | 7.6      |       | 7.7   | , Ju  |        | 7.6     | 7.5     | 79      | 2 y 34 | 7.9     |    |
|        | DO (mg/L)          | 5.9      |       | 7.0   |       |        | 6,8     | 63      | 7.80    |        | 7.8     |    |
|        | Conductivity       | Х        | Х     | Х     | Х     | Х      | X       | 325     | Х       | X      | 290     |    |
| 12547  | T (°C)             |          |       |       |       | 27.3   |         |         |         |        |         |    |
|        | рН                 | 7.5      |       | 7.6   |       |        | 7.5     | F/. Y   | 78      |        | 7.8     | T  |
|        | DO (mg/L)          | 6.0      |       | 7.3   |       |        | 6.9     | 6.1     | 79      |        | 19      |    |
|        | Conductivity       | Х        | Х     | Х     | Х     | Х      | X       | 310     | ′x/     | Х      | X 310   |    |
| 12548  | T (°C)             |          |       |       |       |        |         |         |         |        |         | T  |
|        | рН                 | 7.5      |       | 7.6   |       |        | 7.6     | 7.5     | 79      |        | 7.9     |    |
|        | DO (mg/L)          | 5.4      |       | 7.4   |       |        | 6,8     | 5.8     | 74      |        | 7,9     |    |
|        | Conductivity       | X        | Х     | X     | X     | Х      | X       | 320     | X       | Х      | X 7/0   |    |
| 12549  | T (°C)             |          |       |       |       |        |         |         |         |        | -5      |    |
|        | рН                 | 7.7      |       | 7.7   |       |        | 7.7     | 77      | 7.40    |        | 7.9     |    |
|        | DO (mg/L)          | 6.2      |       | 7.3   |       |        | 7.0     | 14      | 7. July |        | 79      |    |
|        | Conductivity       | Х        | X     | X     | Х     | X      | X       | 310     | X       | X      | X       |    |
|        | Init./Date (1999): | 11/10    | 1//11 | 11/12 | 1413  | 11/14  | 146     | 11/16   | 11/17   | 11/18  | 11/19   | 11 |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 21, 28, 35, and end of test.

Review: J Date: 1/22/99

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont



|          | -Cura & Associates | <u> </u> | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 9033 Dea                                         |               |           | of Anal | BTR: 36<br>ysis | 710 100 | , Otall  | 10/10/0                                          |                |
|----------|--------------------|----------|-----------------------------------------|--------------------------------------------------|---------------|-----------|---------|-----------------|---------|----------|--------------------------------------------------|----------------|
| Sample   | Parameter          | 22       | 23                                      | 24                                               | 25            | 26        | 27      | 28              | 29      | 30       | 31                                               | 3              |
| 12550    | T (°C)             |          |                                         | <del>                                     </del> |               |           |         |                 |         | 235      |                                                  | _              |
|          | рН                 | 7.7      |                                         | 77                                               |               | 7.7       | - 47    | 7.7             |         | 250      | 1.9                                              | ļ <u>.</u>     |
|          | DO (mg/L)          | 1        |                                         | 7.0                                              |               | 1         | 7.7     | 1.1             |         |          | <del>                                     </del> |                |
|          | Conductivity       | 6.1<br>X | ×                                       | X                                                | ×             | 7.5<br>x  | ×       | 300             | ×       | ×        | 7.9                                              |                |
| 12551    | T (°C)             |          |                                         |                                                  |               |           |         | 700             |         |          | , , ,                                            | -              |
|          | рН                 | 77       |                                         | 7.8                                              |               | 78        |         | 7,7             |         |          | 7 6                                              | <del> </del> - |
|          | DO (mg/L)          | 5.8      |                                         |                                                  |               | 1         |         | 1 / 1           |         |          | 7.9                                              |                |
|          | Conductivity       | X        | x                                       | 7,0                                              | ×             | 7,0_<br>X | ×       | 7,20            | X       | х        | X                                                | ,              |
| 12552    | T (°C)             |          |                                         | <del>                                     </del> | - <del></del> |           | ,       |                 |         |          | 3-0                                              |                |
|          | рН                 | 7.9      |                                         | 7.9                                              |               | 7.9       | 2.5     | 7.8             |         |          | 7.9                                              |                |
|          | DO (mg/L)          | 7.4      |                                         | 7.8                                              |               | 7.6       |         | 7.6             |         | <u> </u> | 78                                               |                |
|          | Conductivity       | X        | X                                       | X                                                | X .           | X         | Х       | 3c1)            | Х       | X        | X<br>3,c                                         | ,              |
| <u> </u> | T (°C)             |          |                                         |                                                  |               |           |         |                 |         |          |                                                  |                |
|          | рН                 |          |                                         | (                                                |               |           |         |                 |         |          |                                                  |                |
|          | DO (mg/L)          | ·        |                                         |                                                  |               |           |         |                 |         |          |                                                  |                |
|          | Conductivity       | X        | X                                       | ×                                                | ×             | ×         | X       | . /2-4.1.       | ×       | ×        | X                                                | ,              |
|          | Init./Date (1999): | 11/19    | 1/1/1                                   | 14/12                                            | 11/13         | 11/14     | 11/15   | 11/16           | 11/17/  | 11/18    | 11/19                                            | 11/2           |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 21, 28, 35, and end of test.

Review: \_\_\_\_\_\_ Date: 12/22/99

haenvchr.doc Lahoratory: Aquatec Biological Sciences, South Burlington, Vermont

| ect: Menzi | e-Cura & Associates       | Pro   | ject: 99 | 033 De | ad Cree |        |         |        | 615 Tes | t Start | 10/19/99 |
|------------|---------------------------|-------|----------|--------|---------|--------|---------|--------|---------|---------|----------|
|            |                           |       |          |        |         | Day    | of Anal | ysis   |         |         |          |
| Sample     | Parameter                 | 33    | 34       | 35     | 36      | 37     | 38      | 39     | 40      | 41      | 42       |
| 12546      | T (°C)                    | 23335 | 3335     | 32X34  | 33/24   | 23:36  | 72.8/   | 22.24  | 22.5    | 23.6    | 22.3     |
|            | pH                        |       | 8.0      | 7.9    |         |        | 79      |        |         | 8,0     | 7-7      |
|            | DO (mg/L)                 |       | 8.2      | 82     |         |        | 8,2     |        |         | 8.5     | 7.8      |
|            | Conductivity              | Х     | Х        | 180    | X       | Х      | Х       | Х      | Х       | Х       | 270      |
| 12547      | T (°C)                    |       |          | /      |         |        |         |        |         |         | 444      |
|            | рН                        |       | 8.0      | 7,9    |         |        | 79      |        |         | 7.9     | 67.6     |
|            | DO (mg/L)                 |       | 8,1      | 8,0    | ,       |        | 8,2     |        |         | 8,4     | 7.5      |
|            | Conductivity<br>### / Pmm | Х     | Х        | 1901   | X       | Х      | Х       | Х      | Х       | X       | 280      |
| 12548      | ੋਂ (°C)                   |       |          | //     |         |        |         |        |         |         |          |
|            | рН                        |       | 8.0      | 7.9    |         |        | 78      |        |         | 7.9     | 7.7      |
|            | DO (mg/L)                 |       | 8,20     | 17.5   |         |        | 8,2     |        |         | 8.4     | 7.7      |
|            | Conductivity AtH/Hmm.     | Х     | Х        | 29%    | γ X     | Х      | Х       | Х      | Х       | X       | 289      |
| 12549      | T (°C)                    |       |          |        |         |        | λ,      |        |         |         |          |
|            | рН                        |       | 8.0      | 7.9    |         |        | 7.8     |        |         | 7.9     | 7.7      |
|            | DO (mg/L)                 |       | 8.2      | 9:77   |         |        | 8.3     |        |         | 8,5     | 78       |
|            | Conductivity              | Х     | Х        | 309/   | X       | Х      | X       | X      | X       | Х       | 270      |
|            | Init./Date (1999):        | 1//21 | 11/28    | 11/23  | 11/24   | 1/1/25 | 11/26   | 1,1/27 | 11)/28  | 11/28   | 11/32    |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 21, 28, 35, and end of test.

|         |            |       | /   | , ,  | _  |
|---------|------------|-------|-----|------|----|
| Review: | $\bigcirc$ | Date: | 12/ | 22/9 | 22 |

haenvchr.doc

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| ·             | -Cura & Associates                       |       |          |       |       | Day   | of Anal |                 |                               | st Start |                |
|---------------|------------------------------------------|-------|----------|-------|-------|-------|---------|-----------------|-------------------------------|----------|----------------|
| Sample        | Parameter                                | 33    | 34       | 35    | 36    | 37    | 38      | 39              | 40                            | 41       | 42             |
| 12550         | T (°C)                                   |       | <u> </u> |       |       |       |         |                 |                               |          |                |
|               | рН                                       |       | 8.0      | 79    |       |       | 7.8     |                 | <del> </del>                  | 7.8      | 7.7            |
|               | DO (mg/L)                                |       | 8,2      | 78    |       |       | 8.3     |                 |                               | 8.4      | 7.8            |
|               | Conductivity                             | X     | X        | 3,00  | X     | Х     | X       | Х               | Х                             | X        | <del> </del>   |
| 12551         | T (°C)                                   |       |          |       |       |       |         |                 |                               |          | <b> </b>       |
|               | рН                                       |       | 8.0      | 79    |       |       | 7.8     | W. 11 May 1- 1- |                               | 7.8      | 7.7            |
|               | DO (mg/L)                                |       | 8.1      | 7.9   |       |       | 8.2     |                 | The second resident agreement | 8.4      | 75             |
|               | Conductivity                             | ×     | X        | 299   | X     | ×     | X       | X               | X                             | XI       | 170            |
| 12552         | 1) (11 ///////////////////////////////// |       |          | V     |       |       |         |                 |                               |          |                |
|               | рН                                       |       | 8.0      | 79    |       |       | 7.8     |                 |                               | 7.8      | 7.7            |
|               | DO (mg/L)                                |       | 8.2      | 19    | ,     | İ     | 8.2     |                 |                               | 8.3      | 7.4            |
|               | Conductivity                             | X     | X        | 2.88  | ×     | ×     | X       | X               | Х                             | X        | 270            |
| <del></del>   | Ť (°Ć)                                   |       |          |       |       |       |         |                 |                               |          |                |
|               | pН                                       |       |          |       |       |       |         |                 |                               |          |                |
|               | DO (mg/L)                                |       |          |       |       |       |         | _               |                               |          |                |
|               | Conductivity                             | ×     | ×        |       | ×     | ×     | ×       | X               | X                             | X        | <del>   </del> |
| - <del></del> | Init./Date (1999):                       | 11/21 | 1,1122   | 11/23 | 11/24 | 11/25 | 11/26   | 11/27           | 111/28                        | 11129    | 141/30         |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 21, 28, 35, and end of test.

eview: \_\_\_\_\_ Date: 12/22/99

envenr.doc ' ratory: Aquatec Biological Sciences, South Burlington, Vermont 1 12/22/99

Client: Menzie-Cura & Assoc. Project: 99033 Dead Creek BTR: 3622

Test Start: October 20, 1999 Day 28: November 17, 1999

| Sample                           | Repl.       | # Alive       | 11/16/99<br>Init. | Repick#       | Repick<br>Init. | Total<br>Surv | #<br>Weighed          | Init Pan<br>Wt. | Total<br>Dry Wt. |                                        |
|----------------------------------|-------------|---------------|-------------------|---------------|-----------------|---------------|-----------------------|-----------------|------------------|----------------------------------------|
| 12589                            | A           | , 0           | 1G                |               |                 | 0             | -                     | -               | -                |                                        |
| Petrstern<br>hydrocarbon<br>odor | Bzden       | 3             | RB                | Ü             | Balis           | 3             |                       | -               | -                |                                        |
| - Down                           | С           | 2             | RB                | 0             | (142            | 2.            |                       | -               | -                |                                        |
| () & Marc                        | Digrag      | Ò             | TM                |               | N. S.W.         | 0             | -                     | -               | -                | ŀ                                      |
| hydrocks                         | E           | 0             | JG                | 0             | KBYn            | 0             | -                     | -               | -                | ŀ                                      |
| 704.                             | F           | ,2            | 16                |               |                 | >             | -                     | -               | -                |                                        |
| <b>5</b> 0                       | G W         |               | 78                | 0             | 01/23           | _0            | -                     | -               | -                |                                        |
|                                  | Н           | 0             | ADD               | <b>?</b> )    | RBMB            | 0             | -                     | -               | _                |                                        |
|                                  | ı           | Ö             | <b>PD</b>         |               | -               | ٥             | -0-                   | 26,71           |                  |                                        |
|                                  | J           | 7             | DUP               |               |                 | 7             | 7                     | 28.50           | 30.22            |                                        |
|                                  | K           | .5            | Res               |               |                 | 5             | 5                     | 29,67           | 32.31            |                                        |
|                                  | L           | 8             | Das               | <i>1</i> _    |                 | රි            | 8                     | 27,38           | 29.35            |                                        |
| 12590                            | Α           | 3             | RB                | Ü             | RIS             | 3             | -                     | -               | -                |                                        |
|                                  | В           | 0             | TM                | 0             | RB              | 0             | -                     | -               | _                |                                        |
|                                  | С           | 2             | JG                | D             | 11/23           | TØ2           | -                     | -               | -                |                                        |
|                                  | Day         | 0             | 15                | 0             | R               | 8             | -                     | -               | -                |                                        |
| Pinoleum                         | E           | 0             | TM                |               |                 | 0             | -                     | -               | -                |                                        |
| 16494                            | F           | 10            | Tm                |               |                 | 10            | -                     | -               | -                | جعنوبه م                               |
|                                  | G           | .3            | 13 G              | 0             | RBHR            | 3             | -                     | -               | -                |                                        |
| •                                | H           | 4             |                   |               |                 | 4             | -                     | -               | -                | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
|                                  | 1           | 1             | PUD               |               |                 | 1             |                       | 25,20           | 26.50            |                                        |
|                                  | J           | 1             | Pup               |               |                 | 1,            | 1 /                   | 23.74           | 24.61            |                                        |
|                                  | K           | 18            | TM                |               |                 | 18            | 18                    | 25,19           | 30.72            |                                        |
| - ·                              | L           | <u> </u>      | 48                |               |                 | 0             | 0                     | 27,75           |                  |                                        |
| 12591                            | Α           |               |                   |               |                 |               | -                     | -               | -                |                                        |
|                                  | В           |               |                   |               |                 |               | - /                   |                 | <b>-</b>         |                                        |
|                                  | С           |               |                   |               |                 |               |                       | -               |                  |                                        |
|                                  | D .         | <u></u>       |                   |               |                 |               | -                     | -               | -                |                                        |
| ,                                | E           |               |                   |               |                 |               | -                     | -               | -                |                                        |
|                                  | F           |               |                   |               |                 |               | -                     | -               | -                | i                                      |
|                                  | G           |               |                   |               |                 |               | -                     | ` -             | -                |                                        |
| ;                                | Н           |               |                   |               |                 |               | -                     | -               | -                |                                        |
|                                  | 1           |               |                   |               |                 |               |                       |                 |                  |                                        |
|                                  | J           |               |                   |               |                 |               |                       |                 |                  |                                        |
|                                  | K           | /             |                   |               |                 |               |                       |                 |                  | ]                                      |
|                                  | L           | · ,           | <b>T</b>          |               |                 |               |                       |                 |                  | ]                                      |
| Balance C                        | C: Initi    | al (20 mg =   | \$19.98           | ) Final (2    | 20 mg =         | )             | Balance A             |                 |                  |                                        |
| Date/time                        | In 11/23 17 | :coTemp(°C    | C) 80             | nit. JG       | Date/tim        | e out 11/29   | ას <sup>ქე</sup> Temp | (°C) SI         | Init. Th         |                                        |
| Comments                         | . Organisr  | ns in Replica | ates A - H tra    | nsterred to w |                 |               | inisms in Kep         | oncates I - L   | to dry weight    | analysis.                              |

Reviewer: \_\_\_\_\_ Date: )2/22/99.
haday28.doc

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Client: Menzie-Cura & Assoc. Project: 99033 Dead Creek BTR: 3622 Test Start: October 20, 1999 Day 28: November 17, 1999

|                         |                            |                 | <u> </u>          | lest Star                  | t: Octobe                                      | r 20, 199                                         | 9 Day                                            | 28: NOV          | ember 17,        | 199       |
|-------------------------|----------------------------|-----------------|-------------------|----------------------------|------------------------------------------------|---------------------------------------------------|--------------------------------------------------|------------------|------------------|-----------|
| Sample                  | Repl.                      | # Alive         | 11/16/99<br>Init. | Repick #                   | Repick<br>Init.                                | Total<br>Surv                                     | #<br>Weighed                                     | Init Pan<br>Wt.  | Total<br>Dry Wt. | <u> </u>  |
| 12592                   | Α                          | , 10            | RB                | -                          | _                                              | 10                                                | -                                                | -                | -                | ĺ         |
|                         | B \ 35                     |                 | 176               | 0                          | RBMA                                           | 5                                                 | -                                                | -                | -                |           |
|                         | С                          | 1               | Tm                | 0                          | RB 47                                          | i                                                 | -                                                | -                | -                |           |
|                         | D                          | 5               | TM                | 0                          | 7n 11/17                                       |                                                   | -                                                | -                | -                |           |
|                         | Eira                       |                 | RB                | 0                          | Tm ali7                                        | 2                                                 | <u> </u>                                         | -                | -                |           |
|                         | F                          | 2               | m                 | 0                          | RB4.1                                          | 2                                                 | -                                                | -                | -                | İ         |
|                         | G                          |                 | RB                | 0                          | 1m 117                                         | 2                                                 | -                                                | -                | -                |           |
|                         | H_                         | 4               | 15                |                            |                                                | 9                                                 | -                                                | - 0              | -                |           |
|                         | 1                          | ð               | Pena              | <u> </u>                   | <u>i                                      </u> | _0_                                               | 0                                                | 2619             |                  |           |
|                         | J                          | 0               | RB                |                            |                                                | 10                                                | 10                                               | 24,109           | 30.06            |           |
|                         | K                          | ]               | RB                | 0_                         | 1611/27                                        |                                                   | 7                                                | 29.48            | 31.77            |           |
|                         | L                          | 2               | 26                |                            |                                                | <u> </u>                                          | _6_                                              | 24.01            | 26.12            |           |
| 12593                   | Α                          | 9               | RB                | -                          |                                                | 9                                                 |                                                  | -                | -                |           |
|                         | В                          | 9               | RB                |                            |                                                | _9                                                | -                                                | _                |                  |           |
|                         | С                          | ŝ               | <b>S</b> 3        |                            | <u> </u>                                       | _8                                                | -                                                |                  | -                | ļ         |
|                         | D                          | /O<br>8         | JG                |                            | ·                                              | 10                                                | <u> </u>                                         |                  | -                |           |
|                         | E                          | 8               | Tm                | <u> </u>                   | "7TM                                           | _\$                                               |                                                  |                  |                  | İ         |
|                         | F                          | 9               | m                 |                            |                                                | 9                                                 | -                                                |                  | -                |           |
|                         | G                          | <u> </u>        | 75                |                            |                                                | 01                                                | <u> </u>                                         |                  | -                |           |
|                         | H                          | <u> </u>        | JG-               |                            |                                                | 9                                                 | 0;                                               |                  |                  |           |
|                         |                            | 9               | TM                | ~ s, e.?                   | 111-2.2                                        | 9                                                 | 11                                               | 23.03            | 27.51            |           |
|                         | K                          | 7               | <u> </u>          |                            |                                                | 7                                                 | 3                                                |                  | 2808             |           |
| <b>(</b> )              | L                          | <u>q</u>        | $\frac{Q}{10}$    |                            |                                                | 7-                                                | H                                                | 24.19            | 2864             | ,         |
|                         |                            |                 | 70                |                            |                                                | 7                                                 |                                                  | 2267             | 33.17            |           |
| 12609                   | Α                          | <u> </u>        | 26                |                            |                                                | <u>&amp;</u> _                                    | -                                                | <del>-</del>     | -                |           |
|                         | В                          | <u> 5</u>       | 16-               | <u> </u>                   |                                                |                                                   |                                                  | -                | ~                | ļ         |
|                         | C                          | <u>6</u>        | <u> </u>          | 1 rk                       |                                                | <del></del>                                       | ļ <del>.</del>                                   | -                |                  | İ         |
|                         | D                          | <u> 국</u>       | I'M               |                            | 1"/2)                                          |                                                   | <u> </u>                                         | <u>-</u>         | -                | Į         |
|                         | E<br>F                     | 1               | KB                | <u>U</u>                   | T"/23                                          | 7                                                 |                                                  | <del>-</del>     | -                |           |
|                         | G                          |                 | 36                |                            | 27                                             | <del></del>                                       | -                                                | •                | -                | İ         |
|                         | H                          | <u> </u>        | im                | 0_                         | <u> </u>                                       |                                                   | <del>                                     </del> | <del>-</del>     | -                |           |
|                         |                            | <u> 70</u>      | J-                |                            |                                                | <del>- (                                   </del> | <del>  \</del>                                   | 26.18            | 3117             |           |
|                         | <del>'</del>               | 6               | 43                | <u></u>                    | JE 1/12                                        |                                                   | <del>                                     </del> | 25.92            |                  |           |
|                         | <del>K</del>               | 10              | m                 | $-\underline{\varepsilon}$ | <u> </u>                                       | 9                                                 | 10                                               | 25,86            |                  |           |
|                         | <del></del>                | 3               | R3                |                            | J6-11/27                                       | -3                                                | 13                                               | 2683             |                  |           |
| Baiance C               | :C: Ind                    | al (20 mg =     |                   |                            |                                                | in (COM)                                          | Balance A                                        |                  | 3.0 7            |           |
| Date/time               | In                         | Temp(°C         | C) 1              | nit                        | Date/tim                                       | e out 1129                                        | ルが Temp                                          | (°C) (Si         | Init.            |           |
| Comments                | . Organisi                 | ns in Replica   | etes A - H tra    | nsferred to v              |                                                |                                                   |                                                  |                  | to dry weight    |           |
|                         | 1                          |                 | 2/22/99           |                            | 12593 L                                        | - was t                                           | proven dau                                       | ا مه ال<br>ا ، ا | 14199 10         | ,         |
| Reviewer<br>Naday28 doi | $\mathcal{L}_{\mathbf{a}}$ | Date            | 447               |                            | ~ 26°22 ~<br>_                                 | Hercer $\hat{I}$ .                                | rumar ja<br>Lumar ja                             | J, 154           | occurred         | <b>k.</b> |
|                         |                            | iological Scien | nces South Bu     | rlangton Vermi             | ont Exc                                        | woe Mo                                            | ~ 051E                                           | suctysis         |                  | Uz        |

Client: Menzie-Cura & Assoc. | Project: 99033 Dead Creek | BTR: 3622 | Test Start: October 20, 1999 | Day 28: November 17, 1999

| Sample    | Repl.                                            | # Alive        | 11/16/99<br>Init. | Repick#     | Repick<br>Init. | Total<br>Surv | #<br>Weighed              | Init Pan<br>Wt.                                  | Total<br>Dry Wt. |
|-----------|--------------------------------------------------|----------------|-------------------|-------------|-----------------|---------------|---------------------------|--------------------------------------------------|------------------|
| 12610     | Α                                                | 9              | TM                |             |                 | 9             | -                         | -                                                | -                |
|           | В                                                | 10             | L RB              |             |                 | 10            | -                         | -                                                | -                |
|           | С                                                | 9              | JG                |             |                 | 9             | <u> </u>                  | -                                                | -                |
|           | D                                                | 10             | RIS               | )           | )               | 10            |                           | -                                                | -                |
|           | E                                                | 20             | Tm                | 1           | )               | 20            |                           | -                                                | -                |
|           | F                                                | 10             | RB                | -           | l               | 10            |                           |                                                  | -                |
|           | G                                                | 10             | TIM               |             | (               | 10            |                           |                                                  | -                |
|           | Н                                                | 10             | 16                |             |                 | (Ó_           | -                         | -                                                | -                |
|           | 1                                                | 10             | TM                |             |                 | 10            | 10                        | 25,37                                            | 30.21            |
|           | J                                                | 9              | 10                |             |                 | 9             | 9                         | 23.79                                            | a9.45            |
|           | K                                                | 10             | J                 |             |                 | /0            | 10                        | 23.93                                            | 30.85            |
|           | L                                                | 10             | KB                |             | _               | 10            | ίð                        | 24.71                                            | 31.14            |
| 12615     | Α                                                | 9              | Tm                |             |                 | 9             | _                         | _                                                |                  |
| ,         | В                                                | 5              | Tm                | 01117       | Tm              | 5             | -                         | _                                                |                  |
|           | c                                                | a              | m                 | D           | RBILLI          | 2             | -                         |                                                  | _                |
|           | D                                                | 9              | 36                | -           |                 | <u> </u>      | _                         | <del>-</del>                                     |                  |
|           | E                                                | 7              | RB                | 0           | m 11+           | 3             | _                         |                                                  | _                |
|           | F                                                | 6              | m                 | 0           | RB4/17          | 6             | -                         | _                                                | -                |
|           | G                                                | 5              | 73                | 6           | RB 1/17         | 5             | _                         | -                                                | -                |
| i         | Н                                                | 6              | RB                | Ö           | TMILIT          | G             |                           | -                                                | -                |
| i         | 1                                                | $\overline{q}$ | <u></u>           |             |                 | 9             | 9/                        | 26,73                                            | 29.59            |
|           | J                                                | 8              | 7                 | 0           | J61/17          | 8             | 8                         | 26.74                                            | 28.53            |
|           | K                                                | 5              |                   | 0           | 15 4/27         | 5             | 3                         | 23,67                                            | 25.29            |
|           | L                                                | 6              | TM                |             | 16 v/27         | 7             | 63                        | 25.89                                            | 27.79            |
|           | ^                                                |                |                   |             |                 |               |                           |                                                  |                  |
|           | A<br>B                                           |                |                   |             |                 |               |                           | -                                                | -                |
| }         | C                                                |                |                   |             |                 |               |                           | <u> </u>                                         |                  |
|           | D                                                |                |                   |             |                 |               |                           |                                                  |                  |
| }         | E                                                |                |                   | <del></del> |                 |               |                           |                                                  |                  |
| ļ         | F                                                |                |                   | ·           | -               |               | -                         |                                                  | -                |
| ł         | G                                                |                |                   |             |                 |               |                           | <u> </u>                                         | -                |
| }         | H                                                |                |                   |             |                 |               |                           |                                                  |                  |
| ļ         | <del>''</del>                                    |                |                   |             |                 |               | <u> </u>                  | <del>                                     </del> |                  |
|           | J                                                |                |                   |             |                 | <del></del> - | <del> </del>              | <del> </del>                                     |                  |
|           | K                                                |                |                   |             | <u></u>         | <u> </u>      | <del> </del>              |                                                  | <del> </del>     |
|           | <del>                                     </del> |                |                   |             |                 |               | <del> </del>              | <del>                                     </del> | <del> </del>     |
| Balance C | C: Initi                                         | al (20 mg =    | 20.00             | ) Final (   | 20 ma = ⊃       | 200 14        | /1 <del>B</del> alance As | sset #                                           | <u> </u>         |
|           |                                                  | Temp(°C        |                   | nit.        | mg              | 700 1/m       | 16:50Temp                 | (°C) <i>\{\ilde{\gamma}\)</i>                    |                  |

Reviewer: \_\_\_\_\_ Date: \_\_\_\_12/22/99 haday28.doc

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

#### Amphipod (*Hyalella azteca*) Chronic Toxicity Test Days 35 and 42 Survival, Reproduction, and Dry Weight Data

Client: Menzie-Cura & Assoc. Project: 99033 Dead Creek BTR: 3622

Test Start: 10/20/99 Test End: 12/01/99

|           |          |             | / 35<br>(4/99)                                |                                       |                  |            | -                 | / 42<br>1/99) |                                              |                  |
|-----------|----------|-------------|-----------------------------------------------|---------------------------------------|------------------|------------|-------------------|---------------|----------------------------------------------|------------------|
| Sample    | Rep      | #<br>Adults | #<br>Neona<br>tes                             | #<br>Adults                           | #<br>Femal<br>es | #<br>Males | #<br>Neona<br>tes | Weighed       | Init/Pan<br>WL                               | Total Dry<br>Wt. |
| 12589     | Α        |             |                                               |                                       |                  |            | 7                 | 24,597,       |                                              |                  |
|           | В        | ا<br>ا      | 0                                             | 2                                     | 2                | 0          | 0                 | 34550         | 2                                            | 25.012           |
|           | С        | a           | Ō                                             | .2                                    | 2                | 0          | 0                 | 72,303        | ٦,                                           | 27.769           |
|           | D        |             |                                               |                                       |                  |            |                   | <del>à`</del> |                                              |                  |
|           | E        |             |                                               |                                       |                  |            |                   |               |                                              |                  |
|           | F        | <u>a</u>    | 0                                             | 2                                     | 2                | 9          | 0_                | 37 782        | <u> </u>                                     | 28.799 H         |
| ;<br>;    | G        |             |                                               |                                       |                  |            |                   |               |                                              | 22.753           |
|           | Н        |             |                                               |                                       |                  |            | ·                 |               |                                              |                  |
| 12590     | Α        | 3           | 0                                             | 3                                     | 1                | 2          | 0                 | 24917         | 3                                            | 25.891           |
|           | В        |             | 1                                             |                                       |                  |            |                   |               |                                              |                  |
|           | С        | <b>ス</b>    | 0                                             | ス                                     | 0                | 2          | 0                 | 17.51         | <u>a</u>                                     | 28.145           |
| i         | D        |             | 1                                             |                                       |                  |            |                   |               |                                              |                  |
|           | E        |             |                                               |                                       |                  |            |                   |               |                                              |                  |
|           | F        | 9           | O                                             | 9                                     | 5                | 4          | 3                 | 38.795        | 9_                                           | 31.721           |
|           | G        | 3           | 0                                             | 3                                     |                  | _ತ್ತ       | 0,                | 23.97         | 3                                            | 25.017           |
|           | H        | 4           | 0                                             | 4                                     |                  | 3          | 0                 | 27.219        | 4                                            | 28.188           |
| 12591     | Α        |             |                                               |                                       |                  |            |                   |               |                                              |                  |
|           | В        |             |                                               |                                       |                  |            |                   |               |                                              |                  |
|           | С        |             |                                               |                                       |                  |            |                   |               |                                              |                  |
|           | D        |             |                                               |                                       |                  |            |                   |               |                                              |                  |
|           | E        |             |                                               | · · · · · · · · · · · · · · · · · · · |                  |            |                   |               |                                              |                  |
|           | F        |             |                                               |                                       |                  |            | <u> </u>          |               |                                              |                  |
|           | G        |             |                                               |                                       |                  |            |                   |               |                                              |                  |
|           | Н        |             |                                               |                                       |                  |            |                   |               |                                              |                  |
| 12592     | Α        | 10          | 0                                             | 10                                    | 4                | 3          | 0                 | 25.08         | iO                                           | 28.091           |
|           | В        | 4           | 0                                             | 4                                     | 3                | l          | 0                 | 25.94         | 4                                            | 26.839           |
|           | С        |             | 0                                             | 1                                     | 1                | 0          | 0                 | 26.66         | i                                            | 210 968          |
|           | D        | 4           | 0                                             | 4-                                    | 3                |            | 0                 | 27.25         | 4                                            | 28-124           |
|           | Ε        | _≼          | 0                                             | 2                                     | 2                | 0          | 0                 | 28.23         | <u>á</u>                                     | 28-904           |
|           | F        | ュ           | Ö                                             | 2                                     | 2                | 0          | <u>U</u>          | 29.70         | <u>ą                                    </u> | 30.127           |
|           | G        | <u>2</u>    | 0                                             |                                       |                  | 0          | 0                 | 26.35         |                                              | 26.479           |
|           | H        | 7           | ر م                                           | 7                                     | 5                | <u> </u>   | 0                 | 25 90         | <del>}</del>                                 | 27.900           |
| Day 35 In |          |             | 29 Jm                                         |                                       | F:- 1:0-         |            | / 42 Initia       |               |                                              | 7m               |
| Balance ( |          |             | <b>'g =</b><br><b>&gt;(°C)</b> <del>7</del> < | )<br>Init_                            | Final (20        |            | )<br>Na Out 13 la | Balance A     |                                              | Init The         |
| DOIC/BILE | 111 [2]] | でを回り        | 1 U) 7 U                                      | · IIII.                               | .Tm              | Date:tim   | ב טטו (ארו פ      | 2 (6/3c Temp  | 10) 14                                       | Init. 1)m        |

+ aid teated

#### Amphipod (*Hyalella azteca*) Chronic Toxicity Test Days 35 and 42 Survival, Reproduction, and Dry Weight Data

Client: Menzie-Cura & Assoc. Project: 99033 Dead Creek BTR: 3622

Test Start: 10/20/99 Test End: 12/01/99

| MAL                    | Day 35<br>(11/24/99)                           |                                                     |                                                           | Day 42<br>(12/01/99)               |                                      |                                                |                                                  |                                                                                                                                |                                                   |                                                                                                                      |
|------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                        | <del>,</del>                                   | (11/2                                               |                                                           |                                    | <del>,</del>                         | ,                                              |                                                  | 1/99)                                                                                                                          |                                                   |                                                                                                                      |
| Sample                 | Rep                                            | #<br>Adults                                         | #<br>Neona<br>tes                                         | #<br>Adults                        | #<br>Femal<br>es                     | #<br>Males                                     | #<br>Neona<br>tes                                | # 🕍<br>Weighed                                                                                                                 | ∖ Init Pan<br>Wt.                                 | Total Dry<br>Wt.                                                                                                     |
| 12593                  | Α                                              | 9                                                   | 0                                                         | 9                                  | 5                                    | 4                                              | a                                                | 28,406                                                                                                                         | 9                                                 | 31.993                                                                                                               |
|                        | В                                              | 9                                                   | 0                                                         | 8                                  | 2                                    | 6                                              | 0                                                | 18 442                                                                                                                         | 8                                                 | 30.687                                                                                                               |
|                        | С                                              | 8                                                   | 0                                                         | 7                                  | 3                                    | 4                                              | 0                                                | 23.256                                                                                                                         | 4                                                 | 25.793                                                                                                               |
|                        | D                                              | 9,                                                  | 4                                                         | 9                                  | 5                                    | 4                                              | o <del>7</del>                                   | 22,864                                                                                                                         | 9                                                 | 210.279                                                                                                              |
|                        | Ε                                              | 188                                                 | ナ                                                         | 8                                  | 5                                    | 3                                              | 11811                                            | 28.819                                                                                                                         | 8                                                 | 31.840                                                                                                               |
|                        | F                                              | '9                                                  | 9                                                         | 9                                  | 5                                    | 4                                              | 10                                               | 25.773                                                                                                                         | 9                                                 | 28.790                                                                                                               |
|                        | G                                              | 10                                                  | 0                                                         | 10                                 | 6                                    | 4                                              | 19                                               | 25.808                                                                                                                         | 10                                                | 29.535                                                                                                               |
|                        | Н                                              | 9                                                   | 0                                                         | 8                                  | -2                                   | 6                                              | 723                                              | 27.034                                                                                                                         | 8                                                 | 29.262                                                                                                               |
| 12609                  | ΙΛ                                             | 9                                                   |                                                           | 0                                  |                                      | 2                                              | COLLEGION-                                       | 17.291                                                                                                                         | १                                                 | 2- 1-01                                                                                                              |
| 12009                  | В                                              | 8                                                   | G<br>14                                                   | 8                                  | <u>5</u>                             | 3                                              | 28                                               | 21.011                                                                                                                         |                                                   | 30.681                                                                                                               |
|                        | C                                              | 7                                                   | 2                                                         |                                    |                                      | 3                                              | 51                                               | 37.465                                                                                                                         | -8                                                | 31.886                                                                                                               |
|                        | D                                              | 5                                                   | 10                                                        | 95                                 | 3                                    | <u>2</u>                                       | 0                                                | 25.256                                                                                                                         |                                                   | 29.073                                                                                                               |
| 1                      | E                                              | 5                                                   | 70                                                        | 4                                  | 3                                    | 3                                              | 4                                                | 24.709                                                                                                                         | 5                                                 | 27.145                                                                                                               |
| Ì                      | F                                              | 4                                                   |                                                           | ر<br>2                             | 2                                    | 3                                              | 0                                                | 25.093                                                                                                                         | <del></del>                                       | <del>                                     </del>                                                                     |
| 1                      | G                                              | 7                                                   | 15                                                        | <u>a</u><br>(9                     | 4                                    | 2                                              | a                                                | 99,014                                                                                                                         | 2                                                 | 23.770                                                                                                               |
| ual 🗸                  | H                                              |                                                     | 29                                                        |                                    | 5                                    | 1                                              | 46                                               | 24.857                                                                                                                         |                                                   | 28.860                                                                                                               |
|                        |                                                | 6                                                   | 21                                                        | (9                                 |                                      |                                                | 70                                               | 27.150                                                                                                                         | <u> </u>                                          | 28.765                                                                                                               |
| 12610                  | Α                                              | 9,                                                  | 11                                                        | 9                                  | 5                                    | 4                                              | 4                                                | 30,045                                                                                                                         | 9                                                 | 34.648                                                                                                               |
| -                      | В                                              | 89                                                  | 0                                                         | 9                                  | 3                                    | 6                                              | 3_                                               | 92.80 2                                                                                                                        | 9                                                 | 30.289                                                                                                               |
| 1                      | С                                              | 9                                                   | 19                                                        | 9                                  | 5                                    | 4                                              | 6                                                | 25.967                                                                                                                         | 9                                                 | 30.271                                                                                                               |
| }                      | D                                              | 10                                                  | 9                                                         | 9                                  | 4-                                   | 5                                              |                                                  | ~ ~ ~                                                                                                                          | 9                                                 | 29.076                                                                                                               |
| }                      | E                                              |                                                     |                                                           |                                    |                                      |                                                | 8                                                | 24639                                                                                                                          |                                                   | 47.676                                                                                                               |
|                        |                                                | 19                                                  | 4                                                         | 16                                 | 10                                   | 6                                              | 8                                                | 25:155                                                                                                                         | 16                                                | 29.820                                                                                                               |
|                        | F                                              | 19                                                  | 4                                                         | 16                                 | 5                                    |                                                | 8                                                | 25.755                                                                                                                         | 16                                                | 29.820<br>29.600                                                                                                     |
|                        | F<br>G                                         | 10                                                  | <u>                                     </u>              | 10                                 | 5<br>4                               | 6                                              | 8<br><del>1</del> 2<br>0                         | 25.755                                                                                                                         | 16<br>R<br>10                                     | 29.820<br>29.600<br>32.831                                                                                           |
|                        | F                                              | 9                                                   | 11                                                        | 16                                 | 5                                    | 6                                              | 8                                                | 25.755                                                                                                                         | 16<br>R<br>10                                     | 29.820<br>29.600                                                                                                     |
| 12615                  | F<br>G<br>H                                    | 10<br>10                                            | 11<br>7<br>6                                              | 10                                 | 5<br>4<br>3                          | 6 3 6 7                                        | 8<br>42<br>0<br>13                               | 25.755 26.191 27.894 26.597                                                                                                    | 16<br>8<br>10<br>10                               | 29.820<br>29.600<br>32.831<br>30.374                                                                                 |
| 12615                  | F<br>G<br>H                                    | 10<br>10<br>2                                       |                                                           | 10                                 | 5<br>4<br>3<br>2                     | 6<br>3<br>6                                    | 8<br>42<br>0<br>13                               | 25.755<br>26.191<br>27.894<br>26.597<br>30.496                                                                                 | 16<br>8<br>10<br>10                               | 29.820<br>29.600<br>32.831<br>30.374<br>31.249                                                                       |
| 12615                  | F<br>G<br>H                                    | 10<br>10                                            | 11<br>7<br>6<br>0                                         | 10                                 | 5<br>4<br>3<br>2<br>2                | 6 3 6 7                                        | 8<br>42<br>0<br>13                               | 25.755<br>26.191<br>27.894<br>26.597<br>30.496<br>25.658                                                                       | 16<br>8<br>10<br>10                               | 29.820<br>29.600<br>32.831<br>30.374<br>31.249<br>26.858                                                             |
| 12615                  | F<br>G<br>H                                    | 9<br>10<br>10<br>2<br>3                             | 11<br>7<br>6<br>0<br>0                                    | 10 10 2 3 1                        | 5<br>4<br>3<br>2<br>0                | 6 3 6 7                                        | 8<br>42<br>0<br>13<br>0<br>4                     | 25.755<br>26.191<br>27.894<br>26.597<br>30.496<br>25.658<br>26.744                                                             | 16 8 10 10                                        | 29.820<br>29.600<br>32.831<br>30.374<br>31.249<br>26.858<br>27.018                                                   |
| 12615                  | F<br>G<br>H<br>A<br>B<br>C                     | 9<br>10<br>10<br>2<br>3<br>1<br>5                   | 11<br>7<br>6<br>0<br>0<br>9                               | 10<br>10<br>23<br>15               | 5<br>4<br>3<br>2<br>2<br>0<br>4      | 6<br>3<br>6<br>7<br>0<br>1                     | 8<br>42<br>0<br>13<br>0<br>4<br>0<br>2           | 25.755<br>26.191<br>27.894<br>26.597<br>30.496<br>25.658<br>26744<br>37.474                                                    | 16<br>8<br>10<br>10<br>3<br>1                     | 29.820<br>29.600<br>32.831<br>30.374<br>31.249<br>86.858<br>27.018<br>28.597                                         |
| 12615                  | F<br>G<br>H<br>A<br>B<br>C                     | 9<br>10<br>10<br>2<br>3<br>1<br>5<br>2              | 1176000090                                                | 1980<br>10<br>23<br>152            | 5<br>4<br>3<br>2<br>0<br>4<br>2      | 6<br>3<br>6<br>7<br>0<br>1<br>1                | 8<br>42<br>0<br>13<br>0<br>4<br>0<br>2           | 25.755<br>26.191<br>26.597<br>26.597<br>30.496<br>25.658<br>26.744<br>26.581                                                   | 16<br>8<br>10<br>10<br>2<br>3<br>1<br>5           | 29.820<br>29.600<br>32.831<br>30.374<br>31.249<br>26.858<br>27.018<br>28.597<br>27.028                               |
| 12615                  | F<br>G<br>H<br>A<br>B<br>C<br>D<br>E           | 9<br>10<br>2<br>3<br>-5<br>26                       | 11<br>7<br>6<br>0<br>0<br>9                               | 000 2m-1520                        | 5<br>4<br>3<br>2<br>0<br>4<br>2<br>3 | 6<br>3<br>6<br>7<br>0<br>1                     | 8<br>42<br>0<br>13<br>0<br>4<br>0<br>2           | 25.755<br>26.191<br>26.597<br>26.597<br>30.496<br>25.658<br>26.544<br>26.581<br>26.590                                         | 16<br>8<br>10<br>10<br>10<br>37<br>1-5<br>26      | 29.820<br>29.600<br>32.831<br>30.374<br>31.249<br>86.858<br>27.018<br>28.597<br>27.028<br>28.155                     |
| 12615                  | F<br>G<br>H<br>A<br>B<br>C<br>D<br>E<br>F      | 9<br>10<br>2<br>3<br>1<br>5<br>2<br>5               | 11<br>7<br>6<br>0<br>0<br>9<br>0<br>7                     | 198000<br>23-15293                 | 5<br>4<br>3<br>2<br>0<br>4<br>3<br>3 | 6<br>3<br>6<br>7<br>0<br>1<br>1                | 8<br>42<br>0<br>13<br>0<br>4<br>0<br>2<br>0      | 25.755<br>26.191<br>27.894<br>26.597<br>30.496<br>25.658<br>26.744<br>26.581<br>26.590<br>25.447                               | 16<br>8<br>10<br>10<br>10<br>37<br>1-5<br>26      | 29.820<br>29.600<br>32.831<br>30.374<br>31.249<br>26.858<br>27.018<br>28.597<br>27.028<br>28.155<br>26.276           |
| <b>12615</b> Day 35 li | F<br>G<br>H<br>A<br>B<br>C<br>D<br>E<br>F<br>G | 9<br>10<br>2<br>3<br>1<br>5<br>2<br>6<br>5<br>5     | 11<br>7<br>6<br>0<br>0<br>0<br>9<br>0<br>7<br>0<br>1<br>1 | 000 2m-1520                        | 5<br>4<br>3<br>2<br>0<br>4<br>2<br>3 | 6<br>3<br>6<br>7<br>0<br>1<br>1<br>0<br>3<br>1 | 8<br>42<br>0<br>13<br>0<br>4<br>0<br>2<br>0      | 25.755<br>26.191<br>27.894<br>26.597<br>30.496<br>25.658<br>26.744<br>26.581<br>26.590<br>25.444<br>26.590<br>25.444<br>26.590 | 16<br>8<br>10<br>10<br>3<br>1<br>5<br>2<br>6<br>3 | 29.820<br>29.600<br>32.831<br>30.374<br>31.249<br>60.858<br>27.018<br>28.597<br>27.028<br>28.155<br>26.276<br>28.850 |
| Day 35 II              | F G H B C D E F G H nitials /                  | 9<br>10<br>10<br>3<br>15<br>2<br>5<br>5<br>Date: 11 | 11<br>7<br>6<br>0<br>0<br>9<br>0<br>7<br>0<br>12          | 1980<br>100<br>231<br>52934<br>(5) | 5<br>4<br>3<br>2<br>0<br>4<br>3<br>3 | 6<br>3<br>6<br>7<br>0<br>1<br>1<br>0<br>3<br>1 | 8<br>12<br>0<br>13<br>0<br>4<br>0<br>2<br>0<br>0 | 25.755<br>26.191<br>27.894<br>26.597<br>30.496<br>25.658<br>26.744<br>26.581<br>26.590<br>25.444<br>26.590<br>25.444<br>26.590 | 16<br>8<br>10<br>10<br>3<br>1<br>5<br>2<br>6<br>3 | 29.820<br>29.600<br>32.831<br>30.374<br>31.249<br>60.858<br>27.018<br>28.597<br>27.028<br>28.155<br>26.276<br>28.850 |

Reviewer: Date: 12/22/45

1) Three 2ddizind neurois found in rinse. 0.7/1/99

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| Initial Dry Weight Data |              |                                |                             |                                |                              |  |  |
|-------------------------|--------------|--------------------------------|-----------------------------|--------------------------------|------------------------------|--|--|
| Replicate               | #<br>Weighed | Initial Boat<br>Weight<br>(mg) | Final Dry<br>Weight<br>(mg) | Mean Wt.<br>within Rep<br>(mg) | Mean Wt.<br>Reps I-L<br>(mg) |  |  |
| 1                       | 10           | 33.82                          | 34.48                       | 0.066                          |                              |  |  |
| 2                       | 10           | 37.73                          | 38.35                       | 0.062                          |                              |  |  |
| 3                       | 10           | 42.53                          | 43.23                       | 0.070                          |                              |  |  |
| 4                       | 10           | 40.06                          | 40.54                       | 0.048                          |                              |  |  |
| 5                       | 10           | 43.76                          | 44.43                       | 0.067                          |                              |  |  |
| 6                       | 10           | 40.22                          | 40.73                       | 0.051                          |                              |  |  |
| 7                       | 10           | 30.44                          | 30.89                       | 0.045                          |                              |  |  |
| 8                       | 10           | 38.71                          | 39.37                       | 0.066                          | 0.059                        |  |  |

#### Hyalella azteca Initial Dry Wt.

| Project: '  | 3rd Set C | honic     | 10/20/99 |    |
|-------------|-----------|-----------|----------|----|
| Culture ID: | Ha. amuo  | 10/13/199 | ' Age: 7 | 73 |
|             |           | 7.7       |          |    |

| Replicate | Number of<br>Organisms weighed | Initial Pan Weight<br>(mg) | Final Pan Weight<br>(mg) |
|-----------|--------------------------------|----------------------------|--------------------------|
| 1         | 10                             | 33.819                     | 34.48                    |
| 2         | 10                             | 37.732                     | 38:35,                   |
| 3         | 10                             | 42.527                     | 43,263,1G                |
| 4         | 10                             | 40.063                     | 40.54                    |
| 5         | 10                             | 43.758                     | 44.43                    |
| 6         | 10                             | 40.222                     | 40.73                    |
| 7         | 10                             | 30,439                     | 30.89                    |
| 8         | 10                             | 38.704                     | 39.37                    |
| Initials: |                                |                            |                          |
| Date:     |                                |                            |                          |
|           |                                |                            |                          |

| Balance QC:     | Initial (20 mg = | 19.96 | )     | Final (20  | mg =/9,96       | ) Balance Asset #:   |         |
|-----------------|------------------|-------|-------|------------|-----------------|----------------------|---------|
| Date/time In 17 | /4 (&:SDTemp(°C) | 82%   | Init. | <i>y</i> 8 | Date/time out / | ia/5/2:a/Temp(°C) 80 | Init.JG |
| Comments:       |                  |       |       |            |                 |                      |         |
|                 |                  |       |       |            |                 |                      |         |

Reviewer: Date: 12/22/99.

haintwt.doc
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

#### **Organism Holding and Acclimation**

| Species: Hyalella azteca     | Date Received: 10/15/99 # Rec. 1000 |
|------------------------------|-------------------------------------|
| Supplier: ARO                | Hatch Date: 10/13/99                |
| Apparent Conditon: Excellent | Culture ID: 10/13                   |

Acclimation / Holding Procedures: Transfer to holding culture boxes, add laboratory water. Acclimate to water to be used for testing (sediment overlying water formulation). Aerate lightly. Water change once (50%) weekly.

<u>Daily Feeding</u>: 1:1 mix of Selenastrum / YCT, 1-3 mL (maintain hint of green algal coloration on culture box bottom). Also, pinch of ground Tetrafin/Ceraphyll. Do not allow excess food/fungus to accumulate.

<u>Monitoring</u>: Examine over a light box daily, record apparent condition. Temperature daily; pH, D.O. on Mon., Weds., Fri., (miniumum). Conductivity weekly.

Test starts: record date, time, initials for sediment test and SRT test starts.

| 1999  |         | T        | -11      | 20       | Cond           | Water  | A (Davis)  | 1:4   |
|-------|---------|----------|----------|----------|----------------|--------|------------|-------|
| Date  | Fed     | Temp     | рН       | D.O.     | uct.           | Chg.   | Age (Days) | Init. |
| 10/15 | 45 TC   | 16.0     |          | 1        |                | Holand | 2          | JG    |
|       |         |          |          |          | •              | 1:1    |            |       |
| 10/16 | ye Tsel | 229      |          |          |                |        | 3          | JG    |
| 10/17 | xtel    | 32.Y     | 7.8      | 7.7      | 900            |        | 4          | NG    |
| 10/18 | Tembr   | 326      |          |          |                | Added  | 5          |       |
| 10/19 | y Car   | 22.7     |          | <u>f</u> |                |        | 6          | Th    |
| 10/20 |         | 23.5     | 7.7      | 6.9      | 800            |        | 7          | VG    |
| 10/21 | H<br>H  | 24.0     | 7.7      | 7.0      | 800            |        | 8          | 12m   |
|       |         |          |          | -        |                |        |            |       |
|       |         |          |          | <u>.</u> |                |        |            |       |
|       |         |          |          |          | l i            |        |            |       |
|       |         |          | <u> </u> | i        |                |        |            |       |
|       |         | near hea |          |          | ad if any obse |        |            | Ι     |

| * N = normal, appear healthy. Reco    | rd # dead if any observed.          |   |
|---------------------------------------|-------------------------------------|---|
| Sediment test start (Date/time/Init.) | SRT test start: (Date/time/init.) _ | / |



Organism History

I.

## Aquatic Research Organisms

## DATA SHEET

| Species                                                                                                                                         | Hyalella azteca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source:                                                                                                                                         | Lab reared Hatchery reared Field collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                 | Hatch date 10/13/99 Receipt date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                 | Lot number 1013 99 Hg Strain AFCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                 | Brood Origination USFWS MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| II. Water                                                                                                                                       | Quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                 | Temperature 24 °C Salinity ppt DO 7, 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| •                                                                                                                                               | pH 7.4 Hardness 180 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| III. Culture                                                                                                                                    | e Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                 | System: FW STUTIC MEMAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                 | Diet: Flake Food Phytoplankton Trout Chow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                 | Brine Shrimp Rotifers Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                 | Prophylactic Treatments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                 | Comments: L24 HRS OLD AT COLLECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • •                                                                                                                                             | ng Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                 | Client: ARUATE SH BICKWARD of Organisms: 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15.6                                                                                                                                            | Carrier: FOD E Date Shipped: 10/14/99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1015 26 Biologist:_                                                                                                                             | Atan Sintoli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 16. 10.115 Biologist:                                                                                                                           | 16/16 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A CONTRACTOR                                                                                                                                    | 1-800-927-1650  1-800-927-1650  Teny=22,9℃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| X 72350                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16. 720<br>720<br>705 720<br>705 720<br>705 720<br>705 720<br>705 720<br>705 720<br>720<br>720<br>720<br>720<br>720<br>720<br>720<br>720<br>720 | Added Sed. Nec. Hzo  Added Sed. Nec. Hzo  MED  Maniple Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Road - Hample Roa |
| ()                                                                                                                                              | 10 / set // C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Sample | Parameter                 | Day of Analysis |      |       |          |       |        |           |       |       |       |       |
|--------|---------------------------|-----------------|------|-------|----------|-------|--------|-----------|-------|-------|-------|-------|
|        |                           | 0               | 1    | 2     | 3        | 4     | 5      | 6         | 7     | 8.    | 9     | 10    |
| 12589  | T (°C)                    | 22.9            | 23,0 | 22.57 | 22.5     | 3234  | 23 1/2 | 23. 12.34 | 22.9  | 22.7  | 227   | 00.3  |
|        | рН                        | 7.8             | _    | 7.7   | ,        |       | 7.8    |           | 7.7   | •     | 7.8   |       |
|        | DO (mg/L)                 | 6.8             | 5,9  | 5.8   |          | _     | 6.7    |           | 6.1   |       | 10-1  |       |
|        | Conductivity              | 400             | X    | X     | X        | X     | X      | Х         | 320   | X     | X     | X     |
| 12590  | T (°C)                    | 22.9            | 22.1 |       |          |       |        |           | 37.8  | 227   | 231   | 23.1  |
|        | рН                        | 7.8             | _    | 7.8   |          |       | 7.8    |           | 7.7   |       | 78    |       |
|        | DO (mg/L)                 | 68              | 63   | 6.2   | _        |       | 6.5    |           | 6-1   |       | 5.9   |       |
|        | Conductivity              | 400,            | X    | X     | X        | X     | X      | Х         | 320   | X     | X     | X     |
| 12591  | T (°C)                    | 23.2            | 22.6 |       |          |       |        |           |       |       | 22.5  | 22/2  |
|        | pН                        | 7.7             |      | 7.7   | _        |       | 7.7    |           | 7.6   |       | 7.7   |       |
|        | DO (mg/L)                 | 7.6             | 7.2  | 7.4   | <b>1</b> | _     | 7.4    |           | 7.2   |       | 7.2   |       |
|        | Conductivity              | 380/            | X    | X     | X        | X     | X      | X         | 310   | X     | Х     | , X   |
| 12592  | T (°C)                    | 23.2            | 22.4 |       |          |       |        |           |       |       | 20.8  | 02.7  |
|        | рН                        | 7-8             |      | 7.8   | _        |       | 7.8    |           | 7.8   |       | 78    |       |
|        | DO (mg/L)                 | 6.8             | 6.2  | 6.3   | _        | _     | 10.60  |           | 6.9   |       | 10.2  | _     |
|        | Conductivity Ammana 4 Att | 380,            | X    | Х     | X        | X     | X      | X         | 315   | Х     | X     | Х     |
|        | Init./Date (1999):        |                 | 1924 | 10/22 | 19/23    | 10/24 | -10/25 | 19426     | 18/27 | 19/28 | 19/29 | 10/30 |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH \$ times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 49, and end of test.

Review: Date: 12/22/55

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| <del></del> | e-Cura & Associates |       | Project: 99033 Dead Creek         BTR: 3622 Test Start 10/20/9           Day of Analysis           0         1         2         3         4         5         6         7         8         9 |       |       |       |       |              |       |       |        |            |
|-------------|---------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|--------------|-------|-------|--------|------------|
| Sample      | Parameter           | 0     | 1                                                                                                                                                                                              | 2     | 3     | 4     | 5     | 6            | 7     | 8     | 9      | ļ          |
| 12593       | T (°C)              | 229   | 22.6                                                                                                                                                                                           |       |       |       |       | <del> </del> |       |       | 2.9    | 2:         |
|             | рН                  | 7.7   | _                                                                                                                                                                                              | 78    |       |       | 7.8   |              | 7.8   |       | 78     |            |
|             | DO (mg/L)           | 5.5   | 5,3                                                                                                                                                                                            | 6.4   |       | _     | 64    |              | 6.2   |       | (0.0)  |            |
|             | Conductivity        | 400,  |                                                                                                                                                                                                | Х     | Х     | Х     | X     | Х            | 330   | Х     | X      |            |
| 12609       | T (°C)              | 22.9  | 221                                                                                                                                                                                            |       |       |       |       |              |       |       | 21.8   | 22         |
|             | На                  | 7.5   |                                                                                                                                                                                                | 7-6   |       | _     | 76    |              | 7.5   |       | 7.6    | -          |
|             | DO (mg/L)           | 4.6   | 4.5                                                                                                                                                                                            | 5.1   |       | _     | 5.7   |              | 5.3   |       | 5.7    | _          |
|             | Conductivity        | 420   |                                                                                                                                                                                                | Х     | Х     | Х     | , X   | Х            | 330   | Х     | Х      |            |
| 12610       | T (°C)              | 23.0  | 22,5                                                                                                                                                                                           |       |       |       |       |              |       |       | 22.7   | دتن<br>ر   |
|             | рН                  | 7,8   | _                                                                                                                                                                                              | 7-8   |       | _     | 78    |              | 7.7   |       | 7.8    | <u> </u>   |
|             | DO (mg/L)           | 6.9   | 6.0                                                                                                                                                                                            | 6-0   | _     |       | 66    |              | 6.2   |       | 6.2    | _          |
|             | Conductivity        | 509/  | , X                                                                                                                                                                                            | Х     | Х     | X     | Х     | Х            | 322   | Х     |        |            |
| 12615       | T (°C)              | 23.1  | 22,7                                                                                                                                                                                           |       |       |       |       |              |       |       | 22.920 | <i>3</i> 2 |
| /           | рН                  | 7.4   | -                                                                                                                                                                                              | 7.7   |       |       | 7.8   |              | 7.7   |       | 7.8    | _          |
|             | DO (mg/L)           | 8-2   | 7,5                                                                                                                                                                                            | 7.5   | /     | /     | 7.4   |              | 7.4   |       | 6.8    |            |
|             | Conductivity        | 500,  | X                                                                                                                                                                                              | Х     | Х     | X     | Χ,    | Х            | 320   | Х     | Х      |            |
|             | Init./Date (1999):  | 19/20 | 10/21                                                                                                                                                                                          | 19/22 | 10/23 | 19/24 | 10/25 | 10/26        | 19/27 | 19/28 | 10/29  | 10         |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 29, 40, and end of test.

28 5

| act. Hallel | -Cura & Associates | 1 110 | , <del>561.</del> 35 |        | ad Cree |       |         |          | 010 188 | t Start   | פופע וטו |    |
|-------------|--------------------|-------|----------------------|--------|---------|-------|---------|----------|---------|-----------|----------|----|
|             |                    |       |                      |        |         | Day   | of Anal | ysis     |         |           | 6        |    |
| Sample      | Parameter          | 11    | 12                   | 13     | 14      | 15    | 16      | 17       | 18      | 19        | 20       | Π  |
| 12589       | T (°C)             | 203   | 23.4                 | 11 y 1 | 33.73   | 30%/5 | 23/3    | 3        | 21.4    | 22.3      | 22.15.7  | 23 |
|             | рН                 | 7     | 7.8                  |        | 7.8     |       | 7.9     |          |         | 7.7       | 7.7      | 17 |
|             | DO (mg/L)          |       | 7.1                  |        | 6.6     |       | 67      |          |         | 6.9       | 6.4      | 6  |
|             | Conductivity       | Х     | X                    | X      | 339/    | Х     | X       | X        | Х       | X         | 315      | 1  |
| 12590       | T (°C)             |       | 7.8                  | 22 4 7 |         |       |         |          |         |           | 22.7 23  | 22 |
|             | рН                 |       | 7.0                  |        | 7.8     |       | 78      |          |         | 4.7       | 7.7      | -  |
|             | DO (mg/L)          | ,     |                      |        | 6,9     |       | 48      |          |         | 7.0       | 6.4      | 6  |
|             | Conductivity       | ×     | ×                    | ×      | 330/    | Х     | X       | Х        | X       | X         | 320      | 1  |
| 12591       | T (°C)             |       | •                    |        | •       |       |         |          |         | ومراساتها | rd U1    | F  |
|             | рН                 |       | 7.7                  |        | 7.6     |       | h       | , P. 1 8 | مام،در  | O SULV    | 1015     |    |
|             | DO (mg/L)          |       | 7.8                  |        | 7.1     | Red.  | 77783   | 7777     | 24      | (,        |          | Γ  |
|             | Conductivity       | ×     | X                    | ×      | 310/    | X     | X       | X        | Х       | Х         | 34       |    |
| 12592       | T (°C)             |       |                      |        |         |       |         |          |         |           |          |    |
|             | рН                 |       | 7.8                  |        | 7.8     |       | 7.8     |          |         | 7.8       | 7.8      | 1  |
|             | DO (mg/L)          |       | 7.6                  |        | 67      |       | 7.1     |          |         | 7.2       | 6.8      | G  |
|             | Conductivity       | X     | X                    | X      | 320     | X     | X       | X        | Х       | Х         | 320      | ;  |
|             | Init./Date (1999): | 19/34 | 1141                 | 1/1/2  | 11/3    | 11/4, | 11/5    | 11/6     | 11/2    | 13/8      | 448      | 1  |

Comments: Measured temperature is a measurement of a representative beaker placed within the text array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 29, 40, and end of test.

Review: Date: 12/22/49

|        | e-Cura & Associates |       |       |      | ad Creel |      | of Ana   |      |      | st Start |      |     |
|--------|---------------------|-------|-------|------|----------|------|----------|------|------|----------|------|-----|
| Sample | Parameter           | 11    | 12    | 13   | 14       | 15   | 16       | 17   | 18   | 19       | 20   | Τ   |
| 12593  | T (°C)              | 39    | 7.9-  | 7    |          |      | <u> </u> |      |      |          |      | +   |
|        | рН 🗹                | 911   | 7115  |      | 78       |      | 7.9      |      |      | 79       | 7.9  | 17  |
|        | DO (mg/L)           |       | Z/    |      | 6.8      |      | 69       |      |      | 7.0      | 6.5  | 4   |
|        | Conductivity        | Х     | Х     | Х    | 330      | Х    | X        | Х    | Х    | X        | 340  | 1   |
| 12609  | T (°C)              |       |       |      |          | -    |          |      |      |          |      | †   |
|        | рН                  |       | 7.6   |      | 7.5      |      | 7.6      |      |      | 7.2      | 7.4  | -   |
|        | DO (mg/L)           |       | 6.5   |      | 5.7      |      | 6.8      |      |      | 6,5      | 5.2  | 2   |
|        | Conductivity        | Х     | Х     | Х    | 330      | Х    | X        | X    | Х    | Х        | 330  | T   |
| 12610  | T (°C)              |       |       |      |          |      |          |      |      |          |      | Γ   |
|        | pH                  |       | 7.7   | _    | 7.8      |      | 7.7      |      |      | 7,7      | 7.7  | 7   |
|        | DO (mg/L)           |       | 67    |      | 6.6      |      | 65       |      |      | 6,5      | 6.4  | 5   |
|        | Conductivity        | Х     | X     | Х    | 320/     | Х    | X        | Х    | Х    | X        | 330  |     |
| 12615  | T (°C)              |       |       |      |          |      |          |      |      |          |      |     |
|        | рН                  |       | 7.8   |      | 78       |      | 78       |      |      | 7.8      | 7.8  | 7   |
|        | DO (mg/L)           |       | 7.7   |      | 7.5      |      | 7.6      |      |      | 7.7      | 7.4  | . : |
|        | Conductivity        | Х     | Х     | Х    | 310      | X    | X,       | Х    | X    | X        | 325  | 1   |
|        | Init./Date (1999):  | 19/31 | 11/2- | 11/2 | 11/3     | 11/4 | 11/5     | 11/6 | 12/7 | 11/8     | 11/9 | 1   |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14; 28; 40; and end of test.

Review: \_\_\_\_\_\_ Date: \_/2/22/99 haenvchr.doc

| oct: Menzie | e-Cura & Associates | Pro   | ject: 99 | 033 De   | ad Cree |       | of Ana                                             | BTR: 36 | 22 168           | t Start       | 10/20/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                      |
|-------------|---------------------|-------|----------|----------|---------|-------|----------------------------------------------------|---------|------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|             |                     |       |          |          |         | Day   | OI Ana                                             | ysis    |                  | i             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                      |
| Sample      | Parameter           | 22    | 23       | 24       | 25      | 26    | 27                                                 | 28      | 29               | 30            | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                      |
| 12589       | T (°C)              |       | 33.35    | 22.53    | 2307    | 3234  | 37,3                                               | 22.20   | 33/29            | 227           | 22.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 231                                    |
|             | pH                  |       | 1.8      | 33.7     |         | 7.9   | \ \ <del>\</del> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 79      | <del>~ /p~</del> | 8.0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|             | DO (mg/L)           |       | 7.2      |          |         | 7.5   |                                                    | 75      |                  | 8,36          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|             | Conductivity        | ×     | X        | X        | ×       | X     | X                                                  | 300     | X                | X             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                                      |
| 12590       | T (°C)              |       |          |          | 32.5    |       |                                                    |         |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|             | pH                  |       | 7,8      |          |         | 7.9   |                                                    | 7.9     | , ·              | 80            | processes and the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of | ************************************** |
|             | DO (mg/L)           |       | 7.3      |          |         | 7.3   |                                                    | 7.4     | -                | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|             | Conductivity        | х     | X        | ×        | X       | X     | . X                                                | 300     | X                | \$ <u>/</u> _ | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                      |
| 12591       | T (°C)              |       |          |          |         |       |                                                    |         |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|             | рН                  |       |          | -        | -       |       | -                                                  |         |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|             | DO (mg/L)           |       |          |          |         |       |                                                    | <b></b> |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|             | Conductivity        | ×     | X        | X        | X       | X     | X                                                  | -       | Х                | X             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                      |
| 12592       | T (°C)              |       |          | <u> </u> |         |       |                                                    |         |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|             | pH                  |       | 7.9      |          |         | 7.9   |                                                    | 79      |                  | 7.9           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|             | DO (mg/L)           |       | 7.4      |          |         | 7.4   |                                                    | 7.4     |                  | 8,0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|             | Conductivity        | X     | X        | X        | X       | X     | X                                                  | 310/    | X                | X             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
|             | Init./Date (1999):  | 1//11 | 1413     | 11/13    | 12/24   | 11/15 | 11/16                                              | 11/17   | 11/18            | 11/19         | 11/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111                                    |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 21, 28, 35, and end of test.

Review: Date: /2/21/99

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

- (

|             | e-Cura & Associates |         |       |       |       | Day  | of Anal        | lysis |       |       |       | 9                                                |
|-------------|---------------------|---------|-------|-------|-------|------|----------------|-------|-------|-------|-------|--------------------------------------------------|
| Sample      | Parameter           | 22      | 23    | 24    | 25    | 26   | 27             | 28    | 29    | 30    | 31    | 3                                                |
| 12593       | T (°C)              | 22.1    | 1     |       |       |      |                |       |       |       |       | +-                                               |
|             | рН                  |         | 7.9   |       |       | 7.9  |                | 7.9   |       | 7.9   |       |                                                  |
|             | DO (mg/L)           |         | 7.5   |       |       | 7.7  |                | 7.6   |       | 79    |       | <del>                                     </del> |
|             | Conductivity        | Х       | Х     | Х     | Х     | X    | Х              | 300/  | X     | X     |       | 1                                                |
| 12609       | T (°C)              | 221/227 |       |       |       |      |                |       |       |       |       |                                                  |
|             | рН                  |         | 7.6   |       |       | 7.6  |                | 7.6   |       | 7.9   |       |                                                  |
|             | DO (mg/L)           |         | 6.6   |       |       | 6.3  |                | 6,4   |       | 8.0   |       |                                                  |
|             | Conductivity        | Х       | X     | Х     | Х     | X    | Х              | 310   | Х     | X     | Х     |                                                  |
| 12610       | T (°C)              |         |       |       |       |      |                |       |       |       |       |                                                  |
|             | рН                  |         | 7.8   |       |       | 7.7  | <del>-,:</del> | 7.7   |       | 7,9   |       |                                                  |
|             | DO (mg/L)           |         | 72    |       |       | 7.0  |                | 6,9   |       | 8.0   |       |                                                  |
|             | Conductivity        | Х       | X     | Х     | Х     | X    | Х              | 300   | Х     | Х     | Х     | 7                                                |
| 12615       | T (°C)              |         |       |       |       |      |                |       |       |       |       |                                                  |
|             | рН                  |         | 79    |       |       | 7.9  |                | 7.9   |       | 8.0   |       |                                                  |
|             | DO (mg/L)           |         | 7.4   |       |       | 7.7  |                | 7.7   | ,     | 8.0   |       |                                                  |
|             | Conductivity        | X       | X     | Х     | Х     | X    | Х              | 310   | Х     | X     | Х     |                                                  |
| <del></del> | Init./Date (1999):  | 1///1   | 11/12 | 13/13 | 13/14 | 1145 | 11/16(         | 1417  | 11/18 | 11/19 | 11/20 | 1/1/                                             |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 21, 28, 35, and end of test.

Review: Date: n/u/go

|        |                    |           |            |               |       | Day     | of Anal | ysis   |       |       |                 |   |
|--------|--------------------|-----------|------------|---------------|-------|---------|---------|--------|-------|-------|-----------------|---|
| Sample | Parameter          | 33        | 34         | 35            | 36    | 37      | 38      | 39     | 40    | 41    | 42              |   |
| 12589  | T (°C)             | 23.7      | か <u>火</u> | 3,50          | 23.8  | 33,72,7 | 22:30   | 229    | 12.70 | 23.7  | 22.9            |   |
|        | pH                 | 8.0       | A          | 80            |       | 78'     | 22.9    | A CO   | 730   | 76.   | 7.7             |   |
|        | DO (mg/L)          | 8,3       | 84         | 8.3           |       | 8.2     |         |        | 8.4   | 127   | 74              |   |
|        | Conductivity       | X         | ×          | 17/           | ×     | X       | ×       | ×      | l' x' | x'    | 270             |   |
| 12590  | T (°C)             |           |            | <del>,</del>  |       |         |         |        |       |       | 1 / 0           | - |
|        | рН                 | 8.0       |            | 7.9           |       | 7.8     |         |        | 7.9   |       | 7.7             |   |
|        | DO (mg/L)          | 8,4       |            | 8.2           |       | 8.2     |         | i<br>i | 8.3   | 7/100 | 15 7.5          | - |
|        | Conductivity       | ×         | ×          | nop           | X     | X       | ×       | ×      | Х     | Х     | 280             | - |
| 12591  | T (°C)             |           |            | <del> /</del> |       |         |         |        |       | ,     | <del>  ``</del> | - |
|        | pH ,               | 8.036     | +          |               |       |         | 41      |        |       |       |                 |   |
|        | DO (mg/L)          | 8 4<br>20 |            | 800           | d     | /       |         | -      | 815   |       |                 | 一 |
|        | Conductivity       | X         | X          | Kora          | [ x   | x `     | ×       | ×      | ×     | ×     |                 |   |
| 12592  | T (°C)             |           |            | <del> </del>  |       |         |         |        |       |       | <del>  \</del>  |   |
|        | рН                 | 8.0       |            | 7.9           |       | 7.8     |         | }      | 7.9   | }     | 7.6             |   |
|        | DO (mg/L)          | 8.24      | 6          | 7.8           | -     | 8.1     |         |        | 8.3   |       | 7.0             |   |
|        | Conductivity       | \ X       | x ,        | 99/           | ×     | X       | ×       | ×      | X     | X     | 280             |   |
|        | Init./Date (1999): | 1,1/22    | 1,1/23     | 11/24         | 11/25 | 11/26   | 11/27   | 1//28  | 14/29 | 11/30 | 12/1            | - |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 21, 28, 35, and end of lest.

Review: Date: 12/22/99

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

1

| roject: Menzie | oject: Menzie-Cura & Associates |        |             | 033 De | ad Cree |       |        |       | 622 Tes | t Start | 10/20/99 | 9 |
|----------------|---------------------------------|--------|-------------|--------|---------|-------|--------|-------|---------|---------|----------|---|
|                |                                 |        |             |        |         | Day   | of Ana | lysis |         |         |          |   |
| Sample         | Parameter                       | 33     | 34          | 35     | 36      | 37    | 38     | 39    | 40      | 41      | 42       |   |
| 12593          | T (°C)                          |        |             |        |         |       |        |       |         |         |          |   |
|                | pH                              | 810    |             | 78     |         | 78    |        |       | 7.9     |         | 7.7      |   |
|                | DO (mg/L)                       | 8,3    |             | 8.3    |         | 8.2   |        |       | 8,3     |         | 7,4      |   |
|                | Conductivity                    | X      | Х           | 250/   | - X     | X     | Х      | X     | Х       | Х       | 280      |   |
| 12609          | T (°C)                          |        |             | ,      |         |       |        |       |         |         |          |   |
|                | рН                              | 90,0   |             | 79     |         | 7.8   |        |       | 7.9     |         | 7.7      |   |
|                | DO (mg/L)                       | 8,2    |             | 8.3    |         | 8.2   |        |       | 8,3     |         | 7.2      |   |
|                | Conductivity                    | X      | X a         | 280/2  | Х       | Х     | Х      | X     | Х       | Х       | 290      |   |
| 12610          | T (°C)                          |        |             |        |         |       |        |       |         |         |          |   |
|                | pH                              | 8.0    |             | 7.9    |         | 7.7   |        |       | 7.8     |         | 7.7      |   |
|                | DO (mg/L)                       | 8,3    |             | 82     |         | 8.1   |        |       | 8,3     |         | 7.5      |   |
|                | Conductivity                    | Х      | Х           | 189V   | X       | X     | Х      | Х     | X       | X       | 280      |   |
| 12615          | T (°C)                          |        |             |        |         |       |        |       |         |         |          | } |
|                | pH                              | 8,0    |             | 79     |         | 7.8   |        |       | 7.8     |         | 7.7      |   |
|                | DO (mg/L)                       | 8.4    |             | 8,2    |         | 8.2   |        |       | 8,2     |         | 7.5      |   |
|                | Conductivity                    | X      | X           | 280%   | Х       | ×\    | Х      | Х     | Х       | Х       | 280      |   |
|                | Init./Date (1999):              | 1.1/23 | 11/23<br>Cc | 11/24  | 1425    | 11/26 | 11/27  | 11/28 | 14/28   | 11/30   | 12/m     |   |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 21, 28, 35, and end of test.

Date: 12/22/59

Client: Menzie-Cura & Assoc. Project: 99033 Dead Creek BTR: 3629 / 3633

Test Start: October 21, 1999 Day 28: November 18, 1999

|           |             |                           | 1                 | Test Star | t: Octobe       | er 21, 199             | 9 Day        | 28: Nov         | ember 18,        | 1999     |
|-----------|-------------|---------------------------|-------------------|-----------|-----------------|------------------------|--------------|-----------------|------------------|----------|
| Sample    | Repl.       | # Alive                   | 11/16/99<br>Init. | Repick #  | Repick<br>Init. | Total<br>Surv          | #<br>Weighed | Init Pan<br>Wt. | Total<br>Dry Wt. |          |
| 12611     | Α           | (0                        | Tm                | 1(2)      | Tiks            | 7                      |              | -               | -                | Reein    |
|           | В           | R                         | LS                | D         | J'/18           | В                      | -            |                 | -                | Con      |
| -         | Cita        | Ž                         | RB                | O         | T "23           | 2                      | -            | -               | -                |          |
|           | D           | 8                         | Per               |           | _               | 8                      | -            |                 |                  |          |
|           | E           | 9                         | 0                 |           | _               | 9                      | -            | -               | -                |          |
|           | F           | 0                         | J                 |           |                 | 0                      | -            | -               |                  |          |
|           | G           | 4                         | J                 | 0         | J               | 4                      |              | -               |                  |          |
|           | Н           | 10 100                    | T                 | 0         | 0 1/19          | ×10                    | <u>-</u>     | -               | <u>-</u>         |          |
|           | 1           | 6                         | RB                | 0         | 364/27          | 6                      | 4            | 27.67           | 25.83            |          |
|           | <u>J</u>    | 749                       |                   |           |                 | 9                      | 9            | ₹1 EE           | 25.52            |          |
|           | K           | 8                         | Tho               |           |                 | 8                      | 8            | 22.23           | 25,87            | i        |
|           | L           | 9                         | POD               |           |                 | 9                      | 9            | 22.99           | 28.91            |          |
| 12612     | Α           | 4                         | RB                |           |                 | 9                      | -            | -               | -                | 1        |
|           | В           | 4                         | T                 |           |                 | 9                      | -            | -               | -                |          |
|           | С           | 10                        |                   |           |                 | 10                     | -            | -               | -                |          |
|           | D           | 7                         | RB                |           |                 | 7                      | -            | •               | -                |          |
|           | Ε           | 10                        | 75                |           | ~               | 70                     | -            | -               | -                |          |
|           | F           | 8                         | RB                |           |                 | 8                      | -            | -               | -                |          |
|           | G           | ID                        | ĹS                |           |                 | 10                     | •            | -               | -                |          |
|           | Н           | _10                       | KÈ                |           |                 | 10                     | -            | -               | -                |          |
|           | 1           | 9                         | $\sigma$          |           |                 | 9                      | 9            | 2591            | 31.50            |          |
|           | J           | 10                        | <u>IS</u>         |           |                 | 13                     | 10           | 24.29           | 29,39            |          |
|           | K           | ) 2                       | RB.               |           |                 |                        | 10           | 24.46           | 31.13            |          |
|           | <u> </u>    | 10                        | RB                |           |                 | 10                     | 10           | 22 78           | 28.57            |          |
| 12613     | Α           | 10                        | RB                |           |                 | .5                     | -            | -               | -                |          |
|           | B           | jo                        | LS                |           |                 | 00                     | -            | _               | -                |          |
|           | C           | 96                        | J                 | 0         | T '             | D 49                   | -            | -               | -                |          |
|           | D           | 9                         | iS                |           |                 | , 9                    |              | -               | -                |          |
|           | D<br>E<br>F | 9                         |                   |           |                 | <u></u> 5 <sup>J</sup> | -            | _               |                  |          |
|           | <u>F</u>    | 8                         | Par               |           |                 | ?                      | -            | -               | •                |          |
|           | G           | <u>8</u>                  | Pra               |           |                 | _8                     | -            | · <u>-</u>      | <u> </u>         |          |
|           | <u>H</u>    | _8_                       | LS                | 0         | 1 1/18          | 8                      | <u> </u>     |                 | <u> </u>         |          |
|           | 1           | 9                         | <u> </u>          |           |                 | 9                      | 9            | 33.CI           | 27.24            |          |
|           | J           | <u> </u>                  | _/\$_             |           |                 | <u> </u>               | 9            | 22.76           | 30.78            |          |
|           | K           | <u> 10</u>                | _رکن_             |           |                 | 12                     | 10           | 22 46           | 24.06            |          |
|           | <u> </u>    | _8                        | PLO               |           |                 | 3                      | 8            | 25.19           | 36,08            |          |
| Balance C |             | al (20 mg =               |                   |           | 20 mg = 30      |                        | Balance A    |                 | 1-2-7            |          |
| Comments  | Organis     | €Temp(°C<br>ms in Replica | ites A - H trai   | nt. TM    | ater only exp   | osure Oma              | 8.00 Temp    | licates I - I   | Init:            | analysis |
|           |             |                           |                   |           | wor ve          |                        |              |                 | /                |          |
|           |             | .3/55                     | 10 (2) -          | . 1 1     |                 | •                      | $\sigma$     |                 | $\sigma$         |          |

Reviewer \_\_\_\_ Date 14246 (2) those found 2T repick not included in hacay28 doc Laboratory. Aquatec Biological Sciences. South Burlington. Vermont reproductive 255ESS neat (They were preserved)

000119

Client: Menzie-Cura & Assoc. Project: 99033 Dead Creek BTR: 3629 / 3633
Test Start: October 21, 1999 Day 28: November 18, 1999

| Sample     | Repl.      | # Alive                 | 11/16/99<br>Init. | Repick#       | Repick<br>Init. | Total<br>Surv | #<br>Weighed | Init Pan<br>Wt. | Total<br>Dry Wt. |            |
|------------|------------|-------------------------|-------------------|---------------|-----------------|---------------|--------------|-----------------|------------------|------------|
| 12614      | Α          | 10                      | -LS               |               |                 | _10           | -            | . <u>-</u>      | -                |            |
|            | В          | 9                       |                   | (             | _               | 9             | -            | -               | -                |            |
|            | С          | 9                       | RR                |               |                 | O             | -            | -               | -                | l          |
| l          | D          | 5                       | LS                | (             |                 | 9             | -            | -               | _                | l          |
|            | Е          | 0                       | LS                |               |                 | 10            |              | •               | -                |            |
|            | F          | 9                       | RB                | }             | 1               | 9             | -            | -               | -                |            |
|            | G          | 10                      | J                 |               |                 | \<br>0        |              |                 | _                |            |
|            | Н          | 10                      | J                 |               | —               | /0            | -            | -               | -                |            |
|            | 1          | U                       | RS                | )             | -               | 10            | 10           | 21.38           | 26.76            |            |
|            | J          | io                      | 0                 | _             |                 | 70            | 10           | 22.60           | 26,00            |            |
|            | K          | 8                       | RB                | _             | 1               | 8             | Vo           | 23.07           | 27.05            |            |
|            | L          | 10                      | 15                |               |                 | 10            | 0            | 24.53           | 29.57            |            |
| 12622      | Α          | 2                       |                   | 0             |                 | 2             |              |                 |                  |            |
| 12022      | В          |                         | Tm                | 0             | Tr/23           | 2             | -            | -               |                  |            |
|            | С          | 2                       | Tm                | 00            | 127             | 9             |              |                 | <del>-</del>     |            |
|            | D          | <del>-7</del>           | - ()              | 0             |                 | 8             | <u>-</u>     | -               |                  |            |
| 1          | E          | <u>ੈ</u>                | 7m                | - 0           |                 | 2             |              | <u> </u>        | - <u>-</u>       |            |
| 1          | F          |                         | O m               | 10 /s         | 011/18 1/23     | 8             | -            |                 |                  |            |
|            |            | 87<br>9587              |                   | <del>/-</del> | 1/18 123        |               | -            |                 | -                |            |
| lacksquare | Н          | 50 JT                   | Th                | 0             | 0.1/23          | 5             | -            |                 | <u>-</u>         |            |
|            |            | 1                       | 111)              | ~             | <del>- 1</del>  | 1             | ,            | 24.40           |                  |            |
|            | j          | a                       | LS                | 0             | _               | 9             | 9            | 24.02           | 24.76<br>28.06   |            |
|            | K          | 7                       | 12                | $\mathcal{O}$ |                 | 5             | 6            | 23.44           | 27.07            |            |
|            | L          |                         |                   |               | <del>- 1</del>  |               | 6            | <del></del>     | 26.70            |            |
| <u> </u>   | - }        | 6                       |                   |               |                 | (2            | ٩            | 5.0.11          | J-6. 70          |            |
| 12638      | Α          | 4                       | کیا               | 0             | J 1/23          | 4             | -            | -               | -                |            |
| ł          | В          | 7                       |                   |               |                 | 7             | -            |                 |                  |            |
|            | С          | 10                      | 25                |               |                 |               | -            | -               | -                |            |
|            | D          | 9                       | 45                |               |                 | 9             |              | <u> </u>        | -                |            |
|            | E          | q                       |                   |               |                 | 9             | -            |                 | -                |            |
|            | F          | \$                      | 9                 | <u> </u>      |                 | \$            | -            |                 | -                |            |
|            | G          | 9                       | ()                |               |                 | 9             | -            | <u>-</u>        | -                |            |
|            | H          | ٧                       | 1                 | 19654         | J               | 6             | -            | <del>-</del>    | -                | ÷          |
|            | 1          | _10                     | (ag               |               |                 | 10            | 10           | 20.52           |                  |            |
|            | J          | 10                      | J                 |               |                 | <i>ا</i> ن    | 10           | 21.56           | 26.96            |            |
|            | K          | 8                       | 25                | 0             | 5 1/18          | 8             | 8            | 22.80           | 27,70            |            |
|            | L          | 8                       | PO                |               |                 | 8             | 8            | 23.32           | 28.59            |            |
| Balance (  |            | ial (20 mg =            |                   |               | 20 mg = ටුට     |               | Balance As   |                 | le:4             |            |
| Date/time  |            | 1 <sub>30</sub> Temp(°C | tes A - H train   | nit. TM       | Date/tim        |               | Temp(        |                 | Init.            | analysis   |
| omment     | s. Organis | ms in Replica           |                   |               | aler only exp   |               | manns in Rep | incates 1 - L l | o dry weight a   | ariarysis. |

Reviewer: \_\_\_\_\_ Date: 12/22/99. @ Died during Sieung J1/18/89 Only 7 Continued for haday28.doc
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont 255855 mens

| Client: Menzie-Cura & Assoc. | Project: 99033 Dead Creek    | BTR: 3629 / 3633          |
|------------------------------|------------------------------|---------------------------|
|                              | Test Start: October 21, 1999 | Day 28: November 18, 1999 |

| Sample    | Repl.       | # Alive     | 11/16/99<br>Init. | Repick #    | Repick<br>Init. | Total<br>Surv | #<br>Weighed | Init Pan<br>Wt. | Total<br>Dry Wt. |           |
|-----------|-------------|-------------|-------------------|-------------|-----------------|---------------|--------------|-----------------|------------------|-----------|
| 12639     | Α           | 10          | 0                 |             | . –             | 10            | -            | -               |                  | ]         |
|           | В           | 8           | ک                 | 0           | or "hs          | В             | -            | -               | -                |           |
|           | С           | 9           | LS                |             |                 | 9             |              | <u> </u>        |                  | •         |
|           | D           | 8945        | LSIS              |             |                 | 89B           | <u> </u>     | <u> </u>        | <u> </u>         | 1         |
|           | E           | 9           | J                 |             |                 | 9             |              | -               |                  |           |
|           | F           | 0           | RB                |             |                 | 10            |              | -               | -                | l         |
|           | G           | 8           | +00               |             |                 | 8             | <u> </u>     | <u> </u>        |                  | ]         |
|           | H           | 10          | tro               |             |                 | 10            | <u> </u>     |                 | -                | }         |
| •         | 1           | <u>X</u>    | 72                | 0           | 1/8             | 8             | 8            | 21.79           | 36.42            | 1         |
|           | J           | 9           | -0                |             | · —             | 9             | 9            | 23.94           | 30.98            | ]         |
|           | K           | 10          | PCO               |             |                 | 10            | 10           | 36.61           | 32.88            | 1         |
|           | L           | 10          |                   |             |                 | 10            | 10           | 24.90           | 30.59            | l         |
| 12640     | Α           | 4           | レン                | 0           | 8/11            | 8             |              | -               | -                |           |
|           | В           | 9           | J                 |             |                 | 9             |              |                 | -                | }         |
| !         | С           | <b>g</b>    | TM                | , Q         | 011/23          | 9             |              |                 | -                |           |
| !         | D           | 9           | J/RS              |             |                 | 9             | -            | -               | -                | ł         |
|           | E           | 9           | KB:               |             |                 | 9             | -            | -               |                  |           |
|           | F           | 4'          | RB                |             |                 | g             | -            |                 |                  |           |
|           | G           | ₽           |                   |             | <u> </u>        | र्छ           | -            | -               | <del>-</del>     | <br>      |
|           | H           | 10          | RB                |             |                 | 10            | -            |                 |                  | ·         |
|           | <u> </u>    | _10         | Pip               |             |                 | 10            | 10           | 24.65           | 30,61            | l         |
| ٦ . و     | J           | 10          | R.B.              | <del></del> |                 | 10            | 10           | 3467            | 29.04            |           |
| Tank      | <u>'N</u>   |             | FUE               |             |                 | <del></del>   |              | 32.24           | 26.68            |           |
|           | L           | 10          |                   |             |                 | /0            | 10           | 35.07           | 30.55            |           |
| 12641     | Α           | 9           | J                 |             |                 | 9             | -            | <u> </u>        | -                |           |
| !         | B 📞         | 10          | RS                | <u> </u>    |                 | 10            | -            | -               | -                |           |
|           | <u>C</u>    | 10          | _ <u>L&gt;</u> _  |             |                 | 10            | -            | <u> </u>        | ! <u>-</u>       |           |
|           | D<br>E<br>F | 10          | 0,                |             |                 | /0_           | <u> </u>     | <u> </u>        |                  | ļ         |
|           | <u>E</u>    | 9           | <del>-12</del>    |             |                 | _9_           | <u> </u>     |                 | -                | 1         |
|           | F .         | 7           | $\frac{L}{0.2}$   | _0          | 5940            | <del></del>   | <u> </u>     | -               |                  |           |
|           | G           | 3           | RR                |             |                 | 8             | -            | <u> </u>        |                  | )         |
|           | H           | 8           | <del>- }</del> -  |             |                 | 8             | -            |                 | -0 00            | 1         |
|           | 1           | 10          | 17:5              |             |                 | -18           | 10           | 22.53           | 38.33            | -         |
|           | K           | 9           | 1m                |             |                 | 9             | 9            | 31.80           | 24.97            |           |
|           | 1           | 3           | Tm.               |             |                 | 8             | 8            | 31.91           | 31.88            | 1         |
| Balance C | C. Init     | al (20 mg = | 30 5- 1           | Final C     | 20 mg = 💢 C     |               | Balance A    |                 | 21.90            | <u> </u>  |
| Date/time | In # 34 19  | 39Temp(°C   | ) S', Ir          | nit 777     | Date/tim        | e out         | Temp         | (°C)            | Init.            |           |
|           |             |             | tes A - ⊟ trar    |             | ater only exp   |               | nisms in Rep | olicates I - L  | to dry weight    | analysis. |

Revener Date 142495 included in reproduction 255015 ment. of

## Amphipod (*Hyalella azteca*) Chronic Toxicity Test Days 35 and 42 Survival, Reproduction, and Dry Weight Data

Client: Menzie-Cura & Assoc. Project: 99033 Dead Creek BTR: 3622 3629

Test Start: 10/21/99 Test End: 12/02/99

| /<br>     |          |             | y 35<br>:5/99)    |                    |                  |               | Day<br>(12/0      |              |                 |                  |          |
|-----------|----------|-------------|-------------------|--------------------|------------------|---------------|-------------------|--------------|-----------------|------------------|----------|
| Sample    | Rep      | #<br>Adults | #<br>Neona<br>tes | #<br>Adults        | #<br>Femal<br>es | #<br>Males    | #<br>Neona<br>tes | #<br>Weighed | Init Pan<br>Wt. | Total Dry<br>Wt. |          |
| 12611     | Α        | 4           | 0                 | 4                  | 3                | (.            | a                 | 4            | 27,332          | 29,05            |          |
|           | В        | 588         | 8                 | 8                  | <u> </u>         | à             | 43                | 8            | 25.013          | 28.43            |          |
|           | С        | 2           |                   | Ī                  | 0                | 1             | 0                 | 1            | 25.533          | 26,11            | 1        |
|           | D        | 7           | 0                 | 6                  | 3                | 3             | S                 | 6            | 26,306          | 28,31            | 1        |
|           | E        | 91          | 5                 | 9                  | 7                | 2             | 21                | 9            | 25.097          | 28,25            | records  |
|           | F        |             |                   |                    |                  | <del></del> _ |                   | <u>,</u> Q   | 25.778          | 28.60,45         | in maran |
|           | G        | 4           |                   | 4                  | 2                | 2             | 4                 | 4            | 26.682          |                  | اعتداء   |
|           | Н        | 8           | 7                 | 8                  | 4                | 4             | 23                | 8            | 24.587          | 27.42            | ļ        |
| 12612     | Α        | 8           | 6                 | 8                  | 3                | 5             | 8                 | 8            | 24.605          | 27.68            | 1        |
|           | В        | 8<br>8      | 93                | 7                  | 4                | 3             | 17                | _ 3          | 24.799          | 27.58            |          |
|           | С        | 10          | 9                 | 68                 | <b>2</b> 3       | 45            | 13                | 8            | 26.645          | 28.97            | 1        |
|           | D        | 0           | 2                 | 6                  | 2                | 4             | 2                 | 6_           | 24.786.         | 28.03.           |          |
|           | E        | 10          | 11                | 10                 | 4                | 6             | 7                 | 10           | 26.571          | 30,43            | į        |
|           | F        | 8           | 7                 | 8                  | 4                | 4             | <u>_</u>          | 8            | 26.143          | 28.98            | 1        |
| ,         | G<br>H   | 10          | 5                 | 5-5                | 4                | 5             | 6                 | 9            | 27.594          | 30,71            | }        |
|           |          | 10          | 5                 | 10                 | 4                | G             | 7                 | 18           | 26.377          | 29.82            | ł        |
| 12613     | Α        | 8           | 3                 | Ce                 | 4                | ス             | [3]               | 6            | 24.816          | 26.98            |          |
|           | В        | 10          |                   | 10                 | 4                | G             | 15                | 10           | 25.583          | 29.29            | 1        |
|           | С        | 9           | 8000              | 9                  | 8                | 1             | 16                | 9            | 26,069          | 29.16            |          |
|           | D        | 9           |                   | 9                  | 3                | 6             | 12                | 9            | 26.563          | 30,03            | <u> </u> |
|           | E<br>F   | W 5 4       | -?-               | 3                  | - [-             | 2             | 4                 | 3            | 24.406          | 26,37            | l        |
|           | G        | 8           | 4                 | 8                  | 5                | 3             | 16                |              | 26,978.         | 30.16            |          |
|           | Н        | ි<br>8      | 6                 | <del>۱۱۱رخ -</del> | 3                | 54            |                   | 8            | 26.186          | 30,79            | ł        |
|           |          | 0           |                   | 87                 | ~0 .)            |               |                   |              |                 |                  |          |
| 12614     | <u>A</u> | 7           | 3                 | 9                  | 5                | 4             | 21                | 9            | 26.740          | 29.96            | Í        |
|           | В        | 9           | <b>2</b> 5        | 9                  | 3                | 6             | 8                 | 9            | 28.546          | 31,16            | {        |
|           | C        | 7           |                   | 7                  | 3                | 4             | 9                 | 7            | 25.742          | 28.16            |          |
|           | D        | <del></del> | 4                 | <u> </u>           | 5:               | 4             | 26                | 9            | 25353           | 28,97            | ļ        |
|           | E        | 19          | 13                | 4                  | 5                | 3             | 38                | 7            | 25.749          | 27.91            | 1        |
|           | G        | 10          | 12                | 10                 | 7                | 4             | 222               | 10           | 27,982          | 27,25            |          |
|           | H        | 8           | 3                 | 7                  | a                | 5             | 6                 | 7            | 24.503          | 26.45,           | 1        |
| Day 35 In |          | <u> </u>    |                   | 7                  | >                |               | y 42 Initia       |              | 12/2/99 71      |                  | RB       |
| Balance C | QC: Ir   | itial (20 m | 9=19.9            |                    |                  | mg = 19       |                   | Balance      | Asset #:        |                  | ]        |
| Date/time | In ala   | 18:00Temp   | o(°C) 79          | / Init.            | M                | Date/tim      | e outial3         | K:00 Tem     | p(°C) 80        | Init.            | +        |

Reviewer: Date: N2/49

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

100122

## Amphipod (*Hyalella azteca*) Chronic Toxicity Test Days 35 and 42 Survival, Reproduction, and Dry Weight Data

Client: Menzie-Cura & Assoc. Project: 99033 Dead Creek BTR: 3622 7024

Test Start: 10/21/99 Test End: 12/02/99

|           |          | Day<br>(11/2 | / 35<br>5/99)     |                       | <del></del>      |            |                   | 42<br>2/99)        |                 |                  |
|-----------|----------|--------------|-------------------|-----------------------|------------------|------------|-------------------|--------------------|-----------------|------------------|
| Sample    | Rep      | #<br>Adults  | #<br>Neona<br>tes | #<br>Adults           | #<br>Femal<br>es | #<br>Males | #<br>Neona<br>tes | #<br>Weighed       | Init Pan<br>Wt. | Total Dry<br>Wt. |
| 12622     | Α        | 2            | 0                 |                       | 0                | 1          | 10                |                    | 22.130          | 22.55            |
|           | В        | 2            | 0                 | 2                     | l                | 1_         | 4                 | 2                  | 25.225          | 25,84            |
|           | C        | #            | 8_                | Œ                     | 7                | 4          | 7                 | 6                  | 24.547          | 26,47            |
|           | D        | 12           | 4                 |                       | 0                |            | 0                 | l                  | 26.115          | 26,60            |
|           | E        |              | 0                 | 1                     | 0                | 1          | 0                 | 1                  | 23.665          | 24.18            |
|           | F        | 5            | 4                 | 5                     | 2                | 3          | 8                 | 5                  | 86.575          | 28.14            |
|           | G        | 10           | 5                 | <u>(c</u>             | 2                | 4          | 6                 | 6                  | 210 10105       | 29.17            |
|           | Н        | 6            | 5                 | E                     | 3                | 3          | 21                | 6                  | 25.173          | 27,00            |
| 12638     | Α        | 4            | ~ O.              | 4                     | 7                | 3          | 3                 | 4                  | 26.413          | 28.99            |
|           | В        | 1,66         | 67                | 7                     | 4                |            | 18                | 7                  | 29.865          | 32.83            |
|           | С        | 10           | 3                 | 9                     | 5                | 3          | 20                | 8                  | 27238           | 30.15            |
|           | D        | 9            | ile               | 4                     | 6                | 3          | 31                | 9                  | 24.597          | 32.43            |
|           | E        | 8            | (0_               | 8                     | 4_               | 4          | 12                | Ş                  | 28.00%          | 30,82            |
|           | F        | 6            | 3                 | 7                     | 4_               | 3          | 13                | 7                  | 25.913          | 28.64            |
|           | G        | 389          | 2                 | 9                     | 5                | 4          | 18                | <u>q</u>           | 23.060          | 26,03            |
|           | Н        | 6            | 0_                | 5                     |                  | 4_         | 0                 | 5                  | 25.482          | 27.01            |
| 12639     | Α        | 10           | 4                 | 10                    | 3                | 7          | 14                | 10                 | 28.596          | 32.16            |
|           | В        | 8            | 3                 | 8                     | 3                | 5          | 14                | 8                  | 26.543          | 29.87            |
|           | С        | 9            | 0                 | 9                     | 3                | 6          | 6                 | 9                  | 22.405          | 26.12            |
|           | D        | る            | (0)               | 7                     | 3                | 4          | 13                | 7                  | 25.689          | 28,41            |
| i         | E        | 9 ~          | 2                 | 8                     | 5                | 3          | 2-i               | 8                  | 23.120          | 26,62            |
|           | F        | 10           | 2                 | 9                     | 2                | 7          | 5                 | 9                  | 25.003          | 28.36            |
|           | G        | 7            | 2                 | 6                     | ೩                | 4          | 12                | 6                  | 25.459          | 287.99 JE        |
|           | Н        | iC           | 4                 | j O                   | 4                | _6         | 9                 | 10                 | 22.961          | 26.57            |
| 12640     | Α        | 7 " dad      | T                 | 7                     | 2                | 5          | 7                 | 7                  | 29.192          | 33.16            |
|           | В        | 8            | 10                | 3                     | (0               |            | 25                | 8                  | 27.939          | 30.64            |
|           | C        | \(C          | 4                 | 5                     | 4                |            | 12                | 6                  | 26.678          | 29.13            |
|           | D        | 8            | 8                 | 3                     | 3                | 5          | 14                | 8                  | 26.494          | 30,50            |
|           | E        | 7 ' auen     | 10                | 7                     | 5_               | 3          | 23                | 7                  | 22.197          | 25.41            |
|           | F        | 407          | 多0                | 9                     | 3                |            | 2                 | 6                  | 21.576          | 24.78            |
|           | G        | 85           | 4                 | \\ \dagger_{\text{s}} | 5 m              | 3          | 9                 | 8                  | 24.356          | 27,25            |
|           | Н        | 3            | 3                 | 57                    | <b>1</b> 3       | 4          | 12                | 8                  | 27.203          | 30,48            |
| Day 35 1: |          |              | 1254              | 1/5                   |                  |            | y 42 Initia       | ls / Date:         | 12/2/99 7       |                  |
| Balance ( |          | itial (20 m  |                   | 1 ,                   | Final (20        | _ <u> </u> | <u> </u>          |                    | Asset #:        |                  |
| Date/time | ב לכו חו | £ ocTemp     | x°C) ₹            | 8 Init.               | m                | Date/tim   | וויס au           | 3 <i>is:o</i> ₁Ten | np(°C) &v       | Init. 3          |

Reviewer \_\_\_\_\_ Date \_\_\_\_\_12/12/65

#### Amphipod (*Hyalella azteca*) Chronic Toxicity Test Days 35 and 42 Survival, Reproduction, and Dry Weight Data

Client: Menzie-Cura & Assoc. Project: 99033 Dead Creek BTR: 3622 2629

Test Start: 10/21/99 Test End: 12/02/99

|                                                                                                                                                                                                                        |                                      |             | Day 35<br>(11/25/99)          |             | Day 35 Day 42<br>11/25/99) (12/02/99) |                 |                                  |              |                 |                                                                      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------|-------------------------------|-------------|---------------------------------------|-----------------|----------------------------------|--------------|-----------------|----------------------------------------------------------------------|--|
| Sample                                                                                                                                                                                                                 | Rep                                  | #<br>Adults | #<br>Neona<br>tes             | #<br>Adults | #<br>Femal<br>es                      | #<br>Males      | #<br>Neona<br>tes                | #<br>Weighed | Init Pan<br>Wt. | Total Dry<br>Wt.                                                     |  |
| 12641                                                                                                                                                                                                                  | A<br>B<br>C<br>D<br>E<br>F<br>G<br>H | 9997        | 0<br>\$89<br>0<br>7<br>3<br>1 | 98979587    | 3<br>6<br>4<br>4<br>5<br>3<br>7<br>4  | G 2 5 3 4 2 3 3 | 12<br>22<br>28<br>19<br>14<br>57 | 9 9 9 9 7 7  | 24.390          | 20.62<br>28.81<br>30.51<br>25.68<br>26.55<br>26.69<br>27.86<br>28.09 |  |
|                                                                                                                                                                                                                        | A<br>B<br>C<br>D<br>E<br>F<br>G      |             |                               |             |                                       |                 |                                  |              |                 |                                                                      |  |
|                                                                                                                                                                                                                        | A B C D F G H                        |             |                               |             |                                       |                 |                                  |              |                 |                                                                      |  |
|                                                                                                                                                                                                                        | A B C D E F G H                      |             |                               |             |                                       |                 |                                  |              |                 |                                                                      |  |
| Day 35 Initials / Date: 12   25   Day 42 Initials / Date: 12   29 m   Balance QC: Initial (20 mg = ) Final (20 mg = ) Balance Asset #:  Date/time In (2) 15 colored Temp(°C) 79 Init. The Date/time out Temp(°C) Init. |                                      |             |                               |             |                                       |                 |                                  |              |                 |                                                                      |  |

Reviewer: \_\_\_\_\_ Date: 11/22/97

|           |              | Initial C                      | Ory Weight Data             |                                |                              |
|-----------|--------------|--------------------------------|-----------------------------|--------------------------------|------------------------------|
| Replicate | #<br>Weighed | Initial Boat<br>Weight<br>(mg) | Final Dry<br>Weight<br>(mg) | Mean Wt.<br>within Rep<br>(mg) | Mean Wt.<br>Reps I-L<br>(mg) |
| 1         | 10           | 42.89                          | 44.31                       | 0.142                          |                              |
| 2         | 9            | 42.23                          | 43.57                       | 0.149                          |                              |
| 3         | 10           | 38.04                          | 39.71                       | 0.167                          |                              |
| 4         | 10           | 36.93                          | 38.64                       | 0.171                          |                              |
| 5         | 10           | 39.27                          | 41.06                       | 0.179                          |                              |
| 6         | 10           | <b>3</b> 7. <b>02</b>          | 38.70                       | 0.168                          |                              |
| 7         | 10           | 37.00                          | 38.83                       | 0.183                          |                              |
| 8         | 10           | 39.69                          | 41.36                       | 0.167                          | 0.166                        |

### Hyalella azteca Initial Dry Wt.

Project: 4th set Chinic Age:

| Replicate | Number of<br>Organisms weighed | Initial Pan Weight<br>(mg) | Final Pan Weight (mg) |
|-----------|--------------------------------|----------------------------|-----------------------|
| 1         | 10                             | 42.892                     | 44.31                 |
| 2         | ys 10 9                        | 42.227                     | 43.57                 |
| 3         | 10                             | 38.041                     | 39.71                 |
| 4         | 10                             | 36.926                     | 38.64                 |
| 5         | 10                             | 39.273                     | 41.06                 |
| 6         | 10                             | 37.017                     | 38.70                 |
| 7         | 10                             | 37. 003                    | 38.83                 |
| 8         | 10                             | 39.685                     | 41.36                 |
| Initials: |                                |                            |                       |
| Date:     |                                |                            |                       |
|           |                                |                            |                       |

| Balance QC: Initial (20 mg = / 9,96  |       | Final (20 mg = /9.96 | ) Balance Asset #: |      |
|--------------------------------------|-------|----------------------|--------------------|------|
| Date/time In 12/4 10:55Temp(°C) &2°C | Init. | Date/time out /2     | 512:00 Temp(°C) 80 | Init |
| Comments:                            |       | /                    |                    |      |
|                                      |       |                      |                    |      |

Reviewer: Date: 122499
haintwt.doc
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

000136

#### Organism Holding and Acclimation

| Species: Hyalella azteca     | Date Received: 10/15/99 # Rec. 1000 |
|------------------------------|-------------------------------------|
| Supplier. ARO                | Hatch Date: 10/13/99                |
| Apparent Conditon: Excellent | Culture ID: 10/13                   |

Acclimation / Holding Procedures: Transfer to holding culture boxes, add laboratory water. Acclimate to water to be used for testing (sediment overlying water formulation). Aerate lightly. Water change once (50%) weekly.

<u>Daily Feeding</u>: 1:1 mix of Selenastrum / YCT, 1-3 mL (maintain hint of green algal coloration on culture box bottom). Also, pinch of ground Tetrafin/Ceraphyll. Do not allow excess food/fungus to accumulate.

<u>Monitoring</u>: Examine over a light box daily, record apparent condition. Temperature daily; pH, D.O. on Mon., Weds., Fri., (miniumum). Conductivity weekly.

Test starts: record date, time, initials for sediment test and SRT test starts.

| 1999        |              | -        |                | 1 20        | Cond        |                                              | Water       |             | 1                                            |
|-------------|--------------|----------|----------------|-------------|-------------|----------------------------------------------|-------------|-------------|----------------------------------------------|
| Date        | Fed          | Temp     | рН             | D.O.        | uct         |                                              | † Chg.      | Age (Days)  | Init.                                        |
| 10/15       | VC3.         | 1/ 0     |                | <del></del> | !           |                                              | 14464       | 7           | 1-0/                                         |
| 10/15       | 12070        | 16.0     |                | !           | <u>:</u>    | <u>:</u>                                     | rdaed       | <u> </u>    | 136                                          |
| 10/16       | W.Tcal       | 22.9     |                |             | :           |                                              |             | 3           | ME                                           |
| 10/10       | 10.501       | (24-/    |                | 1           | <u> </u>    | <u> </u>                                     |             | 1 0         | <u> </u>                                     |
| 10/17       | Yckes        | 22.4     | 7.8            | 1.7         | 900         |                                              | 1           | 4           | NG                                           |
|             | , <u>go.</u> |          | 1              | · 7. /      | 700         | <del></del>                                  | <u> </u>    | <u> </u>    |                                              |
| 10/18       | Lembr        | 226      |                | 1           | !           |                                              | 1 dded      | 5           | +                                            |
|             |              |          |                |             |             |                                              |             |             | <del>-</del>                                 |
| 10/19       | y'C'e!       | 22.7     | · <del>-</del> | ;           | 1           |                                              |             | 6           | The                                          |
|             |              |          |                |             | <del></del> | -                                            |             | ·           |                                              |
| 10/20       |              | 23.5     | 7.7            | 16.9        | 1800        | 1                                            |             | 7           | KG                                           |
| 1001        |              | 74 N     | 7 7            | 17 4        | . C A 4     | <del> </del>                                 |             | 1.0         | 1600                                         |
| 10/21       |              | 27.0     | <u> 7.7</u>    | 7.0         | 800         |                                              | 1           | 8           | im                                           |
|             |              | i i      |                |             |             |                                              | 1           | 1           | T                                            |
| <del></del> |              |          |                | <del></del> | <u> </u>    |                                              |             | 1           | <u> </u>                                     |
| _           |              |          |                | <u> </u>    | :           |                                              |             | 1           |                                              |
|             |              | <u> </u> |                | <del></del> |             | <u>;                                    </u> |             | <u> </u>    | <del></del>                                  |
|             |              |          |                | ļ           |             |                                              |             | <u> </u>    | T                                            |
|             |              | ·        | · · · · ·      |             | -           | <del></del>                                  | <del></del> | <del></del> | <u>.                                    </u> |
|             | 9            |          |                | l           |             | 1                                            | 1           |             |                                              |
|             |              |          |                |             |             |                                              |             |             |                                              |
| _           |              |          |                | ì           | !           |                                              | į           |             | 1                                            |

| Sediment test start (Date/time/Init.)/0/1/99SRT test start: (Date/time/Init.) |  |
|-------------------------------------------------------------------------------|--|



Organism History

## Aquatic Research Organisms

## DATA SHEET

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Species:         | Hyglella QZTYCa                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Source:          | Lab reared Hatchery reared Field collected                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Hatch date 10/13/99 Receipt date                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Lot number 1013 99 Hg Strain ARC                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Brood Origination USFWS MO                                            |
| II.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water Qua        | lity                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Temperature 24 °C Salinity ppt DO 7.6                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | pH $\frac{7.4}{}$ Hardness $\frac{2}{80}$ ppm                         |
| III.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Culture Co       | nditions                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | System: FW STATIC POJEWO!                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Diet: Flake Food Phytoplankton Trout Chow                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Brine Shrimp Rotifers Other                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Prophylactic Treatments:                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Comments: L 24 HRS OLD AT COLOCTION                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                                                                       |
| IV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Shipping I       |                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Client: AUVATE VA BIOLOGICA of Organisms: 1600                        |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Carrier: F(P) { Date Shipped: 10/14/99                                |
| 10/15 36<br>10/15 Bio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ologist:         | Atan Sintoli                                                          |
| 16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36<br>16.00 C 36 | 19J              | 16/16 JG                                                              |
| 16.00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 1-800-927-1650 Teng=22,9°C                                            |
| 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 <sup>D</sup> P | DOX 12/1 - One Latavelle Noad - Trampion, 1411 03642 - (0031 920-1030 |
| Cond 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ac GED 16        | lded Sed. Nec. Hzo 10/17 JG 000128                                    |
| Osiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ru yc            | T/Sel/c BO= 77 TED   Condi=900                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                                                                       |

#### · Organism Holding and Acclimation

| Species: Hyalella azteca     | Date Received: 10/15/99 # Rec. 1100 |
|------------------------------|-------------------------------------|
| Supplier: ARO                | Hatch Date: 10/14/99                |
| Apparent Conditon: Excellent | Culture ID: 10/14                   |

Acclimation / Holding Procedures: Transfer to holding culture boxes, add laboratory water. Acclimate to water to be used for testing (sediment overlying water formulation). Aerate lightly. Water change once (50%) weekly.

<u>Daily Feeding</u>: 1:1 mix of Selenastrum / YCT, 1-3 mL (maintain hint of green algal coloration on culture box bottom). Also, pinch of ground Tetrafin/Ceraphyll. Do not allow excess food/fungus to accumulate.

<u>Monitoring</u>: Examine over a light box daily, record apparent condition. Temperature daily; pH, D.O. on Mon., Weds., Fri., (miniumum). Conductivity weekly.

Test starts: record date, time, initials for sediment test and SRT test starts.

| 1999        | į           |                                                   |                                              | Ī              | Cond                                               |               | Water         |                                                  |               |
|-------------|-------------|---------------------------------------------------|----------------------------------------------|----------------|----------------------------------------------------|---------------|---------------|--------------------------------------------------|---------------|
| Date        | Fed         | Temp                                              | рН                                           | D.O.           | uct.                                               |               | Chg.          | Age (Days)                                       | Init.         |
|             |             |                                                   |                                              |                |                                                    |               |               |                                                  |               |
| 10/15       | YED TO      | 16.0                                              |                                              |                |                                                    |               | phied         | 1                                                | JG            |
|             |             |                                                   |                                              |                |                                                    |               | j: 1          |                                                  |               |
| 10/16       | XCT         | 228                                               |                                              | :              |                                                    |               | <u> </u>      | 2                                                | 12C           |
|             |             |                                                   |                                              | <del></del> _  |                                                    |               |               | <u> </u>                                         |               |
| 10/17       | X J         | 122a.3                                            | 7.8                                          | 7.6            | 1/100                                              | <u>_</u>      | <u> </u>      | 3                                                | KIG           |
|             |             |                                                   |                                              |                |                                                    |               | <del></del>   |                                                  |               |
| 10/18       | Terrete     | <i>3</i> 2,5                                      |                                              | ·              | 1                                                  |               | Added         | 4                                                | 10            |
|             | 11 to annie | 1 - A 1                                           | _                                            |                | <del>,                                      </del> |               |               |                                                  | Hen .         |
| 10/19       | YET DI      | 23.0                                              |                                              |                |                                                    |               | 1             | 5                                                | Th            |
| 10.00       | ī           | <del>, , , , , , , , , , , , , , , , , , , </del> |                                              |                | 1 .                                                | <del> </del>  | ,             |                                                  | <del></del>   |
| 10/20       | <u> </u>    | <u>i                                     </u>     |                                              |                | 11_                                                |               | <del> </del>  | 6                                                | <u> </u>      |
| 1001        | lı .        | 12/10                                             |                                              | 60             | :. ^ ^                                             | <del></del> - |               | 17                                               | 1-72          |
| 10/21       | <u>!</u>    | 240                                               | +.5                                          | 6.9            | iiCC i                                             |               | <u> </u>      | 1 /                                              | 17m           |
| 10/22       | i           | ;                                                 |                                              | 1              | ,                                                  |               | · · · · · ·   | 8                                                | T             |
| 10/22       | <u></u>     | <u>! </u>                                         |                                              | <u> </u>       | 1                                                  |               | <u> </u>      | 10                                               | <u>-l</u>     |
|             | a :         | 1                                                 |                                              | :              |                                                    | <del></del>   | 7             | <del>                                     </del> | $\overline{}$ |
|             | <u>:</u>    | <u>:1</u>                                         |                                              | <u> </u>       | 1                                                  | !             | -             | <u> </u>                                         |               |
| <del></del> |             | <u> </u>                                          |                                              |                |                                                    |               |               | g<br>H                                           |               |
|             | <u></u>     | <u> </u>                                          | <u>'                                    </u> | <del>!</del> - | <u> </u>                                           | 1             |               | 1                                                | _!            |
|             | 1           |                                                   |                                              | 1              |                                                    | 1             | Ţ             | 1                                                | <u> </u>      |
|             |             | , ,                                               | <u> </u>                                     |                | <u> </u>                                           |               | <del>-i</del> | <u> </u>                                         | <u> </u>      |
|             |             |                                                   | _                                            | 1              | ; ;                                                | 1             |               | 1                                                | 1             |
|             | <del></del> | voear bea                                         |                                              |                | and if any ob                                      | <del></del>   | <del></del>   | ·                                                | <del></del>   |

• N = normal, appear healthy. Record # dead if any observed.

Sediment test start (Date/time/Init.)

\_\_\_SRT test start: (Date/time/init.) \_

10/23/99

Aquatec Biological Sciences South Burlington, Vermont haacclim.doc

vegion



## Aquatic Research Organisms

## DATA SHEET

| I.                 | Organism 1   | History                                                               |
|--------------------|--------------|-----------------------------------------------------------------------|
| 1                  | Species:     | Hyalella QZTYCa                                                       |
|                    | Source:      | Lab reared Hatchery reared Field collected                            |
|                    |              | Hatch date 10/14/99 Receipt date                                      |
|                    |              | Lot number 10 14 99 HA Strain ACO                                     |
|                    |              | Brood Origination USFWS MO                                            |
| II.                | Water Qua    | ality                                                                 |
|                    |              | Temperature 24 °C Salinity ppt DO 7:6                                 |
|                    |              | pH 7.4 Hardness=/80 ppm                                               |
| III.               | Culture Co   | onditions                                                             |
|                    |              | System: FW STATIC PONEWA!                                             |
| •                  |              | Diet: Flake Food Phytoplankton Trout Chow                             |
|                    |              | Brine Shrimp Rotifers Other                                           |
|                    | •            | Prophylactic Treatments:                                              |
|                    |              | Comments: L 24 HRS OLD AT COLOCTION                                   |
|                    |              |                                                                       |
| IV                 | . Shipping l |                                                                       |
|                    |              | Client: AUUATCH BIOLUACC# of Organisms: 1100 T                        |
| li5                |              | Carrier: F(P) { Date Shipped: 10/14/99                                |
| 101 36<br>1015 Bit | ologist:     | Atom Sintalli                                                         |
| cived 10/15 36     | 9,08,3       | 70/16 JG                                                              |
| imb_ dil           |              | 1-800-927-1650 FES.                                                   |
| 10-720             | 50 F         | PO Box 1271 • One Lafavette Road • Hampton, NH 03842 • (603) 926-1650 |
| Cond = 13:         | <i>(()</i>   | T= 33.3°C                                                             |
| $\circ$            | トヒリ          | YCT/Sel./TC Pho=cond=1,100 FED                                        |

|             |                    |       | ·            |       |           | Day      | of Ana |        |          | Test Sta |         |      |
|-------------|--------------------|-------|--------------|-------|-----------|----------|--------|--------|----------|----------|---------|------|
| Sample      | Parameter          | 0     | 1            | 2     | 3         | 4        | 5      | 6      | 7        | 8        | 9       | •    |
| 12611       | T (°C)             | 229   | 232 7        | 22.03 | 33019     | 1221     | 22 0   | 22 A   | 22.2     | 20.2     | 81.9    | 33   |
|             | рН                 | 18    | 79           | 733.  | -         | 79       | A^.'.  | 7.8    | 74.1     | 7.8      |         | 3    |
|             | DO (mg/L)          | 7.0   | 7.1          | _     |           | 7.4      |        | 7.2    |          | 6.2      |         |      |
|             | Conductivity       | 360/  | ∤ ·x         | ×     | ×         | x '      | ×      | ×      | 240      | X        | X       |      |
| 12612       | T (°C) '           | 22.7  | 21327        |       |           |          | 2833   | 319314 | 70.19.23 | 23.3     | 20.2    |      |
|             | pН                 | 7.9   | 8.0          |       | _         | 7.9      |        | 7.8    |          | 79       |         |      |
|             | DO (mg/L)          | 69    | 7-1          | _     |           | 6.4<br>x |        | 6.8    |          | 63       |         | -    |
|             | Conductivity       | 100   | ×            | ×     | ×         | X        | ×      | X      | 325      | X        | X       |      |
| 12613       | T (°C)             | 22.7  |              |       |           |          |        |        |          | 223      | 27.2    |      |
|             | рН                 | 7.9   | 79           | _     | _         | 7.9      |        | 7.8    |          | 7.9      |         | _    |
|             | DO (mg/L)          | 7.1   | 7.3          |       |           | 6.7      |        | 6.9    |          | 59       |         | _    |
|             | Conductivity       | 350/  | X            | Х     | Х         | X        | Х      | X      | 335      | X        | X       | ,    |
| 12614       | T'(°C) '''         | 2.77  |              |       |           |          |        |        |          | 223      | 22 12   |      |
|             | рН                 | 7.8   | 7.9          |       | <b></b> , | 7:1      |        | 7.8    |          | 老9       | <i></i> |      |
|             | DO (mg/L)          | 71    | 7.4          | -     | _         | 6,6      |        | 6.8    |          | 6.7      |         | _    |
|             | Conductivity       | 350   | X            | X     | X         | X        | X      | X      | 305      | X        | X       |      |
| <del></del> | Init./Date (1999): | 19/21 | 1,0/22<br>WV | 10/23 | 10/24     | 10/25    | 19/26  | 1,9/27 | 10/28    | 10/29    | 10/30   | 1,0/ |

Review: 1 Date: 12/22/99

H. Dzkca added. 10/21/99 JG,

|          |                    |       |       |       |       | Day       | of Anal | ysis  |       | - <b></b> |       |     |
|----------|--------------------|-------|-------|-------|-------|-----------|---------|-------|-------|-----------|-------|-----|
| Sample   | Parameter          | 0     | 1     | 2     | 3     | 4         | 5       | 6     | 7     | 8         | 9     | -   |
| 12622    | T (°C)             | 22.7  |       |       |       |           |         |       |       | 20.3      | 225   |     |
|          | pH                 | 57.8  | 7.6   | _     |       | 7.8       | Zan     | 7.7   | ,     | 78        |       |     |
|          | DO (mg/L) &        | 67    | 7.9   | )     | )     | 1765<br>X |         | 7.6   | ,     | 6.2       |       | _   |
|          | Conductivity       | 3595G | X     | Х     | Х     | X         | Х       | Х     | 320   | Х         | X     |     |
| 12638    | T (°C)             | 227   |       |       |       |           |         |       |       | 22.3      | 22.1  |     |
|          | рН                 | 73    | 7.9   |       |       | 7.9       |         | 7.9   |       | 7.7       |       |     |
|          | DO (mg/L)          | 8,03  |       |       |       | 7.1       |         | 6.9   |       | 69        |       |     |
|          | Conductivity       | 360/  | / X   | Х     | Х     | ·X        | Х       | Х     | 310   | Х         | Х     |     |
| 12639    | T (°Ć')            | 23.2  |       |       |       |           |         |       |       | 22.5      | 22.6  |     |
|          | рН                 | 7.8   | 78    |       |       | 7.9       |         | 7.9   |       | 8,2       |       | _   |
|          | DO (mg/L)          | 6.7   | 7.1   |       |       | 7.1       |         | 6.6   |       | 6.2       |       | _   |
|          | Conductivity       | 350/v | ×     | Х     | Χ     | X'        | Х       | Х     | 310   | Х         | Х     |     |
| 12640    | T (°C)             | 23.3  |       |       |       |           |         |       |       | 22.1      | 21.9  |     |
|          | рН                 | 7.7   | 8.0   |       |       | 79        |         | 7.7   |       | 7.6       |       | _   |
|          | DO (mg/L)          | 6.6   | 8.0   |       |       | 6.6       |         | 6.2   |       | 0,5       |       | _   |
|          | Conductivity       | 350/  | X     | Х     | Х     | X         | Х       | Х     | 370   | Х         | X     |     |
| <u>.</u> | Init./Date (1999): | 10/21 | 19/22 | 10/23 | 10/24 | 10/25     | 19/26   | 10/27 | 10/28 | 19/29     | 10/30 | 10/ |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group. 28

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 40, and end of test

| enter enter enter enter et enter et enter enter et enter et enter et enter et enter et enter et enter et enter | -Cura & Associates | <u> </u> |       |        | ad Cree |       | of Ana                                           |              |          | Test Sta |        |              |
|----------------------------------------------------------------------------------------------------------------|--------------------|----------|-------|--------|---------|-------|--------------------------------------------------|--------------|----------|----------|--------|--------------|
|                                                                                                                |                    |          |       |        |         |       | , or Ama                                         | ., 513       |          |          |        |              |
| Sample                                                                                                         | Parameter          | 0        | 1     | 2      | 3       | 4     | 5                                                | 6            | 7        | 8        | \ 9    | 1            |
| 12641                                                                                                          | T (°C)             | 22.7     |       |        |         |       | <del>                                     </del> |              |          | 23.0     | U). 6/ |              |
|                                                                                                                | pН                 | 7.6      | 7.8   |        | _       | 177   |                                                  | 7.7          |          | 7.8      |        |              |
|                                                                                                                | DO (mg/L)          | 63       | 74    |        | _       | 17    |                                                  | 59           | <b>.</b> | 5.8      |        | -            |
|                                                                                                                | Conductivity       | 400/     | ) 'x  | ×      | ×       | _,x,  | ×                                                | x            | 390      | X        | X      | ,            |
| <u>-</u>                                                                                                       | T (°C)             | ,,,,,    |       |        |         |       |                                                  |              |          |          |        |              |
|                                                                                                                | pH                 | •        | -     |        |         |       | -                                                |              |          |          |        | <del> </del> |
|                                                                                                                | DO (mg/L)          |          |       |        |         |       |                                                  |              |          |          |        | <del> </del> |
|                                                                                                                | Conductivity       |          | X     | X      | X       | X     | _X_                                              | X            |          | X        | X      | -;           |
|                                                                                                                | T (°C)             |          |       |        |         |       |                                                  |              |          |          |        | 1            |
|                                                                                                                | рН                 |          |       | 1      |         | 1     |                                                  |              |          |          |        |              |
|                                                                                                                | DO (mg/L)          |          |       |        | 1       |       | 1                                                | <del> </del> |          |          | -      |              |
|                                                                                                                | Conductivity       |          | X     | X      | X       | X     | X                                                | X            |          | X        | X      | ;            |
|                                                                                                                | T (°C)             |          |       |        |         |       | 1                                                | †            |          | 1        |        |              |
|                                                                                                                | рН                 |          |       |        |         |       |                                                  |              |          |          |        |              |
|                                                                                                                | DO (mg/L)          |          |       |        |         |       |                                                  |              |          |          |        |              |
|                                                                                                                | Conductivity       |          | X     | X      | X       | Х     | X                                                | X            |          | X        | Х      | 7            |
|                                                                                                                | Init./Date (1999): | 19/21    | 10/22 | 10/23- | 10/24   | 10/25 | 19/26                                            | 19/27        | 1.0/28   | 10/29    | 10/20  | 10/          |

Comments: Measured temperature is a measurement of adepresentative beaker placed within the test array for this testing group.

3. Comments: Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 40, and end of test.

Review: Date: 12/22/59 haenvchr.doc

| oject: Menzie | -Cura & Associates    | Pro      | ject: 99 | 033 De | ad Cree | <del></del> |        | BTR: 30 | 345 Tes | t Start          | 10/1/9/9 | 9         |
|---------------|-----------------------|----------|----------|--------|---------|-------------|--------|---------|---------|------------------|----------|-----------|
|               |                       |          |          |        |         | Day         | of Ana | lysis   | -       |                  |          |           |
| Sample        | Parameter             | 11       | 12       | 13     | 14      | 15          | 16     | 17      | 18      | 19               | 20       | 21        |
| 12611         | T (°C)                | 231      | 21.3     | 3337.  | 71:04   | 10,4        | 21.4   | 22.2    | 22.0    | 22. <del>4</del> | 22.0     | a1.4<br>2 |
|               | рН                    | 8,3      |          | 8,3    |         | 8,2         | 9/     |         | 8,4     |                  | 8-3      | ح _ ح     |
|               | DO (mg/L)             | 6,4      |          | 0,5    |         | 62          |        |         | 6.7     |                  | 6.0      |           |
|               | Conductivity At Amin  | Χ        | Х        | Х      | 350     | X           | ·X     | X       | Х       | Х                | 330      | Х         |
| 12612         | T (°C) '              |          | 22.5     |        |         |             |        | 22.7    |         | 21.4             | 22.6     | 22.5      |
|               | рН                    | 81       |          | 7.9    |         | 8,0         |        |         | 8.0     |                  | 7.9      |           |
|               | DO (mg/L)             | 6,8<br>x |          | 6,6    |         | ان ما       |        |         | 6,5     |                  | 6.1      |           |
|               | Conductivity<br>√1+/† | Х        | X        | X      | 3/0     | Х           | Х      | Х       | Х       | Х                | 315      | X         |
| 12613         | T (°C)                | 8.0-     | )<br>)   |        |         |             |        |         |         |                  |          |           |
|               | рН                    | 6,96     | -        | 8,0    |         | 83          |        |         | 8.3     |                  | 8.4      |           |
|               | DO (mg/L)             | ١        |          | 6.6    |         | 6.5         |        |         | 6.9     |                  | 6.5      |           |
|               | Conductivity          | Х        | Х        | Х      | 310     | Y           | Х      | Х       | Х       | Х                | 330      | Х         |
| 12614         | T (°C)                |          |          |        |         |             |        |         |         |                  |          |           |
|               | рН                    | 8,0      |          | 8.1    |         | 82          |        |         | 8.7     | 7 8-6            |          |           |
|               | DO (mg/L)             | 6,9 6    | 6.6      |        | 65      |             |        | 7.0     |         | 6.0              |          |           |
|               | Conductivity          | X        | Х        | Х      | 210     | X           | Х      | Х       | Х       | Х                | 330/     | Х         |
|               | Init./Date (1999):    | 14/2     | 14/7     | 11/3   | 11/4    | 11/5        | 11/62  | 14M     | 11/8    | 149              | 11/10    | 1/1/1     |

Comments: Measured temperature is a measurement of a representative beaker placed within the test arraydor this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 40, and end of test.

Review: Date: 12/21/99

|        | -Cura & Associates | 1119     | ,000. 0.  | 9033 De         | 00 0.00 |          | of Ana |                                                  | 815 Tes  | . 0.0 |      |     |
|--------|--------------------|----------|-----------|-----------------|---------|----------|--------|--------------------------------------------------|----------|-------|------|-----|
|        |                    |          | _         |                 |         | Day      | OT ARE | iyais                                            |          |       | 8    |     |
| Sample | Parameter          | 11       | 12        | 13              | 14      | 15       | 16     | 17                                               | 18       | 19    | 20   | 2   |
| 12622  | T (°C)             |          |           |                 |         |          |        | <del>                                     </del> |          |       |      |     |
|        | рН                 | 7.8      | •         | 7.7             |         | 7.8      |        |                                                  | 79       |       | 7.9  |     |
|        | DO (mg/L)          | 7,2      |           | 7.0             |         | 7.8      |        |                                                  | 7.4      |       | 7.3  |     |
|        | Conductivity       | Х        | Х         | X               | 330     | Х        | Х      | Х                                                | X        | Х     | 320  | >   |
| 12638  | T (°C)             |          |           |                 |         |          |        |                                                  |          |       |      |     |
|        | pH                 | 7.9      |           | 8.0             |         | 8.4      |        |                                                  | 8,3      |       | R.4  |     |
|        | DO (mg/L)          | 7.0<br>x |           |                 |         | 6.3<br>× |        | · · · · · · · · · · · · · · · · · · ·            |          |       | 5.9  |     |
|        | Conductivity       | X        | X         | 6.5<br>x        | 590     | X        | X      | X                                                | 6.6<br>X | X     | 330  | >   |
| 12639  | T (°C)             |          |           |                 |         |          |        |                                                  |          |       |      |     |
|        | рН                 | 8.3      |           | 8.3             |         | 85       |        |                                                  | 8.6      |       | 8.2  |     |
|        | DO (mg/L)          | 6.8      |           | 8.3<br>6.6<br>x |         |          |        |                                                  | 6.8      |       | 6.3  |     |
|        | Conductivity       | X        | ×         | X               | 330     | 1. ¥     | X      | X                                                | X        | Х     | 350  | ,   |
| 12640  | T (°C)             |          |           |                 |         | 1        |        |                                                  |          |       |      |     |
|        | рН                 | 7.6      |           | 7.7             |         | ×1.1     |        |                                                  | 7.8      |       | 7.8  |     |
|        | DO (mg/L)          | 6.7      | -         | 7.7<br>6.9<br>X |         |          |        |                                                  | 6.8      |       | 6.4  |     |
|        | Conductivity       | ×        | ×         | X               | 345     | 1 × /    | X      | X                                                | X        | X     | 330  | ;   |
|        | Init./Date (1999): | 1413     | 11/2<br>m | 14/3            | 11/4    | 11/5     | 11/6   | 1/2                                              | 141/8    | 1.1/9 | 1448 | 11/ |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 29, 49, and end of test-

Review: Date: 12/22/59 haenvchr.doc

## 000136

## Amphipod (Hyalella azteca) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

| ect. Menzie                          | e-Cura & Associates | 1,10        | ect. J | 0033 De | ad Orce |          | of Ana |       | 013 16: | Start        | 10/19/9      | 3                                                |
|--------------------------------------|---------------------|-------------|--------|---------|---------|----------|--------|-------|---------|--------------|--------------|--------------------------------------------------|
| Sample                               | Parameter           | 11          | 12     | 13      | 14      | 15       | 16     | 17    | 18      | 19           | 20           | 2                                                |
| 12641                                | T (°C)              |             |        | ,       |         | ,        |        |       |         |              |              |                                                  |
|                                      | pH                  | 7.7         |        | 7.7     |         | 7.7      |        |       | 7.8     |              | 7-8          |                                                  |
|                                      | DO (mg/L)           | 2           |        | 5.9     |         | 6.0      |        |       | 6.1     | <del> </del> | 5.3          | <del> </del>                                     |
|                                      | Conductivity        | X           | X      | X       | 330     | X        | Х      | X     | X       | X            | 340          | X                                                |
|                                      | T (°C)              |             |        |         |         |          |        |       |         |              |              | <del>                                     </del> |
|                                      | рН                  |             |        |         |         |          |        |       |         |              |              |                                                  |
|                                      | DO (mg/L)           |             |        |         |         | <u> </u> |        |       |         | <del> </del> | <del> </del> | 1                                                |
|                                      | Conductivity        | Х           | Х      | X       |         | X        | X      | X     | X       | X            |              | X                                                |
|                                      |                     | <del></del> |        |         |         |          |        |       |         |              |              |                                                  |
|                                      | рН                  |             |        |         |         |          |        |       |         |              |              |                                                  |
|                                      | DO (mg/L)           |             |        |         |         |          |        |       |         |              |              |                                                  |
|                                      | Conductivity        | Х           | Х      | Х       |         | Х        | X      | X     | X       | X            |              | X                                                |
|                                      | T (°C)              |             |        |         |         |          |        |       |         |              |              |                                                  |
|                                      | Conductivity        |             |        |         |         |          |        |       |         |              | <u> </u>     |                                                  |
|                                      |                     |             |        |         |         |          |        |       |         |              | 1            |                                                  |
|                                      | Conductivity        | X           | Х      | Х       |         | X        | Х      | Х     | X       | Х            |              | >                                                |
| ···································· | Init./Date (1999):  | 11/1        | 11/2   | 11/2    | 11/4    | 11/5     | 11/6   | 1/1/7 | 11/8    | 17/9         | 17/18        | 13/n                                             |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 40, and end of test.

Review: Date: 12/22/99

| ject: Menzie | -Cura & Associates | Pro      | joct: 99 | 033 De  | ad Cree |                  |         |        | 329 / 33 | Test St     | art 10/        | 21/99 |
|--------------|--------------------|----------|----------|---------|---------|------------------|---------|--------|----------|-------------|----------------|-------|
|              |                    |          |          |         |         | Day              | of Anal | ysis   |          |             | <u>-</u>       |       |
| Sample       | Parameter          | 22       | 23       | 24      | 25      | 26               | 27      | 28     | 29       | 30          | 31             | 32    |
| 12611        | T (°C)             | 21,89    | 22/2/3   | 21 7 3  | 21:8    | 21/1/8           | 22/00   | 32.16  | 24.0     | 22 4        | 23.9           | 22.7  |
|              | рН                 | 8.1      | 30       | ,,,,    | 3.2     | * / <i>‡</i> /;" | 8.1     | 13 8   | 77.4     | 20          | A-4-           | 7     |
|              | DO (mg/L)          | 7,2      |          |         | 7.2     |                  | 1 / 0   | 27     |          | <del></del> | <del>  _</del> | 8.3   |
|              | Conductivity       | X        | ×        | ×       | X       | X                | 6'8     | 7,30   | X        | X           | ~              | 21.   |
| 12612        | T (°C)             | <b>_</b> | <br>     | 11.40   | 1       |                  | }       | 2.9/   |          |             | ×              |       |
|              | pH                 | 80       |          | 11 12 1 | 70      |                  | 79      | 1 33   |          |             |                | C     |
|              | DO (mg/L)          |          |          |         | 7.9     | -                | 111     | 1:0    |          |             |                | 8     |
|              | Conductivity       | 7,2<br>x | ×        | X       | 6,5     |                  | 6.6.    | 567    | / x      | ×           | ×              | \&\   |
|              |                    |          | ^        |         | ^       | ^                | ^       | 310//  | ^        |             | ^              | _ ^   |
| 12613        | T (°C)             |          |          |         |         |                  |         |        |          |             |                |       |
|              | рН                 | 8.3      |          |         | 8.2     |                  | 8.1     | -1.9   |          |             |                | 7     |
|              | DO (mg/L)          | 7.4      |          |         | 7.1     |                  | 6,8     | 6.9    |          |             |                | 8,    |
|              | Conductivity       | X        | X        | X       | X       | X                | X       | 7.30// | X        | Х           | ×              | X     |
| 12614        | T (°C)             |          |          |         |         |                  | 1       |        |          |             |                |       |
|              | рН                 | 8.167    |          |         | 8.8     |                  | 8.7     | 84.    |          |             |                | 8,    |
|              | DO (mg/L)          | 7.62     | Ġ        |         | 6.6     |                  |         |        | ,        |             |                | 8.    |
|              | Conductivity       | X        | X        | X       | X       | X                | X       | 350    | X        | X           | X              | X     |
|              | Init./Date (1999): | 1413     | 11/13    | 13674   | 11/15   | 11/16            | 14/77   | 11/18  | 11/19    | 11/20       | 11/21          | 11/2  |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 44, 21, 28, 35, and end-of-test.

Review: Date: /2/22/99 haenvchr.doc

| ject: Menzie | -Cura & Associates | Pro   | ject: 99 | 033 De | ad Cree  |       |        | BTR: 36 | 529 / 33 | Test St | art 10/ | 21/99 |
|--------------|--------------------|-------|----------|--------|----------|-------|--------|---------|----------|---------|---------|-------|
|              |                    |       |          |        |          | Day   | of Ana | ysis    |          |         |         |       |
| Sample       | Parameter          | 22    | 23       | 24     | 25       | 26    | 27     | 28      | 29       | 30      | 31      | 32    |
| 12622        | T (°C)             |       |          |        |          |       |        |         |          |         |         |       |
|              | pH                 | 7,8   |          |        | 79       |       | 8,0    | 7.8     |          |         |         | 8,0   |
|              | DO (mg/L)          | 7.9   |          |        | 7.8      |       | 7,4    | 7.6     |          |         |         | 85    |
|              | Conductivity       | X     | Х        | Х      | Х        | X     | X      | 290/    | Х        | Х       |         | X     |
| 12638        | T (°C)             |       |          |        |          |       |        | V17 V   |          |         |         |       |
|              | pH                 | 8.1   |          |        | 811      |       | 8.0    | 79      |          |         |         | 8.    |
|              | DO (mg/L)          | 7.0   |          |        | 7.1      |       | 7.1    | 62      |          |         |         | 8.4   |
|              | Conductivity       | X     | Х        | Х      | 7.1<br>X | X     |        | 33      | Х        | Х       | X       | X     |
| 12639        | T (°C)             |       |          |        |          |       |        |         |          |         |         |       |
|              | рН                 | 8,3   |          |        | 8.2      |       | 8.2    | 7.9     |          |         |         | 8,    |
|              | DO (mg/L)          | 7,2   |          |        | 7.2      |       | 6.8    | 69      |          |         |         | 8,6   |
| •            | Conductivity       | X     | Х        | Х      | X        | Х     | Х      | 32      | Х        | Х       | Х       | Х     |
| 12640        | T (°C)             |       |          |        |          |       | -      |         |          |         |         |       |
|              | рН                 | 7,8   |          |        | 7.9      |       | 7.9    | 7.7     |          |         |         | 7.0   |
|              | DO (mg/L)          | 7.1   |          |        | 7.1      |       | 69     | 69      |          |         |         | 8,1   |
|              | Conductivity       | X     | Х        | Х      | X        | Х     | X      | 290/    | Х        | Х       | X       | X     |
|              | Init./Date (1999): | 11/12 | 11/13    | 13/14  | 11/15    | 11/16 | 1143   | 11/18   | 11/19    | 11/20   | 1/21    | 11/2  |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 44, 21, 28, 35, and ond of text.

\_\_\_\_ Date: 12/22/99

haenvchr.doc

|                 |                    |       |              |       |        | Day         | of Ana       | lysis |       |              |              |              |
|-----------------|--------------------|-------|--------------|-------|--------|-------------|--------------|-------|-------|--------------|--------------|--------------|
| Sample<br>12641 | Parameter          | 22    | 23           | 24    | 25     | 26          | 27           | 28    | 29    | 30           | 31           | <b>\</b>     |
| 12641           | T (°C)             |       |              |       |        |             | <del> </del> |       |       |              |              | †            |
|                 | pH                 | 79    |              |       | 8.1    |             | 8.7          | 111   | -     |              |              | 1-           |
|                 | DO (mg/L)          | 7.9   |              |       | 8.1    |             | 8.2          | 1.7   | -     | <del> </del> |              | 7            |
|                 | Conductivity       | X     | X            | x     | X      | X           | 6 1 7        | . ,   | x -   | x            |              | 8            |
|                 | T (°C)             |       | <del> </del> |       |        | <del></del> |              | 310/  |       |              |              | +-           |
|                 | pH                 |       |              |       |        |             |              |       |       | -            |              | <del> </del> |
|                 | DO (mg/L)          |       |              |       |        |             |              |       |       | <u> </u>     | <u> </u>     |              |
|                 | Conductivity       | X     | ×            | ×     | ×      | X           | x            |       | ×     | X            | X            | -            |
|                 |                    |       |              |       | _ ^    |             | <u> </u>     |       | ^     |              |              |              |
|                 | T (°C)             |       |              |       |        |             |              |       |       | ļ            | -            |              |
|                 | рН                 |       |              |       |        |             |              | _     |       |              |              |              |
|                 | DO (mg/L)          |       |              |       |        |             |              |       |       |              |              |              |
|                 | Conductivity       | ×_    | X            | X     | X      | Χ           | Х            |       | Х     | Х            | X            |              |
|                 | T (°C)             |       |              |       |        |             |              |       |       |              |              |              |
|                 | PH                 |       |              |       |        |             |              |       |       |              |              |              |
|                 | DO (mg/L)          |       |              |       |        |             |              |       | -     |              |              |              |
|                 | Conductivity       | X     | Х            | X     | X      | X           | Х            |       | Х     | X            | X            |              |
|                 | Init./Date (1999): | 11/12 | 11/13        | 12174 | 1,1/12 | 11/16       | 1417         | 11/18 | 11/19 | 11/20        | 11/21<br>1/M | 11           |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0,-14, 21, 28, 35, and end of test.

Review: Date: 12/22/99 haenvchr.doc

| ject: Menzie | e-Cura & Associates | Pro   | ject: 99 | 033 De | d Cree |       |         |       | 329 / 33 | Test St   | art 10/2 | 21/99 |
|--------------|---------------------|-------|----------|--------|--------|-------|---------|-------|----------|-----------|----------|-------|
|              |                     |       |          |        |        | Day   | of Anal | lysis |          |           | 1        |       |
| Sample       | Parameter           | 33    | 34       | 35     | 36     | 37    | 38      | 39    | 40       | 41        | 42       |       |
| 12611        | T (°C)              | m.7/3 | 24.1     | 22.7   | 3ry Mr | 22:34 | 23,29   | 22.8  | 227      | 227       | 22.3     |       |
|              | рН                  |       | 8.0      | 8.0    |        | 0     |         | 7.9   |          | 7.8       |          |       |
|              | DO (mg/L)           |       | 8.3      | 8.3    | _      |       |         | 8,1   |          | 7.5       | 7.7      |       |
|              | Conductivity        | Х     | . X      | 1      | X      | Х     | Х       | Х     | Х        | Х         | 265      |       |
| 12611 T (°C) |                     |       |          |        |        |       |         |       |          |           |          |       |
|              |                     |       | 82       | 8.0    |        |       |         | 7.9   |          | 7.7       | 7.7      |       |
|              |                     |       |          | 8.2    |        |       |         | .l    |          | 1         | 7.5      |       |
| 12613        |                     | X     | Х        | 270/   | X      | Х     | X       | Х     | Х        | Х         | 270      |       |
| 12613        |                     |       |          | 23.0   |        |       |         |       |          |           |          |       |
|              | рН                  |       | 79       | 7.9    |        |       |         | 7.9   |          | 7.7       | 7.7      |       |
|              | DO (mg/L)           |       |          | 8.3    |        |       |         |       |          | <u>L.</u> | 76       |       |
|              |                     | Х     | Х        | 275    | X      | Х     | X       | X     | Х        | X         | 280      |       |
| 12614        |                     |       |          | 22.7   |        |       |         |       |          |           |          |       |
|              | рН                  |       | 79       | 7.9    |        |       |         |       |          | 7.7       | 7.7      |       |
|              |                     |       | 8,0      | 8.1    | 1      | ,     |         | 8.3   |          | 7.6       | 7.5      |       |
|              | Conductivity        | Х     | Х        | 275/   | / X    | X     | Х       | X     | Х        | X         | 280      |       |
|              | Init./Date (1999):  | 11/23 | 11/24    | 1,1/25 | 11/26  | 11/27 | 11/28   | 11/29 | 11/30    | 12/1      | 17/2     |       |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 21, 28, 35, and end of test.

| oject: Menzi | e-Cura & Associates     | Pro      | ject: 99                                              | 033 De | ad Cree          | k     |        | BTR: 3                                | 629 / 33 | Test St | art 10/2         | 21/99 |
|--------------|-------------------------|----------|-------------------------------------------------------|--------|------------------|-------|--------|---------------------------------------|----------|---------|------------------|-------|
|              |                         |          |                                                       |        |                  | Day   | of Ana | lysis                                 |          |         |                  |       |
| Sample       | Parameter               | 33       | 80 8.1<br>× 285 × × × × × × × × × × × × × × × × × × × | 42     |                  |       |        |                                       |          |         |                  |       |
| 12622        | T (°C)                  |          | 22.7                                                  | 22.6   |                  |       |        |                                       | 1        |         |                  |       |
|              | рН                      |          | 7.9                                                   | 1      |                  |       |        | 7.9                                   |          | 77      | 7.7              |       |
|              | DO (mg/L)               | K8.0     | 8.0                                                   | · ·    |                  |       |        | · · · · · · · · · · · · · · · · · · · |          |         | 7.4              |       |
|              | Conductivity            | ×        | X                                                     | L .    | ×                | X     | X      | X                                     | Х        | X       | 280              |       |
| 12638        | T (°C)                  |          |                                                       | 1227   |                  |       |        |                                       |          |         |                  |       |
|              | рН                      | <u> </u> | 79                                                    |        |                  |       |        | 7.9                                   |          | 7.7     | 7.7              |       |
|              | DO (mg/L) ,             | 8.7      |                                                       | 8.0    |                  |       |        | 8.4                                   |          | 7.6     | 7.5              |       |
|              | Conductivity            | Х        | X                                                     | 265/   | ×                | X     | X      | Х                                     | X        | X       | 280              |       |
| 12639        | Ϯ (°Ć)                  |          |                                                       | 2.2.5  |                  |       |        |                                       |          |         |                  |       |
|              | рН                      |          |                                                       |        |                  |       |        | 7.9                                   |          | 76      | 7.6              |       |
|              | DO (mg/L) U             | 8.1      | 81                                                    | 80     |                  |       |        | 8,4                                   |          |         | 7.3              |       |
|              | Conductivity F)1/-//Try | X        |                                                       | 280/   | - X              | X     | X      | X                                     | X        | X       | 285              |       |
| 12640        | T (°C)                  |          |                                                       | 22.5   |                  |       |        |                                       |          |         |                  |       |
|              | pH                      |          | 79                                                    | 7.8    | I MININE RACIONA |       |        |                                       |          | 7.7     | 7.6              |       |
|              | DO (mg/L)               | 7.8      | 7.8                                                   | 8.1    |                  |       |        | 8.3                                   |          | 1       | 7.3              |       |
|              | Conductivity 1944/pmm   | Х        |                                                       | 23     | X                | X     | X      | X                                     | X        | X       | 285              |       |
|              | Init./Date (1999):      | 11/23    | 11/24                                                 | 11/25  | 11/26            | 11/27 | 11/28  | 11/29                                 | 11/30    | 17/17   | 1 <del>2/2</del> |       |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 21, 28, 35, and end of test.

Review: Date: /2/22/99 haenychr.doc

# 000142

## Amphipod (Hyalella azteca) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

| ject: wenzie  | e-Cura & Associates | 1 -10 | ject. 99 | 033 De | au Cree |       | of Ana | BTR: 3 | 029/33 | rest St      | art 10/ | 27/ |
|---------------|---------------------|-------|----------|--------|---------|-------|--------|--------|--------|--------------|---------|-----|
|               |                     |       |          |        |         | Day   | or Ana | iysis  |        |              |         |     |
| Sample        | Parameter           | 33    | 34       | 35     | 36      | 37    | 38     | 39     | 40     | 41           | 42      |     |
| 12641         | T (°C)              |       | am       | 22.5   |         |       |        |        |        |              | }       | -   |
|               | Нд                  |       | 79       | 78     |         |       |        | 7.8    |        | 7.7          | 7.6     |     |
|               | DO (mg/L)           | 8.00  | 6.8      | 8.2    |         |       |        | 8,2    |        | 7.4          | 74      |     |
|               | Conductivity        | X     | Х        | 270    | X       | Х     | X      | Х      | Х      | Х            | 280     |     |
|               | T (°C)              |       |          |        |         |       |        |        |        |              |         |     |
|               | рН                  |       |          |        |         |       |        |        |        | <del> </del> |         |     |
|               | DO (mg/L)           |       |          |        |         |       |        |        |        |              |         |     |
|               | Conductivity        | Х     | X        |        | Х       | Х     | X      | X      | Х      | X            |         |     |
| · <del></del> | T (°C)              |       |          |        |         |       |        |        |        |              |         |     |
|               | рН                  |       |          |        |         |       |        |        |        |              |         |     |
|               | DO (mg/L)           |       |          |        |         |       |        |        |        |              |         |     |
|               | Conductivity        | Х     | X        |        | Х       | X     | X      | Х      | Х      | Х            |         |     |
|               | T (°C)              |       |          |        |         |       |        |        |        |              |         |     |
|               | рН                  |       |          |        |         |       |        |        |        |              |         |     |
|               | DO (mg/L)           |       |          |        |         |       |        |        |        |              |         |     |
|               | Conductivity        | Х     | X        |        | X       | X     | Х      | Х      | Х      | X            |         |     |
| <del></del>   | Init./Date (1999):  | 11/23 | 11/24    | 11/25  | 11/26   | 11/27 | 11/28  | 11/28  | 11/30  | 17/1         | 12/2    |     |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 21, 28, 35, and end of test.

Review: Date: 12/29/97

Client: Menzie-Cura & Assoc. Project: 99033 Dead Creek BTR: 3641

Test Start: October 22, 1999 Day 28: November 19, 1999

| Sample                                                                                                                              | Repl.            | # Alive | 11/16/99<br>Init. | Repick #      | Repick<br>Init. | Total<br>Surv    | #<br>Weighed   | Init Pan<br>Wt. | Total<br>Dry Wt. |  |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|-------------------|---------------|-----------------|------------------|----------------|-----------------|------------------|--|
| 12664                                                                                                                               | Α                | 1-10    | ILS               |               |                 | 110              | -              | -               | -                |  |
| ,200.                                                                                                                               | В                | 10      | -16-              |               |                 | 10               | -              | -               | -                |  |
|                                                                                                                                     | C                | 9       | 70                |               |                 | 9                | -              |                 | -                |  |
|                                                                                                                                     | D                | 116     | 25                |               |                 | 15               | -              | -               | _                |  |
|                                                                                                                                     | E                | 19      | LS                |               |                 | 9                | -              | -               | -                |  |
|                                                                                                                                     | F                | 10      | 116               | <del></del> ; |                 | 10               | -              | -               | -                |  |
|                                                                                                                                     | G                | 4       | RB                | 0             | RB              | 4                | -              | -               | -                |  |
|                                                                                                                                     | Н                | 4       | RB                |               |                 | 9                | -              | -               | -                |  |
| ]                                                                                                                                   | 1                | 9       | 76                |               |                 | 9                | 9              | 22 26           | 26.98            |  |
|                                                                                                                                     | J                | 9       | is                |               |                 | 9                | 9              | 33.88           | 27,13            |  |
|                                                                                                                                     | K                | 9       | IS                |               |                 | 9                | 9              | 25 23           | 28,56            |  |
|                                                                                                                                     | L                | 10      | 9                 |               |                 | 10               | 10             | 24.30           | 28.35            |  |
| 12665                                                                                                                               | Α                | 10      | -                 |               |                 |                  |                |                 |                  |  |
| 12003                                                                                                                               | $\frac{A}{B}$    | 10      | <u>J</u>          |               |                 | 10               | <del>-</del> - |                 |                  |  |
|                                                                                                                                     |                  | 10      | 13                |               |                 |                  |                | _               |                  |  |
|                                                                                                                                     | <u>n</u>         | 9       |                   |               |                 | <del>-15)-</del> | <del>-</del>   | _               | -                |  |
|                                                                                                                                     | D<br>E<br>F      | 8       |                   |               |                 | 8                | -              |                 | -                |  |
|                                                                                                                                     | F                | 7       | <u> </u>          |               |                 | <del>- 5</del>   | <u> </u>       |                 |                  |  |
| 1                                                                                                                                   | G                | 9       | 1/~               |               |                 | 9                | -              | _               | -                |  |
|                                                                                                                                     | Н                | 7       | <del></del>       |               |                 | 7                | -              | -               | -                |  |
|                                                                                                                                     | T                | 9       | JG-               |               |                 | 9                | 9              | 22,47           | 27.44            |  |
|                                                                                                                                     | J                | 8       | σ                 |               |                 | 8                | 8              | 26 22           | 31,70            |  |
|                                                                                                                                     | K                | 10      | ČS                |               | <del>.</del>    | 10               | 10             | 34 3C           | 32.13            |  |
|                                                                                                                                     | L                | 10      | LS                |               |                 | Gi               | 10             | 33.60           | 28,30            |  |
| 12666                                                                                                                               | Α                | 4       | <u> </u>          |               |                 | 4                |                | -               | -                |  |
|                                                                                                                                     | В                | 8       | RB                |               |                 | .8               | -              | -               |                  |  |
|                                                                                                                                     | C                | 10      | -16-              |               |                 | 10               | -              | -               | -                |  |
|                                                                                                                                     | D                | 5       | 0                 | 0             | RB              | 5                | -              | -               | -                |  |
|                                                                                                                                     | D<br>E<br>F<br>G | 5       |                   | _             | _               | 5                | -              | -               | -                |  |
|                                                                                                                                     | F                | 8       | Tm                |               |                 | Ŕ                | -              | -               | -                |  |
|                                                                                                                                     | G                | 8       | 0                 |               |                 | 8                |                | -               | <del>-</del>     |  |
|                                                                                                                                     | Н                | 1,9     |                   |               | RB              | 6                | -              | <u>-</u>        | -                |  |
|                                                                                                                                     |                  | 9       | RB                |               | _               | 9                | 9              | 25.63           | 29.91            |  |
|                                                                                                                                     | J                | 5       | 15                |               |                 | 2                | 5              | <b>36</b> 53    | 30.26            |  |
|                                                                                                                                     | K                | 8       | RB                |               |                 | B                | 9              | 24 83           | 29.49            |  |
|                                                                                                                                     | L                | 8       | LS                |               |                 | 8                | 8              | 25.24           | 30.43            |  |
| Balance CC Initial (20 mg = 30 00 ) Balance Asset #:                                                                                |                  |         |                   |               |                 |                  |                |                 |                  |  |
| Date/time In ###1? 3CTemp(°C) 81 Init 7M Date/time out Temp(°C) Init.                                                               |                  |         |                   |               |                 |                  |                |                 |                  |  |
| Comments. Organisms in Replicates A - H. transferred to water only exposure. Organisms in Replicates I - L. to dry weight analysis. |                  |         |                   |               |                 |                  |                |                 |                  |  |

Reviewer Date 12/22/99
haday28 doc
Laboratory Aquatec Biological Sciences, South Burington, Vermon:

Client: Menzie-Cura & Assoc. Project: 99033 Dead Creek BTR: 3641

Test Start: October 22, 1999 Day 28: November 19, 1999

| ample       | Repl.       | # Alive          | 11/16/99<br>Init. | Repick#   | Repick<br>Init.        | Total<br>Surv | #<br>Weighed          | Init Pan<br>Wt. | Total<br>Dry Wt. |
|-------------|-------------|------------------|-------------------|-----------|------------------------|---------------|-----------------------|-----------------|------------------|
| 2668        | Α           | 5                | JG                | 0         | RB                     | 5             |                       | -               | -                |
|             | В           | -8               | 76                | 4         | RB                     | 8             | -                     | -               | -                |
|             | С           | 10               | RB                |           |                        | 10            |                       | -               | -                |
|             | D           | 7                | 76                | 0         | RB_                    | 7             |                       | -               | -                |
|             | E           | 10               | RB                |           |                        | 10            | -                     | -               | -                |
|             | F           | 8                | RB                | 0         | RB                     | 8             | _                     |                 |                  |
|             | G           | 7_               | LS                | <b>-€</b> | RS-ES                  | T HES         | -                     |                 | -                |
|             | Н           | 3                | J                 | Ø 69      | P3 13                  | 3             |                       | -               | -                |
|             | 1           | _6               | TM                | 0         | RB                     | 6             | Q                     | 25.87           | 29.55            |
|             | J           | 9                | RB                |           | ~_                     | 9             | 9                     | 25.08           | 28.11            |
|             | K           | 8                | J                 | 0         | RB                     | 8             | 8                     |                 | 28,37            |
|             | L           | 7                |                   | 0         | RB_                    | 7             | 7                     | 24 69           | 28,03            |
| 2671        | Α           | 10               |                   | 6         | RD                     | 6             | -                     | -               | _                |
|             | В           | 9                |                   |           | -131                   | 9             | -                     | -               | -                |
|             | С           | 110              | LS                |           | . —                    | (0)           | -                     | -               | _                |
|             | D           | - <del>'</del> G | 15                |           |                        | 4             | -                     | -               | _                |
|             | E           | G                | 7                 |           |                        | 9             | -                     | -               | _                |
|             | F           | 10               | LS                |           |                        | 1/5           | -                     | -               | _                |
|             | G           | , Q              |                   |           |                        | 10            | -                     | -               | -                |
|             | Н           | 10               | 3                 |           |                        | 10            | -                     | -               | _                |
|             | 1           | 9                | JG                | _         |                        | 9             | 9                     | 23.50           | 28.14            |
|             | J           | G                | 195               |           |                        | (0            | 9                     | 22.49           | 25.43            |
|             | К           | X                | LS                |           |                        | \$            | 8                     | 26.25           | 29.96            |
|             | L           | 9                | 7/6               |           |                        | 9             | 9                     | 24.84           | 28.09            |
|             | ^           |                  |                   |           |                        | 7             |                       |                 |                  |
|             | A           |                  |                   |           |                        |               | -                     | -               | -                |
|             | В           |                  |                   |           |                        |               |                       | -               | -                |
|             | C           | <del></del>      |                   |           |                        | <u> </u>      |                       | -               | -                |
|             | D E         |                  |                   |           |                        |               | <u>-</u>              | -               | -                |
|             |             | <del></del>      |                   |           |                        |               |                       | -               |                  |
|             | F           |                  |                   | ·         |                        |               | <u>-</u>              |                 | <u> </u>         |
|             | G           |                  | <del> </del>      |           |                        |               | -                     | -               |                  |
|             | H           |                  |                   | -         |                        |               |                       | -               | -                |
|             | 1           |                  |                   |           |                        |               |                       |                 | -                |
|             | J           |                  |                   |           |                        |               |                       |                 |                  |
|             | K           | <del></del>      |                   |           | -                      |               |                       |                 |                  |
| <del></del> | L           | 1,000            | 20.00             |           | 20                     |               | <u> </u>              |                 | <u></u>          |
| lance C     |             | al (20 mg =      |                   |           | 20 mg = کر<br>Date/tim |               | Balance As            |                 | Init.            |
| елите       | 111 11/29 ) | 7:30 Temp(°C     | 3/ 11             | nit. 7m   |                        |               | Tempo<br>nisms in Rep |                 |                  |

## Amphipod (*Hyalella azteca*) Chronic Toxicity Test Days 35 and 42 Survival, Reproduction, and Dry Weight Data

Client: Menzie-Cura & Assoc. Project: 99033 Dead Creek BTR: 3641

Test Start: 10/22/99 Test End: 12/03/99

| Day 35<br>(11/26/99) |       |              |                   | Day 42<br>(12/03/99) |                             |                 |                   |              |                 |                  |
|----------------------|-------|--------------|-------------------|----------------------|-----------------------------|-----------------|-------------------|--------------|-----------------|------------------|
| Sample               | Rep   | #<br>Adults  | #<br>Neona<br>tes | #<br>Adults          | #<br>Femal<br>es            | #<br>Males      | #<br>Neona<br>tes | #<br>Weighed | Init Pan<br>Wt. | Total Dry<br>Wt. |
| 12664                | Α     | 9            | . 6               | 8                    | 6                           | 7               | 2                 | 8            | 29.54           | 31.78            |
|                      | В     | 10           | 2                 | 9                    | 5                           | 4               | 10                | 9            | 26.05           | 29.02            |
| •                    | C     | 9            | 3                 | 8                    | 3                           | 5               | 7                 | 8            | 27.56           | 30.32            |
|                      | D     | 8_           | 11                | 8                    | 4                           | 4_              | 11                | S            | 23,47           | 26,28            |
| !                    | E     | 8            | 0                 | _ 8                  | 2                           | 086             | 1 1               | 8            | 27.84           | 31.00            |
|                      | F     | 9            | 8                 | 9                    | 7                           | 2_              | 089               | 9            | 78,82           | 32.11            |
|                      | G     | 4            | 2                 | 4                    | 3                           |                 | ن ن               | 4            | 26,37           | 28.21            |
|                      | Н     | 9            | 4                 | 9                    | 5                           | 4_              | 11                | 9            | 78,78           | 32.33            |
| 12665                | Α     | 9            | 2                 | 4                    | 4                           | 5               | 34                | 3)           | 24.60           | 29.03            |
| <del>-</del>         | B     | 11           | 12                | 11                   | 4                           | 7               | 21                | 11           | 27,27           | 31.53            |
|                      | c     | 10           | 13                | a                    | 6                           | 3               | 35                | 9            | 25.55           | 29.79            |
|                      | D     | 9            | 3                 | 8                    | 4                           | 4               | 19_               | Š            | 25.62           | 29.65            |
|                      | E     | 8            | 6                 | 8                    | -5                          | 3               | 8                 | \$           | 25.09           | 35.44            |
|                      | E     | 7            |                   | 7                    | 3                           | 4               | 25                | 7            | 23.39           | 28.12            |
|                      | G     | `S           | 3                 | 6                    | 5                           |                 | 7                 | (s           | 2737            | 30.85            |
|                      | Н     | 6            | 6                 | 9                    | 3                           | 3               | 10                | S            | 27.28           | 28.50            |
| 12666                | A     | 2            |                   | 7                    | 2                           |                 |                   | 3            | 29.11           | 30.98            |
| .2000                | В     | N. Se        | 6                 | 8                    | 6                           | 2               | 9                 | S            | 23.50           | 27.15            |
|                      | C     | 9            | à.                | 10                   | 5                           | 5               | 3                 | 10           | 23.21           | 26.96            |
|                      | D     | 5            | à                 | 5                    | 2                           | 3               | (e                | 5            | 24.64           | 20,16            |
|                      | E     | 5            | ī                 | 5                    |                             | 2               | i                 | 5            | 28 74           | .30.81           |
|                      | F     | 7            | 10                | 7                    | 7                           | -5              | 11                | 7            | 2562            | 28.55            |
|                      | G     | 8            | 0                 | 3                    | 4                           | 4               | 1                 | 625 B        | 27.14           | 830-42           |
|                      | Н     | 6            | 0                 | 6                    | 3                           | 3               | 4                 | 2            | 30.88           | 33. 77           |
| 12668                | A     | 5            | b<br>L            | 524                  | (C )                        | 7               |                   | REX          | 28,25           | 0- 110           |
| 12000                | B     | 1            | 2                 | 7/6                  | 4                           | <del></del>     | <del></del>       | Buz          | 2ic 09          | 28.12            |
|                      | C     | 8            | 7                 | 8                    | <del>-3'-</del>             | <del>-2</del> - | <del></del>       | The sur      | 24.55           | 27 42            |
|                      | D     | 2            | -                 | 4                    | <del>-</del> <del>4</del> - | Ö               | 10                | 16 7 3       | 25.97           | 211.72           |
|                      | E     | 10           | 3                 | 3                    | 3                           | <u> </u>        | 2                 | بر سي ج      | 27.50           | 29.89            |
|                      | F     | ゴ            | 6                 | 7                    | 6                           | T               | 9                 | -            | 29.25           | 3007             |
|                      | G     | 6            | 1                 | 6                    |                             |                 | 10                | BUX          | 25:5            | 27.08            |
|                      | Н     | 3            | 7                 | 3                    |                             | <u></u>         | 10                | 8 2 a        | 21.94           | 22.54            |
| Day 35 In            |       | Date: JC     | 3-11/26           | 199                  |                             | Da              | y 42 Initia       | is / Date:   | JG 12/3/79      | B 48             |
| Baiance C            | DC Ir | intial (20 m | ng = 19.9         | 7                    |                             | mg = 16         | 1.97              | Balance      | Asset#:         |                  |
|                      | in nh | 14-05 Temp   | O(°C) S()         | Init.                | يحج –                       | Date/tim        | ne סט: בן         | em کار دیر ا | 1p(°C) 809      | nit. 📈           |

## Amphipod (*Hyalella azteca*) Chronic Toxicity Test Days 35 and 42 Survival, Reproduction, and Dry Weight Data

Client: Menzie-Cura & Assoc. Project: 99033 Dead Creek BTR: 3641 Test Start: 10/22/99 Test End: 12/03/99 Day 42 Day 35 (11/26/99)(12/03/99)# # # Init Pan # **Total Dry** Neona # Femal # Neona Rep Weighed Wt. Sample Adults tes Adults es Males tes Wt. 1 2 2 12671 Α Ц 30-58 29,18 31.47 В 28.67  $\overline{\mathsf{c}}$ B2 4 27.45 10 25 24.3D 6 2 D 9 9 Ó 0 24.57 7 9 E 31.94 10 7 F 9 2 *2*5. 20 28,33 G 30.01 33.62  $\overline{\mathsf{H}}$ 27.14  $\mathcal{O}$ 24.77 Α В  $\overline{\mathsf{c}}$ D E F G H Α В  $\overline{\mathsf{c}}$ D E F G Η Α В C D E G RB Day 35 Initials / Date: Tell/26/99 Day 42 Initials / Date: Balance QC: Initial (20 mg = Final (20 mg = Balance Asset #: Temp(°C) Date/time out Temp(°C) Date/time In Init. Init.

Reviewer: \_\_\_\_\_\_ Date: 12/22/99 @ Correction of 12/3/99 had3542.doc

| Initial Dry Weight Data |              |                                |                             |                                |                                      |  |  |  |  |  |
|-------------------------|--------------|--------------------------------|-----------------------------|--------------------------------|--------------------------------------|--|--|--|--|--|
| Replicate               | #<br>Weighed | Initial Boat<br>Weight<br>(mg) | Final Dry<br>Weight<br>(mg) | Mean Wt.<br>within Rep<br>(mg) | <b>M</b> ean Wt.<br>Reps I-L<br>(mg) |  |  |  |  |  |
| 1                       | 10           | 43.37                          | 44.91                       | 0.154                          |                                      |  |  |  |  |  |
| 2                       | 10           | 37.51                          | 39.16                       | 0.165                          |                                      |  |  |  |  |  |
| 3                       | 10           | 38.19                          | 39.62                       | 0.143                          |                                      |  |  |  |  |  |
| 4                       | 10           | 37.15                          | 38.72                       | 0.157                          |                                      |  |  |  |  |  |
| 5                       | 10           | 36.97                          | 38.43                       | 0.146                          |                                      |  |  |  |  |  |
| 6                       | 10           | 41.48                          | 42.74                       | 0.126                          |                                      |  |  |  |  |  |
| 7                       | 4            | 45.28                          | 45.59                       | 0.078                          |                                      |  |  |  |  |  |
| 8                       | 10           | 46.18                          | 47.71                       | 0.153                          | 0.140                                |  |  |  |  |  |

#### Hyalella azteca Initial Dry Wt.

Project: H 9. /0/22/99

Culture ID: 20+Ch 10/15/99

Age: 7

| Replicate | Number of Organisms weighed | Initial Pan Weight<br>(mg) | Final Pan Weight<br>(mg) |
|-----------|-----------------------------|----------------------------|--------------------------|
| 1         | 10                          | 43.346                     | 44.91                    |
| 2         | 10                          | 37.510                     | 39.16                    |
| 3         | 10                          | 38.186                     | 39.62                    |
| 4         | 10                          | 37.147                     | 38,72                    |
| 5         | 10                          | 36,969                     | 38.43                    |
| 6         | 10                          | 41.477                     | 42.74                    |
| 7         | y3 10 4                     | 45-281                     | 45.59                    |
| 8         | 10                          | 410. 184                   | 47,71                    |
| Initials: |                             |                            |                          |
| Date:     |                             |                            |                          |
|           |                             |                            |                          |

| Balance QC: Initial (   | 20 mg = <i>i 9 , 9</i> | <b>(L</b> ) | Final (2) | 0 mg = 19,96       | ) Balance Asset #:  |         |
|-------------------------|------------------------|-------------|-----------|--------------------|---------------------|---------|
| Date/time In 12/4 10:50 | emp(°C) &2             | اnit.       | 48        | Date/time out 13-/ | 5 12:00 Temp(°C) So | Init.√G |
| Comments:               |                        |             |           |                    |                     |         |

Reviewer: Date: 12/22/49

haintwt.doc / Laboratory: Aquatec Biological Sciences, South Burlington, Vermont



# Aquatic Research Organisms

#### DATA SHEET

| I.             | Organism   | History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Species:   | Hyalulla azteca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Source:    | Lab reared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                |            | Hatch date 10/15/99 Receipt date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |            | Lot number 101599HA Strain ARO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                |            | Brood Origination USFALS, MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ш.             | Water Qua  | ality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |            | Temperature 24 °C Salinity ppt DO 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                |            | pH_7.5 Hardness_180 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| III.           | Culture Co | onditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |            | System: FW STATIC (CNEW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                |            | Diet: Flake Food Phytoplankton Trout Chow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Pic politi     | 124        | Brine Shrimp Rotifers Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N.C.           | ; 7. C     | Prophylactic Treatments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| / <b>/</b> · : |            | Comments: <u>L 24's 060</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IV.            | Shipping I | nformation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                |            | Client: AQUATICH VT. # of Organisms: 1000 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                |            | Client: HUATKUH VI. # of Organisms: 1000 f  Carrier: FCC EX  Date Shipped: 10/18/99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bio            | logist:    | Sten Sentola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| t start        | _          | THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S |
| 1123 194       |            | 1 - 800 - 927 - 1650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| - 23 2         | •          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| = 30           | P          | O Box 1271 • One Lafayette Road • Hampton, NH 03842 • (603) 926-1650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Amphipod (Hyalella azteca) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

| Project: Menzie-(   | Project: Menzie-Cura & Associates                                                                                                                       | Pro              | Project: 99 | 99033 Dea             | Dead Creek | 1                                      |                 | BTR: 36      | 3641 Tes                                 | Test Start   | 10/22/99   |          |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|-----------------------|------------|----------------------------------------|-----------------|--------------|------------------------------------------|--------------|------------|----------|
|                     |                                                                                                                                                         | i                |             |                       |            | Day                                    | Day of Analysis | ysis         |                                          |              |            |          |
| Sample              | Parameter                                                                                                                                               | 0                | -           | 2                     | r -        | 4                                      | 2               | 9            | 7                                        | 8            | 6          | 9        |
| 12664               | T (°C)                                                                                                                                                  | 21.6             | 27:9        | 19.00                 | 7)         | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 2.5<br>0.56     | 0.46<br>0.46 | 3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/ | a Col        | 468        | 0.66     |
|                     | Hd                                                                                                                                                      | 8.0              | (           | <b>b</b> 1            | 5/         |                                        | 4.9             |              | 14                                       | <b>a</b> [   | 8          | 107      |
|                     | DO (mg/L)                                                                                                                                               | 49               | 1           |                       | 0,7        |                                        | 4.0             |              | 00)                                      | 1            |            | 7        |
|                     | Conductivity Ammonia/Att                                                                                                                                | 380              | ×           | ×                     | ×          | ×                                      | ×               | ×            |                                          | ×            | ×          | ×        |
| 12665               | T (°C)                                                                                                                                                  | 22.0             |             |                       |            |                                        |                 |              | 8                                        | 06.9         |            |          |
|                     | Hd                                                                                                                                                      | 7.8              | 1           | l                     | 76         |                                        | 46              |              | 4.7                                      | 1            | )          | 28       |
|                     | DO (mg/L)                                                                                                                                               | み                | \           | Ì                     | 67         |                                        | 4.9             |              | 5.4                                      |              |            | 6,5      |
|                     | Conductivity                                                                                                                                            | \$\$\$<br>\$\$\$ | ×           | ×                     | ×          | ×                                      | ×               | ×            |                                          | ×            | ×          | ×        |
| 12666               | T (°C)                                                                                                                                                  | 22.2             |             |                       |            |                                        |                 |              | 2, 12<br>2, 12<br>7, 22                  | 31.7         |            |          |
|                     | Hd                                                                                                                                                      | 4.4              | (           | (                     | 7.4        |                                        | 7.4             |              | 7.4                                      | 1            |            | 75       |
|                     | DO (mg/L)                                                                                                                                               | J.0              | \           | \                     | 67         |                                        | 1.4             |              | 4.4                                      | 1            | 1          | 13       |
|                     | Conductivity                                                                                                                                            | 360/             | ×           | ×                     | ×          | ×                                      | ×               | ×            |                                          | ×            | ×          | ×        |
| 12668               | (O)                                                                                                                                                     | 339              |             |                       |            |                                        |                 |              | 1.50                                     |              |            |          |
|                     | Hd                                                                                                                                                      | 7.6              | ١           | (                     | 8.2        |                                        | 8.4             |              | 82                                       | }            | į          | 4,8      |
|                     | DO (mg/L)                                                                                                                                               | ∞<br>`           | ١           | _ \                   | 7%         |                                        | 7.2             |              | 4.9                                      | (            | 1          | 8.9      |
|                     | Conductivity                                                                                                                                            | 350/             | ×           | ×                     | ×          | ×                                      | ×               | ×            |                                          | ×            | ×          | ×        |
|                     | Init./Date (1999):                                                                                                                                      | 19983            | 1083        | 1984                  | 10/29      | 19/26 19/27                            | 18/61           | 10/38/       | 5061                                     | 19/30        | 1000       | 11116    |
| Comments: Measured  | Comments: Measured temperature is a measu/ofment of a representative beaker placed within the Lest array for this testing group.                        | (Ament of        | a represer  | ntative bea           | ker placed | s Within th                            | ellest arra     | y for this t | esting gro                               | up.          |            |          |
| Measure D.O. and pH | Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 40, and end of test. | ivity once       | weekly. C   | ollect amm            | onia, alka | linity, and                            | hardness        | sambles o    | on Days 0                                | , 14, 20, 4( | o, and end | of test. |
| 1                   | Date: 12/21/99                                                                                                                                          | ý,               | /34 hea     | 10/34 heater adjusted | ustad n    | m 11206                                | Azobath to rava | م مرد        | ty of                                    | temp         | <b>ら</b>   |          |
| ) ser               |                                                                                                                                                         |                  |             |                       |            |                                        |                 |              |                                          |              | **<br>•    |          |

000150

Review:

Dale: 1 4 6 7 7

haenvchr.doc

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Amphipod (Hyalella azteca) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

|                                                                                                                                 |                                                                                                                                 |               |           |            |            | Day         | Day of Analysis | ysis       |                         |           |          |            |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|------------|------------|-------------|-----------------|------------|-------------------------|-----------|----------|------------|
| Sample                                                                                                                          | Parameter                                                                                                                       | 0             | -         | 2          | က          | 4           | 9               | و          | ^                       | 8         | 6        | 5          |
| 12671                                                                                                                           | T (°C)                                                                                                                          | لى. لار<br>ال | <u> </u>  |            |            |             |                 |            | 28.05<br>10.05<br>10.05 |           | <u>.</u> |            |
|                                                                                                                                 | Ha                                                                                                                              | 79            | 1         | 1          | 7          |             | &<br>?:         |            | \<br>(1)<br>(1)         | )         | 1        | 2          |
|                                                                                                                                 | DO (mg/L)                                                                                                                       | 7.4           | ١         | ١          | 7.0        |             | 6.1             |            | 5.9                     |           | )        | ق          |
|                                                                                                                                 | 1                                                                                                                               | 340           | ×         | ×          | ×          | ×           | ×               | '×         |                         | ×         | ×        | ×          |
|                                                                                                                                 | 1 (°C)                                                                                                                          |               |           |            |            | _           |                 |            |                         |           |          |            |
|                                                                                                                                 | Ha                                                                                                                              | :<br>:        | :         |            |            |             |                 |            | \                       | 7         |          |            |
|                                                                                                                                 | DO (mg/L)                                                                                                                       |               | i         | :          | :<br>:     | î<br>I      |                 |            |                         |           |          | :          |
|                                                                                                                                 | Conductivity                                                                                                                    | 1             | ×         | ×          | ×          | × \         | X               | ×          |                         | ×         | ×        | ×          |
|                                                                                                                                 | T (°C)                                                                                                                          |               |           |            |            |             |                 |            |                         |           |          |            |
|                                                                                                                                 | Hd                                                                                                                              |               |           | \          |            |             |                 |            |                         | 1         | 1        |            |
|                                                                                                                                 | DO (mg/L)                                                                                                                       |               |           |            |            |             |                 |            |                         |           |          |            |
|                                                                                                                                 | Conductivity                                                                                                                    | _             | ×         | ×          | ×          | ×           | ×               | ×          |                         | ×         | ×        | ×          |
|                                                                                                                                 | T (°C)                                                                                                                          |               |           |            |            |             |                 |            |                         |           |          |            |
|                                                                                                                                 | ) Ad                                                                                                                            |               |           |            |            |             |                 |            |                         |           |          |            |
|                                                                                                                                 | DÓ (mg/L)                                                                                                                       |               |           |            |            |             |                 | ,          |                         |           |          |            |
|                                                                                                                                 | Conductivity                                                                                                                    |               | ×         | ×          | ×          | ×           | ×               | ×          |                         | ×         | ×        | ×          |
|                                                                                                                                 | Init./Date (1999):                                                                                                              | 1972          | 27        | 1924       | 10/25)     | 1978        | 19/2N           | 19/28      | 1923                    | <u>\$</u> | # P      | <b>177</b> |
| Comments: Measured temperature is a measurement of a representative beaker placed Within the lest array for this testing group. | Comments: Measured temperature is a measurement of a representative beaker placed within the lest array for this testing group. | irement of    | a represe | ntative be | aker place | d within th | e dest arra     | v for this | testing aro             | d<br>D    |          |            |

000151

-horatory: Aquatec Biological Sciences, South Burlington, Vermont.

Date: 12/22/99

Review: haenvchr.doc Amphipod (*Hyalella azteca*) Overlying Water Ehvironmental Monitoring: Chronic Toxicity Tests 3641

| Sample Parameter 11 12 13 14 15 16 17 18 19  12664 T (°C) 224 224 225 224 225 224 226 226 224 226 226 224 226 226 224 226 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project: Menzie-C  | Project: Menzie-Cura & Associates | Pro   | Project: 99( | 99033 De   | Dead Creek | ×           |             | BTR: 3       | 3615 Tes   | Test Start | 10/19/99 |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------|-------|--------------|------------|------------|-------------|-------------|--------------|------------|------------|----------|-------------|
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                                   |       |              |            |            | Day         | of Ana      | lysis        | 0          |            | 0        |             |
| 113   114   115   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118   118  | Sample             | Parameter                         | 11    | 12           | 13         | 14         | 15          | 16          | 17           | 18         | 19         | 20       | 21          |
| 8,0 8,0 7,7 × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12664              | (°C)                              | \     | 12.50        | 45         | 22.62      | 6.60        | 8:18        | Se Se        | 5.<br>0.   | 120        | 12/2     | 0/9         |
| 7-13   11/5   11/6   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   11/16   |                    | Hd                                |       | 8,0          |            | , ×        |             |             | 8,0          |            | 5.4        | 4 7      | C &         |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | DO (mg/L)                         |       | 47           |            | 2,00       |             |             | けた           |            | 4          | 4.5      | "           |
| 8,3 8,9 8,4 7.9    × × × × 3,2 × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | Conductivity                      | l     | ×            | ×          | er er      | ×           | ×           | ×            | ×          | ×          | 310      | 0<br>:<br>: |
| 8,3 & & & & & & & & & & & & & & & & & & &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12665              | (\$c)                             |       |              |            | 13         |             |             |              |            |            |          |             |
| X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | Hd                                |       | 8,3          |            | 000        |             |             | 78.4         |            | 20         | \chi     | 75          |
| X   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | DO (mg/L)                         |       | 0,9          |            | 2.0        |             |             | 0,1          |            | 4.9        | 5.6      | けり          |
| 7.4 $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$ $7.4$  |                    | Conductivity                      | ×     | ×            | ×          | 12/2       | ×           | ×           | ×            | ×          | ×          | 330      | ×           |
| 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12666              | T (°C)                            |       |              |            |            |             |             |              |            |            |          |             |
| X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | Hd                                |       | 7.4          |            | 25         |             |             |              |            | 7.4        | 4.4      | 45          |
| $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | DO (mg/L)                         |       | 4,4          |            | <u>3</u>   |             |             | 5.0          |            | 3.5        | 3.9      | 5,9         |
| 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.4 X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | Conductivity                      | ×     | ×            | ×          | 2/2        | ×           | ×           | ×            | ×          | ×          | 30/      | ×           |
| 78 $7.8$ $7.8$ $7.8$ $7.8$ $7.8$ $7.8$ $7.8$ $1.8$ $1.14$ $11.5$ $1.16$ $1.16$ $1.17$ $1.16$ $1.17$ $1.18$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.19$ $1.1$ | 12668              | T (°C)                            |       |              |            |            |             |             |              |            |            |          |             |
| $6.9$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | Hd                                |       | 78           |            | 7          |             |             | 43           |            | 87         | 7        | 79          |
| 11/2 11/3 11/4 11/5 11/8 11/7 11/8 11/9 11/9 11/9 fement of a representative beaker placed within the test array for this testing group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | DO (mg/L)                         |       |              |            | 7.0        |             |             | 4            |            | 4.4        | 7.4      | 57          |
| The 1113 1114 11/5 11/6 11/7 11/8 11/9 11/19 11/19 11/19 11/19 11/19 element of a representative beaker placed within the test array for this testing group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | Conductivity                      | ×     | ×            | ×          |            | ×           | ×           | ×            | ×          |            | 300/     | ×           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | Init./Date (1999):                | 13/18 | 113          | 11/4       | 11/5/      | 11/6        | 17/1/N      | 13/8         | 484        | 44         | 144      | 1982        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Comments: Measured | I temperature is a measu          |       | a represer   | tative bea | aker place | d Within th | e test arra | y for this t | esting gro | up.        |          |             |

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 40, and end of test.

Review: Date: It feet 7 has haven doc Laboratory: Aquatec Biological Sciences, South Burlington, Vermont 

| / Tests                 |   |
|-------------------------|---|
| 1                       | _ |
| <u>~</u>                | r |
| $\pm$                   |   |
| Ž                       |   |
| $\vdash$                |   |
| _                       |   |
| <u>.0</u>               |   |
| hron                    |   |
| 5                       |   |
| =                       |   |
| $\overline{a}$          | _ |
|                         | , |
| ring:                   | ï |
| 0                       |   |
| <u>ت</u>                |   |
|                         |   |
| 0                       |   |
| Σ                       |   |
| _                       |   |
| ā                       |   |
|                         |   |
| 0                       |   |
| Ε                       |   |
| Ē                       |   |
| ironmenta               |   |
| =                       |   |
| Env                     |   |
|                         |   |
| Ш                       |   |
| 9                       |   |
| ž                       |   |
| 3                       |   |
| >                       |   |
| 0                       |   |
|                         |   |
| $\overline{\mathbf{x}}$ |   |
| Ť.                      |   |
| Φ                       |   |
| 2                       |   |
| Ó                       |   |
| 1                       |   |
| ü                       |   |
| zteca                   |   |
| 72                      |   |
| azteca)                 |   |
| 8                       |   |
| =                       |   |
| æ                       |   |
| ã                       |   |
| <b>\$</b>               |   |
| 3                       |   |
| 73                      |   |
| ŏ                       |   |
| Ď                       |   |
| Ξ                       |   |
| ם                       |   |
| Ē                       |   |
| Amphipoc                |   |
| •                       |   |
|                         |   |

|        |                    |      |               |      |                | Day<br>S  | Day of Analysis |                | Ĥ   |          | \ <del>.</del> |            |
|--------|--------------------|------|---------------|------|----------------|-----------|-----------------|----------------|-----|----------|----------------|------------|
| Sample | Paramoter          | 7    | 12            | 13   | 14             | 15        | 16              | 17             | 18  | 19       | 20             | 21         |
| 12671  | T (°C)             |      |               |      |                |           |                 |                |     |          |                |            |
|        | Hd                 |      | 8.5           | de   | <del>3</del> . |           |                 | 20°            | 8   | ~<br>∞   | 0<0<br>(4)     | مَن        |
|        | DO (mg/L)          |      | 7.0           | 3    | , , ,          |           |                 | 7              | A N | 5.9      | 5 %            | n          |
|        | Conductivity       | ×    | -<br>- ×<br>} | ×    | المراج         | ×         | ×               | ×              | ×   | ×        | 13             | ×          |
|        | T (°C)             |      |               |      |                |           |                 |                |     |          |                |            |
|        | Ħ                  |      |               |      |                |           |                 |                |     |          |                |            |
|        | DO (mg/L)          |      |               |      |                | . <u></u> |                 | · —            |     |          |                |            |
|        | Conductivity       | ×    | ×             | ×    |                | ×         | ×\              | /×             | ×   | ×        |                | : <b>×</b> |
|        | T (°C)             |      |               |      |                |           |                 |                |     |          |                |            |
|        | Hd                 |      |               |      |                |           |                 |                |     |          |                |            |
|        | DO (mg/L)          |      |               | /    |                |           | <u>_</u> _      | <u>-</u> ,     |     |          |                |            |
|        | Conductivity       | × `  | X             | ×    |                | ×         | ×               | ×              | ×   | <b>×</b> |                | ×          |
|        | T (°C)             |      |               |      |                |           |                 |                |     |          |                |            |
|        | Hd                 |      |               |      |                |           |                 |                |     |          |                |            |
|        | DO (mg/L)          |      |               |      |                |           |                 |                |     |          |                |            |
|        | Conductivity       | ×    | ×             | ×    |                | ×         | ×               | ×              | ×   | ×        |                | ×          |
|        | Init./Date (1999): | 13/8 | 17(3)         | 11/4 | 11/5           | 11/6      | 1,1/7           | 1.<br>1.<br>1. | 17% | 17,438   | 13/63          | 11.13      |

000153

Review:
haenvchr.doc
Laharatory: Aquatec Biological Sciences, South Burlington, Vermont

- Date. 12/11/8

Amphipod (Hyalella azteca) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

| Sample Parameter 7  12664 T (°C)  PH  DO (mg/L)  Conductivity  Conductivity  Conductivity  DO (mg/L)  Conductivity  DO (mg/L)  DO (mg/L)  DO (mg/L) | 22 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 % 8 8 8 8 9 8 9 8 9 8 9 8 9 9 8 9 9 9 9 | 35     | 26  | 100   |       |       |       |      |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------|-----|-------|-------|-------|-------|------|-------|
| T (°C)  pH  DO (mg/L)  Conductivity  T (°C)  pH  DO (mg/L)  Conductivity  T (°C)  PH  DO (mg/L)  Conductivity                                       | \( \frac{\psi}{\psi} \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \times \) \( \t | 1/2 0 0 1/2 00                            | o'c'ec | 8   | 7     | 28    | - 29  | 30    | 31   | 32    |
| DO (mg/L) Conductivity T (°C) PH DO (mg/L) Conductivity T (°C) PH DO (mg/L) Conductivity                                                            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |        | 200 | 2///0 | 2/2   | 0/2/2 | 4.50  | 23.7 | 23/43 |
| DO (mg/L)  Conductivity  T (°C)  DO (mg/L)  Conductivity  T (°C)  pH  DO (mg/L)  Conductivity                                                       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 × 6 0                                   |        |     |       | 5,    | 6     |       | 80   |       |
| Conductivity  T (°C)  PH  DO (mg/L)  Conductivity  T (°C)  PH  DO (mg/L)                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | × 60                                      |        | 70  |       | 9:6   |       |       | 83.3 |       |
| T (°C)  pH  DO (mg/L)  Conductivity  T (°C)  pH  DO (mg/L)                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                                        | ×      | ×   | ×     | 310/  | ×     | ×     | X    | ×     |
| DO (mg/L) Conductivity T (°C) pH DO (mg/L)                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40                                        |        |     |       |       |       |       |      |       |
| DO (mg/L) Conductivity T (°C) pH DO (mg/L)                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ∞<br>•                                    |        | 83  |       | ارم   |       |       | 8.0  |       |
| Conductivity  T (°C)  pH  DO (mg/L)                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |        | 7.0 |       | 70    |       |       | 8,3  |       |
| T (°C) pH DO (mg/L)                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                         | ×      | ×   | ×     | 240   | ×     | ×     | ×    | ×     |
|                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |        |     |       |       |       |       |      |       |
|                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tt                                        |        | 7.7 |       | 7.6   |       |       | 8,0  |       |
| _                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.9                                       |        | -10 |       | 0/183 |       |       | 8,7  |       |
|                                                                                                                                                     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                                         | ×      | ×   | ×     | 1 (6) | ×     | ×     | ×    | ×     |
| 12668 T (°C)                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |        |     |       |       |       |       |      |       |
| Hd                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49                                        |        | 478 |       | 7.7   |       |       | 8.0  |       |
| DO (mg/L)                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,8                                       |        | 4.4 |       | 75    |       |       | 8.4  |       |
| Conductivity                                                                                                                                        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                                         | ×      | ×   | ×     | 2 de  | ×     | ×     | ×    | ×     |
| Init./Date (1999): 11/                                                                                                                              | 1413 11/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11/15                                     | 11/16  | 五   | 11/18 | 11/19 | 野     | 13/21 | 1188 | 11/33 |

000154

Review: Date: Jane Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: And Date: A

Amphipod (Hyalella azteca) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

| Sample | Parameter          | 22     | 23    | 24       | 25    | 78      | 27     | 78         | 29    | 30      | 31     | 32    |
|--------|--------------------|--------|-------|----------|-------|---------|--------|------------|-------|---------|--------|-------|
| 12671  | T (°C)             |        |       |          |       |         |        |            |       |         |        | L     |
|        | Hď                 |        |       | 4.8      |       | 48      |        | 78         |       |         | 67     |       |
|        | DO (mg/L)          |        |       | 6.7      |       | من<br>ق |        | . <u> </u> |       |         | -<br>X |       |
|        | Conductivity       | ×      | ×     | :×       | ×     | ×       | ×      | 2000       | ×     | ×       | X      | ×     |
|        | T (°C)             | i<br>! |       |          |       |         |        |            |       |         |        |       |
|        | Hd                 |        |       |          |       |         |        |            |       |         |        |       |
|        | DO (mg/L)          |        |       |          |       |         |        |            | \     |         |        |       |
|        | Conductivity       | ×      | ×     | ×        | ×     | ×       | *      | <b>.</b>   | ×     | ×       | ×      | ×     |
|        | T (°C)             |        |       |          |       |         |        |            |       |         |        |       |
|        | H                  |        |       |          | \     |         |        |            |       |         | -      | _     |
|        | DO (mg/L)          |        |       | \        |       |         |        |            |       |         |        |       |
|        | Conductivity       | X      | ×     | ×        | ×     | ×       | ×      | ;<br>      | ×     | ×       | ×      | ×     |
|        | T (°C)             |        |       |          |       |         |        |            |       |         |        |       |
|        | Ha                 |        |       | <u>-</u> |       |         |        |            |       |         |        |       |
|        | (T/Bm) OQ          |        |       | ;        |       |         |        |            |       | !       |        |       |
|        | Conductivity       | ×      | ×     | ×        | ×     | ×       | ×      | ·          | ×     | ×       | ×      | ×     |
|        | Init./Date (1999): | 11/13  | 17/14 | 11/165   | 11/16 | 11475   | 11/18/ | 11/10      | 11/20 | 13.12.1 | 138    | 41/23 |

Review: Date: 1422/99
haenvchr.doc
Lat rtory: Aquatec Biological Sciences, South Burlington, Vermont

Amphipod (Hyalella azteca) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

| Project: Menzie-(  | Project: Menzie-Cura & Associates          | Pro       | Project: 990                                                                         | 99033 Dea   | Dead Creek | Ž           |                 | BTR: 3       | 3641 Tes   | <b>Test Start</b> | 10/22/99 |   |
|--------------------|--------------------------------------------|-----------|--------------------------------------------------------------------------------------|-------------|------------|-------------|-----------------|--------------|------------|-------------------|----------|---|
|                    |                                            |           |                                                                                      |             |            | Day         | Day of Analysis | ysis         |            |                   | -        |   |
| Sample             | Parameter                                  | 33        | 34                                                                                   | 35          | 36         | 37          | 38              | 39           | 40         | 41                | 42       |   |
| 12664              | T (°C)                                     | Broke     | 42.00                                                                                | 1.00        | 22,26      | 14.4        | Sich            | 0.28         | 45.00      | 13.00 CE 1        | 22,5     |   |
|                    | Hd                                         | 9,1       |                                                                                      | 95          | م و        |             | 6/5             |              | 7:7        |                   | 48       |   |
|                    | DO (mg/L)                                  | 1,8       |                                                                                      | ~~<br>%     |            |             | 1′8             |              | 4.8        |                   | 49       |   |
|                    | Conductivity                               | ×         | ×                                                                                    | 200         | ×          | ×           | ×               | ×            | ×          | ×                 | 230      |   |
| 12665              | T (°C)                                     |           |                                                                                      |             |            |             |                 |              |            |                   | 23.0     |   |
|                    | Hď                                         | 79        |                                                                                      | 6,          |            |             | 6't             |              | 7.6        |                   | 7.8      |   |
|                    | DO (mg/L)                                  | 138       |                                                                                      | 2.8         |            |             | 8,2             |              | 8.0        |                   | 57       |   |
|                    | Conductivity                               | ×         | ×                                                                                    | or C        | ×          | ×           | ×               | ×            | ×          | ×                 | 240      |   |
| 12666              | T (°C)                                     |           |                                                                                      |             |            |             |                 |              |            |                   | 22,5     |   |
|                    | Hd                                         | 2,        |                                                                                      | 7.8         |            |             | 8<br>7<br>8     |              | 7-6        |                   | 24       | ' |
|                    | DO (mg/L)                                  | 79        |                                                                                      | 62.         |            |             | 6,8             |              | 42         |                   | 35       |   |
|                    | Conductivity                               | ×         | ×                                                                                    | 970         | ×          | ×           | ×               | ×            | ×          | ×                 | 290      |   |
| 12668              | T (°C)                                     |           |                                                                                      |             |            |             |                 |              |            |                   | 325      |   |
|                    | Hd                                         | 9.        |                                                                                      | 9.7         |            |             | 8'£             |              | 7.6        |                   | 7.7      |   |
|                    | DO (mg/L)                                  | 6-2       |                                                                                      | 79          |            |             | 8,3             |              | 1.1        |                   | 7,5      |   |
|                    | Conductivity                               | ×         | ×                                                                                    | 24.0        | ×          | ×           | ×               | ×            | ×          | ×                 | 290      |   |
|                    | Init./Date (1999):                         | 11/24     | 11/PF                                                                                | 11/26       | Bhì        | 17488       | 62/F1           | 08/11        | 12/1       | 13/6              | 123G     | ` |
| Comments: Measured | Comments: Measured temperature is a measur | rement of | ement of drepresentative beaker placed within the test array for this testing group. | ntative bea | aker place | d within th | e test arra     | y for this t | esting gro | np.               |          |   |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 21, 28, 35, and end of test.

Review: Date: 16/64/69
haenvchr.doc Date: 16/64/69
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Amphipod (Hyalella azteca) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

|        |                    |       |       |        |       | <b>P</b> |     | yais           |                                                                    |      |              |
|--------|--------------------|-------|-------|--------|-------|----------|-----|----------------|--------------------------------------------------------------------|------|--------------|
| Sample | Parameter          | 33    | 34    | 35     | 36    | 37       | 38  | 39             | 9                                                                  | 14   | 42           |
| 12671  | T (°C)             |       |       |        |       |          |     |                |                                                                    |      | 22.5         |
|        | Hď                 | P.(   |       | 79     |       |          | 4   |                | 7                                                                  |      | 4            |
|        | DO (mg/L)          | 300   |       | 9.(    |       |          | 8(3 |                | 4.4                                                                |      | 43           |
|        | Conductivity       | ×     | ×     | 7,8 7. | ×     | ×        | ×   | ×              | ×                                                                  | ×    | 188          |
|        | 1 (°C)             |       |       |        |       |          |     |                |                                                                    |      | -            |
|        | Hď                 |       |       |        |       | :        |     | \              |                                                                    |      |              |
|        | DO (mg/L)          |       | :     |        | •     |          |     |                |                                                                    |      |              |
|        | Conductivity       | ×     | ×     |        | × \   | *        | ×   | ×              | ×                                                                  | ×    |              |
|        | T (°C)             |       |       |        |       |          |     |                |                                                                    |      |              |
|        | Hď                 |       |       | ,      | ·     |          |     |                |                                                                    |      |              |
|        | DO (mg/L)          |       | /     |        |       |          |     | !              |                                                                    |      |              |
|        | Conductivity       | ×     | ×     |        | ×     | ×        | ×   | ×              | ×                                                                  | ×    |              |
|        | T (°C)             |       |       |        |       |          |     |                |                                                                    |      |              |
|        | , KQ               |       |       |        |       |          | :   |                |                                                                    |      |              |
|        | (J/Bm) Qa          | 1     |       |        |       |          |     | 1              |                                                                    |      |              |
|        | Conductivity       | ×     | ×     |        | ×     | ×        | ×   | †<br><b>:×</b> | ×                                                                  | ×    | <u> </u><br> |
|        | Init./Date (1999): | 11/24 | 13/25 | 11/26  | 11/27 | 11/28    | 27  | F. F.          | 125<br>255<br>255<br>255<br>255<br>255<br>255<br>255<br>255<br>255 | 1288 | Jags<br>Page |

Review: haenvohr.doc haenvohr.doc Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

( ) Date: 12/22/99

### ALKALINITY AND HARDNESS

| Sample<br>Number | Date        | Alkalinity<br>Volume<br>(mls) |      | Final<br>Titrant | Alkalinity<br>(mg/l) | Hardness<br>Volume<br>(mls) |             | Final<br>Titrant | Hardness<br>(mg/l) |
|------------------|-------------|-------------------------------|------|------------------|----------------------|-----------------------------|-------------|------------------|--------------------|
| 12546            |             |                               |      |                  |                      |                             |             |                  |                    |
|                  | 10/19/99    | 50                            | 0.2  | 2.3              | 42                   | 50                          | 0.1         | 11.6             | 230.0              |
|                  | 11/2/99     | 50                            | 29.1 | 31               | 38                   | 50                          | 36          | 42.7             | 134.0              |
|                  | 11/8/99     | 50                            | 22.9 | 24.4             | 30                   | 30                          | 37.8        | 41.1             | 110.0              |
|                  | 11/16/99    | 50                            | 18.3 | 20               | 34                   | 50                          | 27.1        | 32.2             | 102.0              |
| Avg              |             |                               |      |                  | 36.0                 |                             |             |                  | 144.0              |
| Min              |             |                               |      |                  | 30                   |                             |             |                  | 102                |
| Max              |             |                               |      |                  | 42                   |                             |             |                  | 230                |
| 12547            |             |                               |      |                  |                      |                             |             |                  |                    |
|                  | 10/19/99    | 50                            | 2.3  | 4.6              | 46                   | 30                          | 11.6        | 17.7             | 203.3              |
|                  | 11/2/99     | 50                            | 31   | 32.9             | 38                   | 50                          | 42.7        | 49.1             | 128.0              |
|                  | 11/8/99     | 50                            | 24.4 | 26               | 32                   | 30                          | 41.1        | 44.2             | 103.3              |
|                  | 11/16/99    | 50                            | 20   | 21.5             | 30                   | 50                          | 32.2        | 36.9             | 94.0               |
| Avg              |             |                               |      |                  | 36.5                 |                             |             |                  | 132.2              |
| Min              |             |                               |      |                  | 30                   |                             |             |                  | 94                 |
| Max              |             |                               |      |                  | 46                   |                             |             |                  | 203                |
| 12548            |             |                               |      |                  |                      |                             |             |                  |                    |
|                  | 10/19/99    | 50                            | 4.6  | 6.9              | 46                   | 50                          | 17.7        | 26.8             | 182.0              |
|                  | 11/2/99     | 50                            | 32.9 | 34.9             | 40                   | 50                          | 1.5         | 8.7              | 144.0              |
|                  | 11/8/99     | 50                            | 26   | 28               | 40                   | 30                          | 44.2        | 47.8             | 120.0              |
|                  | 11/16/99    | 50                            | 21.5 | 23.2             | 34                   | 50                          | 36.9        | 41.9             | 100.0              |
| Avg              |             |                               |      |                  | 40.0                 |                             |             |                  | 136.5              |
| Min              |             |                               |      |                  | 34                   |                             |             |                  | 100                |
| Max 12540        |             |                               |      |                  | 46                   |                             |             |                  | 182                |
| 12549            | - 10 - 1- 1 |                               |      |                  |                      |                             | <b>00</b> - | ac -             |                    |
|                  | 10/19/99    | 50                            | 6.9  | 9.1              | 44                   | 50                          | 26.8        | 36.7             | 198.0              |
|                  | 11/2/99     | 50                            | 34.9 | 37               | 42                   | 50                          | 8.7         | 15.9             | 144.0              |

| Sample<br>Number | Date             | Alkalinity<br>Volume<br>(mls) |            | Final<br>Titrant | -            | Hardness<br>Volume<br>(mls) |             | Final<br>Titrant | Hardness<br>(mg/l) |
|------------------|------------------|-------------------------------|------------|------------------|--------------|-----------------------------|-------------|------------------|--------------------|
|                  | 11/8/99          | 50                            | 29 5       | 31 3             | 34           | 30                          | 37          | 7                | 110.0              |
|                  | 11/16/99         | 50                            | 23 2       | 24 7             | 30           | 50                          | 4; ç        | <b>46</b> 6      | 94 0               |
| Avg              |                  |                               |            |                  | 37.5         |                             |             |                  | 136.5              |
| Min              |                  |                               |            |                  | 32           |                             |             |                  | 94                 |
| Max              |                  |                               |            |                  | 24           |                             |             |                  | 198                |
| 12550            |                  |                               |            |                  |              |                             |             |                  |                    |
|                  | 10/19/99         | 50                            | <b>9</b> : | 11 2             | 42           | 50                          | <b>35</b> 7 | 45.7             | 180.0              |
|                  | 11/2/99          | 50                            | 37         | 38 9             | 35           | 50                          | 15.9        | 23               | 142.0              |
|                  | 11/8/99          | 50                            | 31 3       | 33               | 34           | 30                          | -           | 18.5             | 116 7              |
|                  | 11/16/99         | 50                            | 24 -       | 26 2             | 30           | 50                          | €3          | 52               | 98 0               |
| Avg              |                  |                               |            |                  | 36 C         |                             |             |                  | 134.2              |
| Min              |                  |                               |            |                  | 35           |                             |             |                  | 39                 |
| Max              |                  |                               |            |                  | 42           |                             |             |                  | 180                |
| 12551            |                  |                               |            |                  |              |                             |             |                  |                    |
|                  | 10/19/99         | 5C                            | 11.2       | •34              | 24           | 50                          | D *         | g                | 178.0              |
|                  | 11/2/99          | 50                            | 38 9       | 40.8             | 38           | <del>5</del> 0              | 23          | 30 3             | 146.0              |
|                  | 11/8/99          | 50                            | 34 -       | 36 6             | 38           | 30                          | 14.5        | 18.5             | 133 3              |
|                  | 11'1 <b>6/99</b> | 50                            | 25 2       | 27.8             | 32           | 50                          | 5 2         | 194              | 104.0              |
| Avg              |                  |                               |            |                  | 3 <b>8</b> D |                             |             |                  | 140.3              |
| Min              |                  |                               |            |                  | 32           |                             |             |                  | 104                |
| Max              |                  |                               |            |                  | 22           |                             |             |                  | 178                |
| 12552            |                  |                               |            |                  |              |                             |             |                  |                    |
|                  | 10/19/99         | 5C                            | 13.4       | -5 9             | 50           | 50                          | g.          | 19 6             | 212 0              |
|                  | 11/2/99          | <b>5</b> C                    | 40 8       | 424              | 32           | 50                          | 30 3        | <b>3</b> 6 9     | 132.0              |
|                  | 11/8/99          | 5C                            | 38 2       | 39 8             | 32           | 30                          | 21 8        | 25 2             | 1133               |
|                  | 11/16/99         | 50                            | 27 8       | 29 2             | 28           | 50                          | 104         | 148              | 88.0               |
| Avg              |                  |                               |            |                  | 35 5         |                             |             |                  | 136 3              |
| Min              |                  |                               |            |                  | 28           |                             |             |                  | 88                 |
| Max              |                  |                               |            |                  | 50           |                             |             |                  | 212                |

| 11/3/99 50 11.4 13.3 38 50 38.6 45.5 11 11/9/99 50 32.3 33.9 32 50 17 23.1 11 11/17/99 50 36.3 38.1 36 30 42.9 46.4 1  Avg                                                                                                                                                                                                                                                                                                                         | Sample<br>Number | Date     | Alkalinity<br>Volume<br>(mls) |      | Final<br>Titrant | -    | Hardness<br>Volume<br>(mls) |      | Final<br>Titrant | Hardness<br>(mg/l) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|-------------------------------|------|------------------|------|-----------------------------|------|------------------|--------------------|
| 11/3/99 50 11.4 13.3 38 50 38.6 45.5 11.1/9/99 50 32.3 33.9 32 50 17 23.1 11.1  Avg                                                                                                                                                                                                                                                                                                                                                                | 12589            |          |                               |      |                  |      |                             |      |                  |                    |
| Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 10/20/99 | 50                            | 22.5 | 24.3             | 36   | 50                          | 14.8 | 20.6             | 116.0              |
| Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 11/3/99  | 50                            | 11.4 | 13.3             | 38   | 50                          | 38.6 | 45.5             | 138.0              |
| Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 11/9/99  | 50                            | 32.3 |                  | 32   | 50                          | 17   | 23.1             | 122.0              |
| Min Max 32 38 7  12590  10/20/99 50 24.3 26.1 36 50 20.6 26.6 13  11/3/99 50 13.3 15.1 36 50 0.3 7 13  11/9/99 50 33.9 35.3 28 50 23.1 28.8 1  11/17/99 50 38.1 41.1 60 30 0 33 0 3 3 1  Avg Min 28 70  Max 60 70  10/20/99 50 26.1 27.7 32 40 26.6 35 22  11/3/99 50 15.1 16.6 30 50 7 13.9 13  Avg Min 30 7 13.9 13  Avg Min 30 7 13.9 13  Avg Min 30 7 13.9 13  Avg Min 30 7 13.9 13  Avg Min 30 7 13.9 13  Avg Min 30 7 13.9 13                |                  | 11/17/99 | 50                            | 36.3 | 38.1             | 36   | 30                          | 42.9 | 46.4             | 116.7              |
| Max  12590  10/20/99 50 24.3 26.1 36 50 20.6 26.6 11  11/3/99 50 13.3 15.1 36 50 23.1 28.8 1  11/9/99 50 38.1 41.1 60 30 0 3.3 7  11/17/99 50 38.1 41.1 60 30 0 3.3 1  Avg  Min  Max  60  12591  10/20/99 50 26.1 27.7 32 40 26.6 35 2  11/3/99 50 15.1 16.6 30 50 7 13.9 13  Avg  Min  Max  28  12592  10/20/99 50 27.7 29.4 34 20 35 37.3 1  11/3/99 50 16.6 18.5 38 50 13.9 20.9 1  11/3/99 50 35.3 36.7 28 50 28.8 34.3 1                      | Avg              |          |                               |      |                  | 35.5 |                             |      |                  | 123.2              |
| 10/20/99 50 24.3 26.1 36 50 20.6 26.6 11: 11/3/99 50 13.3 15.1 36 50 0.3 7 13: 11/9/99 50 33.9 35.3 28 50 23.1 28.8 1 11/17/99 50 38.1 41.1 60 30 0 30 0 3.3 1  Avg                                                                                                                                                                                                                                                                                | Min              |          |                               |      |                  | 32   |                             |      |                  | 116                |
| 10/20/99 50 24.3 26.1 36 50 20.6 26.6 13 11/3/99 50 13.3 15.1 36 50 0.3 7 13 11/9/99 50 33.9 35.3 28 50 23.1 28.8 1 11/17/99 50 38.1 41.1 60 30 0 33 0 3 3 3 1  Avg 40.0 17  Min 28 10/20/99 50 26.1 27.7 32 40 26.6 35 2 11/3/99 50 15.1 16.6 30 50 7 13.9 13  Avg 31.0 7 13.9 13  Avg 31.0 7 13.9 13  Avg 31.0 7 13.9 13  Avg 31.0 7 13.9 13  Avg 31.0 7 13.9 13  Avg 31.0 7 13.9 13  Avg 31.0 7 13.9 13  Avg 31.0 7 13.9 13  Avg 31.0 7 13.9 13 | Max              |          |                               |      |                  | 38   |                             |      |                  | 138                |
| 11/3/99 50 13.3 15.1 36 50 0.3 7 13 11/9/99 50 33.9 35.3 28 50 23.1 28.8 1 11/17/99 50 38.1 41.1 60 30 0 3.3 1  Avg                                                                                                                                                                                                                                                                                                                                | 12590            |          |                               |      |                  |      |                             |      |                  |                    |
| 11/9/99 50 33.9 35.3 28 50 23.1 28.8 1 11/17/99 50 38.1 41.1 60 30 0 3.3 1  Avg                                                                                                                                                                                                                                                                                                                                                                    |                  | 10/20/99 | 50                            | 24.3 | 26.1             | 36   | 50                          | 20.6 | 26.6             | 120.0              |
| Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 11/3/99  | 50                            | 13.3 | 15.1             | 36   | 50                          | 0.3  | 7                | 134.0              |
| Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 11/9/99  | 50                            | 33.9 | 35.3             | 28   | 50                          | 23.1 | 28.8             | 114.0              |
| Min 28 12591  10/20/99 50 26.1 27.7 32 40 26.6 35 2 11/3/99 50 15.1 16.6 30 50 7 13.9 13  Avg 31.0 17  Min 30 17  Max 32 2 2  12592  10/20/99 50 27.7 29.4 34 20 35 37.3 1 11/3/99 50 16.6 18.5 38 50 13.9 20.9 11 11/9/99 50 35.3 36.7 28 50 28.8 34.3 1                                                                                                                                                                                          |                  | 11/17/99 | 50                            | 38.1 | 41.1             | 60   | 30                          | 0    | 3.3              | 110.0              |
| Max  12591  10/20/99 50 26.1 27.7 32 40 26.6 35 2  11/3/99 50 15.1 16.6 30 50 7 13.9 13  Avg  Min  Max  30  12592  10/20/99 50 27.7 29.4 34 20 35 37.3 1  11/3/99 50 16.6 18.5 38 50 13.9 20.9 1  11/9/99 50 35.3 36.7 28 50 28.8 34.3 1                                                                                                                                                                                                           | Avg              |          |                               |      |                  | 40.0 |                             |      |                  | 119.5              |
| 10/20/99 50 26.1 27.7 32 40 26.6 35 2 11/3/99 50 15.1 16.6 30 50 7 13.9 13  Avg Min Max 30 12592  10/20/99 50 27.7 29.4 34 20 35 37.3 1 11/3/99 50 16.6 18.5 38 50 13.9 20.9 11 11/9/99 50 35.3 36.7 28 50 28.8 34.3 1                                                                                                                                                                                                                             |                  |          |                               |      |                  | 28   |                             |      |                  | 110                |
| 10/20/99 50 26.1 27.7 32 40 26.6 35 2<br>11/3/99 50 15.1 16.6 30 50 7 13.9 13<br>Avg 31.0 17<br>Min 30 7<br>Max 32 2 2<br>12592  10/20/99 50 27.7 29.4 34 20 35 37.3 1<br>11/3/99 50 16.6 18.5 38 50 13.9 20.9 1<br>11/9/99 50 35.3 36.7 28 50 28.8 34.3 1                                                                                                                                                                                         |                  |          |                               |      |                  | 60   |                             |      |                  | 134                |
| Avg 31.0 50 7 13.9 13  Avg 31.0 7 13.9 17  Min 30 7 12592  10/20/99 50 27.7 29.4 34 20 35 37.3 1 11/3/99 50 16.6 18.5 38 50 13.9 20.9 1 11/9/99 50 35.3 36.7 28 50 28.8 34.3 1                                                                                                                                                                                                                                                                     | 12591            |          |                               |      |                  |      |                             |      |                  |                    |
| Avg 31.0 17  Min 30 71  Max 32 2  12592  10/20/99 50 27.7 29.4 34 20 35 37.3 1  11/3/99 50 16.6 18.5 38 50 13.9 20.9 1  11/9/99 50 35.3 36.7 28 50 28.8 34.3 1                                                                                                                                                                                                                                                                                     |                  | 10/20/99 | 50                            | 26.1 | 27.7             | 32   | 40                          | 26.6 | 35               | 210.0              |
| Min 30 17  Max 32 2  12592  10/20/99 50 27.7 29.4 34 20 35 37.3 1  11/3/99 50 16.6 18.5 38 50 13.9 20.9 1  11/9/99 50 35.3 36.7 28 50 28.8 34.3 1                                                                                                                                                                                                                                                                                                  |                  | 11/3/99  | 50                            | 15.1 | 16.6             | 30   | 50                          | 7    | 13.9             | 138.0              |
| Max     32       12592       10/20/99     50     27.7     29.4     34     20     35     37.3     1       11/3/99     50     16.6     18.5     38     50     13.9     20.9     1       11/9/99     50     35.3     36.7     28     50     28.8     34.3     1                                                                                                                                                                                       | Avg              |          |                               |      |                  | 31.0 |                             |      |                  | 174.0              |
| 12592       10/20/99     50     27.7     29.4     34     20     35     37.3     1       11/3/99     50     16.6     18.5     38     50     13.9     20.9     1       11/9/99     50     35.3     36.7     28     50     28.8     34.3     1                                                                                                                                                                                                        |                  |          |                               |      |                  |      |                             |      |                  | 138                |
| 10/20/99     50     27.7     29.4     34     20     35     37.3     1       11/3/99     50     16.6     18.5     38     50     13.9     20.9     1       11/9/99     50     35.3     36.7     28     50     28.8     34.3     1                                                                                                                                                                                                                    |                  |          |                               |      |                  | 32   |                             |      |                  | 210                |
| 11/3/99     50     16.6     18.5     38     50     13.9     20.9     1       11/9/99     50     35.3     36.7     28     50     28.8     34.3     1                                                                                                                                                                                                                                                                                                | 12592            |          |                               |      |                  |      |                             |      |                  |                    |
| 11/9/99 50 35.3 36.7 28 50 28.8 34.3 1                                                                                                                                                                                                                                                                                                                                                                                                             |                  | 10/20/99 | 50                            | 27.7 | 29.4             | 34   | 20                          | 35   | 37.3             | 115.0              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 11/3/99  | 50                            | 16.6 | 18.5             | 38   | 50                          | 13.9 | 20.9             | 140.0              |
| 11/17/99 50 41.1 42.8 34 30 3.3 6.7 1                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 11/9/99  | 50                            | 35.3 | 36.7             | 28   | 50                          | 28.8 | 34.3             | 110.0              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 11/17/99 | 50                            | 41.1 | 42.8             | 34   | 30                          | 3.3  | 6.7              | 113.3              |

| Sample<br>Number | Date     | Alkalinity<br>Volume<br>(mls) |                 | Final<br>Titrant | -          | Hardness<br>Volume<br>(mls) |             | Final<br>Titrant | Hardness<br>(mg/l) |
|------------------|----------|-------------------------------|-----------------|------------------|------------|-----------------------------|-------------|------------------|--------------------|
|                  |          |                               |                 |                  |            |                             |             |                  |                    |
| Avg              |          |                               |                 |                  | 33 5       |                             |             |                  | 119.6              |
| Min              |          |                               |                 |                  | 28         |                             |             |                  | 110                |
| Max<br>12593     |          |                               |                 |                  | 38         |                             |             |                  | 140                |
| 12273            | 10/20/99 | 25                            | 29 4            | 30 3             | 36         | 20                          | 37 3        | 40 1             | 140.0              |
|                  | 11/3/99  | 50                            | 18.5            | 20 1             | 32         | 40                          | 20 9        | 27               | 152.5              |
|                  | 11/9/99  | 5C                            | 36 <sup>-</sup> | 38 1             | 28         | 50                          | 34 3        | 40 5             | 124.0              |
|                  | 11/17/99 | 50                            | 42 8            | 44 5             | 34         | 30                          | <b>£</b> 7  | 10               | 110.0              |
| Avg              |          |                               |                 |                  | 32 5       |                             |             |                  | 131 6              |
| Min              |          |                               |                 |                  | 28         |                             |             |                  | 110                |
| Max              |          |                               |                 |                  | 3€         |                             |             |                  | 153                |
| 22609            |          |                               |                 |                  |            |                             |             |                  |                    |
|                  | 10/20/99 | 50                            | <b>3C</b> 3     | 32 3             | 40         | <b>3</b> D                  | 40 1        | 44.5             | 146 7              |
|                  | 11/3/99  | 50                            | 20 1            | 22 1             | 40         | 50                          | 27          | 34               | 140.0              |
|                  | 11/9/99  | 50                            | 38 1            | 39 9             | 36         | 50                          | 40.5        | 46 7             | 124.0              |
|                  | 11/17/99 | 50                            | 44 5            | 46 4             | 38         | 30                          | 19          | 13 4             | 113.3              |
| Avg              |          |                               |                 |                  | 38 5       |                             |             |                  | 131.0              |
| Min              |          |                               |                 |                  | 35         |                             |             |                  | 113                |
| Max              |          |                               |                 |                  | 43         |                             |             |                  | 147                |
| 32610            |          |                               |                 |                  |            |                             |             |                  |                    |
|                  | 10/20/99 | 50                            | 32 3            | 34 2             | 3.5        | 40                          | 0.2         | 6.7              | 162.5              |
|                  | 11/3/99  | 50                            | 22 1            | 24 1             | 40         | 50                          | 34          | 41.1             | 142.0              |
|                  | 11/9/99  | 50                            | 39 9            | 4. 2             | 32         | 50                          | 6.5         | 64               | 116.0              |
|                  | 11/17/99 | 5C                            | 46 4            | 48 2             | 36         | 30                          | 13.4        | 169              | 116.7              |
| Avg              |          |                               |                 |                  | 36 5       |                             |             |                  | 134 3              |
| Min              |          |                               |                 |                  | 32         |                             |             |                  | 116                |
| Max /26/1/       |          |                               |                 |                  | 4 <i>0</i> |                             |             |                  | 163                |
|                  | 10/21/99 | 50                            | 2.4             | 2 5              | 44         | 50                          | <b>15</b> 7 | 24 3             | 172.0              |

| Sample<br>Number | Date     | Alkalinity<br>Volume<br>(mls) |      | Final<br>Titrant | Alkalinity<br>(mg/l) | Hardness<br>Volume<br>(mls) |      | Final<br>Titrant | Hardness<br>(mg/l) |
|------------------|----------|-------------------------------|------|------------------|----------------------|-----------------------------|------|------------------|--------------------|
|                  | 11/10/99 | 50                            | 8.9  | 10.3             | 28                   | 50                          | 19 4 | 27.1             | 154.0              |
|                  | 11/18/99 | 50                            | 0.8  | 2.6              | 36                   | 50                          | 36.8 | 44.7             | 158.0              |
| Avg              |          |                               |      |                  | 36.0                 |                             |      |                  | 161.3              |
| Min              |          |                               |      |                  | 28                   |                             |      |                  | 154                |
| Max              |          |                               |      |                  | 44                   |                             |      |                  | 172                |
| 12612            |          |                               |      |                  |                      |                             |      |                  |                    |
|                  | 10/21/99 | 50                            | 2.6  | 4.5              | 38                   | 50                          | 24.3 | 32.4             | 162.0              |
|                  | 11/10/99 | 50                            | 10.3 | 11.8             | 30                   | 50                          | 27.1 | 34.2             | 142.0              |
|                  | 11/18/99 | 50                            | 2.6  | 4.2              | 32                   | 50                          | 0.2  | 7                | 136.0              |
| Avg              |          |                               |      |                  | 33.3                 |                             |      |                  | 146.7              |
| Min              |          |                               |      |                  | 30                   |                             |      |                  | 136                |
| Max              |          |                               |      |                  | 38                   |                             |      |                  | 162                |
| 12613            |          |                               |      |                  |                      |                             |      |                  |                    |
|                  | 10/21/99 | 50                            | 4.5  | 6.4              | 38                   | 50                          | 32.4 | 40.5             | 162.0              |
|                  | 11/10/99 | 50                            | 11.8 | 13.4             | 32                   | 50                          | 34.2 | 40.1             | 118.0              |
|                  | 11/18/99 | 50                            | 4.2  | 5.9              | 34                   | 50                          | 7    | 13.7             | 134.0              |
| Avg              |          |                               |      |                  | 34.7                 |                             |      |                  | 138.0              |
| Min              |          |                               |      |                  | 32                   |                             |      |                  | 118                |
| Max              |          |                               |      |                  | 38                   |                             |      |                  | 162                |
| 12614            |          |                               |      |                  |                      |                             |      |                  |                    |
|                  | 10/21/99 | 50                            | 6.4  | 8                | 32                   | 50                          | 0.1  | 8                | 158.0              |
|                  | 11/10/99 | 50                            | 13.4 | 14.4             | 20                   | 50                          | 40.1 | 47.6             | 150.0              |
|                  | 11/18/99 | 50                            | 5.9  | 7.9              | 40                   | 50                          | 13.7 | 21               | 146.0              |
| Avg              |          |                               |      |                  | 30.7                 |                             |      |                  | 151.3              |
| Min              |          |                               |      |                  | 20                   |                             |      |                  | 146                |
| Max              |          |                               |      |                  | 40                   |                             |      |                  | 158                |
| 12615            |          |                               |      |                  |                      |                             |      |                  |                    |
|                  | 10/20/99 | 50                            | 1.8  | 4.2              | 48                   | 40                          | 29.1 | 34.4             | 132.5              |
|                  | 11/3/99  | 50                            | 31.4 | 33.1             | 34                   | 50                          | 23.1 | 29.5             | 128.0              |

| Sample<br>Number | Date             | Alkalinity<br>Volume<br>(mls) |      | Final<br>Titrant | -    | Hardness<br>Volume<br>(mls) |      | Final<br>Titrant | Hardness<br>(mg l) |
|------------------|------------------|-------------------------------|------|------------------|------|-----------------------------|------|------------------|--------------------|
|                  | 11'9/99          | 50                            | 47.6 | 48 8             | 24   | 50                          | 33 3 | 38 8             | 110.0              |
|                  | 11/17/99         | 50                            | 0.6  | 2                | 28   | 30                          | 169  | 20.2             | 110.0              |
| Avg              |                  |                               |      |                  | 33 5 |                             |      |                  | 120 1              |
| Min              |                  |                               |      |                  | 24   |                             |      |                  | 110                |
| Max              |                  |                               |      |                  | 48   |                             |      |                  | :33                |
| 12622            |                  |                               |      |                  |      |                             |      |                  |                    |
|                  | 10/21/99         | 50                            | 5    | 10 2             | 44   | 50                          | £    | 17.5             | 192.0              |
|                  | 11/10/99         | <b>5</b> 0                    | 144  | :6               | 32   | 50                          | £ 3  | - 2              | 126.0              |
|                  | 11/1 <b>8/99</b> | 50                            | 7 9  | 9 3              | 28   | 50                          | 21   | 27 -             | 122 0              |
| Avg              |                  |                               |      |                  | 34 7 |                             |      |                  | 146 7              |
| Min              |                  |                               |      |                  | 28   |                             |      |                  | 122                |
| Max              |                  |                               |      |                  | 44   |                             |      |                  | 192                |
| 12638            |                  |                               |      |                  |      |                             |      |                  |                    |
|                  | 10/21/99         | 50                            | 10.2 | 12 1             | 38   | 50                          | 17.5 | 25 3             | 154.0              |
|                  | 11/10/99         | 50                            | • •  | 17.5             | 30   | 50                          | 7 2  | :4 6             | :48 C              |
|                  | 11/1 <b>8/99</b> | <b>5</b> C                    | 9.3  | 10.9             | 32   | 50                          | 27 - | 33 5             | 128.0              |
| Avg              |                  |                               |      |                  | 33 3 |                             |      |                  | 143 <b>3</b>       |
| Min              |                  |                               |      |                  | 30   |                             |      |                  | 128                |
| Max              |                  |                               |      |                  | 38   |                             |      |                  | 154                |
| 12639            |                  |                               |      |                  |      |                             |      |                  |                    |
|                  | 10/21/99         | 30                            | 12 1 | 13.2             | 37   | 20                          | 25 3 | 28.7             | 170 0              |
|                  | 11/10/99         | 50                            | 17.5 | 19 1             | 32   | 50                          | 14.5 | 22 4             | 156.0              |
|                  | 1.1/18/99        | 50                            | 10 9 | 12.5             | 34   | <b>5</b> 0                  | 33 5 | 40 5             | 140 0              |
| Avg              |                  |                               |      |                  | 34 2 |                             |      |                  | 155.3              |
| Min              |                  |                               |      |                  | 32   |                             |      |                  | 140                |
| Max              |                  |                               |      |                  | 37   |                             |      |                  | 170                |
| 12640            |                  |                               |      |                  |      |                             |      |                  |                    |
|                  | 10/21/99         | 50                            | 13.2 | 14 5             | 32   | 50                          | 28 7 | 37 E             | 182 0              |
|                  | 1.1.10/99        | 50                            | 19 1 | 20 4             | 26   | 50                          | 22 4 | 29               | 132 0              |

| Sample<br>Number | Date     | Alkalinity<br>Volume<br>(mls) |      | Final<br>Titrant | Alkalinity<br>(mg/l) | Hardness<br>Volume<br>(mls) |      | Final<br>Titrant | Hardness<br>(mg/l) |
|------------------|----------|-------------------------------|------|------------------|----------------------|-----------------------------|------|------------------|--------------------|
|                  | 11/18/99 | 50                            | 12.6 | 14.5             | 38                   | 50                          | 40.5 | 46.8             | 126.0              |
| Avg              |          |                               |      |                  | 32.0                 |                             |      |                  | 146.7              |
| Min              |          |                               |      |                  | 26                   |                             |      |                  | 126                |
| Max              |          |                               |      |                  | 38                   |                             |      |                  | 182                |
| 12641            |          |                               |      |                  |                      |                             |      |                  |                    |
|                  | 10/21/99 | 50                            | 14.8 | 16.9             | 42                   | 50                          | 37.8 | 46.5             | 174.0              |
|                  | 11/10/99 | 50                            | 20.4 | 22               | 32                   | 50                          | 29   | 36               | 140.0              |
|                  | 11/18/99 | 50                            | 14.5 | 16.2             | 34                   | 50                          | 0.4  | 7.3              | 138.0              |
| Avg              |          |                               |      |                  | 36.0                 |                             |      |                  | 150.7              |
| Min              |          |                               |      |                  | 32                   |                             |      |                  | 138                |
| Max              |          |                               |      |                  | 42                   |                             |      |                  | 174                |
| 12664            |          |                               |      |                  |                      |                             |      |                  |                    |
|                  | 10/22/99 | 50                            | 9.7  | 11.2             | 30                   | 50                          | 11.3 | 17.3             | 120.0              |
|                  | 11/5/99  | 50                            | 42.4 | 44.1             | 34                   | 50                          | 18.3 | 23.9             | 112.0              |
|                  | 11/11/99 | 50                            | 22   | 23.5             | 30                   | 50                          | 20.8 | 27.2             | 128.0              |
|                  | 11/19/99 | 50                            | 16.2 | 18.4             | 44                   | 50                          | 7.3  | 14.8             | 150.0              |
| Avg              |          |                               |      |                  | 34.5                 |                             |      |                  | 127.5              |
| Min              |          |                               |      |                  | 30                   |                             |      |                  | 112                |
| Max              |          |                               |      |                  | 44                   |                             |      |                  | 150                |
| 12665            |          |                               |      |                  |                      |                             |      |                  |                    |
|                  | 10/22/99 | 50                            | 11.2 | 13.1             | 38                   | 50                          | 17.3 | 22.8             | 110.0              |
|                  | 11/5/99  | 50                            | 44.1 | 46.1             | 40                   | 50                          | 23.9 | 30               | 122.0              |
|                  | 11/11/99 | 50                            | 23.5 | 25               | 30                   | 50                          | 27.2 | 33.4             | 124.0              |
|                  | 11/19/99 | 50                            | 18.4 | 20.2             | 36                   | 50                          | 14.8 | 22.5             | 154.0              |
| Avg              |          |                               |      |                  | 36.0                 |                             |      |                  | 127.5              |
| Min              |          |                               |      |                  | 30                   |                             |      |                  | 110                |
| Max              |          |                               |      |                  | 40                   |                             |      |                  | 154                |
| 12666            |          |                               |      |                  |                      |                             |      |                  |                    |
|                  | 10/22/99 | 50                            | 13.1 | 15               | 38                   | 50                          | 22.8 | 28.2             | 108.0              |

| Sample<br>Number | Date              | Alkalinity<br>Volume<br>(mls) |              | Final<br>Titrant | •          | Hardness<br>Volume<br>(mls) |      | Final<br>Titrant | Hardness<br>(mg/l) |
|------------------|-------------------|-------------------------------|--------------|------------------|------------|-----------------------------|------|------------------|--------------------|
|                  | 11/5/99           | 50                            | <b>4</b> 6 : | 47 9             | 36         | 50                          | D3   | 5 9              | 112 0              |
|                  | 11/11/99          | 50                            | 26.8         | 28 3             | 30         | 50                          | 40.8 | 46 S             | 122 0              |
|                  | 11/19/99          | 50                            | 22 •         | 24 1             | 40         | 50                          | 30.2 | 37 9             | 154.0              |
| Avg              |                   |                               |              |                  | 36 C       |                             |      |                  | 124 0              |
| Min              |                   |                               |              |                  | 3 <i>C</i> |                             |      |                  | 108                |
| Max              |                   |                               |              |                  | 45         |                             |      |                  | 154                |
| 12669            |                   |                               |              |                  |            |                             |      |                  |                    |
|                  | 10/22/99          | 50                            | •5           | 16 6             | 32         | 50                          | 2E 2 | 33.1             | 98.0               |
|                  | 11/5/99           | 5C                            | 4~ 9         | 49 5             | 32         | 50                          | 5 5  | 10.9             | 100 0              |
|                  | 11/11 <b>/99</b>  | <b>5</b> C                    | 25 3         | 29 4             | 22         | 50                          | 2.5  | 5.5              | 110.0              |
|                  | 1.1/1 <b>9/99</b> | <b>5</b> C                    | 24 *         | 25 €             | 30         | 50                          | 37.9 | 44 2             | 126.0              |
| Avg              |                   |                               |              |                  | 29 C       |                             |      |                  | 108.5              |
| Min              |                   |                               |              |                  | 22         |                             |      |                  | 98                 |
| Max<br>12671     |                   |                               |              |                  | 32         |                             |      |                  | 126                |
|                  | 10/22/99          | 50                            | 16.6         | .83              | 34         | 5C                          | 33 1 | 38               | 98.0               |
|                  | 11/5/99           | 50                            | z ·          | : 8              | 34         | 50                          | 10 5 | 7.7              | 122 0              |
|                  | 11/19/99          | 50                            | 27.3         | 25 .             | 3€         | 50                          | € E  | 14.8             | 156.0              |
| Avg              |                   |                               |              |                  | 34 7       |                             |      |                  | 125.3              |
| Min              |                   |                               |              |                  | 34         |                             |      |                  | 98                 |
| Max              |                   |                               |              |                  | 36         |                             |      |                  | 156                |

| Client: Manzy-Cura    | Project: | 99033 | BTR: | 3615 |
|-----------------------|----------|-------|------|------|
| Sample Description: ( | Day (    | 1019  |      |      |
|                       |          |       |      |      |

| Sample   Sample   Sample   Sample   Sample   Sample   Sample   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data   Data    |                        |             | · · · · · · · · · | A L 1/ A |          | <del></del> | <del></del> | 11400        | NECC                                   |          | Ī       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|-------------------|----------|----------|-------------|-------------|--------------|----------------------------------------|----------|---------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |             |                   |          |          |             |             |              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |          |         |
| ID   Date   Vol.   Vol.   Init.   Vol.   Vol.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init | Sample                 | Sample      |                   |          |          |             |             |              |                                        |          |         |
| 47 2.3 4.6 35M 11.6 17.7<br>48 4.6 6.9 50M 17.7 26.8<br>49 6.9 9 1 26.8 30.7<br>50 9 1 11.2 36.7 45.7<br>51 11.2 3.4 0.1 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |             | 70                |          |          |             | ¥01.        |              |                                        |          |         |
| 47 2.3 4.6 35M 11.6 17.7<br>48 4.6 6.9 50M 17.7 26.8<br>49 6.9 9 1 26.8 30.7<br>50 9 1 11.2 36.7 45.7<br>51 11.2 3.4 0.1 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12546                  | 10/19       | 5001              | 02       | 23       | 12/2 248    | Find        | 01           | 11.10                                  | 12/7 48  | 1=/2148 |
| 48 4.6 6.9 50m1 17.7 26.8<br>49 6.9 9 1 26.8 30.7<br>50 9 1 11.2 30.7 45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | <del></del> | 1                 | 23       | 77       | 1 (         |             | 11.10        |                                        | 1 1      | 1       |
| 50 9.1 11.2 30.7 45.7<br>51 11.2 B.4 0.1 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |             |                   | 410      | 109      |             |             |              |                                        |          |         |
| 50 9.1 11.2 30.7 45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 79                   |             |                   |          | 101      |             | DOING       |              | 207                                    |          |         |
| 51 11.2 3.4 0.1 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | 1           |                   |          | 71/2     |             |             |              | 157                                    |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   |          | 17.11    |             |             | 01           | 42                                     |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   |          |          |             |             | 0            | $\frac{1}{1}$                          |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>ا خوار بر</del> ا |             | <u> </u>          | 170,7    |          |             |             | 19.0         | 19.10                                  |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   | <u> </u> | <u> </u> | 1           |             | <u> </u>     | <u> </u>                               | <u>!</u> |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   | <u> </u> |          |             |             | <del> </del> | <u> </u>                               | 1        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   | 1        |          | <u> </u>    |             | <u> </u>     | <u> </u><br>                           | 1        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   |          |          | <u> </u>    |             | <u> </u>     | !                                      |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   | <u> </u> | <u> </u> |             |             | <u> </u>     | <u> </u>                               | 1        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   | <u> </u> | <u> </u> | <u> </u>    |             | 1            | 1                                      | 1        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             | <del></del>       |          |          |             |             | <u> </u>     | !                                      | <u> </u> |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   | <u> </u> |          |             |             | <u> </u>     | 1                                      | 1        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   | <br>     |          |             |             |              | <u> </u>                               | <u> </u> |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             | <del></del>       |          |          |             |             | <u> </u>     | !                                      | ļ        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   |          |          |             |             | 1            | <u> </u>                               | <u> </u> |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   |          |          |             |             | ļ            |                                        |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   |          |          | ,           |             | <u> </u>     |                                        |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   |          |          |             |             | <u> </u>     |                                        |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   |          |          |             |             | <u> </u>     | 1                                      | <u> </u> |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   |          | ļ        |             | -           | <u> </u>     | !                                      | ļ        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   |          |          |             |             |              | <u> </u>                               | <u> </u> |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   |          |          |             |             |              |                                        |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   |          |          |             |             |              |                                        |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   |          |          |             |             |              | <u> </u>                               | <u> </u> |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   |          |          |             |             |              |                                        |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   |          |          |             |             |              |                                        |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   |          |          |             |             |              |                                        |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   |          |          |             |             |              |                                        |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                   |          |          |             |             |              |                                        |          |         |

12/8/99

|   | Client       | : 1        | MUTT                                             | je Cu           | ra P                     | roject:                               | 990                 | 33             | BTR                      | Sou                      | est                       |                                                  |
|---|--------------|------------|--------------------------------------------------|-----------------|--------------------------|---------------------------------------|---------------------|----------------|--------------------------|--------------------------|---------------------------|--------------------------------------------------|
|   | Samp         | le         | Desc                                             | ription         | າ: 🗘                     | au 0                                  | Н                   | . <i>O</i> .   | 10/2                     | Δ_                       |                           |                                                  |
|   |              |            | ,                                                |                 |                          | $\mathcal{O}_{-}$                     | نزي                 | inoni C        |                          |                          | ·                         | l                                                |
|   |              |            |                                                  |                 |                          | LINITY                                |                     |                | HARD                     |                          |                           |                                                  |
|   | Sample<br>ID |            | mple<br>ate                                      | Sample<br>Vol.  | Titrant<br>Init.<br>Vol. | Titrant<br>Final<br>Vol.              | Analyst Date/ Init. | Sample<br>Vol. | Titrant<br>Init.<br>Vol. | Titrant<br>Final<br>Vol. | Analyst<br>Date!<br>Init. | Data<br>entered<br>Init.                         |
|   | 12589        | <i>i</i> : |                                                  | 5)ml            | 22.5                     | 24.3                                  | 12/8 45             | 50m            | 14.8                     | 20.6                     | GKY.                      | 13/8/5                                           |
| • | 90           |            | 1                                                |                 | 24.3                     | 26.1                                  |                     | -              | 20.0                     | 210.6                    |                           |                                                  |
| 1 | G            |            |                                                  |                 | 2-1                      | 27.7                                  |                     | HOM            | 26.6                     | 35.0                     |                           |                                                  |
| ' | 92           |            | 1-1                                              |                 | 27.7                     | 29.4                                  |                     | Zonl           | 35.Q                     | <u>37.3</u>              |                           |                                                  |
| • | 193          |            | -                                                | 25ml            | 294                      | <i>3</i> 0,3_                         |                     | 1 20 1         | 37.3                     | <u> 40.1</u>             |                           |                                                  |
| • | ialos 9      |            | -                                                | 50 ru           | 2.3                      | 32.3                                  |                     | 30m            | 40.1                     | 44.5                     |                           |                                                  |
| • | 410          |            |                                                  | <u> </u>        | 37.2                     | 312<br>358                            |                     | 40my           | 0.2                      | G. +                     |                           |                                                  |
|   | 1111         |            | <del>                                     </del> |                 | 35 8                     | 37 7<br>34 5                          | <del></del>         | 50ml           | 12.1                     | 12.1                     | <del> </del>              |                                                  |
|   | u/3          |            |                                                  |                 | 37.5                     | 30 2                                  | <del></del>         |                | 17.7                     | 236                      | <del></del>               |                                                  |
|   | أداني        | _          | <del></del> -                                    | <del></del>     | 0.1                      | 18                                    | <del></del>         |                | 236                      | 24.1                     | ì                         |                                                  |
| • | 115          |            | 1                                                |                 | 1.8                      | 4.2                                   | i                   | 40 m           | 24.1                     | 34,4                     |                           |                                                  |
|   | - 122        | -          |                                                  |                 | 4.2                      | [c.]                                  |                     | 50m            | 34.4                     | 39. F                    |                           |                                                  |
|   |              |            |                                                  |                 | ·                        | · · · · · · · · · · · · · · · · · · · |                     |                |                          |                          | <del></del>               |                                                  |
| ļ |              |            |                                                  |                 |                          |                                       |                     |                |                          |                          |                           |                                                  |
|   |              |            |                                                  |                 |                          | · · · · · · · · · · · · · · · · · · · |                     | i              |                          |                          |                           |                                                  |
|   |              |            |                                                  | · <del></del> - |                          |                                       |                     | <del></del>    |                          |                          | <del></del>               |                                                  |
|   | <del></del>  |            |                                                  |                 |                          |                                       |                     | ·              |                          |                          |                           |                                                  |
|   |              |            |                                                  |                 |                          |                                       |                     |                |                          | <del></del>              |                           | <del> </del>                                     |
|   |              |            |                                                  |                 |                          |                                       |                     |                | <del></del>              |                          |                           |                                                  |
|   |              |            |                                                  |                 |                          |                                       |                     |                |                          |                          |                           |                                                  |
|   |              |            |                                                  |                 |                          |                                       |                     |                |                          |                          |                           |                                                  |
|   |              |            |                                                  |                 |                          |                                       |                     |                | ··                       |                          |                           |                                                  |
|   |              |            |                                                  |                 |                          |                                       |                     | <b> </b>       |                          |                          |                           | L                                                |
|   |              |            |                                                  |                 |                          |                                       |                     | <u> </u>       | :                        |                          | <del></del>               |                                                  |
|   | <del></del>  | _          |                                                  |                 |                          | <del></del>                           |                     | <u> </u>       |                          |                          | <del></del>               |                                                  |
|   |              |            |                                                  |                 |                          | <del></del>                           |                     | <del> </del>   |                          |                          |                           | <del> </del>                                     |
|   |              |            |                                                  | <del></del> _   |                          |                                       |                     |                |                          |                          |                           | <del> </del>                                     |
|   |              | _          |                                                  |                 |                          |                                       |                     | <del> </del>   |                          |                          | <del></del>               | <del>                                     </del> |
|   |              |            |                                                  |                 | <u> </u>                 |                                       |                     |                | <del></del>              | <del></del>              | <del></del>               | <del> </del>                                     |
|   |              |            |                                                  |                 |                          |                                       |                     | <del></del>    |                          |                          |                           | ــــــــــــــــــــــــــــــــــــــ           |

| Client: Menae-Cura P    | i Ojeci. | 99033     | DIA. | J6 29 |
|-------------------------|----------|-----------|------|-------|
| Sample Description: (/) | au ()    | Ha. 10/21 |      |       |

|                     |         |          |                                                  | <u> </u>                                         |                                                  | <u> </u>                                         | •        |          |                                                  |          |
|---------------------|---------|----------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------|----------|--------------------------------------------------|----------|
|                     |         |          | ALKA                                             | LINITY                                           |                                                  |                                                  | HARD     | NESS     |                                                  |          |
|                     |         | Sample   | Titrant                                          | Titrant                                          | Analyst                                          | Sample                                           | Titrant  | Titrant  | Analyst                                          | Data     |
| Sample              | Sample  | Vol.     | Init.                                            | Final                                            | Date/                                            | Vol.                                             | Init.    | Final    | Date/                                            | entered  |
| ID                  | Date    | 50 1     | Vol.                                             | Vol.                                             | Init.                                            | <u> </u>                                         | Vol.     | Vol.     | Init.                                            | Init.    |
| 12/01/              | 10/21   | 50nJ     | 194                                              |                                                  | 12/218                                           | 50ml                                             | 15.7     | 243      | 12/1 48                                          | 12/21/48 |
| 1 12                | · }     |          | 12.6                                             | 14.5                                             | <del>!                                    </del> |                                                  | 243      | 32.4     |                                                  |          |
| 13                  |         |          | <u> 14.5                                    </u> | 10.4                                             |                                                  |                                                  | .32.4    | 40.5     | <u> </u>                                         |          |
| +14                 |         |          | 10.4                                             | <u> </u>                                         | <del> </del>                                     | <del>                                     </del> | Q.L      | 18.0     |                                                  |          |
| 12022               |         |          | 18.0                                             | 110.2                                            |                                                  |                                                  | (X.O)    | 17.6     |                                                  |          |
| <u>3</u> 8 <br>  39 |         |          | 10.2                                             | 112.1                                            |                                                  |                                                  | Pt.C     | 25.3     |                                                  |          |
|                     |         | 30m      | 13.1                                             | 113.2                                            | 1 1                                              | 20d                                              | 25.3     | 28.7     |                                                  |          |
| 140                 |         | 50mu     | 13.2                                             | 14.8                                             | <u>:                                    </u>     | 50m)                                             | 28.7     | 37.8     |                                                  |          |
| 7 41                | <i></i> |          | 14.8                                             | 1/6.7                                            | <u> </u>                                         | _ل_                                              | 378      | 46.5     | <u></u>                                          |          |
|                     |         |          | <u> </u>                                         | <u> </u>                                         | <u> </u>                                         |                                                  | <u> </u> | <u>i</u> |                                                  | <u> </u> |
|                     |         |          | <u> </u>                                         | <u> </u>                                         |                                                  |                                                  |          |          |                                                  |          |
|                     |         |          | 1                                                |                                                  |                                                  |                                                  | <u> </u> | <u> </u> |                                                  | <u> </u> |
|                     |         |          |                                                  | <u> </u>                                         | <u> </u>                                         |                                                  |          | <u> </u> | İ                                                |          |
|                     |         |          | <u> </u>                                         |                                                  | <u> </u>                                         |                                                  | <u> </u> | <u> </u> | <u> </u>                                         |          |
|                     |         |          |                                                  |                                                  | <u> </u>                                         |                                                  |          | <u> </u> |                                                  | <u> </u> |
|                     |         |          |                                                  | <u> </u>                                         |                                                  |                                                  |          | <u> </u> | <u> </u>                                         |          |
|                     |         |          | <u> </u>                                         |                                                  |                                                  | <u> </u>                                         | <u> </u> | !<br>!   | <u> </u>                                         |          |
|                     |         |          | <u> </u>                                         | <u> </u>                                         | <u> </u>                                         | <u> </u>                                         |          | <u>;</u> |                                                  | <u> </u> |
|                     |         |          | <u> </u>                                         | <u> </u>                                         | !                                                |                                                  |          | <u> </u> | <u> </u>                                         |          |
|                     |         |          | į                                                |                                                  | <u> </u>                                         | <u> </u>                                         | 1        | <u>!</u> | <u> </u>                                         | <u> </u> |
|                     |         |          | ]                                                | ]                                                |                                                  |                                                  |          |          |                                                  |          |
|                     |         |          |                                                  |                                                  | i<br>1                                           |                                                  |          | İ        |                                                  |          |
|                     |         |          |                                                  |                                                  | İ                                                |                                                  |          |          |                                                  |          |
|                     |         |          | į                                                |                                                  | [                                                |                                                  | ĺ        | !        |                                                  |          |
|                     |         |          |                                                  |                                                  | ì                                                |                                                  | 1        |          |                                                  |          |
|                     |         |          |                                                  |                                                  | ļ                                                |                                                  |          |          | !                                                |          |
|                     |         |          |                                                  | 1                                                | 1                                                |                                                  |          | į        | 1                                                |          |
|                     |         |          |                                                  | 1                                                |                                                  |                                                  |          | 1        |                                                  |          |
|                     |         |          | !                                                |                                                  | !                                                |                                                  |          | :        |                                                  |          |
|                     |         |          |                                                  |                                                  | į                                                |                                                  |          |          | !                                                |          |
|                     |         |          |                                                  | 1                                                | <del></del>                                      |                                                  | Ī        | 1        |                                                  | 1        |
|                     |         |          |                                                  | <del>                                     </del> |                                                  | T                                                | Ī        | 1        | <del>                                     </del> |          |
|                     |         | <u> </u> | <del> </del>                                     | <del></del>                                      |                                                  | <del></del>                                      |          |          | <del></del>                                      |          |

|        | Client          | · MENZ      | <u> </u>       | war                                           | roject:          | 7                                            | 1053           | BIK             | : 56             | wist             |                 |
|--------|-----------------|-------------|----------------|-----------------------------------------------|------------------|----------------------------------------------|----------------|-----------------|------------------|------------------|-----------------|
|        | Samp            | le Desc     | cription       | <u>1:                                    </u> | ny (             | <u>)                                    </u> |                |                 |                  |                  |                 |
|        |                 |             |                |                                               |                  |                                              |                |                 |                  |                  | ı               |
|        |                 |             |                |                                               | LINITY           |                                              |                |                 | NESS             |                  |                 |
|        | Sample          | Sample      | Sample<br>Vol. | Titrant<br>Init_                              | Titrant<br>Final | Analyst Date/                                | Sample<br>Vol. | Titrant<br>Init | Titrant<br>Final | Analyst<br>Date/ | Data<br>entered |
|        | ID              | Date        |                | Voi                                           | Vol.             | Init.                                        |                | Vol.            | Vol.             | Init.            | Init.           |
|        | :2005           | 10/21       | 50m            | is 1<br>7.6                                   | 7.6              | FES                                          | Don            | 0.5             | 6.1              | Blogg            | 448             |
|        | 121003          |             |                | 76                                            | 4.7              |                                              |                | 6.1             | 113              |                  | 1               |
| ,      |                 |             |                | 7.4                                           |                  |                                              | =-             | 712             | 1-10             |                  |                 |
| (      | ialeur-         | 10/22       | 50ml           | 97                                            | i1.2             | <u>عز ۽ چا</u>                               | 50ml           | <u>//.ᢒ</u>     | 73.8             | 12/5/45          |                 |
| ,i. )  | ايون<br>الانتار |             | <del>  </del>  |                                               | 13.1             |                                              | 5              | 17:3            | 28.2             |                  |                 |
| Ha }   | 7 5             |             |                | 131                                           | 166              |                                              |                | 28.2            | 33.1             |                  |                 |
| thronk | 15.00 %         | 1           |                | 16.6                                          | 18.3             |                                              |                | 33.1            | 38.0             |                  | 1               |
|        |                 |             |                |                                               |                  |                                              |                |                 |                  |                  |                 |
|        | ļ               |             |                |                                               |                  |                                              |                |                 |                  |                  |                 |
|        | :<br>           |             |                |                                               | ··               | <del></del>                                  | <del></del>    | <del></del>     |                  |                  |                 |
|        |                 |             | <del> </del>   |                                               |                  |                                              |                |                 |                  |                  |                 |
|        | <u> </u>        |             | ·              | .—                                            |                  |                                              |                |                 |                  |                  |                 |
|        |                 |             |                |                                               |                  |                                              |                |                 |                  |                  |                 |
|        |                 |             |                |                                               |                  |                                              | [              |                 |                  |                  |                 |
|        |                 | <del></del> |                | <del></del>                                   |                  |                                              |                |                 |                  |                  |                 |
|        |                 | <del></del> |                |                                               | <del></del>      |                                              | 1              |                 |                  |                  |                 |
|        | <del></del>     |             |                |                                               |                  |                                              | 1              |                 |                  |                  |                 |
|        |                 |             |                |                                               |                  | <u> </u>                                     | 1              |                 |                  |                  |                 |
|        | I               |             |                |                                               |                  |                                              |                |                 |                  |                  |                 |
|        | 1               |             |                |                                               |                  |                                              |                | ·               |                  |                  |                 |
|        |                 |             |                |                                               |                  |                                              | 1              |                 |                  |                  |                 |
|        |                 |             |                | ·                                             |                  |                                              | :              | <del></del>     |                  |                  |                 |
|        |                 | -           | <del></del>    | <del></del>                                   |                  |                                              | <del> </del>   | <del></del>     |                  |                  | <b></b>         |
|        |                 |             |                |                                               |                  |                                              |                |                 |                  |                  |                 |
|        |                 |             |                |                                               |                  |                                              |                |                 |                  |                  |                 |
|        |                 |             |                | <u> </u>                                      |                  | <del></del>                                  | <u> </u>       |                 |                  |                  | ļ               |
|        |                 |             |                | · <del>···</del>                              |                  |                                              | i              |                 |                  |                  | <b></b>         |
|        | L               |             |                |                                               |                  |                                              |                |                 |                  |                  | L               |

| Client: Menzie Cura. | Project: C | 79033 | BTR: | Several |
|----------------------|------------|-------|------|---------|
| Sample Description:  | Day 28     | H.a.  |      |         |

| 11.11.       |                                                  |             |               |               |                                                  |             |               |               |                |                  |
|--------------|--------------------------------------------------|-------------|---------------|---------------|--------------------------------------------------|-------------|---------------|---------------|----------------|------------------|
|              | elseate                                          |             | ALKA          | LINITY        |                                                  |             | HARD          | NESS          |                |                  |
|              |                                                  | Sample      | Titrant       | Titrant       | Analyst                                          | Sample      | Titrant       | Titrant       | Analyst        | Data             |
| Sample<br>ID | Sample<br>Date                                   | Vol.        | Init.<br>Vol. | Final<br>Vol. | Date/<br>Init.                                   | Vol.        | Init.<br>Vol. | Final<br>Vol. | Date/<br>Init. | entered<br>Init. |
|              | 1160%                                            | 50m l       | 18.3          | 20.0          | 12/8 2/8                                         | 50ml        | 27.           | <i>32.</i> Z  | 12/8/48        | 12/AB            |
| 1 47         |                                                  | 1           | 200           | 215           | 10 03                                            | 0114        | 32.2          | 36.9          | 10/9           | 10/140           |
| 48           | <del>                                     </del> | <del></del> | 215           | 23.2          | <del>                                     </del> |             | 30.9          | 41.9          |                | <del></del>      |
| 49           | 1                                                |             | 23.7          | 247           |                                                  |             | 41.9          | 40.6          |                |                  |
| 50           |                                                  |             | 24 7          | 210.2         |                                                  |             | 03            | 5.2           |                |                  |
| 51           |                                                  |             | 26.2          | 20.2          |                                                  |             | 5.2           | 10.4          |                | 1                |
| - 52         | 上                                                | 1           | 27.8          | 292           |                                                  |             | 10.4          | 14.8          |                | 1                |
|              |                                                  |             | <u> </u>      |               |                                                  |             |               |               |                |                  |
|              |                                                  |             |               |               |                                                  |             |               |               |                |                  |
|              |                                                  |             |               |               |                                                  |             |               |               |                |                  |
|              |                                                  |             |               |               |                                                  |             |               |               |                |                  |
|              |                                                  |             |               |               |                                                  |             |               |               |                |                  |
|              |                                                  |             |               |               |                                                  |             |               |               |                |                  |
|              |                                                  |             |               |               |                                                  |             |               |               |                |                  |
|              |                                                  |             |               |               |                                                  |             |               |               | ]              |                  |
|              |                                                  |             |               |               |                                                  |             |               |               |                |                  |
|              |                                                  |             |               |               |                                                  |             |               |               |                |                  |
|              |                                                  |             |               | ···           |                                                  |             |               |               |                |                  |
|              |                                                  | ·           |               | <u> </u>      |                                                  |             |               |               | ļ              |                  |
|              |                                                  |             |               |               |                                                  |             |               |               |                |                  |
|              |                                                  |             |               |               |                                                  |             |               |               |                |                  |
|              |                                                  |             |               |               |                                                  |             |               | ļ             |                |                  |
| ļ            |                                                  | <u>-</u> -  |               | <del></del>   | <u> </u>                                         | <u> </u>    | <u> </u>      | <del> </del>  | <u> </u>       |                  |
| <u> </u>     |                                                  |             |               |               | <u> </u>                                         | <del></del> |               | <del> </del>  | <del> </del>   |                  |
|              |                                                  | ·           |               | <u> </u>      | 1                                                |             | <del></del>   |               |                |                  |
| <b> </b>     |                                                  |             |               |               |                                                  | ļ           |               | 1             | 1              |                  |
| -            |                                                  |             |               |               |                                                  |             | <del> </del>  | <u> </u><br>  | <u> </u>       |                  |
| <b></b>      |                                                  |             |               |               |                                                  |             | <del> </del>  | <del> </del>  | <del> </del>   |                  |
| ļ            |                                                  |             |               |               |                                                  | <b>}</b>    | <del> </del>  | <del> </del>  |                |                  |
|              |                                                  |             |               |               |                                                  | <u> </u>    |               |               |                |                  |
| <b> </b>     |                                                  |             |               |               |                                                  | <b> </b>    | <del> </del>  | -             | <u> </u>       |                  |
| L            |                                                  |             |               | <u></u>       | <u> </u>                                         | <u></u>     |               |               | }              |                  |

| Client: Menzil Cura | Project: | 99033    | BTR:     | Several |  |
|---------------------|----------|----------|----------|---------|--|
| Sample Description: | Day 28   | Ha. + Ct | <u>-</u> |         |  |

|               |               |                | ALKA                     | LINITY                   |                           |                | HARD                     | NESS                     |                           |                          |
|---------------|---------------|----------------|--------------------------|--------------------------|---------------------------|----------------|--------------------------|--------------------------|---------------------------|--------------------------|
|               | ample<br>Date | Sample<br>Vol. | Titrant<br>Init.<br>Vol. | Titrant<br>Final<br>Vol. | Analyst<br>Date/<br>Init. | Sample<br>Vol. | Titrant<br>Init.<br>Vol. | Titrant<br>Final<br>Vol. | Analyst<br>Date/<br>Init. | Data<br>entered<br>Init. |
|               | 117           | 50ml           | 303                      |                          |                           | 30ml           |                          | 146.4                    |                           | 2012/8                   |
| 90            |               |                | 381                      | 41.1                     | 1                         | i              | 0.0                      | 3.3                      |                           | 170                      |
| 12            |               |                | i-                       | 42.8                     | :                         |                | 33                       | 10.7                     |                           |                          |
| 1 43          |               |                | 42.8                     | 44.5                     |                           |                | 6.7                      | 10.0                     |                           |                          |
| 126091        |               |                | 44.5                     | 46.4                     |                           |                | 10.0                     | 13.4                     |                           |                          |
| 10            |               |                | 404                      | 482                      | •                         |                | 13.4                     | 169                      |                           |                          |
| I (5)         | ユ             |                | 0.6                      | 2.0                      |                           |                | 10.9                     | 20.2                     | 1                         |                          |
| 1             |               |                |                          |                          |                           |                |                          |                          |                           |                          |
|               | 17            | 50ml           | <u>2.5</u>               | 3.6                      | 113278                    | 30ml           | 202                      |                          | BLC Pi                    | lacksquare               |
| 112           | 1             | -              | 36                       | <u> 53</u>               | 1                         | <del></del>    | 23 C                     | 273                      | -                         |                          |
| 13            |               |                | 53<br>69                 | 53                       |                           |                | 27.3                     | 31.4                     |                           | <del>-  </del>           |
| 14            | +             |                |                          |                          | <u> </u>                  | <b>├</b> }     | 31.4                     | 34.7                     | _                         |                          |
| <u> 1 22 </u> |               |                | 85                       | <i>1</i> 0.1             |                           |                | 34.7                     | 37.8                     | +-                        |                          |
| - <u> </u>    |               |                |                          |                          | <u> </u>                  |                | :                        | <del></del>              | <u> </u>                  | <u> </u>                 |
|               |               |                |                          |                          |                           |                |                          | ·                        |                           |                          |
|               |               |                |                          |                          |                           |                | •                        |                          |                           |                          |
|               |               |                |                          |                          |                           |                | <u>:</u>                 |                          |                           |                          |
|               |               | <del></del>    |                          |                          |                           |                | •                        |                          |                           |                          |
|               |               | :              |                          |                          |                           |                |                          | <del></del>              |                           |                          |
|               |               |                |                          |                          | 1                         |                |                          |                          |                           |                          |
|               |               |                |                          |                          |                           |                |                          |                          |                           |                          |
|               |               |                |                          |                          |                           |                |                          |                          |                           |                          |
| #<br>*        |               |                |                          |                          |                           |                |                          |                          |                           |                          |
| <u> </u>      |               |                |                          |                          |                           | -              |                          |                          |                           | ļ                        |
| <u> </u>      |               |                | <del></del>              |                          |                           |                |                          |                          |                           |                          |
|               |               |                |                          |                          |                           |                |                          |                          |                           | <b>-</b>                 |
|               |               |                | <u> </u>                 |                          |                           |                |                          | <del> </del>             |                           |                          |
|               |               | - :            | <del></del>              | <del> </del>             | ·                         |                | <u>-</u>                 |                          |                           |                          |
| - !           |               |                |                          |                          |                           |                |                          |                          |                           | <del> </del>             |
|               | <del></del>   |                | - 1                      |                          |                           |                |                          |                          |                           | <del> </del>             |

Client: Munzie Cura Project: 99030 BTR: Several Sample Description: Day 28

|      |                |                |               |     | ALKA                     | LINITY                   |                           |                                                  | HARD                                             | NESS                     |                                                  | 7                        |
|------|----------------|----------------|---------------|-----|--------------------------|--------------------------|---------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------|--------------------------------------------------|--------------------------|
|      | Sample<br>ID   | Sample<br>Date | Sam<br>Vo     |     | Titrant<br>Init.<br>Vol. | Titrant<br>Final<br>Vol. | Analyst<br>Date/<br>Init. | Sample<br>Vol.                                   | Titrant<br>Init.<br>Vol.                         | Titrant<br>Final<br>Vol. | Analys<br>Date/<br>Init.                         | Data<br>entered<br>Init. |
| H.a. | 12611          | 11/18          | 50 r          | ml  | 0.8                      | 2.6                      | 18 1120                   | 50ml                                             | 36.8                                             | 44,7                     | HOOL                                             |                          |
| (    | 121012         |                |               |     | 2.6                      | 4.2                      |                           | 1                                                | 0.2                                              | 7.0                      |                                                  |                          |
|      | 12613          |                |               |     | 4.2                      | 5.9                      |                           |                                                  | 7.0                                              | 13.7                     |                                                  | 1 1                      |
|      | 12614          |                | $\vdash$      |     | 5.9                      | 7.9                      |                           | <b> </b>                                         | 13.7                                             | 21.0                     |                                                  | 4-4-4                    |
|      | 12422          |                |               |     | 7.7                      | 109                      |                           | ╂{                                               | 21.0                                             | 27.1                     |                                                  | <del>       </del>       |
|      | 12638<br>12639 |                |               |     | 93                       | 12.6                     |                           | <del>                                     </del> | 27.1<br>33.5                                     | 335                      |                                                  | <del></del>              |
|      | 12640          | -              |               |     | 12.0                     | 145                      |                           | <del>                                     </del> | 40.5                                             | 46.8                     |                                                  | 1-1-1                    |
| \    | 12641          | 1              |               |     | 14.5                     | 16.2                     |                           |                                                  | 0.4                                              | 13                       |                                                  | 1-1-1                    |
|      | 12004          | 11/19          |               |     | 110.2                    | 18.4                     |                           |                                                  | 7.3                                              | 148                      |                                                  |                          |
|      | 12445          | 11/19          |               |     | 18.4                     | 20.2                     |                           |                                                  | 14,8                                             | 22.5                     |                                                  |                          |
| C.+  | 121115         | 11/18          |               |     | 20.2                     | 22.1                     |                           | <b> </b>                                         | 22.5                                             | 30.2                     |                                                  |                          |
| H.a. |                | 11/19          |               |     | 22.1                     | 24.1                     |                           | <del></del>                                      | 30.2                                             | ,37.9<br>44.2            |                                                  | 1-1                      |
|      | 12668          | 11/18          |               |     | 25.6                     | 25.60                    |                           | <del>                                     </del> | 37.9                                             | 6.8                      |                                                  |                          |
|      | 12671          | 1119           |               | - ' | 22 3                     | 291                      | 1                         | <del> </del>                                     | 6.8                                              | 14,6                     |                                                  | 1                        |
|      |                | <del></del>    |               |     |                          |                          |                           |                                                  |                                                  | 1.77.50                  |                                                  |                          |
|      |                |                |               |     |                          |                          |                           |                                                  |                                                  |                          |                                                  |                          |
|      |                |                |               |     | <u>-</u>                 |                          |                           |                                                  |                                                  |                          | ļ<br>—————                                       |                          |
|      |                |                |               |     | <u> </u>                 |                          | <br>                      |                                                  |                                                  | ·                        |                                                  |                          |
|      |                |                |               |     |                          |                          | <del></del>               | <del> </del>                                     |                                                  |                          |                                                  | +                        |
|      | <u>.</u>       |                | <del></del> _ |     |                          |                          |                           |                                                  |                                                  |                          |                                                  |                          |
| į    |                |                |               | 1   |                          |                          | <del></del>               |                                                  |                                                  |                          |                                                  |                          |
|      |                |                |               |     |                          |                          |                           |                                                  |                                                  |                          |                                                  |                          |
|      |                |                |               |     |                          |                          |                           | <b></b>                                          |                                                  | ļ                        |                                                  |                          |
|      | <u> </u>       |                |               | _   |                          |                          |                           | ļ                                                |                                                  | <del> </del>             |                                                  | _                        |
|      |                |                |               |     |                          | <del></del>              |                           |                                                  | <del> </del>                                     |                          | <u> </u>                                         |                          |
|      |                |                |               |     |                          |                          |                           | <del> </del>                                     | <del> </del>                                     |                          |                                                  |                          |
|      |                |                |               |     |                          |                          |                           | <del> </del>                                     | <del>                                     </del> |                          | <del>                                     </del> | 1                        |
| į    |                |                |               |     | •                        |                          |                           |                                                  |                                                  |                          |                                                  |                          |

| Sample Number | Client Sample<br>Identifier | Species |      | Date  |     | Ammonia<br>Concentration | on (mg/l) | - |
|---------------|-----------------------------|---------|------|-------|-----|--------------------------|-----------|---|
| 12546         | BTOX-C-1                    | НА      |      | 16/19 |     |                          | 14        |   |
| 12546         | BTOX-C-1                    | НА      |      | 11/16 |     |                          | 0.2       |   |
|               |                             | Avç     | 3.6  | Max   | 14  | <b>M</b> in 02           |           |   |
| 12547         | BTOX-C-2                    | IN      |      | 10/19 |     |                          | 62        |   |
| 1254          | BTOX-C-2                    | НА      |      | 11:16 |     |                          | D 7       |   |
|               |                             | Avg     | 3 45 | Max   | 6 2 | Min 07                   |           |   |
| 12548         | BTOX-C-3                    | IN      |      | 15 19 |     |                          | 4.5       |   |
| 12548         | STOX-C-3                    | HA      |      | 11.15 |     |                          | ₽ €       |   |
|               |                             | Avg     | 2 35 | Max   | 4 1 | Min CE                   |           |   |
| 12549         | ETOX-D-1                    | IN      |      | 10/19 |     |                          | 17        |   |
| 12549         | BTOX-D-1                    | HA      |      | 1776  |     |                          | τ         |   |
|               |                             | Avg     | C 85 | Max   | • 7 | Min D                    |           |   |
| 12550         | STOX-D-2                    | !N      |      | -2 19 |     |                          | 2 2       |   |
| 12550         | STOX-D-2                    | HA      |      | 11/16 |     |                          | ٥         |   |
|               |                             | Avç     | 11   | Max   | 2 2 | Mm. D                    |           |   |
| 12551         | STOX-D-3                    | IN      |      | 10119 |     |                          | 15        |   |
| 1255†         | STOX-D-3                    | НА      |      | 11.16 |     |                          | ξ         |   |
|               |                             | Avç     | 0 75 | Max   | 15  | Mm. D                    |           |   |
| -2552         | HA LCS                      | IN      |      | 15:19 |     |                          | <b>32</b> |   |
| 12552         | HA LCS                      | HA      |      | 11 16 |     |                          | Σ         |   |
|               |                             | Avg     | c:   | Max   | C 2 | Min D                    |           |   |
| 12589         | BTOX-B-1                    | на      |      | -526  |     |                          | DS        |   |

Page 1 of 4

| Sample Number | Client Sample<br>Identifier | Species |      | Date     | Ammonía<br>Concentrati | on (mg/l) |
|---------------|-----------------------------|---------|------|----------|------------------------|-----------|
| 12589         | BTOX-B-1                    | НА      |      | 11/17    |                        | 0.1       |
|               |                             | Avg:    | 0.35 | Max: 0.6 | Min: 0.1               |           |
| 12590         | BTOX-B-1(DUPE)              | НА      |      | 10/20    |                        | 0.3       |
| 12590         | BTOX-B-1(DUPE)              | НА      |      | 11/17    |                        | 0         |
|               |                             | Avg:    | 0.15 | Max: 0.3 | Min: 0                 |           |
| 12592         | BTOX-B-3                    | НА      |      | 11/17    |                        | 0         |
| 12592         | BTOX-B-3                    | НА      |      | 10/20    |                        | 0.7       |
|               |                             | Avg:    | 0.35 | Max: 0.7 | Min: 0                 |           |
| 12593         | втох-м                      | НА      |      | 10/20    |                        | 2         |
| 12593         | втох-м                      | НА      |      | 11/17    |                        | 0.1       |
|               |                             | Avg:    | 1.05 | Max: 2   | Min: 0.1               |           |
| 12609         | E-1 DEAD CREEK              | НА      |      | 11/17    |                        | 0.4       |
| 12609         | E-1 DEAD CREEK              | НА      |      | 10/20    |                        | 0         |
| •             |                             | Avg:    | 0.2  | Max: 0.4 | Min: 0                 |           |
| 12610         | E-2 DEAD CREEK              | НА      |      | 11/17    |                        | 0         |
| 12610         | E-2 DEAD CREEK              | НА      |      | 10/20    |                        | 1.4       |
|               |                             | Avg:    | 0.7  | Max: 1.4 | Min: 0                 |           |
| 12611         | E-3 DEAD CREEK              | НА      |      | 10/21    |                        | 2.2       |
| 12611         | E-3 DEAD CREEK              | НА      |      | 11/18    |                        | 0.1       |
|               |                             | Avg:    | 1.15 | Max: 2.2 | Min: 0.1               |           |
| 12612         | BP-1 BORROW PIT             | НА      |      | 11/18    |                        | 0.1       |
| 12612         | BP-1 BORROW PIT             | НА      |      | 10/21    |                        | 0.6       |

Page 2 of 4

| Sample Number  | Client Sample<br>Identifier | Species |      | Date  |     | Ammonia<br>Concentrati | on (mg/l) |
|----------------|-----------------------------|---------|------|-------|-----|------------------------|-----------|
|                |                             | Avg     | 0 35 | Max   | Dē  | Min D1                 |           |
| :2613          | BP-1(DUPE) BORRO            | на      |      | 10.21 |     |                        | C 6       |
| 12613          | BP-1(DUPE) BORRO            | H4      |      | ٠٠٠٤  |     |                        | D         |
|                |                             | Avg     | 23   | Max   | c e | Min. D                 |           |
| 12514          | BP-3 BORROW FIT             | НА      |      | 1021  |     |                        | 2.5       |
| 12514          | BP-3 BORROW PIT             | на      |      | 11.18 |     |                        | ε         |
|                |                             | Avg     | 24   | Max   | 2 8 | Min D                  |           |
| 12615          | HA-LCS                      | HA      |      | -0.20 |     |                        | 5.9       |
| 12615          | HA-LCS                      | ٦Å      |      | 11    |     |                        | ξ         |
|                |                             | Avç     | 0.05 | Max   | D 1 | Min D                  |           |
| 12622          | LCS                         | HA.     |      | 102:  |     |                        | 0.5       |
| : <b>2</b> 522 | LCS                         | АH      |      | 11/18 |     |                        | Ε         |
|                |                             | Avg     | 0.05 | Wax   | 5 1 | Min. C                 |           |
| 12538          | BP-2 BORROW P.7             | 4,4     |      |       |     |                        | £.        |
| *2638          | BP-2 BORROW P'T             | -iA     |      | 1021  |     |                        | E \$      |
|                |                             | Avg     | 0.5  | Max   | 0 9 | Mm: 0.1                |           |
| 12639          | F-1 DEAD CREEK-SE           | HA      |      | .021  |     |                        | ٤٦        |
| :2539          | F-1 DEAD CREEK-SE           | HA      |      | 11/18 |     |                        | ٥         |
|                |                             | Avg     | C 35 | Max   | 0.7 | Min D                  |           |
| 12540          | F-2 DEAD CREEK-SE           | H4      |      | 102*  |     |                        | z ·       |
| 12640          | F-2 DEAD CREEK-SE           | HA      |      | 11/18 |     |                        | 5 1       |

| Sample Number | Client Sample<br>Identifier | Species |      | Date     | Ammonia<br>Concentrati | on (mg/l) |
|---------------|-----------------------------|---------|------|----------|------------------------|-----------|
|               |                             | Avg:    | 0.1  | Max: 0.1 | Min: 0.1               |           |
| 12641         | F-3 DEAD CREEK-SE           | НА      |      | 11/18    |                        | 0.1       |
| 12641         | F-3 DEAD CREEK-SE           | HA      |      | 10/21    |                        | 2.1       |
|               |                             | Avg:    | 1.1  | Max: 2.1 | Min: 0.1               |           |
| 12664         | SEDIMENT; 2-1 GALL          | IN      |      | 10/22    |                        | 0         |
| 12664         | SEDIMENT; 2-1 GALL          | HA      |      | 11/19    |                        | 0         |
|               |                             | Avg:    | 0    | Max: 0   | Min: 0                 |           |
| 12665         | SEDIMENT; 2-1 GALL          | IN      |      | 10/22    |                        | 2.1       |
| 12665         | SEDIMENT; 2-1 GALL          | НА      |      | 11/19    |                        | 0.1       |
|               |                             | Avg:    | 1.1  | Max: 2.1 | Min: 0.1               |           |
| 12666         | SEDIMENT; 2-1 GALL          | НА      |      | 11/19    |                        | 0.3       |
| 12666         | SEDIMENT; 2-1 GALL          | IN      |      | 10/22    |                        | 1         |
|               |                             | Avg:    | 0.65 | Max: 1   | Min: 0.3               |           |
| 12668         | LCS: 10/8/99 @ : (SE        | IN      |      | 10/22    |                        | 0.1       |
| 12668         | LCS: 10/8/99 @ : (SE        | НА      |      | 11/19    |                        | 0         |
|               |                             | Avg:    | 0.05 | Max: 0.1 | Min: 0                 |           |
| 12671         | Ref2-2 Refference Bor       | НА      |      | 11/19    |                        | 0.1       |
| 12671         | Ref2-2 Refference Bor       | IN      |      | 10/22    |                        | 0.5       |
|               |                             | Avg:    | 0.3  | Max: 0.5 | Min: 0.1               |           |

**AMMONIA ANALYSIS** 

Client: Muzie-Cura Ct. Chronic

99033 BTR Number: <u>Screel</u>

| Sample<br>Date | Sample Description    | 10N<br>NaOH<br>(ml) | 50 rul<br>Sample<br>(ml) | Meter<br>Reading<br>NH <sub>2</sub> -N (ppm) |               |
|----------------|-----------------------|---------------------|--------------------------|----------------------------------------------|---------------|
|                | Calibration:          |                     | <u> </u>                 |                                              |               |
|                | 1 pom                 | /                   | /                        | 1.55                                         | ,             |
|                | 5 DUM                 | /                   |                          | 5.52                                         | SLOPE = -58.4 |
|                | 2 ppm EXT. STD.       | <u> </u>            | /_                       | 1.92                                         |               |
|                | O. Jupa               |                     |                          |                                              |               |
|                | Black (DI)            |                     |                          | L0.5                                         |               |
|                |                       |                     |                          |                                              |               |
| 11/29          | 12550   BTDX-D-2      | <u> </u>            |                          | 人0.5                                         |               |
| 11/29          | 12551 [310x-D-3]      |                     |                          | <0.5                                         |               |
| 11/29          | 17612 BP-1Barow P.H   | /                   |                          | 20.5                                         |               |
| 11/29          | 12613 B213 MEDITORIA  | E)\                 |                          | <u> </u>                                     | •             |
| <u> </u>       | 105 STD. cineck (0,5) | 1                   |                          | 0,491                                        | •,            |
|                | JG                    | <del></del>         |                          |                                              | _             |
| 11/29          | 12668 [ABOC-US]       |                     |                          | <u> 40.5</u>                                 |               |
| 12/9           | 12548[BDX-C-3]        | · /                 |                          | <0.5                                         | • }           |
| 12/13          | 12609 E-1 Dead Grux   |                     |                          | <u> </u>                                     | ·             |
|                | 0.5 STD. duck         | _/_                 | <u> </u>                 | 0.490                                        |               |
|                | Blank (DI)            |                     |                          | <u> </u>                                     | •             |
|                |                       |                     |                          |                                              | ;;<br>•       |
|                |                       |                     | <del></del>              |                                              | •             |
|                |                       |                     | <del> </del>             |                                              | •             |
|                |                       |                     | . <del>.</del>           |                                              |               |

| Analyst: | JG | Analysis Date: | 12/23/99      |  |
|----------|----|----------------|---------------|--|
|          |    | _              | <del></del> _ |  |

ammonia.lwp

|           |        |              |             |          |                          |                             | Absort            | pance                  | (µÀu) (                                 | E+06)                 |        |                |                |         | · · · · · · · · · · · · · · · · · · · |                |          |
|-----------|--------|--------------|-------------|----------|--------------------------|-----------------------------|-------------------|------------------------|-----------------------------------------|-----------------------|--------|----------------|----------------|---------|---------------------------------------|----------------|----------|
| -0.800    | -0,600 | -0.400       | -0.200      | 0.000    | 0.200                    | 0.400                       | 0.600             | 0.800                  | 1.000                                   | 1.200                 | 1.400  | 1.600          | 1.800          | 2.000   | 2.200                                 | 2.400          |          |
| >         |        |              |             |          |                          |                             |                   |                        |                                         |                       | •      |                |                |         |                                       |                |          |
|           |        |              | :           |          |                          |                             |                   |                        |                                         |                       |        |                |                | + Sync: | 10.004                                | s ·            |          |
|           |        |              |             | ·        | N<br>Carry               | over, 0.                    | 14776             | 1                      |                                         |                       |        | · <del>-</del> | <b>-</b>       | Sylic.  | 10.004                                | <u></u>        |          |
| :         |        | ·<br>• :     | 1 1         | 1        | arryo                    | ver: 0.0                    | 002375            | <b>1</b>               | 1                                       |                       | ;      |                |                |         |                                       |                |          |
| ת<br>20 – |        | <br>         |             |          | aselir                   | ne: -0.0                    | 01355             | 63 ¦                   |                                         |                       | · · ·  | <del>.</del>   | !<br>          |         | ·<br>                                 |                | ·        |
| 5  .      | <br>   |              | 1 1         | 1 . [    | . 11                     | ne: -D.0<br><u>0.0013</u> : |                   | 63 ;                   | 1 · · · · · · · · · · · · · · · · · · · | :                     |        | 1              |                | + +     | 1 1                                   | 1 :<br>:       |          |
|           |        |              | 1 1         |          | 201.0.                   | 0.0013                      | 3320              |                        |                                         | ===                   |        |                |                | ◆       | 10                                    | · .            | ' :      |
|           |        | <b>-</b> -   |             |          | Blank:                   | -0.008                      | 59676 T           |                        |                                         |                       |        |                |                |         |                                       | 1              |          |
|           |        |              |             |          | Baselin                  | ne: -0.0                    | 01355             | 63                     | ·                                       |                       |        |                |                | <br>    | 10.104                                |                |          |
| <u>}</u>  |        |              |             |          | <u></u>                  | 0.0078                      |                   |                        |                                         |                       |        |                |                | ICV:    | 10.1:04:                              | 3              |          |
| 3         |        |              |             |          | ICB: -                   | 0.0078                      | 8888              |                        | <del>-</del> → <sup>1</sup> N / 1 C     | CS: 5.2               | 5047   |                |                |         |                                       |                |          |
|           |        |              | 1 1         | 5        | +ω.<br>12 <del>0</del> 1 | 1 HA [                      | DAY10:            | 0.286                  | 5144                                    |                       |        |                |                |         | :                                     |                |          |
|           |        |              |             | ·-   E   | <del>-</del> -12         | 611 C                       | T-DAY             | 10: 0:7                | 59838                                   |                       |        | · ·            |                |         |                                       |                |          |
|           |        |              | · · · · · · | $\leq$   |                          | 12 HA                       |                   |                        |                                         |                       |        |                |                |         | •                                     |                |          |
| 1         | :      |              |             | _        | . ~                      | 12 CT I                     |                   |                        |                                         |                       |        |                |                |         |                                       | ·<br>. <b></b> |          |
| }<br>·    | ,      |              | ,           |          | > 128<br>> 128           | 13 HA 1<br>613 C1           | ΓDAY              | <del></del><br>10: 0.7 | 45184                                   |                       |        |                |                |         |                                       |                |          |
|           |        |              |             | $\geq$   |                          | NA HA I                     |                   |                        |                                         |                       |        |                | •              |         |                                       |                |          |
|           |        |              |             |          | <u> </u>                 | 1.2614                      | CT DA             | Y10:-1                 | .06771                                  |                       |        | - <b></b> -    |                |         |                                       |                | -,       |
|           |        |              | 1 :         | $\leq$   | N                        | 2 HA [                      |                   |                        |                                         |                       |        |                |                |         |                                       |                |          |
| )         |        |              |             | $\leq$   | 120                      | 622 CT                      | DAY1              | 0: 0.7                 |                                         | ა<br>2 <u>CV: 5</u>   | 4664   |                |                |         |                                       |                |          |
| )<br>·    |        |              |             |          | CCB: -                   | 0.0068                      | <br>34711         |                        |                                         | J_Q_VQ                | .=00=. | ÷              |                |         |                                       |                |          |
| •         |        |              |             | <b>*</b> | Baselin                  | e: -0.0<br>2638 H           | 01355             | 63                     |                                         |                       |        |                |                |         |                                       |                |          |
|           |        | <del>-</del> |             | [        |                          |                             |                   |                        |                                         |                       |        | . <b></b> .    |                |         | -,                                    |                | <u> </u> |
|           |        |              |             |          | <b>→</b> "               | 2638 C<br>639 H             |                   |                        |                                         | 5                     |        |                |                |         | •                                     |                | :        |
| <u>)</u>  |        |              | : 1         | 5        | _υ.                      | 9 CT E                      |                   |                        |                                         |                       |        |                |                |         |                                       |                |          |
| )<br>     |        |              |             | 7        | ·                        | D HA                        |                   |                        | <b></b>                                 |                       |        |                |                |         |                                       |                |          |
|           |        |              |             |          | 1264                     | OCRD                        | AY10:             | 0.301                  | 318                                     |                       |        |                |                |         |                                       |                |          |
|           |        | <del>-</del> |             | <        |                          | 926<br>326                  | 41 HA             | DAY1                   | 0: 1.72<br>0: 1.69                      | 2618                  |        |                | . <b></b>      |         |                                       |                |          |
|           |        |              | . '         |          | $ \ge $                  | - 4-                        | 6 10/19           |                        |                                         | ω                     |        |                |                |         |                                       |                |          |
| ა         |        |              |             |          |                          |                             |                   |                        |                                         |                       | 547 10 | 0/19: 6.       | 21668          | 8       |                                       |                |          |
| )<br>     |        |              | :           | بر -     | 9                        |                             |                   |                        |                                         | ŰCV:⁻5                | .3768: | 2              | . <b>.</b>     |         |                                       | - <b></b> -    |          |
|           |        |              |             |          |                          | 0.0017                      |                   | co ()                  |                                         |                       |        |                |                |         |                                       |                |          |
|           |        |              |             | ===      | aseiin                   | e: -0.0                     | 01355             | w                      | 2548 11                                 | 0/1 <del>/9</del> ∵-4 | 1291   | 1              | <b>.</b>       |         |                                       |                |          |
|           |        |              |             |          |                          | → <sup>0</sup>              | ₩9 10/            |                        |                                         |                       |        |                |                |         |                                       |                |          |
| s         |        |              |             | _        |                          | <u>→</u>                    | 12550             | 10/19:                 | 2.188                                   | 57                    |        |                |                |         |                                       |                |          |
| )<br>     |        |              |             |          | ū                        |                             | 54-1-0/1          |                        | 2039                                    |                       |        |                |                |         |                                       |                |          |
| ,         |        |              |             |          | 4                        | 10/19                       | :                 |                        | 1                                       |                       |        |                |                |         |                                       |                |          |
| •         |        |              |             |          | > 100                    | 589 10/<br>2590 10          | າສະບ.ເ<br>3/19:₋0 | .8350£                 | '<br>53                                 | , <u></u> -           |        |                | . <b></b>      |         |                                       |                |          |
|           |        | 7.           | '           |          |                          | 91 4 0/                     |                   |                        |                                         |                       |        |                |                |         |                                       |                |          |
| 1         |        |              |             |          | $\equiv$                 | 1259                        | 92 10%            | 19: 1.5                | 8542                                    |                       |        |                |                |         |                                       |                |          |
| }<br>·    |        |              |             |          |                          |                             | 12                | 2593 1                 | 0/1943                                  | 03686                 | 3      |                | <del>-</del> - |         |                                       | · · · · -      |          |
| >         |        |              |             | 4        |                          | 0.0006                      | 30303             |                        | , CC                                    | V: 5.0                | 2637   |                |                |         |                                       |                |          |
|           |        |              |             |          | Baselin                  | ie <del>: -0</del> :0       | 01355             | <del>63</del>          |                                         |                       |        |                |                | f       | <del>) () ()</del> ()                 | <del>7</del> 0 |          |



Feak Table: ammonia

File name: F:\FLOW\_4\102799D.RST Date: October 28, 1999 Operator: LKS 27

|    |          | 216            |          |                                           |          |         |              |
|----|----------|----------------|----------|-------------------------------------------|----------|---------|--------------|
| ak | Cup      | Name           | Type Dil | Wt                                        |          | Height  | Calc. (mg/L) |
| ī  | 2        | Sync           | SYNC     | 1                                         | 1        | 1828142 | 10.004595    |
| 2  | 0        | Carryover      | CO       | 1                                         | 1        | 27244   | 0.147761     |
| 3  | 0        | Carryover      | CO       | 1                                         | 1        | 682     | 0.002375     |
| В  | 0        | Baseline       | RВ       | 1                                         | 1        | 0       | -0.001356    |
| В  | 0        | Baseline       | RB       | 1                                         | 1        | 0       | -0.001356    |
| 6  | 1        | Cal 0          | С        | 1                                         | 1        | 495     | 0.001355     |
| 7  | 2        | Cal 1          | С        | 1                                         | 1        | 1827302 | 10.000000    |
| 8  | 0        | Blank          | Ū        | 1                                         | 1        | -843    | -0.005968    |
| В  | 0        | Baseline       | RB       | 1                                         | 1        | 0       | -0.001356    |
| 10 | 2        | ICV            | U        | l                                         | l        | 1846458 | 10.104847    |
| 11 | 1        | ICB            | U        | 1                                         | 1        | -1194   | -0.007889    |
| 12 | 3        | LCS            | Ū        | ī                                         | 1        | 959538  | 5.250472     |
| 13 | 31       | 12611 HA DAY10 | Ü        | <u>1</u>                                  | 1        | 52528   | 0.286144     |
| 14 | 32       | 12611 CT DAY10 | Ū        | 1                                         | 1        | 139074  | 0.759838     |
| 15 | 33       | 12612 HA DAY10 | Ü        | 1                                         | 1        | 104208  | 0.569004     |
| 16 | 34       | 12612 CT DAY10 | Ū        | 1                                         | 1        | 82175   | 0.448412     |
| 17 | 35       | 12613 HA DAY10 | Ū        | 1                                         | 1        | 76598   | 0.417885     |
| 18 | 36       | 12613 CT DAY10 | Ū        | 1                                         | 1        | 136397  | 0.745184     |
| 19 | 37       | 12614 HA DAY10 | Ū        | 1                                         | 1        | 78058   | 0.425879     |
| 20 | 38       | 12614 CT DAY10 | U        | 1                                         | <u> </u> | 195324  | 1.067707     |
| 21 | 39       | 12622 HA DAY10 | Ū ·      | 1                                         | l        | 60178   | 0.328016     |
| 22 | 40       | 12622 CT DAY10 | Ü        | 1                                         | 1        | 132205  | 0.722242     |
| 23 | 3        | CCV            | IJ ·     | <u>1</u>                                  | 1        | 998992  | 5.466417     |
|    | l        | CCB            | Ū        | 1                                         | 1        | -1003   | -0.006847    |
|    | 0        | Baseline       | RB       | <u>1</u>                                  | 1        | 0       | -0.001356    |
| 26 | 41       | 12638 HA DAY10 | Ū        | 1                                         | 1        | 168841  | 0.922760     |
| 27 | 42       | 12638 CT DAY10 | Ū        | 1                                         | 1        | 172681  | 0.943775     |
| 28 | 43       | 12639 HA DAY10 | Ū        | 1                                         | 1        | 146820  | 0.802235     |
| 29 | 44       | 12639 CT DAY10 | U        | 1                                         | 1        | 64895   | 0.353831     |
| 30 | 45       | 12640 HA DAY10 | U        | 1                                         | 1        | 76847   | 0.419249     |
| 31 | 46       | 12640 CT DAY10 | U        | 1                                         | ī        | 55300   | 0.301318     |
| 32 | 47       | 12641 HA DAY10 | U        | <u> </u>                                  | 1        | 315631  | 1.726184     |
| 33 | 48       | 12641 CT DAY10 | U        | 1                                         | 1        | 309039  | 1.690103     |
| 34 | 49       | 12546 10/19    | U        | 1                                         | 1        | 256130  | 1.400515     |
| 35 | 50       | 12547 10/19    | U        | 1                                         | 1        | 1136070 | 6.216682     |
| 36 | 3        | CCV            | U        | 1                                         | 1        | 982623  | 5.376822     |
| 37 | 1        | CCB            | U        | 1                                         | 1        | -81     | -0.001796    |
| В. | 0        | Baseline       | RB       | 1                                         | 1        | 0       | -0.001356    |
| 39 | 51       | 12548 10/19    | U        | 1                                         | 1<br>1   | 754658  | 4.129107     |
| 40 | 52       | 12549 10/19    | U<br>    | 1                                         | 7        | 304925  | 1.667588     |
| 41 | 53       | 12550 10/19    | Ŭ<br>    | 1                                         | 1        | 400111  | 2.188566     |
| 42 | 54       | 12551 10/19    | บ<br>    | 1                                         | 1        | 278030  | 1.520385     |
| 43 | 55       | 12552 10/19    | U        | Ţ                                         | 1        | 35264   | 0.191653     |
| 44 | 56       | 12589 10/19    | U        | <u>.</u>                                  | 1        | 119406  | 0.652191     |
| 45 | 57<br>50 | 12590 10/19    | U        | 7                                         | 1        | 152816  | 0.835053     |
| 46 | 58<br>50 | 12591 10/19    | U        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 1        | 96616   | 0.527453     |
| 47 | 59       | 12592 10/19    | U        | <u> </u>                                  | 1        | 289912  | 1.585416     |
| 48 | 60       | 12593 10/19    | U        | <u> </u>                                  | 1        | 555099  |              |
| 49 | 3        | CCV            | U        | 1                                         | 1        | 918593  | 5.026368     |
|    | 1<br>0   | CCB            | U        | 1                                         | 1        | 133     |              |
| -s | U        | Baseline       | RB       | 1                                         | 1        | 0       | -0.001356    |

Reak Table: ammonia

File name: E: FLOW\_4 102799E.RST Date: October 28, 1999 Operator: LKS

| Reak                                    | Cup                                     | Name                                                                                     | Type Dil                                  | W.t         | ;            | ieight                                                | Calc. (mg/L) |
|-----------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------|-------------|--------------|-------------------------------------------------------|--------------|
|                                         | 2                                       | Symp                                                                                     | SWC                                       | -           | •            | 1827617                                               | 10.001991    |
| -                                       | 3                                       | Carminar                                                                                 | 22.                                       | -           |              | 25041                                                 | 0.136264     |
| -                                       | ~                                       | Carryover                                                                                | CC<br>CC<br>R3                            | -           | -            | 756                                                   |              |
| <i>:</i>                                | -                                       | Carryover                                                                                |                                           | -           | _            | /35                                                   | 0.003350     |
| 3                                       | ₽.                                      | Baseline                                                                                 | 23                                        | _           | 1            | 5                                                     | -0.000789    |
| 3                                       | ٥                                       | Baseline                                                                                 | æ                                         | -           | -            | 9                                                     | -0.000789    |
| É                                       | 2000                                    | Cal C                                                                                    | 2                                         | -           | 2            | 288                                                   | 0.000787     |
| -                                       | 2                                       | Cal 1                                                                                    | 2                                         | <u>.</u>    | 1            | 1827253                                               | 10.000001    |
| 2                                       | -                                       | Blank                                                                                    | ••                                        | -           | -            | -47                                                   | -0.001044    |
| 2                                       | -                                       |                                                                                          | 22                                        | -           | -            | • •                                                   | -0.000789    |
|                                         | _                                       | Baseline 107 108 12809 10,19 12810 10/19 12811 10/20 12812 10/20 12813 10/20 12814 10/20 |                                           | -           | -            |                                                       |              |
|                                         | ۷                                       |                                                                                          |                                           | -           | <u>-</u>     | 1820698                                               | 9.964125     |
| ~ -                                     | 3                                       | ICB                                                                                      |                                           | -           | =            | 474                                                   | 0.001807     |
|                                         | 3                                       | LCS                                                                                      |                                           | -           | 2            | 946075                                                | 5.177200     |
| 1.3                                     | £l                                      | 12609 10,19                                                                              |                                           | -           | -            | 19572                                                 | 0.106333     |
| <u>: :</u>                              | 62                                      | 12610 10/19                                                                              | ••                                        | -           | -            | 214916                                                | 1.175473     |
|                                         | £3                                      | - 26                                                                                     | ·.                                        | -           | -            | 528736                                                | 2.893049     |
|                                         | 64                                      |                                                                                          |                                           | -           | -            | 113899                                                | 2.622594     |
| ~ :                                     | 5 =                                     | _25_2 4-                                                                                 | •                                         | -           | _            |                                                       | 0.022094     |
| -                                       | € 5                                     | 12513 11/45                                                                              | ~                                         | _           | _            | 143349                                                | 0.783781     |
| : <b>:</b>                              | € €                                     | 12614 10.20                                                                              | Ü                                         | =           | =            | 181478                                                | 0.992465     |
| . ;                                     | € -                                     | 12622 10 20                                                                              |                                           | -           | -            | 19245                                                 | 0.104540     |
|                                         | € €                                     | 12589 HA 10/20                                                                           |                                           |             | _            | 107284                                                | 0.586392     |
|                                         | £ 9                                     | 12622 10/20<br>12689 HA 10/20<br>12680 HA 10/20<br>12691 HA 10/20                        | ••                                        | -           | -            | 19245<br>107254<br>63518<br>62219                     | 0.346856     |
|                                         |                                         | 10201 22 10 01                                                                           |                                           | -           | =            | 20000                                                 | 0.339743     |
|                                         | -                                       |                                                                                          |                                           | -           | -            | 996983                                                |              |
| 4 J                                     | 3                                       | CC3<br>CC1                                                                               | -                                         | -           | -            |                                                       | 5.455823     |
| ÷ =                                     | -                                       | eus .                                                                                    | <u> </u>                                  | -           | _            | 91                                                    | -0.000289    |
| Ξ                                       | 2                                       | 水型552 HB 10/20                                                                           | RB 10 10 10 10 10 10 10 10 10 10 10 10 10 | -           | -            | <b>2</b>                                              | -0.000789    |
| 3.6                                     |                                         | 22 22 22                                                                                 |                                           | <u>-</u>    | <u>-</u>     | 133525                                                | 0.730012     |
| <u> </u>                                | 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12593 HA 10/20<br>12593 HA 10/20<br>12610 HA 10/20<br>12615 HA 10/20                     | -                                         | -           | <u>-</u>     | 367392                                                | 2.009997     |
| 2 €                                     | - 3                                     | 12609 HA 10, 20                                                                          | · •                                       | -           | •            | 2840                                                  | 0.014754     |
| 7.2                                     | - <u>·</u>                              | 12613 HA 10/20                                                                           | ••                                        | -           | -            | 256213                                                | 1,401440     |
|                                         | -=                                      | 12615 HA 10/20                                                                           |                                           | -           | -            | 15254                                                 | 0.082697     |
|                                         |                                         | 12513 FF 10, 20                                                                          | -                                         | -           | <del>-</del> | -3234                                                 |              |
| <i>:</i> -                              |                                         |                                                                                          | -                                         | _           | -            | 3156<br>1520                                          | 0.016483     |
| <i>:</i> ∠                              |                                         |                                                                                          | -                                         | _           | _            | _525                                                  | 0.082443     |
| ::                                      | T ê                                     | 12665 HA 10/20<br>12665 CT 10/20                                                         | Ü                                         | -           | _            | 327542                                                | 1.791890     |
| 34                                      | 7,9                                     | 12665 CT 10/20                                                                           | ÷                                         | <u>-</u>    | <u>-</u>     | 245075                                                | 1.340539     |
| 3.5                                     | £ 0                                     |                                                                                          | -                                         | -           | <u>-</u>     | 413889                                                | 2.264477     |
| 3 <b>5</b><br>3 <b>6</b>                | •                                       | CCT<br>CCB<br>Baseline                                                                   | • •                                       | -<br>-<br>- | -            | 996484                                                | 5.453096     |
|                                         | -                                       | 202                                                                                      |                                           | -           | -            | 423                                                   | 0.001527     |
| _                                       | -                                       |                                                                                          | -                                         | -           | -            | =23                                                   |              |
| = _                                     | -                                       | saseline                                                                                 | RB                                        | _           | -            |                                                       | -0.000789    |
| 5 E 5 C C C C C C C C C C C C C C C C C | 3.                                      | 12666 OT 10/20<br>12668 HA 10/20<br>12668 OT 10/20<br>12671 HA 11/20                     | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5     |             |              | 158879                                                | 0.868775     |
| <i>÷</i> :                              | 8.2                                     | 12668 HA 10/20<br>12668 CT 10/20<br>12671 HA 11 20                                       |                                           | -           | -            | 204837<br>204837<br>210728<br>24622<br>25832<br>20042 | 0.573209     |
| <u> </u>                                | 93                                      | 12868 OT 10/20                                                                           | ·-                                        | -           | -            | 110728                                                | 0.605241     |
| 42                                      | Ξ÷                                      | 12671 #3 11 21                                                                           | <u>:</u>                                  | -           |              | 34617                                                 | 0.198643     |
| 43                                      | 8.5                                     | 12671 CT 10 20                                                                           |                                           | -           |              | =====                                                 | 0.304911     |
| <br>                                    | 3                                       | CC:                                                                                      | ÷                                         | -           | -            |                                                       | 5.530580     |
|                                         | <i>:</i>                                |                                                                                          | -                                         | -           | -            |                                                       | 3.330380     |
| ÷ 5                                     | -                                       | 003                                                                                      |                                           | -           | _            | 5461                                                  | 0.034681     |
| 3                                       | ;                                       | Baseline                                                                                 | 23                                        | -           | 2            | 3                                                     | -0.000789    |

| Pesk     | C-5 | Flags |
|----------|-----|-------|
|          |     |       |
| -        | 2   |       |
| 2        | •   |       |
| <u>-</u> | -   |       |
| <u> </u> | ~   |       |
| -        | -   |       |



Beak Table: ammonia

| Pesk                                         | Cup                                     | Name                                                                                                     | Type Dil                  | Wit          | Height                               | Calc. (mg/L)       |
|----------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------|--------------|--------------------------------------|--------------------|
|                                              |                                         |                                                                                                          |                           |              |                                      |                    |
| •                                            | <del>;</del>                            | Symo                                                                                                     | SYNC 1                    |              | 1683774                              | 9.302330           |
| -                                            | Q 0 0                                   | Carryover                                                                                                | 21.,0                     | -            | 26092                                | 0.142000           |
| -                                            | -                                       | Carryover                                                                                                | 00 i<br>00 i              | -            | 362                                  | -0.000183          |
| <i>:</i>                                     | -                                       | - Carryover<br>- Baseline                                                                                | RB 1                      | <del>-</del> |                                      |                    |
| =                                            | -                                       |                                                                                                          |                           | -            | 0 0                                  | -0.002186          |
| 3                                            | 2                                       | Baseline                                                                                                 | <b>73</b> 1               |              |                                      | -0.002186          |
| É                                            | 1                                       | Cal 0                                                                                                    | - C                       | -            | 792                                  | 0.002186           |
| -                                            | 2                                       | Cal 1                                                                                                    | 2 1                       | 1            | 1810026                              |                    |
| 3                                            | 0.7100000000000000000000000000000000000 | Blank                                                                                                    | 0 1<br>0 2<br>7 1<br>RB 1 | •            | -2916                                | -0.01 <b>8</b> 301 |
| 3                                            | =                                       | Baseline                                                                                                 |                           | -            | ٤                                    | -0.002186          |
|                                              | 2                                       |                                                                                                          | : :                       | •            | 1814510                              | 10.024775          |
| - :                                          | -                                       | - 0=                                                                                                     |                           | -            | -1504                                | -0.010496          |
|                                              | -                                       | - 05                                                                                                     |                           | -            | 975757                               | 5.389835           |
| - <del>-</del>                               | ε.                                      | 103<br>103<br>105<br>12611 MA 10,21<br>12612 MA 10,21                                                    | · ·                       | -            | 32133                                | 2.159720           |
|                                              | 92                                      |                                                                                                          |                           | -            | 391235<br>111162<br>111998<br>131312 | 0.550753           |
| - <del>-</del>                               | <i>52</i>                               | _45_4                                                                                                    | -                         | -            |                                      |                    |
| - =                                          | 93                                      | 12613 FA 10-21                                                                                           | <del>-</del>              | -            | 1. 333                               | 0.594612           |
| <u> </u>                                     | 9 ÷                                     | 12614 HA 11-21                                                                                           | T 1                       | -            | 151312                               | 0.833909           |
|                                              | 95                                      | 12622 HA 10,21<br>12638 HA 10,21<br>12638 HA 10,21<br>12639 HA 10,21<br>12640 HA 10,21<br>12641 HA 10,21 | : :                       | <u>-</u>     | 16694                                | 0.090064           |
| <u>:                                    </u> | 5 €                                     | 12638 HA 10,21                                                                                           | <u>:</u> <u>:</u>         | 2            | 166854                               | 0.919846           |
| 13                                           | 9 -                                     | 12639 HA 10/21                                                                                           | : :                       | -            | 135945                               | 0.749046           |
| 3.1                                          | 9.8                                     | 12640 HA 10/21                                                                                           | :                         | -            | 25243                                | 0.137308           |
|                                              | 9.9                                     | 12641 HA 11 21                                                                                           | ·· ·                      | •            | 387277                               | 2.137903           |
| ; <del>;</del>                               |                                         | 19445 07 11 91                                                                                           |                           | -            | 387277<br>10124                      | 2.0537€0           |
| 23                                           | - :                                     | cc:                                                                                                      | <del>-</del> :            |              | 896232                               | 4.950380           |
|                                              | -                                       | 002                                                                                                      | : :                       | -            | -2020                                | -0.007825          |
| <u> </u>                                     | -                                       | Baseline                                                                                                 | :                         | -            |                                      |                    |
| = ,                                          | 99                                      | aaseline                                                                                                 |                           | -            |                                      | -0.002186          |
| 2 €                                          |                                         | 12668 13/21<br>12664 13/22                                                                               | -                         | -            | 11937                                | 0.063780           |
| 2 =                                          | 112                                     | 12664 10.22                                                                                              | 1                         | -            | 2525                                 | 0.011774           |
| 2 🗄                                          | 103                                     | 12665 10/22                                                                                              | <u>-</u>                  | -            | 377090                               | 2.081606           |
| 2.3                                          | 102                                     | 12665 10/22<br>12666 10/22                                                                               |                           | -            | 2526<br>377390<br>189860             | 1.846979           |
| 3:                                           | 115                                     | 12668 10/22                                                                                              | : :                       | <u>-</u>     | 11183                                | 0.054083           |
| 3:                                           | 106                                     | 12668 13/22<br>12671 13/22<br>CC7                                                                        | : :                       | -            | 96333                                | 0.530148           |
| 3.2                                          | 3                                       | cc:                                                                                                      | · ·                       | •            | 898288                               | 4.961744           |
| 33                                           | 3 .                                     | CCB                                                                                                      | ·                         | :            | -1026                                | -0.007857          |
| =                                            | -                                       | Baseline                                                                                                 | Ra :                      |              | ~ ~ ~                                | ~0.002186          |
| -                                            | -                                       | -6-5-1.5                                                                                                 | -                         | -            | -                                    | 70.002.00          |

| Peak           | Crb                                     | Flags          |
|----------------|-----------------------------------------|----------------|
|                |                                         |                |
|                | 2                                       |                |
| -              | •                                       |                |
| -              | -                                       |                |
| -              | -                                       | - ~            |
| <i>3</i>       | -                                       |                |
| =              | -                                       |                |
| =              | -                                       | = _            |
| =              | -                                       | 10<br>31<br>31 |
| _              | •                                       | =-             |
| £              | •                                       |                |
| •              | -                                       |                |
| -              | 2                                       |                |
| =              | -                                       |                |
| -              | -                                       | _~             |
| =              | -                                       | 10<br>31       |
| -              | -                                       |                |
|                | 2                                       |                |
| • •            | •                                       | 10             |
|                | -                                       |                |
| - 2            | 3                                       |                |
| · <del>-</del> | ٤٠                                      |                |
|                | - C                                     |                |
| 14             | (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) |                |
| · =            | 2.2                                     |                |
|                | <i>=</i> 3                              |                |

|               |             |           |                |         |                  |                 |                     | ,                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ance         | (μ. ισ,         | (                 | , ,    |           |       |         |               |        |          |                       |       |
|---------------|-------------|-----------|----------------|---------|------------------|-----------------|---------------------|---------------------------|-----------------------------------------|--------------|-----------------|-------------------|--------|-----------|-------|---------|---------------|--------|----------|-----------------------|-------|
| -0.           | -0.         | -<br>0. ( | -0 200         | -0.100  | 0.0              | 0. 1            | 0                   | 0.2                       | 0.2                                     | 0.0          | 0.6             | 0.7               | 0.8    | 0.9       | 1.0   | <u></u> | 7             | is     | <u>.</u> | <u> </u>              | 1.6   |
| -0:500        | -0.400      | .0.300    | 200            | 100     | 0.000            | 0.100           | 0.200               | 0.300                     | 0.400                                   | 0.500        | 0.600           | 0.700             | 0.800  | 0.900     | 1.000 | .100    | .200          | 300    | .400     | .500                  | 1.600 |
|               | <del></del> |           |                |         |                  |                 |                     |                           |                                         |              |                 |                   | -      |           |       |         |               |        |          |                       |       |
| 1             |             |           |                |         |                  | KT.             |                     |                           |                                         |              |                 |                   |        | ===       |       |         | → i<br>Syr    | nc: 10 | .2016    | S                     |       |
|               |             |           |                |         | -                | Çarry           | over:               | 0.03                      | 8449                                    | 6            |                 |                   |        |           |       |         | •             |        |          |                       |       |
|               |             |           |                |         | -                | Ģarry<br>Basel  | over:<br>line: (    | :0.00<br>:000.0           | 2345;<br>2994                           | 22<br>46     |                 |                   |        |           | ,     |         |               |        |          |                       |       |
|               |             |           |                |         |                  | Basel           | ine: 0              | 0.000                     | 2994                                    | 46           |                 |                   | -      |           |       | -       | •             |        |          | <b>-</b> . <b>-</b> . | •     |
|               |             |           |                |         |                  | Cal 0           | -0.0                | 0030                      | 045                                     |              |                 |                   |        |           | -     |         | • Z = 1       | 1: 10  |          |                       |       |
|               |             |           |                |         | •                | Blank           | c: 0.0              | 07614                     | 466                                     |              |                 |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  | Base            | line: (             | 2.000                     | 2994                                    | 46           |                 | <u>-</u>          |        |           |       |         | → <u>.</u> 6. |        | .3106    |                       |       |
|               |             |           | ·<br>          | <b></b> |                  | LEB:            | -0.00               | 6659                      |                                         |              |                 |                   |        | - <b></b> |       |         |               | V: 10  |          |                       |       |
| 5             |             |           |                |         |                  | ū               |                     |                           |                                         |              |                 | Lcs:              | 5.38   | 86        |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  |                 |                     | 11/10                     |                                         |              |                 |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         | -                |                 |                     | 11/10                     |                                         |              |                 |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  | <b>1</b> 2566   | 65 C1               | 11/1                      | ro: o.:                                 | 2099         | 7               |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  | 1 <b>7</b> 66   | 68.C.<br>4 HA       | T.11/:<br>11/1:           | 10:0.<br>1: 0.0                         | 2811<br>3993 | 07.<br>87       |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  | 1266            | 55,180              | 11/1                      | 1: 0.                                   | 15330        | 05              |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  | 1700            |                     | 666 H                     |                                         |              |                 | 80                |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  | 1267            | 6 ПА<br><u>1 НА</u> | 11/1                      | 1: 0.0<br>1: 0.0                        | 3230         | 36              | 23                |        |           |       |         |               |        |          |                       |       |
| }<br>·        |             |           |                |         | - 4              | <u> </u>        |                     |                           |                                         |              |                 |                   | 5.36   | 338 -     |       |         |               |        |          |                       |       |
| )             |             |           |                |         | -                | GCB:<br>B≵sel   | 0.00<br>(ine: (     | 5082<br>3 000             | 09<br>2994.                             | 46           |                 |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         | $\triangleright$ | 125             | 46 H                | ٦ 11/                     | 16: 0.                                  | 2116         |                 |                   |        |           |       |         |               |        | •        |                       |       |
|               |             |           |                |         |                  |                 |                     | HA 1<br>HA 1              |                                         |              |                 |                   |        |           |       |         |               |        |          |                       |       |
| ,             |             |           |                |         | -                | ~               |                     | 11/10                     |                                         |              |                 |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  | 255             | ΔĤÃ                 | 11/16                     | ð.Ö.ð                                   | <b>2699</b>  | 91 -            | - · -             |        |           |       | · - · · |               |        |          |                       |       |
|               |             |           |                |         | -                | \$255<br>1255   | 1 HA<br>2 HA        | 11/16                     | 5: 0.0<br>s· 0.0                        | 2913<br>1897 | 48              |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  | × 1 2           | 2548                | CT 1                      | 1/16:                                   | 0.589        | 9065            |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  | _ც125<br>• 1255 | 550 C               | T 11,                     | /16: C                                  | ).3891       | 165             | ω                 |        |           |       |         |               |        |          |                       |       |
| )<br>         |             |           | - <b></b> -    |         |                  | <u> </u>        |                     | 11/1                      | 0. 0.                                   | 14 1:00      | <del></del>     | Ñ<br><b>C</b> C∀: | -5.35  | 336 -     |       |         |               |        |          |                       |       |
| 5             |             |           |                |         |                  | €CB:            |                     |                           |                                         |              |                 |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         | -                | Base<br>\$255   |                     | 3.000<br>11/1             |                                         |              | 12              |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  | <u>1</u> 259    | 2 CT                | 11/1                      | 6: O.C                                  | 4478         | 16              |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  | 1259            | _                   | 311/1<br>2609             |                                         |              |                 | 202               |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  | 1258            |                     | 11/1                      |                                         |              |                 |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  | U)              |                     | 11/1                      |                                         |              |                 |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  |                 |                     | 11/1 <sup>.</sup><br>11/1 |                                         |              |                 |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  | ± 12€           | 509 H               | IA 11.                    | /17: 0                                  | .358         | 222             |                   |        |           |       |         |               |        |          |                       |       |
| )<br>         |             |           |                |         | - =              | 1261            | O HA                | 11/1                      | 7: 0.0                                  | 3876         | 2               | 20                | : 5.34 | 1756      |       |         | - <b></b>     |        |          |                       |       |
| >             |             |           |                |         | F                | GCB:            | -0.0                | 0177                      | 4                                       |              |                 |                   | . 5.54 |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  | Base            |                     |                           |                                         |              |                 |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  |                 |                     | . 11/1<br>- 11/1          |                                         |              |                 |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  | • ५ रें 26°     | 12 CT               | 11/1                      | 7: 0.                                   | 1118         | 54              | <b>-</b>          |        |           | _     | _       |               |        |          |                       |       |
| -             |             |           | <del>-</del> - |         | -                | 261             | 3 CT                | _11/1<br>11/1             | 7: 0.0                                  | 06606        | 514 <sup></sup> |                   |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         | -                | . ~             |                     | 11/1                      |                                         |              |                 | 58                |        |           |       |         |               |        |          |                       |       |
|               |             |           |                |         |                  | <u>U</u>        |                     |                           |                                         |              | <del></del> +   | čcv               | 5.30   | 989       |       |         |               |        |          | 4 0                   |       |
| ភ<br>១០០០<br> |             |           |                |         | -                | ਛCB<br>Base     |                     |                           |                                         | 146          |                 |                   |        |           |       |         |               | (      | 0.00     | 15                    | 4     |
| 5             |             |           |                |         | - 1              | ~~~             | ٠٠٠ ا               | J. J. J. L.               | ۳۳ ت ت ـ .                              | ·            |                 |                   |        |           |       |         |               |        |          |                       |       |

Peach ,able: ammonia

File name: F: FLOW\_4 1123990.RST Date: November 237 1999

Operator: nww

| Peak                                         | ~        | Name                                                                                                                                         | Type Dil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wt           |   | Height                                                                               | Calc. (mg/L)                                 |
|----------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---|--------------------------------------------------------------------------------------|----------------------------------------------|
|                                              |          |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |   |                                                                                      |                                              |
| •                                            | 2 .      | Symo                                                                                                                                         | SYNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -            | - | 1139012                                                                              | 13.201578                                    |
| 5                                            | <u>-</u> | Carryover                                                                                                                                    | CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            | - | 4260                                                                                 | 0.038450                                     |
| 2                                            | 000000   | Carryover                                                                                                                                    | C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •            | - | 228                                                                                  | 0.002345                                     |
| 0 (II (II) (C)                               | -        | Baseline                                                                                                                                     | RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            | - | 220                                                                                  | 0.000299                                     |
| 5                                            | -        | Baseline                                                                                                                                     | RB<br>RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -            | - | -                                                                                    | 0.000299                                     |
|                                              | -        | Cal 0                                                                                                                                        | KS<br>^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -            | - | c =                                                                                  | -0.000299                                    |
| 5                                            | -        |                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            | - | -67                                                                                  |                                              |
| ,                                            | ۷ .      | Cal i                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            | - | 1116505                                                                              | 10.000001                                    |
| 5                                            | 302      | Cal 1 Blank Baseline 107 108 108 12639 HA 11/10 12640 HA 11/10 12640 HA 11/10 12668 CT 11/10 12664 HA 11/11 12666 HA 11/11 12666 HA 11/11    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            | - | 817                                                                                  | 0.007615                                     |
| Ξ                                            | Ü        | Baseline                                                                                                                                     | R.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -            | _ | Ú                                                                                    | 0.000299                                     |
|                                              | 2        | 10:                                                                                                                                          | Ü                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            | - | 1151190                                                                              | 10.310653                                    |
|                                              | -        | 103                                                                                                                                          | ü                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _            | - | -777                                                                                 | -3.006659                                    |
| 12                                           | 3        | LCS                                                                                                                                          | ··                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            | _ | 601625                                                                               | 5.388603                                     |
| <u>:</u>                                     | 3 _      | 12639 HA 11.10                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            | - | 4085                                                                                 | 0.036883                                     |
| <u>:                                    </u> | 32       | 12640 HA 11/10                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>.</u>     | - | 2793                                                                                 | 0.025316                                     |
| 1.5                                          | 33       | 12641 HA 11 10                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>-</u>     | - | 6435                                                                                 | 0.057931                                     |
| : <del>(</del>                               | 3 4      | 12665 CT 11,11                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            | - | 23411                                                                                | 0.209970                                     |
| · -                                          | 3.5      | 12668 CT 11/10                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _            | - | 31353                                                                                | 3.281107                                     |
| - E a                                        | 3.6      | 12664 HA 11 11                                                                                                                               | - <del>-</del> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -            | - | 4426                                                                                 | 0.039939                                     |
| - :                                          | ; -      | 19885 22 11 11                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            | - | 17084                                                                                | 0.153305                                     |
| Ž:                                           | - = =    | - 7244 - 1 - 1 - 1                                                                                                                           | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            | - | 152272                                                                               | 1.364084                                     |
|                                              | 9 9 9 9  | 12668 CT 11/10<br>12664 HA 11 11<br>12665 HA 11/11<br>12666 HA 11/11<br>12671 HA 11/11                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            | - | 2598                                                                                 | 0.023567                                     |
| 22                                           | 40       | 12671 HA 11/11                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            | - | 3573                                                                                 | 0.032304                                     |
| 23                                           | 7.       |                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            | - | 598809                                                                               | 5.363383                                     |
| 2:<br>2:4                                    |          | CC3                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>-</del> | - | 534                                                                                  | 0.005082                                     |
|                                              | -        | 7.2.2.2.6.2.6                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            | - | 235                                                                                  |                                              |
| 3                                            |          | Baseline                                                                                                                                     | 7. <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -            | - |                                                                                      | 3.000299                                     |
| 26                                           | <u> </u> | 12546 HA 11 16                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _            | _ | 23604                                                                                | 0.211699                                     |
| 2-                                           | ÷2       | 12547 HA 11, 16                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>-</u>     | - | 74150                                                                                | 0.664405                                     |
| 28                                           | 43       | 12548 HA 11/16                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            | _ | 89489                                                                                | 0.621947                                     |
| 2 5                                          | 44       | 12549 HA 11,16                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>-</u>     | - | 3920                                                                                 | 0.035405                                     |
| 3:                                           | 4.5      | 12550 HA 11 16                                                                                                                               | ··<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>-</u>     | _ | 4098                                                                                 | 0.036999                                     |
| 31                                           | 46       | 12551 HA 11/16                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>-</u>     | - | 3219                                                                                 | 0.029130                                     |
| 3.2                                          | <u> </u> | 12552 HA 11 16                                                                                                                               | ·-<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>-</u>     | _ | 2085                                                                                 | 0.018975                                     |
| 3 3                                          | 48       | 12548 CT 11 16                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            | - | 65738                                                                                | 0.589065                                     |
| 34                                           | 49       | 12550 CT 11/16                                                                                                                               | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>-</u>     | - | 43418                                                                                | 0.389165                                     |
| 3 5                                          | 50       | 12551 CT 11.16                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            | - | 15786                                                                                | 0.141687                                     |
| 3 €                                          | 3        | 27                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | - | 597690                                                                               | 5 353364                                     |
| 3 -                                          | :        | 003<br>003                                                                                                                                   | ···                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _            | - | 417                                                                                  | 0.004030                                     |
| 3                                            | 2        | Baseline                                                                                                                                     | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            | - | 2                                                                                    | 0.000299                                     |
|                                              | = -      |                                                                                                                                              | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            | - | -222                                                                                 | 0.004030<br>0.000299<br>0.064981             |
| <u>.</u> -                                   | = 7      | 12592 CT 11/16                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            | - | 2020                                                                                 | 0.044782                                     |
| <u>.</u> :                                   | = =      | 12593 CT 11/16                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            | - | 300                                                                                  | 0.101526                                     |
| ÷ 2                                          | = 4      | 12593 CT 11/16<br>12609 CT 11 16                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            | - | - 2- 070                                                                             | 1.622023<br>0.086932<br>0.027356<br>0.013232 |
| 43                                           | ==       | 10500 23 11 17                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •            | - | 2572                                                                                 | 0.094633                                     |
|                                              | = = =    |                                                                                                                                              | -<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -            | - | 30:0                                                                                 | 0.000332                                     |
| 4 5                                          | = -      | 10260 20 11 1                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            | - |                                                                                      | 0.027356                                     |
| 7.5                                          | = = =    | 12332 AA 11,1                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            | - | -77-                                                                                 | 3.913232                                     |
| 48                                           |          | 12592 CT 11/16<br>12593 CT 11/16<br>12593 CT 11/16<br>12609 CT 11 16<br>12589 HA 11 17<br>12593 HA 11/17<br>12593 HA 11/17<br>12609 HA 11/17 | RB (0.00 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to 10.10 to |              |   | 227<br>4962<br>11302<br>191072<br>9673<br>1444<br>122963<br>42963<br>42964<br>597042 | 0.110375                                     |
|                                              | 2.7      | 12005 Mm 11/1                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            | - | ::55:                                                                                | 0.358222                                     |
| ÷ 5                                          | = -      | 12010 mA 11/17                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            | - | 4254                                                                                 | 0.038762                                     |
| 4.5                                          | ٤        | CC/,                                                                                                                                         | - <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _            | - | 597042                                                                               | 5.347564                                     |
| 5:                                           | -        | 113                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            | _ | -232                                                                                 | -0.001774                                    |
| 3<br>52                                      | <b>:</b> | Tacalina                                                                                                                                     | RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            | - | ÷.                                                                                   | 0.000299                                     |
| 5.2                                          | £ 1      | 12615 HA 11:17                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            | - | 3020                                                                                 | 0.027343                                     |
| 53                                           | 62       | 12511 CT 11/17                                                                                                                               | RB<br>U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>-</u>     | - | 12580                                                                                | 0.112970                                     |
| 54                                           | 63       | 12618 HA 11/17<br>12611 CT 11/17<br>12612 CT 11/17                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            | _ | 12580<br>12456                                                                       | 0.111854                                     |
|                                              |          |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |   |                                                                                      |                                              |

| Peak | Cup | Name           | Type Dil | Wt | Н | eight - | Calc. | (mg/L)   |
|------|-----|----------------|----------|----|---|---------|-------|----------|
| 55   | 64  | 12613 CT 11/17 | U        | 1  | 1 | 7343    |       | 0.066061 |
| 56   | 65  | 12614 CT 11/17 | IJ       | 1  | 1 | 3986    |       | 0.035998 |
| 57   | 66  | 12622 CT 11/17 | Ū        | 1  | 1 | 2217    |       | 0.020156 |
| ?    | 3   | CCV            | Ū        | 1  | 1 | 592836  |       | 5.309892 |
|      | ī   | CCB            | Ū        | 1  | 1 | 111     |       | 0.001298 |
| В    | 0   | Baseline       | RB       | 1  | 1 | . 0     | -     | 0.000299 |

| Peak                                                                 | Cup                                       | Flags          |
|----------------------------------------------------------------------|-------------------------------------------|----------------|
| 123BB678B112345678                                                   | 200001200213123456789031012345678         | BL<br>BL<br>LO |
| 8<br>B<br>10<br>11<br>12<br>13                                       | 0<br>0<br>2<br>1<br>3<br>1                | BL<br>LO       |
| l. madi                                                              | 32<br>33<br>35<br>36<br>37                |                |
| 20<br>21<br>22<br>24<br>26<br>27<br>28<br>29<br>31<br>32<br>33<br>34 | \$ 0, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | BL             |
| 27<br>28<br>29<br>30<br>31<br>32                                     | 42<br>43<br>44<br>45<br>46<br>47          |                |
| 33<br>34<br>35<br>36<br>37<br>8                                      | 49                                        | BL             |
| 33333444345678                                                       | 5 3 1 0 1 2 3 4 5 6 7 8 9 0 5 5 5 5 5 6 6 |                |
| 46<br>47<br>48                                                       | 57<br>58<br>59<br>60                      |                |

|            |           |         |             |             |                            |                                                      |                | Ab                          | sorpa         | ance (                           | JAU!           | 7 <b>E</b> - 0                               | 5)     |                   |           |            |                    |            |          |              |           |
|------------|-----------|---------|-------------|-------------|----------------------------|------------------------------------------------------|----------------|-----------------------------|---------------|----------------------------------|----------------|----------------------------------------------|--------|-------------------|-----------|------------|--------------------|------------|----------|--------------|-----------|
| ε          | =         | =       | c           | =           | c                          | <b>c</b>                                             | =              | ς.                          | <b>S</b>      | Ξ                                | <b>E</b>       | Ξ                                            | 2      | 5                 | <u>-</u>  | -          | <del>-</del>       | <b>-</b> - |          |              | <u></u>   |
| 00.00      | 100       | 500     | 000         | 50          | 0 000                      | 100                                                  | 0 200          | 300                         | 100           | :00                              | 900            | <b>/00</b>                                   | H00    | ຍດດ               | 900       | 5          | 200                | 300        | 400      | .500         | 1.600     |
|            |           |         | . <u> </u>  | <del></del> | <u> </u>                   |                                                      |                |                             | <del>-</del>  |                                  |                |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             | 2_                         |                                                      |                |                             |               |                                  |                | ==                                           |        |                   |           |            | → <u>-</u> -, , ,  |            | 0.089:   | _            |           |
|            |           |         |             |             |                            | Carry                                                |                | 0 03                        | 58242         | 2                                |                |                                              |        |                   |           |            | Jy.                | 1C. 1C     | ).UO3.   | 2            | _         |
|            |           |         |             |             |                            | Ğarryı                                               | cver           | 0.000                       | 34006         | 5                                |                |                                              |        |                   |           |            |                    |            |          |              | •         |
| <b>.</b> . |           |         |             | <b>-</b>    |                            |                                                      |                | 0000<br>0000                |               |                                  | - <b>-</b>     |                                              |        |                   |           |            | <b>.</b>           |            |          | - <b>-</b> - |           |
|            |           |         |             |             |                            |                                                      |                | 00836                       |               |                                  |                |                                              |        | هي جي             |           |            | <b>→</b> ~ .       | 1: 10      |          |              | :         |
|            |           |         |             |             | -                          | <del>I.</del><br>Biank                               |                | 00189                       | 319           |                                  |                |                                              |        |                   |           |            |                    |            |          |              | :         |
|            |           |         |             |             |                            |                                                      |                | 0008                        |               | 34                               |                |                                              |        |                   |           |            | <b>→</b> 5         | : 9.99     |          |              | •         |
|            |           |         |             |             |                            | :C <del>S</del> : {                                  |                | 8309                        | 3 · ·         |                                  |                |                                              |        |                   |           |            | 100                | : 9.99     | 3235<br> | <b></b> .    |           |
|            |           |         |             |             |                            | <del>-</del>                                         |                | ===                         |               |                                  |                | LCS                                          | 5.290  | 96                |           |            |                    |            |          |              |           |
|            |           |         |             |             |                            |                                                      |                |                             |               | 55296<br>68530                   |                |                                              |        |                   |           |            |                    |            |          |              | •         |
|            |           |         |             |             |                            |                                                      |                |                             |               | 31630                            |                |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             | <b>→</b>                   | 72614                                                | 4 HA           | 11/18                       | 3: C.O        | 07859                            | 44             |                                              |        | _                 |           |            |                    |            |          |              |           |
| • •        | - · - · · | · • • · |             |             | <b>;</b>                   | च्य्र <b>६२३</b><br>च्युटे                           | AH B           | 11/18                       | 1-0 O         | 03 <b>99</b> 6<br>52576<br>27598 | 72 - ·<br>55   | · ·                                          | •      |                   | - · • · · |            | - <del>-</del> - · |            |          |              |           |
|            |           |         |             |             | <b>→</b>                   | ₹2539<br>£2639                                       | 9 HA<br>O Ha   | 11/18                       | 3: 0 C        | 27598<br>5 <mark>68</mark> 35    | 39<br>53       |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             | ⇌                          | 7264                                                 |                | . 11/18                     | 8: O.C        | 83483                            | 32             |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             | $\geq$                     | 256                                                  | 55 CT          | 11/1                        | 8.0.2         | 21562                            | 6              | 2<br>5<br>6                                  | 5,184  |                   |           |            |                    |            |          |              |           |
| - •        |           |         |             |             | -                          | SCB                                                  | C 20           | 80836                       | <br>66        | · - • · -                        | 4              | <u>,                                    </u> | 5 184  | <u>.</u>          |           |            |                    |            |          |              |           |
|            |           |         |             |             | <b>-</b> • }               | Ease                                                 | ine C          | 2001                        | 83598         |                                  |                |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             | -                          | 35668<br>25668                                       | S CT           |                             |               | 23061<br>20041                   |                |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             | -                          | - 256                                                | 5 -4           | 11/19                       |               | 78920                            |                |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         | -           |             |                            | 2568<br>2568                                         |                |                             |               | 25857<br>23 <b>5</b> 45          |                |                                              | •      |                   | <b></b> . | <b>.</b> . | <b></b> -          |            |          |              |           |
|            |           |         |             |             | <b>;→</b><br><b>&gt;</b> - | 1267                                                 | 1 44           | 11/19                       | 9: 0 0        | £5010                            | D <del>E</del> |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             | $\rightarrow$              | 1309                                                 | 200            | 1 1122                      | 2 - 2         | 52084<br>53275                   | •              |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             | <del>-</del>               | 309                                                  | 98 RE          | EC 11                       | /3 C          | 16808                            | 5              |                                              |        |                   |           |            |                    |            |          |              | 2         |
|            |           |         |             |             | =                          | 1320                                                 | 4 EF!          | F 11/                       | 5: C O        | 8174                             |                |                                              | 5-+39  | ,3 <del>c</del> - |           | <b>-</b> - |                    |            |          |              |           |
| :          |           |         |             |             | <b>4</b>                   | €̃ca                                                 | ၁ ၁၁           | 3600:                       | 39            |                                  |                |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             | ;┷                         | 1322                                                 | 2 E E i        | 000<br>F 17/8               |               | 54<br>55922                      | 21             |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             | $\rightarrow$              | • <u>-</u> 5330                                      | oo HT          | 77.7                        |               | 6514                             |                |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             | =                          | 1330                                                 | - 3201         | 11.1)<br>2 HT 1             |               | 5412<br>L 5.82                   | 4047           | <del>.</del>                                 |        |                   |           |            |                    |            |          |              |           |
| • •        | •         |         | - <b></b> - |             | · }                        | ±330                                                 | :3 HT          |                             |               | 3830                             |                |                                              |        |                   |           |            |                    |            | •        |              |           |
|            |           |         |             |             | 7                          | ್ಷ ಪ್ರತರ                                             | 14 14 1        |                             |               | 86214<br>26715                   |                |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             | \ <del>\</del>             |                                                      |                |                             |               | 24056                            |                |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             |                            | ±310                                                 |                |                             |               | 18576<br>)7743                   |                | <u>.</u>                                     |        |                   |           |            |                    |            |          |              |           |
| -          |           | -       | •           |             |                            |                                                      |                |                             |               | 77 43                            | <u>ت</u>       | Sc.V                                         | 5 13 1 | 14                |           | • -        |                    |            |          |              |           |
|            |           |         |             |             | <b>→</b>                   | C<br>GCB<br>Base:                                    | 0.00           | 7103                        |               | •                                |                |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             | <del>} </del>              | • •                                                  | ∷ne (<br>C8 H4 | 0 000<br>4 11/1             | 6359:<br>:9 C | 84<br>19677                      | 76             |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             | <b>→</b>                   | ₹.3.                                                 | 10 H           | A 11                        | - e c         | 3435                             | 38             |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             |                            | <b>13:</b> 03                                        | 5 HA           | 1.9                         | 20 D<br>20 D  | 29595<br>05182                   | 55<br>243      |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             |                            | 130 TO                                               | € HA           | ٠- ح                        | 0 24          | 5338                             | 8              |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             | , <del>-</del>             | <b>ಜ</b> ಾರ<br>• • • • • • • • • • • • • • • • • • • | 7 ∺A<br>38 ∺4  | . 11 <del>.</del><br>3 11 8 | 0 08<br>1 0 1 | 37328<br>76681                   |                |                                              |        |                   |           |            |                    |            |          |              |           |
|            |           |         |             |             | <u></u>                    | 131                                                  | <u>. 0 H</u> ê | <u>. 11′9</u>               | 0 1           | 51353                            |                | 9<br>0<br>0<br>0<br>0                        |        |                   |           |            |                    |            |          |              | _         |
|            |           |         |             |             | 4                          | ECB-                                                 |                | 6590                        | 08            |                                  |                | CCV                                          | 5 159  | <del>5</del> 45   |           |            | 6                  | ) O O      | 15       | 7            | . <b></b> |
| Ē          |           |         |             |             | →,                         | goo<br>Base                                          | ine (          | 0 000                       | 8359          | 84                               |                |                                              |        |                   |           |            | ,                  | ,          |          | t            |           |

Peak Table: ammonia

File name: F:\FLOW\_4\112399E.RST Date: November 23, 1999

Operator: nvw

| k.         | Cup        | Name                             | Type Dil | Wt                                   |                       | Height        | Calc. (mg/L)         |
|------------|------------|----------------------------------|----------|--------------------------------------|-----------------------|---------------|----------------------|
| 7          | 2          | Sync                             | SYNC     | <br>¬                                |                       | 1143680       | 10.089201            |
| 2          | 0          | Carryover                        | CO       | 1<br>1                               | 1                     | 3966          | 0.035824             |
| 3          | 0          | Carryover                        | CO       | 1                                    | i                     | 291           | 0.003401             |
| B          | 0          | Baseline                         | RB       | 1                                    | 1                     | 0             | 0.003401             |
| В          | 0          | Baseline                         | RB       | 1                                    | i                     | 0             | 0.000836             |
| 6          | i          | Cal 0                            | C        | 1                                    | 1                     | -190          | -0.000836            |
| 7          | 2          | Cal 1                            | C        | ī                                    | ī                     | 1133567       | 10.000000            |
| 8          | ō          | Blank                            | Ū        | 1                                    | 1                     | -309          | -0.001893            |
| В          | Ö          | Baseline                         | RB       | ī                                    | 1                     | 0             | 0.000836             |
| 10         | 2          | ICV                              | U        | 1                                    | 1                     | 1132700       | 9.992354             |
| 11         | 1          | ICB                              | U        | 1                                    | 1                     | 340           | 0.003831             |
| 12         | 3          | LCS                              | U        | 1                                    | 1                     | 599722        | 5.290965             |
| 13         | 91         | 12611 HA 11/18                   | Ū        | <u>1</u>                             | <u> </u>              | 5174          | 0.055296             |
| 14         | 92         | 12612 HA 11/18                   | U        | 1                                    | 1                     | 7674          | 0.068530             |
| 15         | 93         | 12613 HA 11/18                   | U        | 1                                    | 1                     | 3491          | 0.031631             |
| 16         | 94         | 12614 HA 11/18                   | Ū        | 1                                    | 1                     | 796           | 0.007859             |
| 17         | 95         | 12622 HA 11/18                   | Ū        | 1                                    | <u>1</u>              | 358           | 0.003997             |
| 18         | 96         | 12638 HA 11/18                   | U        | 1                                    | l                     | 5866          | 0.052576             |
| 19         | 97         | 12639 HA 11/18                   | Ū        | 1                                    | 1                     | 3034          | 0.027599             |
| 20         | 98         | 12640 HA 11/18                   | U        | 1                                    | <u> 1</u>             | 6348          | 0.056835             |
| 21         | 99         | 12641 HA 11/18                   | U        |                                      | 1                     | 9369          | 0.083483             |
| 22         | 100        | 12665 CT 11/18                   | U        | 1                                    | 1                     | 24463         | 0.216626             |
| 23         | 3          | CCV                              | Ŭ        | 1                                    | 3                     | 587626        | 5.184266             |
| -          | 1          | CCB                              | U        | l                                    | 1                     | 822           | 0.008084             |
|            | 0          | Baseline                         | RB       | 1                                    | 1                     | G             | 0.000836             |
| 26         | 101        | 12668 CT 11/18                   | Ŭ        | 1                                    | 1                     | 2520          | 0.023062             |
| 27         | 102        | 12664 HA 11/19                   | U        | 1                                    | 1                     | 2177          | 0.020041             |
| 28         | 103        | 12665 HA 11/19                   | U        | 1                                    | 7                     | 8852          | 0.078920             |
| 29         | 104        | 12666 HA 11/19                   | U        | 1                                    | 1                     | 29219         | 0.258574             |
| 30<br>31   | 105        | 12668 HA 11/19<br>12671 HA 11/19 | U        | 1                                    | 1                     | 2620          | 0.023945             |
| 3 ±<br>3 2 | 106<br>107 | 12671 HA 11/19<br>10220 CT 7/22  | U<br>U   | 1                                    | <u> </u>              | 7275<br>28483 | 0.065011<br>0.252084 |
| 33         | 108        | 13097 EFF 11/3                   | บ        | <u>1</u><br>1                        | 1                     | 5945          | 0.053275             |
| 34         | 109        | 13098 REC 11/3                   | บ        | <u>.</u>                             | ÷ ;                   | 18960         | 0.168085             |
| 35         | 110        | 13204 EFF 11/5                   | Ŭ        | ī                                    | 1                     | 9172          | 0.081741             |
| 36         | 3          | CCV                              | Ŭ        | 7                                    | ì                     | 582533        | 5.139346             |
| 37         | <u> </u>   | CCB                              | Ū        | -<br>1                               |                       | 313           | 0.003600             |
| B          | ō          | Baseline                         | RB       | ì                                    | 1                     | 0             | 0.000836             |
| 39         | 111        | 13222 EFF 11/8                   | Ū        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 1<br>2<br>1           | 6245          | 0.055922             |
| 40         | 112        | 13300 HT 11/13                   | U        | 1                                    |                       | 18628         | 0.165149             |
| 41         | 113        | 13301 HT 11/13                   | U        | 1                                    | 1<br>1                | 11709         | 0.104120             |
| 42         | 114        | 13302 HT 11/13                   | U        | <u>1</u>                             | <u>1</u>              | 93324         | 0.824047             |
| 43         | 115        | 13303 HT 11/13                   | U        | 1                                    | 1                     | 12261         | 0.108987             |
| 44         | 116        | 13304 HT 11/13                   | U        | 1                                    | 1<br>1<br>1<br>1<br>1 | 9679          | 0.086214             |
| 45         | 117        | 13104 HA 11/19                   | U        | l                                    | <u>1</u>              | 30191         | 0.267151             |
| 46         | 118        | 13105 HA 11/19                   | U        | l                                    | <u>1</u>              | 27177         | 0.240561             |
| 47         | 119        | 13106 HA 11/19                   | U        | 1                                    | 1                     | 21078         | 0.186761             |
| 48         | 120        | 13107 HA 11/19                   | U        | l                                    |                       | 5684          | 0.077439             |
| 49         | 3          | CCV                              | U        | 1<br>1<br>1<br>1                     | 1                     | 581603        | 5.131139             |
|            | 1          | CCB                              | U        | 1                                    | 1                     | 710           | 0.007103             |
|            | 0          | Baseline                         | RB       |                                      | 1                     | 0             | 0.000836             |
| 52         | 0.8        | 13108 HA 11/19                   | U        | 1                                    | 1                     | 22213         | 0.196776             |
| 53         | 81         | 13110 HA 11/19                   | U        | 1                                    | 1                     | 38856         | 0.343588             |
| 54         | 82         | 13104 HA 11/9                    | ט        | 1                                    | 1                     | 241           | 0.002960             |

| Peak       | Cup        | Name          | Type Dil | Wt       | Height   | Calc. (mg·l) |
|------------|------------|---------------|----------|----------|----------|--------------|
|            |            |               |          |          |          |              |
| 3 5        | 83         | 13105 HA 11 9 | ••       | :        | -25      | 0.000618     |
| 5 <b>f</b> | £ <b>4</b> | 13106 HA 11/9 |          | :        | 5045     | 0.045339     |
| 5 -        | £5         | 13107 HA 11,9 |          | -        | 1 9808   | 0.087329     |
| 5 5        | € €        | 13108 HA 11/8 |          | -        | 1 19958  | 0.176881     |
| 5 5        | 57         | 13110 HA 11/9 | ::       | <u>.</u> | 1 17064  | 0.151353     |
| £ :        | - 3        | CCV           |          | -        | 1 584812 | 5.159447     |
| έ÷         | 1          | CCB           | :-       | -        | 1 652    | 0.006590     |
| 3          | 0          | Baseline      | 23       | -        | 1 0      | 0.000836     |

| Peak                                                                   | Cnb                                       | Flags          |
|------------------------------------------------------------------------|-------------------------------------------|----------------|
|                                                                        |                                           |                |
| 1                                                                      | 2                                         |                |
| 2                                                                      | -                                         |                |
| <i>-</i>                                                               | -                                         |                |
| 2                                                                      | -                                         | ==             |
| Ę                                                                      | •                                         | 31<br>31<br>10 |
| 0                                                                      | 2                                         | _0             |
| ξ                                                                      | <b>:</b>                                  | 10<br>31       |
| 3                                                                      | -                                         | 31             |
| 1:                                                                     | 2                                         |                |
|                                                                        | -                                         |                |
| . ;                                                                    | 5.                                        |                |
| 14                                                                     | 92                                        |                |
| 15                                                                     | 93                                        |                |
| 16                                                                     | 54                                        | UN:            |
|                                                                        | 95                                        |                |
| - 5                                                                    | 55                                        |                |
| 25                                                                     |                                           |                |
| 21                                                                     | 99                                        |                |
| 22                                                                     | 1::                                       |                |
| 23                                                                     | 3                                         |                |
| 4 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7                                | - 1                                       |                |
| 5<br>5 £                                                               |                                           | =_             |
| 25                                                                     |                                           |                |
| 28                                                                     | 113                                       |                |
| 29                                                                     | 104                                       |                |
| 30                                                                     | 105                                       |                |
| 31                                                                     | 116                                       |                |
| 32                                                                     |                                           |                |
| 33                                                                     |                                           |                |
| 35                                                                     |                                           |                |
| 3.6                                                                    | 3                                         |                |
| 37                                                                     | :                                         |                |
| 3                                                                      | 2                                         | <b>E</b> L     |
| 35                                                                     |                                           |                |
| <br>                                                                   | 4                                         | •              |
| 42                                                                     |                                           |                |
| 43                                                                     | 115                                       |                |
| <u>:</u> :                                                             | 116                                       |                |
| के के के के के के कि प्रिक्त के कि कि कि कि कि कि कि कि कि कि कि कि कि | 9.1 2000001200000000000000000000000000000 |                |
| 46                                                                     | 118                                       |                |

|        |           | onia Analyses (Total, mo<br>Dead Creek / Project 99 |                  |
|--------|-----------|-----------------------------------------------------|------------------|
| Sample | Porewater | Day 0 Overlying                                     | Day 10 Overlying |
| ID     |           | Water                                               | Water (          |
| 12546  | 6.3       | 1.4                                                 | <0.5/            |
| 12547  | 23.1      | 6.2                                                 | 2.5              |
| 12548  | 17.3      | 4.1                                                 | 0/5              |
| 12549  | 7.4       | 1.7                                                 | 0.6              |
| 12550  | 9.3       | 2.2                                                 | /0.9             |
| 12551  | 5.9       | 1.5                                                 | 0.9              |
| 12552  | -         | <0.5                                                | <0.5             |
| 12589  | 2.9       | 0.7                                                 | 0.7              |
| 12590  | 4.4       | 0.8                                                 | <0.5             |
| 12591  | 2.1       | 0.5                                                 | <0.5             |
| 12592  | 5.7       | 1.6                                                 | 0.7              |
| 12593  | 13.3      | 3.0                                                 | 0.5              |
| 12609  | . 2.2     | <0.5                                                | <0.5             |
| 12610  | 7.1       | 1.2                                                 | <0.5             |
| 12611  | 12.9      | 2.2                                                 | < 0.5            |
| 12612  | 2.4       | 0.6                                                 | <0.5             |
| 12613  | 2.7       | 0.6                                                 | 0.7              |
| 12614  | 3.5       | 0.8                                                 | <0.5             |
| 12622  | -         | <0.5                                                | <0.5             |
| 12638  | 4.0       | 0.\$                                                | 0.5              |
| 12639  | 1.6       | 9.7                                                 | 0.8              |
| 12640  | 0.6       | <b>₹</b> 0.5                                        | <0.5             |
| 12641  | 6.4       | 2.1                                                 | 1.1              |
| 12664  | <0.5      | <0.5                                                | <0.5             |
| 12665  | 10.3      | 3.4                                                 | 1.8              |
| 12666  | 6.7       | 2.2                                                 | 2.3              |
| 12668  | -         | <0.5                                                | 0.6              |
| 12671  | 2.4       | 0.7                                                 | <0.5             |

1) Data partain to acute toxicity rests only 8,218/99

|                                              | K 2 /              |                                     | NVW                                   | JWI                                     | V  |
|----------------------------------------------|--------------------|-------------------------------------|---------------------------------------|-----------------------------------------|----|
| w T                                          | ABS-<br>Survice ID | · · · · · · · · · · · · · · · · · · | 40.5                                  | 40.5                                    |    |
|                                              | 2 = =              | ·                                   |                                       |                                         |    |
| •                                            | 18589              | Ó                                   | <u> </u>                              |                                         |    |
|                                              | 550                | Ć                                   | ·                                     |                                         |    |
| 3.                                           | 50                 | ć                                   |                                       |                                         |    |
|                                              | 5°2                | 2                                   |                                       |                                         |    |
| S.                                           | 5.3                | 2                                   |                                       |                                         |    |
| ic .                                         | 10609              | ੁ<br>ਹ                              | /                                     | *                                       |    |
|                                              | 10 E 10            |                                     | ;————                                 |                                         |    |
| 5                                            | 10615              |                                     |                                       |                                         |    |
| 9                                            |                    | ັ <sub>ງ</sub><br>າ<br>ພ            |                                       |                                         |    |
|                                              | 62                 | _,                                  | ,                                     |                                         |    |
|                                              | 613                |                                     |                                       |                                         |    |
| ; 7                                          |                    | ਹੈ<br>ਨੂੰ · · <del></del> -         | ·                                     |                                         | )  |
| د                                            | 12672              | C                                   |                                       |                                         |    |
| · <del></del>                                |                    | G                                   |                                       |                                         |    |
| .5                                           |                    | <u> </u>                            |                                       | :                                       |    |
|                                              | 12640              | ~<br>~<br>~                         |                                       |                                         |    |
|                                              | 1764               |                                     |                                       |                                         |    |
|                                              | 125.6 10           |                                     |                                       | _ ~                                     |    |
| 9                                            | 5-2 P.V            |                                     | · · · · · · · · · · · · · · · · · · · | - · • · · · · · · · · · · · · · · · · · |    |
| _                                            | 548 %              |                                     | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | •                                       |    |
| <i>7.</i> <b>₹</b>                           |                    |                                     | V<br>1.52                             |                                         | •  |
|                                              |                    | •                                   |                                       |                                         | 5G |
| · · - · · · · · · · · · · · · · ·            |                    |                                     | ·                                     | اعالفها سرا                             | ·  |
| <u>.                                    </u> |                    |                                     |                                       |                                         |    |
|                                              |                    |                                     |                                       |                                         | •  |

|                                       | ABS            | NVW                                     | JWW                                     |                                       |
|---------------------------------------|----------------|-----------------------------------------|-----------------------------------------|---------------------------------------|
| #                                     | Sample ID      | 40-5 ppm                                | 20-5                                    | ·····                                 |
|                                       |                | - ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' |                                         |                                       |
| <u> </u>                              | 12664 PW,      |                                         |                                         |                                       |
|                                       | e43 65 PW      |                                         |                                         |                                       |
| 3                                     | 12671 PW       |                                         |                                         |                                       |
| · · · · · · · · · · · · · · · · · · · | 10546          |                                         | .)                                      | · · · · · · · · · · · · · · · · · · · |
| 5                                     | 10547          |                                         | , - · · · · · · · · · · · · · · · · · · |                                       |
|                                       | 10546 0        |                                         |                                         |                                       |
| <u>&gt;</u>                           | 14549 0        |                                         | /                                       |                                       |
| 5                                     | 550 0          |                                         | /                                       |                                       |
| <br>9                                 | 10551          |                                         |                                         |                                       |
| <br><u> </u>                          | V 552 ()       | ····                                    |                                         |                                       |
|                                       | <u> 1266 Y</u> |                                         |                                         |                                       |
|                                       | 665 0          |                                         |                                         |                                       |
| 13                                    | 666 0          | :                                       |                                         |                                       |
| 15                                    | 668 0          |                                         |                                         |                                       |
| ()                                    | 671 Y          | <u> </u>                                |                                         |                                       |
| <u> </u>                              |                | WW                                      | 10/12/99.                               |                                       |
| <u></u>                               |                | 10/12/99                                |                                         |                                       |
| • • • • • • • • • • • • • • • • • • • |                |                                         |                                         |                                       |
|                                       | · · · · · ·    |                                         |                                         |                                       |
| •••                                   |                |                                         |                                         |                                       |
|                                       |                |                                         |                                         |                                       |

| 1,000                | The W                                 |
|----------------------|---------------------------------------|
| <0.5                 | ms LC-5 ppms                          |
| 1. 12549 F. Y        |                                       |
| 3. F2 551 ?: (       |                                       |
| 3. Fe 551 ?!'        |                                       |
| 10 569 511           |                                       |
| 5. 590 9.1           |                                       |
| 5919:                |                                       |
| = 5000               |                                       |
| 503:                 |                                       |
| ° 10609 FM           |                                       |
| 2. 12610 fil         |                                       |
| 6((?://              |                                       |
| 2. <u>612î:</u>      |                                       |
| 5. 613 111           | ·                                     |
| · <u> </u>           |                                       |
| 15, 1263 <u>6</u> 2: |                                       |
| 636 92               |                                       |
| F. 640[4             |                                       |
| 64 F.                |                                       |
| 7. 17666 N. N        | · · · · · · · · · · · · · · · · · · · |
| 721 17666 N. N.      |                                       |
|                      | 3/2/29                                |
| 5.0 11.12 MS         | <u></u>                               |
| 5.0 11.10 MS         |                                       |

### **Sediment Characterization**

| Client: Menzie-Cura & Assoc. Project: 9903                                                                       | 3 BTR: 3615                   |
|------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Date sediments distributed to test chambers (  H. azteca acute test: 10/6/99 10/18/99:                           | 100 mL homogenized sediment): |
| • C. tentans acute test: 10/6/99                                                                                 | •                             |
| <ul> <li>H. azteca chronic test: 10/18/49; ALL SAM</li> <li>C. tentans chronic test: 10548, 12550, 12</li> </ul> | PLES JG for LS                |
| • C. tentans chronic test: 18548, 12550, 12                                                                      | 551; 10/18/99 JGG LS          |

10/28/99 - Lozded sodinents for examples (12548, 12550, 12551, 12552,

| Sample | porew         | porew                                  | porew | 12542, 12593, 12609)                                                                                                |
|--------|---------------|----------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------|
| Number | рН            | H2S                                    | Amm   | Sediment Visual Characterization                                                                                    |
| 12546  | 6.9           | ······································ |       | Viscous mud, NO Overlying water                                                                                     |
| 12547  | 7.0           |                                        |       | Liquid fine much many freshwater                                                                                    |
|        | 7.0           |                                        |       | Liquid, fine mud many freshwater  gastropoids  removed visible gastropoids is                                       |
| 12548  | 7-0           |                                        |       | Liquid mud, gastropads present, removed                                                                             |
| 12549  | 7.0           |                                        |       | Soft mud. pine needles, some overlying water                                                                        |
| 12550  | 7.0           |                                        |       | Soft mud with overlying water pine need les                                                                         |
| 12551  | 7.0           |                                        |       | Soft mud with overlying water                                                                                       |
|        |               |                                        |       |                                                                                                                     |
|        |               |                                        |       |                                                                                                                     |
| 12552  | \ \( \cdot \) |                                        |       | EPA artificial control sediment (77% med. and fine sand;                                                            |
| LCS    | mic16199      |                                        |       | 17% kaolinite clay; 5% 0.5 mm-sieved peat; 1% CaCO3). Stored dry, then hydrated prior to addition to test chambers. |

Extract porewater, measure and record pH, decant and preserve sulfide and ammonia samples. Date: 10699

Reviewer: Date:/1/0/99
Laboratory: Aquatec Biological/Sciences, South Burlington, Vermont

hasurvwt.doc

### **Sediment Characterization**

|     |              | C               | - D                   | 2   DTD: 20                                                           | 22 / 2000                             |
|-----|--------------|-----------------|-----------------------|-----------------------------------------------------------------------|---------------------------------------|
|     |              |                 | Project: 9903         |                                                                       | 22 / 3629                             |
| U   |              |                 |                       | 100 mL homogenized sedin                                              | nent):                                |
| •   |              |                 | , .                   | TM (Hydells rejest)                                                   |                                       |
| •   |              | cute test: 10/7 | /99                   |                                                                       |                                       |
| •   | H. azteca ch | ronic test:     | /- / . 0-             |                                                                       | *Sample 12592                         |
| •   | C. tentans c | hronic test: 10 | 1/18/99 : 105         | 92,12593,12609 TM                                                     | Sieved to reprove                     |
|     |              |                 |                       |                                                                       | indigenous charain                    |
| -   | 0            |                 |                       | <del>,</del>                                                          | (151 C.C. 5.0                         |
| - 1 | Sample       |                 | orew porew<br>H2S Amm | Sadiment Visual Ch                                                    | orootovinstie –                       |
| -   | Number       | <del> </del>    | <del></del>           | Sediment Visual Ch                                                    | <del></del>                           |
|     | 12589        | 7.1             |                       | khrown muddy selling                                                  | nt with sticks a                      |
| _   | 12590        | 6,9             |                       | hans discour                                                          | VELST IVEN                            |
| -   | 12591        |                 | <i>d</i>              |                                                                       | U .                                   |
|     | 12551        | 69              |                       | bear mud with in                                                      | a material                            |
|     | × 12592      | 7.1             |                       | ak busin mud wit                                                      | $\cup$                                |
| -   | 12593        |                 | <del></del>           |                                                                       |                                       |
| _   |              | +10             |                       | black watery mus w,                                                   | petrolun-like ode                     |
|     | 12609        | 7.1             |                       |                                                                       | sive musi with                        |
| -   | 12610        | 17              | <del></del>           | <del>-</del>                                                          |                                       |
| -   |              | 9.              |                       | at brown very Thick                                                   | Colising mid                          |
|     |              |                 |                       |                                                                       | '                                     |
| _   |              | 1               |                       |                                                                       | materia                               |
|     |              |                 | <del></del>           |                                                                       |                                       |
| _   |              |                 | <del></del>           |                                                                       |                                       |
| _   |              |                 | <del></del>           | <del></del>                                                           |                                       |
| _   |              | i               |                       |                                                                       |                                       |
|     |              |                 |                       |                                                                       |                                       |
| _   |              |                 | <del></del>           |                                                                       |                                       |
| _   |              | !               |                       |                                                                       | •                                     |
|     |              |                 |                       |                                                                       |                                       |
|     |              | ·<br>·          |                       |                                                                       |                                       |
| _   | 12615        |                 |                       | EPA antificial control sediment (                                     | •                                     |
|     | LCS          |                 |                       | 17% kaolinite clay, 5% 0.5 mm-s<br>Stored dry, then hydrated prior to | · · · · · · · · · · · · · · · · · · · |
| -   |              |                 |                       | d pH, decant and preserve su                                          | ulfide and ammonia                    |
|     | Enter        | ed by:          | Date Ic 7 49          | -<br>-                                                                | 000135_                               |
| 9e. | prever Di    | te 12/10/99     | urlangton Vermont     |                                                                       | hasurvet.                             |
|     |              | g               | · · · ·               |                                                                       |                                       |

### Sediment Characterization

Client: Menzie-Cura & Assoc. Project: 99033 BTR: 3629 / 3633

Date sediments distributed to test chambers (100 mL homogenized sediment):

H. azteca acute test: 10/8/99C. tentans acute test: 10/8/99

H. azteca chronic test:C. tentans chronic test:

| Cample | 7 2224   | 207011         | 7.0.70                                | <del></del>                                                                                                         |
|--------|----------|----------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Sample | porew pH | porew<br>H2S   | porew<br>Amm                          | Cadimant Views) Characterization                                                                                    |
| Number | Pit      | 1123           | Anna                                  | Sediment Visual Characterization                                                                                    |
| 12611  | 6.8      |                |                                       | black mud w/leaf litter                                                                                             |
| 12612  |          | <del> </del> - |                                       | Fine Brown Mud                                                                                                      |
|        | 7.7      |                |                                       | Fine dicarring                                                                                                      |
| 12613  | 77       |                |                                       | Soft Brawn mud                                                                                                      |
|        | 7.7      |                |                                       | SUTT DIGUIT TO ST                                                                                                   |
| 12614  | 7.5      |                |                                       | Soft Brown mud                                                                                                      |
| 12638  | -7 /     |                | <del></del>                           | Soft Brown mud                                                                                                      |
| <br>   | 7.6      |                |                                       | · ·                                                                                                                 |
| 12639  | 7.3      |                |                                       | sticks + leaves on top + through out conesive mud, daik                                                             |
|        | 710      |                | · · · · · · · · · · · · · · · · · · · | conesivemua, doik                                                                                                   |
| 12640  | 7.2      |                |                                       | Sticks + leaf litter                                                                                                |
|        | !        |                |                                       | Dark thick mud                                                                                                      |
| 12641  | 72       | ļ              |                                       | SOFT Brown mud                                                                                                      |
|        |          |                |                                       |                                                                                                                     |
|        |          |                |                                       |                                                                                                                     |
|        |          |                |                                       |                                                                                                                     |
|        |          |                |                                       |                                                                                                                     |
|        |          | _              |                                       |                                                                                                                     |
|        |          |                |                                       |                                                                                                                     |
| 12622  |          |                |                                       | EPA artificial control sediment (77% med, and fine sand;                                                            |
| LCS    |          |                |                                       | 17% kaolinite clay; 5% 0.5 mm-sieved peat; 1% CaCO3). Stored dry, then hydrated prior to addition to test chambers. |
|        |          |                |                                       |                                                                                                                     |

Extract porewater, measure and record pH, decant and preserve sulfide and ammonia

intered by: JJG Date: 10/8/99

200136

Reviewer: Date: 12/10/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

hasurvwt.doc

| Number   | porew<br>pH | porew porew<br>H2S Amm | Sediment Visual Characterization |
|----------|-------------|------------------------|----------------------------------|
| 12664    | 7.8         |                        | first cohesive made              |
|          | !<br>       |                        |                                  |
| 12665    | 7.3         |                        | the soft mud                     |
| 12666    | ·           |                        | E . South Makes a mid            |
|          | 7,5         |                        | tirs. Sticky / (chesive mud      |
| 12667-JG | <u> </u>    |                        |                                  |
| 2671     | 7.4         |                        | fine, brown mud - chimonides     |

Extract porewater, measure and record pH, decant and preserve sulfide and ammonia samples

Entered by: 10/4/49

000107

EPA artificial control sediment (77% med. and fine sand: 17% kaplinite day: 5% 0.5 mm-sieved peat; 1% CaCO3).

Stored dry, then hydrated prior to addition to test chambers.

12668

LCS

hasurvvl.doc

## Preparation of Formulated Control Sediment for Freshwater Sediment Toxicity Tests

Procedure based on EPA/600/R-94/024

Batch No. ic/4 Preparation Date: 14/99 Prepared by: 176.

| Ingredient                                          | Amount (g)  | Percent composition |
|-----------------------------------------------------|-------------|---------------------|
| Fine sand<br>Medium sand                            | 1848<br>924 | 77                  |
| Kaolinite clay                                      | 612         | 17                  |
| Blended and 0.2 mm sieved<br>Canadian sphagnum peat | 180         | 5                   |
| CaCO3                                               | 36          | 1                   |
| Total                                               | 3600        | 100                 |

Store well-mixed and dry in a sealed Rubbermaid box. Label by batch number. Store copy of this documentation in project file. Store original in Sed/Water preparation notebook.

Hydrate to a cohesive sediment consistency before use.

### Week of October 17, 1999

| ACTIVITY / DAY                                         | Sun.        | . Mอก.      | Tues.               | Wed.     | Thurs.       | Fri.                                             | Sat.     |
|--------------------------------------------------------|-------------|-------------|---------------------|----------|--------------|--------------------------------------------------|----------|
| Prior to noon fill reservoirs (1L)                     | V           | <u> </u>    |                     |          | V            |                                                  | /        |
| Noon delivery cycle                                    |             |             |                     | 1        |              |                                                  |          |
| • soliter baxes filling?                               |             | :/          |                     | W.       |              |                                                  |          |
| • synnges filling?                                     | -/          |             | V.                  |          |              |                                                  |          |
| • needles flowing?                                     |             |             |                     | V        | ./           | ;                                                | V        |
| • peaker screens clear, flowing?                       |             |             |                     |          | V            |                                                  | 1/       |
| • pramage to weste ou?                                 |             | _//         | V                   | ///      | /            |                                                  |          |
| · error, waste duckers FINICE                          |             |             |                     |          | 10           | VV                                               | 1/       |
| Test monitoring PAIL!                                  |             | <del></del> |                     |          |              | <del></del>                                      |          |
| test temperature ox?     D C ox?                       |             |             |                     |          |              | <del></del>                                      | <u> </u> |
| check for floating organisms                           | <del></del> | <u> </u>    |                     |          |              |                                                  | +        |
| feeding completed?                                     | <u> </u>    | $\sqrt{a}$  | $\overrightarrow{}$ | 1/       | <del>-</del> | <del>-                                    </del> |          |
| Additional activities Prorse medight fill reservors (* |             |             |                     |          | V.           |                                                  |          |
| Check sediment water supply                            |             |             | /                   |          |              | V                                                | 1        |
| Corrective Action /<br>Comments                        | , C         | × 11-       |                     | <u> </u> |              | ;<br>;<br>;<br>;                                 |          |
|                                                        |             |             |                     |          | <del></del>  |                                                  |          |

Procedure: All operating systems listed above must be checked on a daily basis when sediment toxicity tests are in progress. Corrective action must be taken whenever appropriate. Document corrective action on this form. If project-specific documentation is required, write a brief description (on Project Documentation form) and include with the test data backage.

| Comments | (.417-5 | 1000    | 185 G       | 1.50 | 40 | co Per-1    | (des |
|----------|---------|---------|-------------|------|----|-------------|------|
|          |         | 227-256 |             |      |    | <del></del> |      |
| -        |         |         | <del></del> |      |    |             |      |

Expert wire for Harding

= Leve / Recov Mix

= Recen Water

seddeling doc 10/2/4

Reviewer Date 17/9/99
Laboratory Aquated Biological Sciences South Burlington Vermont

### Week of October 31, 1999

| ACTIVITY / DAY                                                                                                                                                                                                                                                                                                                                                               | Sun.     | Mon.     | Tues.  | Wed.         | Thurs.       | Fri.        | Sat.                                  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------|--------------|--------------|-------------|---------------------------------------|--|--|--|
| Prior to noon fill reservoirs (1L)                                                                                                                                                                                                                                                                                                                                           | V        |          |        | $\checkmark$ | V            | V .         |                                       |  |  |  |
| Noon delivery cycle                                                                                                                                                                                                                                                                                                                                                          |          |          |        |              |              |             |                                       |  |  |  |
| • splitter boxes filling?                                                                                                                                                                                                                                                                                                                                                    | <b>/</b> | ~        | V.     | V            | V            |             | /                                     |  |  |  |
| • syringes filling?                                                                                                                                                                                                                                                                                                                                                          |          | /        | V      | <b>V</b>     |              |             |                                       |  |  |  |
| • needles flowing?                                                                                                                                                                                                                                                                                                                                                           | V        |          | ./     | 1            | /            |             |                                       |  |  |  |
| <ul> <li>beaker screens clear, flowing?</li> </ul>                                                                                                                                                                                                                                                                                                                           | V        | V        | V,     | V            | <b>V</b>     | V.          |                                       |  |  |  |
| drainage to waste ok?                                                                                                                                                                                                                                                                                                                                                        | l id     | 11       | y y    | 7            | 1            | Y           | 4                                     |  |  |  |
| empty waste buckets?                                                                                                                                                                                                                                                                                                                                                         | VV       | VV       |        | VV           | VV           | 1           | VV                                    |  |  |  |
| Test monitoring                                                                                                                                                                                                                                                                                                                                                              |          |          |        |              |              |             | · · · · · · · · · · · · · · · · · · · |  |  |  |
| • test temperature ok?                                                                                                                                                                                                                                                                                                                                                       | V        | V        | V      | V            |              | 1           | 1                                     |  |  |  |
| • D.O. ok?                                                                                                                                                                                                                                                                                                                                                                   |          | , V,     | ·      |              | -            |             |                                       |  |  |  |
| check for floating organisms                                                                                                                                                                                                                                                                                                                                                 |          | 7        |        |              | V            |             | 1                                     |  |  |  |
| • feeding completed?                                                                                                                                                                                                                                                                                                                                                         |          | V        | 1      | V            |              |             | V                                     |  |  |  |
| Additional activities                                                                                                                                                                                                                                                                                                                                                        |          |          |        |              |              |             |                                       |  |  |  |
| Prior to midnight fill reservoirs (1L)                                                                                                                                                                                                                                                                                                                                       |          | V        |        | V,           | 1,           | V/          |                                       |  |  |  |
| Check sediment water supply                                                                                                                                                                                                                                                                                                                                                  |          | <b>V</b> |        |              |              | V           |                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                              |          |          | ***    | ·            | <del></del>  | <del></del> |                                       |  |  |  |
| Corrective Action /<br>Comments                                                                                                                                                                                                                                                                                                                                              |          |          |        |              |              |             |                                       |  |  |  |
| Initials/Date                                                                                                                                                                                                                                                                                                                                                                | 16/31    | 11/1=    | 1/2/16 | 113          | 77           | 11/5        | 11/6                                  |  |  |  |
| Procedure: All operating systems listed above must be checked on a daily basis when sediment toxicity tests are in progress. Corrective action must be taken whenever appropriate. Document corrective action on this form. If project-specific documentation is required, write a brief description (on Project Documentation form) and include with the test data package. |          |          |        |              |              |             |                                       |  |  |  |
| Comments: 11/5/99 (midnig                                                                                                                                                                                                                                                                                                                                                    |          |          |        |              | indiat<br>10 |             | 09:30<br>/99 JJG                      |  |  |  |
| "Nook" renewal conducted at 14:00 11/6 JG 11/6/99 JJG                                                                                                                                                                                                                                                                                                                        |          |          |        |              |              |             |                                       |  |  |  |

 $\sigma \circ \sigma \circ \circ \circ 0$ 

### Week of November 7, 1999

| ACTIVITY / DAY                                                                                                                                   | Sun.                     | Mon.                          | Tues.                      | Wed.                                  | Thurs.                                         | Fn.         | Sat.        |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|----------------------------|---------------------------------------|------------------------------------------------|-------------|-------------|
| Prior to noon fill reservoirs (1L)                                                                                                               |                          |                               | V                          | $\checkmark$                          |                                                | <b>/</b>    |             |
| Noon delivery cycle                                                                                                                              |                          | <u></u>                       |                            |                                       |                                                |             |             |
| • spitter boxes filling?                                                                                                                         |                          |                               | W.                         |                                       |                                                |             | V           |
| • synnges filling?                                                                                                                               |                          |                               |                            |                                       |                                                |             | <b>V</b>    |
| • needies flowing?                                                                                                                               |                          |                               |                            | <b>√</b>                              |                                                |             |             |
| • peaker screens clear, flowing?                                                                                                                 |                          | -/                            | · V                        |                                       | /                                              | ! //        |             |
| oramage to waste ok?                                                                                                                             |                          |                               |                            |                                       | V/                                             |             | 1           |
| • emaily waste buckets?                                                                                                                          | VV                       | VIV                           | VV                         | VV                                    | IVIV                                           | V/          | VV          |
| Test monitoring                                                                                                                                  |                          | <del></del>                   | <del></del>                |                                       |                                                | · · · ·     | <del></del> |
| • test temperature ok?                                                                                                                           |                          |                               |                            |                                       | <u>  '/                                   </u> |             |             |
| • 30 ok?                                                                                                                                         |                          |                               |                            |                                       | <u> </u>                                       | LV,         |             |
| check for floating organisms                                                                                                                     |                          |                               | <u> </u>                   | V                                     |                                                | 1/          | 1           |
| • feeding completed?                                                                                                                             | <del></del>              |                               |                            | V                                     | <u> </u>                                       | 1/          |             |
| Additional activities                                                                                                                            |                          | <del>. ,</del>                |                            |                                       |                                                |             | <del></del> |
| Phor to midmight fill reservoirs (*L                                                                                                             |                          |                               | 1                          | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | /                                              |             | × /         |
| Check secument water supply                                                                                                                      |                          |                               | · 1/                       |                                       |                                                | <u> </u>    |             |
| Corrective Action / Comments                                                                                                                     | برز                      | <u> </u>                      | :                          |                                       |                                                |             |             |
| initials Date                                                                                                                                    | m - join                 | 1/8 M                         | m is                       | عرالي <sup>ا</sup> /اد                | in<br>De                                       | 1412        | 11/13       |
| Procedure All operating system tests are in progress. Corrective on this form, lift project-specific a Documentation form) and include Comments: | e action mu<br>socumenta | iust be take<br>ation is requ | en wheneve<br>uired, write | er appropn                            | nate Docu                                      | iment corre |             |

<u>000291</u>

### Week of November 14, 1999

| ACTIVITY / DAY                                                            | Sun.        | Mon.     | Tues.        | Wed.                                  | Thurs.                                | Fri.                                   | Sat.       |
|---------------------------------------------------------------------------|-------------|----------|--------------|---------------------------------------|---------------------------------------|----------------------------------------|------------|
| [ B :                                                                     | 1           |          |              | · · · · · · · · · · · · · · · · · · · |                                       |                                        |            |
| Prior to noon fill reservoirs (1L)                                        |             |          |              |                                       |                                       |                                        |            |
|                                                                           | <u>'</u>    |          | <u> </u>     |                                       |                                       |                                        | <u> </u>   |
| Noon delivery cycle                                                       | ·           |          |              |                                       |                                       |                                        |            |
| • splitter boxes filling?                                                 | V           | V        |              | <b>V</b>                              | √,                                    |                                        |            |
| syringes filling?                                                         | V.          |          | V            | V                                     | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                                        |            |
| • needles flowing?                                                        | /           |          |              |                                       | $\checkmark$                          |                                        |            |
| <ul> <li>beaker screens clear, flowing?</li> </ul>                        |             |          |              |                                       | - /                                   |                                        |            |
| drainage to waste ok?                                                     | 1           | Y        | A            | 4                                     | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 4                                      | 4          |
| empty waste buckets?                                                      | VV          | VV       |              | 77                                    |                                       | V \                                    | VV         |
|                                                                           | •           | 1        | l            |                                       |                                       |                                        | 1          |
| Test monitoring                                                           |             |          | <del> </del> |                                       |                                       | ······································ |            |
| • test temperature ok?                                                    | V           | <u> </u> | V            | $\sqrt{}$                             | ✓                                     | $\sqrt{}$                              | <b>✓</b>   |
| • D.O. ok?                                                                |             |          | 1/           |                                       |                                       | V                                      |            |
| <ul> <li>check for floating organisms</li> </ul>                          |             | ·//      | //           |                                       | ·/                                    | V/                                     | V          |
| • feeding completed?                                                      |             | V        |              |                                       | i/                                    | V                                      |            |
| Additional activities                                                     |             |          |              |                                       | ,                                     | /                                      | ,          |
| Prior to midnight fill reservoirs (1L)                                    | 1/          | ./       | 1            | 1/                                    | I V.                                  | V                                      |            |
| Check sediment water supply                                               | ./          |          |              |                                       | V                                     | \ <u>\</u>                             | ./         |
|                                                                           | <u> </u>    |          |              |                                       |                                       |                                        |            |
| Corrective Action /                                                       |             |          |              |                                       |                                       |                                        |            |
| Comments                                                                  |             |          |              |                                       |                                       |                                        |            |
|                                                                           | 16          | /        |              |                                       |                                       | 140                                    |            |
|                                                                           | 777 Jag     | 3000     | 1416/41      | 19                                    | 1703                                  | JW 70                                  | Jenh       |
| Initials/Date                                                             | Mili        | 1910/99  | 1111         | 1711                                  | 1:110                                 | 11119                                  | 11/20      |
| December All approxima system                                             | s listed ob |          |              | d on a daile                          | , bosis who                           |                                        | t taviaitu |
| <u>Procedure</u> : All operating system tests are in progress. Corrective |             |          |              |                                       |                                       |                                        |            |
| on this form. If project-specific d                                       |             |          |              |                                       |                                       |                                        |            |
| Documentation form) and include                                           |             |          |              |                                       | · ,                                   | <u> </u>                               |            |
| Comments:                                                                 |             |          |              |                                       |                                       |                                        |            |
|                                                                           |             |          |              |                                       |                                       | <del></del>                            |            |
|                                                                           |             |          |              |                                       |                                       |                                        |            |

Reviewer \_\_\_\_\_ Date \_\_\_\_ / 2/97
seddelfw.doc \_\_\_\_\_ Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

### Week of November 21, 1999

| ACTIVITY / DAY                                                                                                                                              | Sun.                                   | Mon                           | Tues.                    | Wed.       | Thurs.    | Fn.        | Sat   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------|--------------------------|------------|-----------|------------|-------|
| Prior to noon fill reservoirs (1L)                                                                                                                          |                                        |                               |                          |            | /         | V          | /     |
| Noon delivery cycle                                                                                                                                         |                                        |                               |                          |            | D:        |            |       |
| • spiller baxes filling?                                                                                                                                    |                                        | • 🗸                           |                          |            | III:GU    |            |       |
| * symniges filling?                                                                                                                                         |                                        |                               | . /                      |            | 1./       |            |       |
| • needles flowing?                                                                                                                                          |                                        |                               | · V                      |            |           |            |       |
| <ul> <li>beaker screens clear, flowing?</li> </ul>                                                                                                          |                                        | , ,                           | ///                      |            | . /       | V          |       |
| trainage to waste ok?                                                                                                                                       |                                        | 1/4/                          | <u>/</u>                 | / /        |           | 1/         | 14/   |
| empty waste buckets?                                                                                                                                        | 1/V                                    | $\sqrt{}$                     | VV                       | <u> </u>   | VV        | <u> </u>   | VIV   |
| Test monitoring                                                                                                                                             |                                        |                               |                          |            |           |            |       |
| • test temperature ok?                                                                                                                                      |                                        | ./                            |                          | 1          |           |            |       |
| • DC 5#?                                                                                                                                                    |                                        |                               | . /                      | 1          |           |            |       |
| check for floating organisms                                                                                                                                |                                        |                               | 1/2                      |            | · /       |            | V     |
| • feeding completed?                                                                                                                                        |                                        |                               | /                        | <u> </u>   | 170       |            |       |
| Additional activities                                                                                                                                       |                                        |                               |                          |            |           |            |       |
| Prior to midnight fill reservoirs (1).                                                                                                                      |                                        | V                             |                          | <u>/</u>   | 1 /       |            | 1/    |
| Check sediment water supply                                                                                                                                 |                                        |                               |                          |            | 1         |            | 1/    |
| Corrective Action / Comments                                                                                                                                |                                        | 2, .                          | 7:4                      |            | 14        |            | Ma    |
| Installs/Date                                                                                                                                               | -11/51                                 | 11/22                         | 11/23                    | JM 34      | 11.5      | 4/26       | 413-4 |
| Procedure: All operating system tests are an progress. Corrective on this form of project-specific and encluding commentation form) and encluding Comments: | e action m<br>docum <mark>e</mark> nti | iust be take<br>ation is rect | in wheneve<br>area write | r appropri | ate Docur | nent corre |       |
|                                                                                                                                                             |                                        |                               |                          |            |           |            |       |
|                                                                                                                                                             |                                        |                               |                          |            |           |            |       |

Reviewer Date 12999 Seddethwood Laboratory Aquated Biological Sciences South Burungton Vermont

### Week of November 28, 1999

| ACTIVITY / DAY                         | Sun.           | Mon.         | Tues.        | Wed.         | Thurs.      | Fri.                                  | Sat.                                              |
|----------------------------------------|----------------|--------------|--------------|--------------|-------------|---------------------------------------|---------------------------------------------------|
|                                        |                | /            |              | ,            | <del></del> | ,                                     | <del>, , , , , , , , , , , , , , , , , , , </del> |
| Prior to noon fill reservoirs (1L)     | V              | $\vee$       | $\sqrt{}$    | V            | V           | $\sqrt{}$                             | V                                                 |
| Noon delivery cycle                    |                |              |              |              |             |                                       |                                                   |
| splitter boxes filling?                | V.             | V            |              | <b>V</b>     |             |                                       |                                                   |
| syringes filling?                      |                | 1            |              |              | V           | V.                                    | V                                                 |
| needles flowing?                       | V ,            | V            | V            | V            | V .         |                                       |                                                   |
| • beaker screens clear, flowing?       | V              | V            |              |              |             |                                       |                                                   |
| drainage to waste ok?                  | 4              |              | V            | 1/           | Y           | , ~ ,                                 | 4                                                 |
| empty waste buckets?                   | VV             | 111          | VV           | VV           | V/-         | VIV                                   | VIV                                               |
|                                        |                |              |              |              |             |                                       |                                                   |
| Test monitoring                        |                |              |              |              |             |                                       |                                                   |
| test temperature ok?                   | V              |              | V            | Y            | V           | 1/                                    |                                                   |
| • D.O. ok?                             |                | 1            | /            |              | V           |                                       |                                                   |
| check for floating organisms           | V,             |              | V            | 1            | V           | 1                                     | 1//                                               |
| • feeding completed?                   |                | V            |              | V            |             |                                       |                                                   |
|                                        |                |              | <u> </u>     |              |             | <u> </u>                              |                                                   |
| Additional activities                  |                |              |              | <del></del>  |             |                                       |                                                   |
| Prior to midnight fill reservoirs (1L) | V/             |              |              |              | V           | W                                     | V                                                 |
| Check sediment water supply            |                | \ <u>\</u>   |              | V            |             |                                       | i/                                                |
|                                        |                |              |              |              |             |                                       |                                                   |
| Corrective Action /                    |                |              |              |              |             |                                       |                                                   |
| Comments                               |                |              |              |              |             |                                       | ļ                                                 |
|                                        | <b>-200</b> (: | 1/2 000      |              |              |             | 46.5                                  | -                                                 |
| Initials/Date                          | 11/25/199      | 11/29        | m/30         | 1311         | 100         | 15/2                                  | 107                                               |
| Initials/Date                          | . (            | 11121        | 1 112        | 1011         | 12/2        | 17%                                   | 1777                                              |
| Procedure: All operating system        | e lieted ah    | Nove must b  | ne checker   | d on a dail. | , bacic who | en cedimer                            | nt tovicity                                       |
| tests are in progress. Corrective      | action mu      | ust be take  | n wheneve    | er appropria | ate. Docur  | ment corre                            | ctive action                                      |
| on this form. If project-specific d    | iocumenta      | tion is requ | iired, write |              |             |                                       |                                                   |
| Documentation form) and include        | e with the     | test data p  | ackage.      |              |             | · · · · · · · · · · · · · · · · · · · |                                                   |
| Comments:                              | _              |              |              |              |             |                                       |                                                   |
|                                        |                |              |              |              |             |                                       | <del></del>                                       |
|                                        |                |              |              |              |             |                                       |                                                   |

Reviewer \_\_\_\_\_ Date 12/9/99 seddeffw.doc Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

### Week of December 5, 1999

| ACTIVITY / DAY                                                                                                                           | Sun.                    | Mon                        | Tues                   | Wed.         | Thurs.    | Fri.     | Sat.     |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------|------------------------|--------------|-----------|----------|----------|
| Prior to noon fill reservoirs (1L)                                                                                                       |                         |                            |                        |              |           |          | <b>/</b> |
| Noon delivery cycle                                                                                                                      |                         |                            |                        |              |           |          |          |
| • spiriter boxes filling?                                                                                                                | <b></b>                 | $\overline{}$              |                        |              |           | <b>V</b> |          |
| • synniges filling?                                                                                                                      |                         |                            |                        | <u> </u>     |           |          |          |
| • needles flowing?                                                                                                                       |                         |                            |                        |              |           |          |          |
| • peaker screens clear, flowing?                                                                                                         | /                       | ✓.                         | //                     |              |           |          |          |
| e prainage to waste ox?                                                                                                                  |                         | 1 / 1                      | ·                      | <b>/</b>     | <u> </u>  | 1        |          |
| emphy waste puckets?                                                                                                                     | 11                      | $\sqrt{V}$                 | VV                     | $\sqrt{}$    | VIV       | 11/      |          |
| Test monitoring                                                                                                                          | ,                       |                            |                        | ,            | '         | :        | \<br>    |
| • test temperature ox?                                                                                                                   |                         |                            |                        | <u> </u>     |           |          | V        |
| • 20 or? * Smile                                                                                                                         | ر ده                    |                            |                        | <b>9 /</b> / |           | _/_      |          |
| sheak for floating organisms                                                                                                             |                         | V                          |                        |              | 1/        |          |          |
| * feeding completed?                                                                                                                     |                         | V                          |                        | V            | <u> </u>  | Shired   |          |
| Additional activities Pror to midnight fill reservoirs of L                                                                              | ./                      |                            |                        |              |           | 30       |          |
| Check sediment water supply                                                                                                              |                         | <del></del>                |                        |              |           |          | <u> </u> |
|                                                                                                                                          | <u> </u>                |                            |                        |              |           |          | <u>`</u> |
| Corrective Action / Comments                                                                                                             |                         |                            |                        |              | :         |          |          |
| Indials/Date                                                                                                                             | 15/29<br>25/29          | 12/6/1                     | 13/7                   | July.        | 12/9      | 12/0     | 13-11    |
| Procedure: All operating system fests are in progress. Corrective on this form: If project-specific of Documentation form) and including | e action mu<br>coumenta | ist de take<br>Con is requ | n wheneve<br>Ted write | er appropri  | eta Docu: |          |          |
| Comments of Source                                                                                                                       | 2: FEC                  | غرور ال                    | oin Ex                 | ta len       | cu d.     | 12/5 76  | 10:3°c   |
| Comments * Socials (*) Sûm's                                                                                                             | <u></u> 4 12(           | £ . £0 (                   | 1 -XY                  | a ietie      | W 24 1    | 48 m     | <u> </u> |
|                                                                                                                                          |                         |                            |                        |              |           |          |          |

Reviewer Date 11/21/99
seppera poc
Laboratory: Aquated Biological Sciences: South Bunington, Vermont

### Week of December 12, 1999

| ACTIVITY / DAY                                                                                                                                                   | Sun.      | Mon.     | Tues.       | Wed.     | Thurs.                                       | Fri.        | Sat.     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-------------|----------|----------------------------------------------|-------------|----------|
| Prior to noon fill reservoirs                                                                                                                                    | T ./      | 1        | <del></del> |          | Ţ                                            | <del></del> |          |
| (1L)                                                                                                                                                             | V         | <u> </u> |             | <u> </u> |                                              |             |          |
| Noon delivery cycle                                                                                                                                              |           |          |             |          |                                              |             |          |
| splitter boxes filling?                                                                                                                                          |           |          | Ī           |          |                                              |             |          |
| syringes filling?                                                                                                                                                |           |          |             |          |                                              |             |          |
| needles flowing?                                                                                                                                                 |           |          |             |          |                                              |             |          |
| beaker screens clear, flowing?                                                                                                                                   | <b>\</b>  |          |             |          |                                              |             |          |
| crainage to waste ok?                                                                                                                                            | 1         |          |             |          |                                              |             |          |
| empty waste buckets?                                                                                                                                             |           |          |             | 1        |                                              |             |          |
| Test monitoring                                                                                                                                                  |           |          | <del></del> |          | <u> </u>                                     |             |          |
| test temperature ok?                                                                                                                                             |           | <u> </u> | <u> </u>    |          | ļ <u> </u>                                   |             |          |
|                                                                                                                                                                  |           |          |             | 1        | ; !                                          |             | ł        |
| D.O. ok?                                                                                                                                                         | ļ         | 1        | <u> </u>    |          | <u>;                                    </u> |             | <u> </u> |
| D.O. ok?  check for floating organisms                                                                                                                           | <b>V</b>  |          |             |          |                                              |             |          |
| D.O. 0K?                                                                                                                                                         | Skipped   |          |             |          |                                              |             |          |
| check for floating organisms feeding completed?                                                                                                                  | SKippel   |          |             |          |                                              |             |          |
| check for floating organisms feeding completed?  Additional activities                                                                                           | SKippel   |          |             |          |                                              |             |          |
| check for floating organisms feeding completed?  Additional activities  Prior to midnight fill reservoirs (1L)                                                   | SKipper   |          |             |          |                                              |             |          |
| check for floating organisms feeding completed?  Additional activities                                                                                           | SKippel   |          |             |          |                                              |             |          |
| check for floating organisms feeding completed?  Additional activities  Prior to midnight fill reservoirs (1L)  Check sediment water supply                      | SKIPPOL   |          |             |          |                                              |             |          |
| check for floating organisms feeding completed?  Additional activities  Prior to midnight fill reservoirs (1L)                                                   | SKippel   |          |             |          |                                              |             |          |
| check for floating organisms feeding completed?  Additional activities  Prior to midnight fill reservoirs (1L)  Check sediment water supply  Corrective Action / | SKIPPOL   |          |             |          |                                              |             |          |
| check for floating organisms feeding completed?  Additional activities  Prior to midnight fill reservoirs (1L)  Check sediment water supply  Corrective Action / | SK. pp. L |          |             |          |                                              |             |          |

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

### SEDIMENT TEST MANUAL RENEWAL

DAILY SCHEDULE: MORNING (0700 - 0800) AND EVENING (1800-1900)

| October, | 1 | 9 | 9 | 9 |
|----------|---|---|---|---|
|----------|---|---|---|---|

|                      | AM Renewal<br>Time               | Initials   | PM Renewal<br>Time | Initials     |
|----------------------|----------------------------------|------------|--------------------|--------------|
| 1                    |                                  |            |                    |              |
| 2                    |                                  |            |                    |              |
| 3                    |                                  |            | <del></del>        |              |
| 4                    | <del></del>                      |            |                    |              |
| 5                    |                                  |            |                    |              |
| 6                    |                                  |            |                    |              |
| 7                    |                                  |            |                    |              |
| 8                    |                                  |            |                    |              |
| <u> </u>             |                                  |            | 2230               | !            |
| 10                   | 09 50                            | 336        | 17:00 Stice        | - 1100       |
| 11                   | 09:00                            | 33G<br>23G | 19.00              | K_B          |
| 12                   | 07.5                             |            | d7:00              | 756          |
| 13                   | 07100                            | TM         | 1830               | 7            |
| 14                   | 07150                            | -r, -      | 1830               | A            |
| 15                   | C7.40                            | もなど        | 1815               | æ            |
| 16                   | 07.20                            | <i>9</i> S | 18:30              | J1G          |
| 17                   | 07:30                            | 336-       |                    |              |
| 18                   | C = 30                           | ندن        |                    |              |
| 19                   |                                  |            |                    |              |
| 20                   | C7-30                            | <u> </u>   | <del></del>        |              |
| 21                   | 0 = 5 15                         |            | 1100 010           | TM           |
| 22                   | 07.20                            | <u> </u>   | 2 19:00            | m            |
| 23                   | 0730                             | <u> </u>   | 18:44              | <u>L</u>     |
| 24                   | C= 35                            |            | 900                | -// <u>/</u> |
| 25                   | 07:00                            | 7,00       | 1900               |              |
|                      |                                  |            |                    |              |
| 26                   | 37.00                            | <u> </u>   | OF CHIA            | 7G           |
| 26<br>27             | 07.00<br>07:00                   |            | O7.0049.00         | 5.           |
| 26<br>27<br>28       | 07.00<br>07.20<br>04.00          |            | 67.66.4.W          | 5.           |
| 26<br>27<br>28<br>29 | 07.00<br>07.00<br>07.00          |            | O7.0049.00         | 5.           |
| 26<br>27<br>28       | 07.00<br>07.00<br>07.00<br>07.00 |            | 67.66.4.W          | STIM         |

### SEDIMENT TEST MANUAL RENEWAL

### DAILY SCHEDULE: MORNING (0700 - 0800) AND EVENING (1800-1900)

November, 1999

| Day of Month |             | Initials         | PM Renewal   | Initials |
|--------------|-------------|------------------|--------------|----------|
| 1            | Time        |                  | Time         |          |
| 1            | 07:30       | 78               | 19:00        | 7M       |
| 2            | 07:15       | 1m               | 18:45        | 76-      |
| 3            | 07:10       |                  | 18:45        | TM       |
| 4            | 07:25       |                  | 19:00        | Tm       |
| 5            | 07:25       |                  | 18:30        | JA       |
| 6            | 08:30       | JG               | 18:00        | 为        |
| 7            | 08:00       | I TM I           | 18130        | 76       |
| 8            | 09:00       | JG               | 18130        | -m       |
| 9            | 07:00       | 7722             | 19:00        | 36       |
| 10           | 07:00       | 7771             | 18:30        |          |
| 11           | 07:00       | Tm               | 1900         |          |
| 12           | 58:00       |                  | 19:00        | 36-      |
| 13           | 07:00       | 48               | 19:00        | 76       |
| 14           | 07:00       | 1 Tm             | 19:15        | してい      |
| 15           | 08100       | JG               | 19:00        | TM       |
| 16           | 07:00       | TM               | 19:00        | 3G       |
| 17           | 07:30       | 136              | 19:00        | 7m       |
| 18           | 07:00       | TM               | 18:30        | 12       |
| 19           | 07:00       | 11/4             |              |          |
| 20           |             |                  |              |          |
| 21           |             |                  | 19:15 System | check T  |
| 22           |             |                  | 19:00 SVSter | deck The |
| 23           | 07:00       | Im system there  | 18500        | 76-      |
| 24           | 07:00       | Jun system check |              | TM       |
| 25           | 07:00       | 7m               | 1915         |          |
| 26           | 07:00       | JE for Cd        | 1955         |          |
| 27           | 09:325      | JG-507           |              |          |
| 28           | 08:30       | My system stock  | 18.00        | 73       |
| 29           |             | System check     |              | 117-05   |
| 30           | 07.30 TM SI | stein check      | 18:00        | 76       |
| 31           |             |                  | ·            |          |
|              |             |                  |              |          |
|              |             |                  |              |          |
|              |             |                  |              | <u> </u> |

ON Illeleg All sediment rests were placed whim entereds years of receds ar 12:00 a 14:00 Adily on

()12/22/99

## Reference Toxicant Control Chart Hyalella azteca in Potassium chloride (mg/L)

|                |              | Organism      |                |              |                |                |                           |
|----------------|--------------|---------------|----------------|--------------|----------------|----------------|---------------------------|
| Test<br>Number | Test<br>Date | Age<br>(Days) | 96-Hr.<br>LC50 | Mean<br>LC50 | Lower<br>Limit | Upper<br>Limit | Organism<br>Source        |
| 1              | 04/15/98     | 8             | 340.198        | 340.20       |                |                | Env. Consult & Testing    |
| 2              | 04/17/98     | 10            | 340.198        | 340.20       | 340.20         | 340.20         | Env. Consult & Testing    |
| 3              | 08/04/98     | 14            | 561.231        | 413.88       | 158.65         | 669.10         | Env. Consult & Testing    |
| 4              | 08/22/98     | 10            | 353.553        | 398.80       | 181.85         | 615.74         | Env. Consult & Testing    |
| 5              | 09/13/98     | 11            | 347.163        | 388.47       | 194.99         | 581.94         | Env. Consult & Testing    |
| 6              | 10/26/98     | 12            | 324.210        | 377.76       | 196.93         | 558.59         | Env. Consult & Testing    |
| 7              | 11/13/98     | 10            | 183.717        | 350.04       | 129.21         | 570.87         | Env. Consult & Testing    |
| 8              | 02/19/99     | 9             | 353.553        | 350.48       | 146.02         | 554.94         | Env. Consult & Testing    |
| 9              | 05/13/99     | 8             | 280.616        | 342.72       | 145.87         | 539.56         | Env. Consult & Testing    |
| 10             | 06/21/99     | 12            | 353.553        | 343.80       | 158.09         | 529.51         | Env. Consult & Testing    |
| 11             | 06/25/99     | 14            | 297.302        | 339.57       | 161.17         | 517.97         | Env. Consult & Testing    |
| 12             | 06/26/99     | 10            | 280.616        | 334.66       | 161.19         | 508.13         | Env. Consult & Testing    |
| 13             | 07/02/99     | 7             | 198.425        | 324.18       | 141.71         | 506.65         | Env. Consult & Testing    |
| 14             | 07/07/99     | 8             | 378.929        | 328.09       | 150.35         | 505.83         | Env. Consult & Testing    |
| 15             | 07/07/99     | 7             | 176.777        | 318.00       | 129.75         | 506.26         | Aquatic Research Organism |
| 16             | 09/13/99     | 11            | 250.000        | 313.75       | 128.73         | 498.77         | Aquatic Research Organism |
| 17             | 10/08/99     | 9             | 210.224        | 307.66       | 121.61         | 493.71         | Aquatic Research Organism |
| 18             | 10/23/99     | 13            | 280.616        | 306.16       | 125.21         | 487.11         | Aquatic Research Organism |
| 19             | 10/23/99     | 9             | 353.553        | 308.65       | 131.47         | 485.84         | Aquatic Research Organism |
| 20             | 11/09/99     | 12            | 353.553        | 310.90       | 137.27         | 484.53         | Aquatic Research Organism |



### Summary of Sauget 1999 Hyalella azteca statistical analysis 3/21-23/01

Additional statistical analyses were performed. When a sample mean response value was equal to or greater than the corresponding reference site value, the result was assumed to be not significant, without statistical analysis. \* Indicates a statistically significant reduction was detected (P<0.05).

1. The data for reference sites Prairie Dupont (Sample 12664, PD) and Prairie Dupont 2 (Sample 12665, PD2) were compared against each other:

### Results of Reference Site Comparisons

Day 28 survival: Not significant

Day 28 growth: \* Reference 12664 (PD) < Reference 12665 (PD2)

Day 35 survival: Not significant Day 42 survival: Not significant

Day 42 reproduction: \* Reference 12664 (PD) < Reference 12665 (PD2)

Day 42 growth: \* Reference 12664 (PD) < Reference 12665 (PD2)

2. The data for reference sites Prairie Dupont (Sample 12664, PD) and Prairie Dupont 2 (Sample 12665, PD2) were combined and then the sample data for samples 12612 (BP1); 12613 (BP1FD); 12614 (BP3); and 12368 (BP2) were compared to the combined reference site data:

### Results of Multiple Sample Comparisons vs. Combined Reference Sites

Day 28 survival:

Day 28 growth:

Day 35 survival:

Day 42 survival:

Day 42 reproduction:

Day 42 growth:

Not significant for all samples

Not significant for all samples

Not significant for all samples

Not significant for all samples

Not significant for all samples

Not significant for all samples

3. The data for individual reference sites Prairie Dupont (Sample 12664, PD) and Prairie Dupont 2 (Sample 12665, PD2) were compared directly with the sample data for each individual sample for samples 12612 (BP1); 12613 (BP1FD); 12614 (BP3); and 12638 (BP2). The results of the statistical analysis were:

### Results of Single Sample Comparisons vs. Individual Reference Sites:

Day 28 survival:

12638 (BP2) vs. 12664 (PD): Not significant 12638 (BP2) vs. 12665 (PD2): Not significant

Day 28 growth:

12612 (BP1) vs. 12665 (PD2):
12613 (BP1FD) vs. 12665 (PD2):
12614 (BP3) vs. 12665 (PD2):
12638 (BP2) vs. 12665 (PD2):

Not significant \* (BP3 < PD2)
Not significant

```
Day 35 survival:
                                             Not significant
      12613 (BP1FD) vs. 12664 (PD):
                                             Not significant
      12613 (BP1FD) vs. 12665 (PD2):
                                             Not significant
      12638 (BP2) vs. 12664 (PD):
                                             Not significant
      12638 (BP2) vs. 12665 (PD2):
Day 42 survival:
      12613 (BP1FD) vs. 12664 (PD):
                                             Not significant
      12613 (BP1FD) vs. 12665 (PD2):
                                             Not significant
      12638 (BP2) vs. 12664 (PD):
                                             Not significant
      12638 (BP2) vs. 12665 (PD2):
                                             Not significant
Day 42 growth:
      12612 (BP1) vs. 12665 (PD2):
                                             * BP1 < PD2
      12613 (BP1FD) vs. 12665 (PD2):
                                             Not significant
      12614 (BP3) vs. 12664 (PD):
                                             Not significant
                                             * BP3 < PD2
      12614 (BP3) vs. 12665 (PD2):
      12638 (BP2) vs. 12665 (PD2):
                                             Not significant
Day 42 reproduction:
                                             * BP1 < PD2
      12612 (BP1) vs. 12665 (PD2):
       12613 (BP1FD) vs. 12665 (PD2):
                                             Not significant
       12614 (BP3) vs. 12665 (PD2):
                                             Not significant
       12638 (BP2) vs. 12665 (PD2):
                                             Not significant
```

### **Summary of Statistical Analyses**

- 1. When the reference site data were compared to each other, Sample 12664 (Prairie Dupont) was shown to have significantly lower Day 28 growth, Day 42 reproduction, and Day 42 growth than Sample 12665 (Prairie Dupont 2).
- 2. When the reference site data were combined and the test sample data were compared to the combined reference site data (with multiple comparison tests), no significant reductions in survival, growth, or reproduction were detected for any of the test samples.
- 3. When individual sample data were compared to individual reference site data, the following significant reductions were detected:
  - a. Sample 12614 (BP3) had lower Day 28 survival than Reference 12665 (PD2);
  - b. Sample 12612 (BP1) had lower Day 42 growth than Reference 12655 (PD2);
  - c. Sample 12614 (BP3) had lower Day 42 growth than Reference 12655 (PD2):
  - d. Sample 12612 (BP1) had lower Day 42 reproduction than Reference 12665 (PD2).

# Results of Chironomus tentans Survival and Growth Sediment Toxicity Tests Conducted on Sediment Samples from Dead Creek / Sauget, Illinois

Reference BTRs 3615, 3622, 3629, 3633, 3641, 3643

Prepared for: Menzie-Cura & Associates 1 Courthouse Lane, Suite 2 Chelmsford, MA 01824





## **Aquatec Biological Sciences**









BTRs 3615, 3622, 3629, 3633, 3641, 3643

PROJECT: 99033

I have reviewed this data package, which was completed under my supervision. This data package is complete, and to the best of my ability, accurately reflects the conditions and the results of the reported tests.

John W. Williams

Toxiefty Laboratory Manager

12/14/Gq

I have reviewed and discussed this data package with the responsible laboratory manager. Based on this review, the data package was, to the best of my knowledge and belief, conducted in accordance with established company quality assurance procedures.

Philip C. Downey, Ph.D.

Director

12/14/99 Date

### TABLE OF CONTENTS

| EXECUTIVE SUMMARY   | 1 |
|---------------------|---|
| INTRODUCTION        | 2 |
| METHODS             | 2 |
| PROTOCOL DEVIATIONS | 3 |
| RESULTS             | 4 |
| QUALITY ASSURANCE   | 6 |

### LIST OF APPENDICES

| Δ             | P | P | F | N  | n  | IX | ′ | Δ | i | R  | F | 2 | 11 | 1 7 | Γ.S | : ( | $\mathbf{a}$ | F | ۱۸ | <b>//</b> - | 10 | 'n       | E   | 2 | F | $\Box$ | ł٨  | ΛF    | =1 | N٦ | Γ. | T(  | $\gamma$ | χ | 10 | ٦. | T | Y | 7 | F     | S. | T | 5  |
|---------------|---|---|---|----|----|----|---|---|---|----|---|---|----|-----|-----|-----|--------------|---|----|-------------|----|----------|-----|---|---|--------|-----|-------|----|----|----|-----|----------|---|----|----|---|---|---|-------|----|---|----|
| $\overline{}$ |   |   |   | ıv | IJ | 17 |   | ╸ |   | ١, |   | w | u  | _   |     | ) ( |              |   | v  | VΙ          |    | <i>.</i> | _L_ |   | L |        | 111 | / I L |    | v  |    | 1 \ | _        | л | 11 |    |   |   |   | - 1 - | J. |   | L. |

APPENDIX B: CHAIN-OF-CUSTODY DOCUMENTATION

APPENDIX C: LABORATORY DOCUMENTATION AND DATA ANALYSES FOR

Chironomus tentans TOXICITY TESTS

APPENDIX D: RESULTS OF STANDARD REFERENCE TOXICANT TESTS

### **EXECUTIVE SUMMARY**

### 100.2CT Midge, Chironomus tentans 10-day Survival and Growth Test Conducted October 7 - October 20, 1999 for Menzie-Cura & Associates

### Dead Creek Site

| Laboratory<br>Sample ID | Client<br>Sample ID          | Mean<br>Survival<br>(%) | Mean<br>Dry Weight<br>(mg) |
|-------------------------|------------------------------|-------------------------|----------------------------|
| 12546                   | BTOX-C-1                     | 30 *                    |                            |
| 12547                   | BTOX-C-2                     | 0 *                     |                            |
| 12548                   | BTOX-C-3                     | 96                      | 2.352                      |
| 12549                   | BTOX-D-1                     | 44 *                    | -                          |
| 12550                   | BTOX-D-2                     | 48 *                    |                            |
| 12551                   | BTOX-D-3                     | 71 <b>-</b>             |                            |
| 12552                   | Laboratory Control Sediment  | 98                      | 2.558                      |
| 12589                   | BTOX-B-1                     | 0 -                     |                            |
| 12590                   | BTOX-B-1 (DUPE)              | 4 *                     |                            |
| 12591                   | BTOX-B-2                     | 0 -                     |                            |
| 12592                   | BTOX-B-3                     | 100 ¹                   | 0.581 <sup>1</sup>         |
| 12593                   | BTOX-M                       | 96 *                    |                            |
| 12609                   | E-1 Dead Creek               | 91*                     |                            |
| 12610                   | E-2 Dead Creek               | 16 <b>*</b>             |                            |
| 12615                   | Laboratory Control Sediment  | 100                     | 1.922                      |
| 12611                   | E-3 Dead Creek               | 97                      | 2.240                      |
| 12612                   | BP-1 Borrow Pit              | 64 *                    |                            |
| 12613                   | BP-1 Borrow Pit (DUPE)       | 40 *                    |                            |
| 12614                   | BP-3 Borrow Pit              | 53 <b>*</b>             |                            |
| 12622                   | Laboratory Control Sediment  | 94                      | 1.761                      |
| 12638                   | BP-2 Borrow Pit              | 14 *                    |                            |
| 12639                   | F-1 Dead Creek Section F     | 31 *                    | _                          |
| 12640                   | F-2 Dead Creek Section F     | 16 °                    |                            |
| 12641                   | F-3 Dead Creek Section F     | 10 *                    |                            |
| 12664                   | Prairie DuPont Creek         | 16 *                    |                            |
| 12665                   | Prairie DuPont Creek 2       | 55 <b>*</b>             |                            |
| 12666                   | Reference Creek              | 13 -                    |                            |
| 12668                   | Laboratory Control Sediment  | 100                     | 2.065                      |
| 12671                   | Ref 2-2 Reference Borrow Pit | 11 *                    |                            |

<sup>\*</sup> The response data were statistically significantly different from the corresponding laboratory control sediment in < 0.05%

When a statistically significant reduction in survival was detected, mean dry weight data were only reported in Appendix A (See Results)

<sup>\*</sup>Indigenous *Chironomus tentans* were present in this sample, resulting in counts higher than the initial number.

Statistical analysis of test data for Sample 12592 was not performed.

### INTRODUCTION:

Samples were received for toxicity testing at Aquatec Biological Sciences of 75 Green Mountain Drive, South Burlington, Vermont. Tests were conducted at Aquatec Biological Sciences. The results of the following tests are reported:

Client: Menzie-Cura & Associates Facility/Location: Dead Creek / Sauget, IL

Initial Sampling Date: October 4 - October 9, 1999
Testing Date: October 7 - October 20, 1999

Tests Conducted: Midge, Chironomus tentans, 10-day Survival and

Growth

### **METHODS:**

### **Toxicity Tests**

The procedures followed in conducting these toxicity tests were based on methods described by the USEPA (EPA 600/R-94/024). Specific test parameters for the *Chironomus tentans* whole sediment toxicity test are listed in Table 1. Testing was completed in four separate groupings based upon chronological sequencing from the time of sediment collection. The objective for the test groupings was to complete the 10-day acute tests prior to expiration of a 14-day sediment storage time so that subsequent chronic toxicity tests could be started within a 14-day time frame. The first testing group was initiated on October 7, 1999. The second testing group was initiated on October 8, 1999. The third testing group was initiated on October 9, 1999. The fourth testing group was initiated on October 10, 1999. A laboratory control (artificial sediment) was included with each testing group.

### Sediment Preparation

The samples were stored refrigerated and in the dark whenever they were not being used in preparation for testing. Sediments distributed in test beakers were examined for the presence of indigenous organisms which were removed when observed. Also, large pieces of vegetative material (e.g., leaf litter, sticks, grass) were removed. Qualitative observations regarding the sediment type and indigenous organisms removed were recorded. A laboratory

control sediment was used with each Sample Delivery Group. The laboratory control sediment (artificial sediment) was prepared following formulations specified in the USEPA protocols and then hydrated prior to distribution to test chambers. Sediments were then distributed to individual replicate test chambers, overlying water was added, and the overlying water renewal system was activated. The unused portion of each sample (in the original sample container) was returned to refrigerated storage.

### Statistical Analysis

Statistical comparisons were performed against the concurrent laboratory control. The growth measurement was based upon the average dry weight of surviving midge larvae per replicate, following the USEPA protocol for the test method. Statistical significance for any sample is based upon the most sensitive endpoint (survival or growth). An F-Test was performed to test for equality of variances between each sample comparison to the control. If variances were not significantly different, paired T-Tests with equal variances were used to determine whether there were significant reductions in mean survival (Arcsin transformed) and/or mean growth in each sample relative to the control. If the variance between a sample and control comparison was significantly different, paired T-Tests with unequal variances were used to determine significant reductions in mean survival and/or growth.

### **PROTOCOL DEVIATIONS:**

Surviving midge larvae in three test replicates (12640D, 12668A, and 12668B) were not included in the dry weight statistical analysis due to an apparent laboratory error.

Sample 12592 (BTOX-B-3) had greater than ten larvae recovered on Day 10 in seven of the eight test replicates. Several of the replicates had very high numbers (e.g., 18-28 larvae) recovered. Many of excess larvae were very small and appeared to be *Chironomus tentans*. This particular sample had an indigenous population of the test species which contributed to the final count because the test population and the indigenous population could not be easily differentiated. Statistical analysis of this sample (comparison to the Laboratory Control

Sample) was not performed due to the confounding presence of indigenous midge larvae. It was assumed that acute toxicity was not characteristic of this sample. This sediment sample was seived through a 0.3 mm mesh sieve prior to initiating subsequent chronic toxicity testing.

The following test replicates (12593C, 12615H, 12638G, and 12639A) had eleven larvae surviving when the test was ended. Proportion surviving was scored as 1.0 for these replicates.

The following replicates had slight inconsistencies in the number surviving larvae versus the number weighed: Replicate 12593F had nine surviving larvae and eight larvae weighed; Replicatee 12593G had 10 surviving larvae and nine larvae weighed; Replicatee 12666 had three surviving larvae and one larvae weighed.

Large predacious indigenous organisms (dragonfly nymphs and a leech) were found in some test replicates on Day 10. These replicates had no surviving midge larvae, possibly due to predation. The affected test replicates included 12547B, 12547F, 12551E, 12611G, and 12640F. These replicates were excluded from the statistical data analysis.

### **RESULTS:**

Summary result tabulations for the *Chironomus tentans* whole sediment toxicity tests are located in Appendix A.

Group 1 Test Results: This group included Samples 12546 (BTOX-C-1), 12547, (BTOX-C-2), 12548 (BTOX-C-3), 12549 (BTOX-D-1), 12550 (BTOX-D-2), and 12551 (BTOX-D-3). Samples 12546 (BTOX-C-1), 12547, (BTOX-C-2), 12549 (BTOX-D-1), 12550 (BTOX-D-2), and 12551 (BTOX-D-3) had survival responses that were significantly less than the Laboratory Control Sample (12552) which had 98 percent survival. Survival and growth responses for Sample 12548 (BTOX-C-3) were not significantly less than the Laboratory Control Sample. Samples 12546, 12547, and 12549 exhibited acute toxicity and were not scheduled for chronic toxicity testing. Samples 12548, 12550, and 12551 were scheduled for chronic toxicity testing.

Group 2 Test Results: This group included Samples 12589 (BTOX -B-1), 12590 (BTOX-B-1 duplicate), 12591 (BTOX-B-2), 12592 (BTOX-B-3), 12593 (BTOX-M), 12609 (E-1 Dead Creek), and 12610 (E-2 Dead Creek). Survival responses for samples 12589 (BTOX -B-1), 12590 (BTOX-B-1 duplicate), 12591 (BTOX-B-2), 12593 (BTOX-M), 12609 (E-1 Dead Creek), and 12610 (E-2 Dead Creek) were significantly less than the Laboratory Control Sample (12615). The Laboratory Control Sample for this testing group had 100 percent survival, hence no statistical variability in the survival response data. This lack of statistical variability may have had the effect of increasing the sensitivity of the statistical analysis such that samples with high survival (Samples 12593 and 12609 had 96 percent and 91 percent survival, respectively.) were shown to be significantly lower than the Laboratory Control Sample response. Samples 12589, 12590, 12591, and 12610 exhibited acute toxicity and were not scheduled for chronic toxicity testing. Samples 12592, 12593, and 12609 were scheduled for chronic toxicity testing.

Sample 12592 (BTOX-B-3) had indigenous *Chironomus tentans* larvae present in the sediment which confounded the final Day 10 survival counts. Statistical analysis of acute data for this sample was not performed.

Group 3 Test Results: This group included samples 12611 (E-3 Dead Creek), 12612, (BP-1 Borrow Pit), 12613 (BP-1 Borrow Pit duplicate), 12614 (BP-3 Borrow Pit), 12638 (BP-2 Borrow Pit), 12639 (F-1 Dead Creek Section F), 12640 (F-2 Dead Creek Section F), and 12641 (F-3 Dead Creek Section F). Survival responses for samples 12612, 12613, 12614, 12638, 12639, 12640, and 12641 were significantly less than the Laboratory Control sample (12622) which had 94 percent survival. The responses observed for Sample 12611 were not significantly less than the Laboratory Control. Samples 12638, 12639, 12640, and 12641 exhibited acute toxicity and were not scheduled for chronic toxicity testing. Samples 12611, 12612, 12613, and 12614 were scheduled for chronic toxicity testing.

Group 4 Test Results: This goup included samples 12664 (Prairie Du Pont Creek). 12665 (Prairie Du Pont Creek 2). 12666 (Reference Creek). and 12671 (Ref 2-2 Borrow Pit). Survival responses for all four samples were significantly less than the Laboratory Control sample

(12668) which had 100 percent survival. Only sample 12666 exhibited a growth responses that was significantly less than the Laboratory Control. Sample 12665 was scheduled for chronic toxicity testing. Samples 12664, 12666, and 12671 exhibited acute toxicity (defined as <50% survival and/or statistically lower than the control) and were not scheduled for chronic toxicity testing.

<u>Total Ammonia and Sulfide</u>: Total ammonia concentrations were less than 25mg/L in porewater and less than 7 mg/L in overlying water. Total sulfide was not detected (<0.5mg/L) in any porewater samples, therefore, testing for sulfide in overlying water was not conducted.

### **QUALITY ASSURANCE:**

A standard reference toxicant SRT test was conducted for each batch *Chironomus tentans* used in testing. The resulting LC50 values fell within control chart limits and were viewed as being acceptable.

Table 1. Test Conditions for the Midge (Chironomus tentans) 10-day Whole Sediment Survival and Growth Toxicity Test.

ASSOCIATED PROTOCOL: EPA, 1994. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates Method 100 1 (FPA/600/R-94/024)

| 100.1 (EPA/600/R-94/024).                          |                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Test type:                                      | Whole-sediment toxicity (static renewal)                                                                                                                                                                                                                                                                         |
| 2. Temperature:                                    | 23 <u>+</u> 1 °C                                                                                                                                                                                                                                                                                                 |
| 3. Light quality:                                  | Wide-spectrum fluorescent lights                                                                                                                                                                                                                                                                                 |
| 4. Light illuminance:                              | 500 to 1000 lux                                                                                                                                                                                                                                                                                                  |
| 5. Photoperiod:                                    | 16 hr. light, 8 hr. dark                                                                                                                                                                                                                                                                                         |
| 6. Test chamber size:                              | 300 mL beaker                                                                                                                                                                                                                                                                                                    |
| 7. Sediment volume:                                | 100 mL (distributed to test chambers on the day prior to administration of test organisms)                                                                                                                                                                                                                       |
| 8. Overlying water volume:                         | 175 mL                                                                                                                                                                                                                                                                                                           |
| 9. Renewal of overlying water:                     | Twice daily                                                                                                                                                                                                                                                                                                      |
| 10. Age of test organism:                          | 3rd instar or younger                                                                                                                                                                                                                                                                                            |
| 11. Number of organisms/test chamber:              | 10                                                                                                                                                                                                                                                                                                               |
| 12. Number of replicate test chambers / treatment: | 8                                                                                                                                                                                                                                                                                                                |
| 13. Feeding regime:                                | 1.5 mL Tetrafin suspension daily (1.5 mL contains 4.0 mg of dry solids)                                                                                                                                                                                                                                          |
| 14. Aeration:                                      | None unless dissolved oxygen in overlying water drops below 40 % saturation or demonstrates a declining trend during daily monitoring. If required, aeration will be sufficiently gentle to prevent resuspension of sediments to the overlying water. Additional water renewals may be used in lieu of aeration. |

Table 1. Test Conditions for the Midge (Chironomus tentans) 10-day Whole Sediment Survival and Growth Toxicity Test (continued).

15. Overlying water: Reconstituted water (EPA/600/R-94/024)

16. Control sediment: Formulated sediment (EPA/600/R-94/024,

Section 7.2.3.2)

17. Test chamber cleaning: None

18. Monitoring:

Overlying water

Temperature Daily Dissolved oxygen Daily

Ha

Beginning and end of test Conductivity Beginning and end of test Beginning and end of test Alkalinity Hardness Beginning and end of test Ammonia Beginning and end of test

Within 2 hours to remove "floaters" Organism behavior

Daily

19. Test duration: 10 days.

Survival and growth (dry weight of larvae to 20. End points:

0.01 mg, 60°C overnight), by replicate

21. Reference toxicant: 96-h acute, water only (KCI)

Minimum mean control survival of 70% 22. Test acceptability:

and performance-based criteria outlined in

EPA/600/R-94/024, Table 12.3

23. Statistical analysis and data

Arc-sine (square-root) transformation of interpretation:

survival data. F-Tests were performed for equality of variance. Paired T-Tests were performed versus the negative control for

survival and growth.

Summary of Statistical Tests and Probabilities
Dead Creek *Chironomus tentans* Acute Toxicity Test
BTR: 3615

|        |         |            | Sur             | Survival              |               |                      | Gre                   | Growth                |                         |
|--------|---------|------------|-----------------|-----------------------|---------------|----------------------|-----------------------|-----------------------|-------------------------|
|        |         | Proportion | F-Test<br>Equal | T-Test<br>Statistical | Statistically | Average              | F-Test<br>Equal       | T-Test<br>Statistical | Statistically           |
| Day 10 |         | Surviving  | Variance        | Probability           | Significant   | Weight (mg) Variance | Variance <sup>1</sup> |                       | Probability Significant |
| 12552  | Control | 0.98       |                 |                       |               | 2.558                |                       |                       |                         |
| 12546  | Sample  | 0.30       | 0.042           | 0.000                 | *             | 2.905                | 0.000                 | 0.316                 |                         |
| 12547  | Sample  | 00.0       | $NA^2$          | 0.000                 | *             | 0.000                | NA <sup>2</sup>       | NA <sup>2</sup>       | *                       |
| 12548  | Sample  | 96.0       | 0.757           | 0.318                 |               | 2.352                | 0.051                 | 0.179                 |                         |
| 12549  | Sample  | 0.44       | 0.025           | 0.000                 | *             | 3.021                | 0.000                 | 0.213                 |                         |
| 12550  | Sample  | 0.48       | 0.012           | 0.000                 | *             | 2.879                | 0.392                 | 0.026                 |                         |
| 12551  | Sample  | 0.71       | 0.125           | 0.000                 | *             | 3.412                | 0.033                 | 0.004                 |                         |

\* A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05).

1. If the F-Test result was significant (relative to the Laboratory Control, P<0.05), the T-Test was performed using unequal variances.

2. There were not enough sample and/or control response variability to conduct a meaningful F-Test

|         |              |                |           |           |                    | Day 10                 | Data              |          |                        |          |
|---------|--------------|----------------|-----------|-----------|--------------------|------------------------|-------------------|----------|------------------------|----------|
| Sample  | Ozakana      | Start<br>Count |           | -         | Mean<br>Proportion | Initial Boat<br>Weight | Weight            | _        | Mean Wt.<br>within Rep | Reps I-L |
| Number  | Replicate    |                | Surviving | Surviving | Surviving          | (mg)                   | (mg)              | Weighed  | (mg)                   | (mg)     |
| 12552   | *            | 10<br>10       | 10        | 1 00      |                    | 36 40                  | 50 60             | 10<br>10 | 2.220                  |          |
|         | 5            |                | 10        | : OC      |                    | 32 D7                  | 61.15<br>40.30    | -        | 2.908                  |          |
|         | c            | 10             | 8         | 0.80      |                    | 28 90                  | 49.39             | 3        | 2 561                  |          |
|         | C            | 10             | 10        | 1 00      |                    | 37 56                  | 61.28             | 10       | 2.372                  |          |
|         | E            | 10             | 10        | 1 00      |                    | 25 48                  | 53.70             | 10       | 2.422                  |          |
|         | Œ            | 10             | *2        | 1 00      |                    | 29 16                  | 54 08             | 10       | 2 492                  |          |
|         | G            | 10             | 10        | 1 00      |                    | 35 09                  | 58.20             | £        | 2.566                  |          |
|         | <u> </u>     | 10             | <u> </u>  | 1 00      | <del>38</del> 3    | 37 77                  | 57 00             | 10       | 2.923                  | 2.558_   |
| :2546   | <u> </u>     | 10             | 4         | C 40      |                    | 36 85                  | 53 60             |          | 4 188                  |          |
| .2546   | 5            | 10             | 2         | 0.20      |                    | 30 00<br>40 08         | 53 60<br>47 98    | 2        | 3 950                  |          |
|         | C            | 12             | 2         | 0:7       |                    | 35 91                  | 46.39             | 2        | 5.240                  |          |
|         | ٥            | 10             | 4         |           |                    | 33 5 1                 | 40.33             |          |                        |          |
|         |              |                | ÷         | 0.00      |                    | 2.5.                   | F4 43             | ٥        | 0.000                  |          |
|         | E            | 10             | E         | 0.60      |                    | 31 81                  | 51 42             | 5        | 3 268                  |          |
|         | F            | 10             | 5         | C 5C      |                    | 35 53                  | 49 64             | 5        | 2 502                  |          |
|         | G            | 10             | •         | 0.10      |                    |                        |                   | Ð        | 0000                   |          |
|         | H            | 10             |           | C 4G      | 0.30               | 30.27                  | 42.24             | 3        | 3.990                  | 2.905    |
| : 254   | 4            | 10             | :         | : x       |                    |                        |                   | 5        | E 000                  |          |
|         | 3            | TC.            | •         |           |                    |                        |                   | •        |                        |          |
|         | C            | 10             | Ξ         | c oc      |                    |                        |                   | Ð        | © 900°                 |          |
|         | 0            | 10             | 2         | S 3C      |                    |                        |                   | Đ        | 0000                   |          |
|         | Ε            | 10             | 2         | င္ ၁၄     |                    |                        |                   | Σ        | D 000                  |          |
|         | =            | 10             | •         |           |                    |                        |                   | •        |                        |          |
|         | G            | †C             | :         | 2 OC      |                    |                        |                   | 9        | 0.000                  |          |
|         | H            | 10             |           | 0.00      | : x                |                        |                   | <u> </u> | £ 200C                 | 0.000    |
| 12548   |              | 10             |           |           |                    | 30.00                  | Fr.F.             |          | 2 55 4                 |          |
| 23-6    |              |                | ::        | 1 00      |                    | 30 00                  | 55 51             | 10       | 2 651                  |          |
|         | 6            | 10<br>10       | .:        | : 60      |                    | 27.30                  | 49.64             | 10<br>12 | 2 234                  |          |
|         | c            |                | :s        | 1 00      |                    | 29 43                  | 5E 90             |          | 2 947                  |          |
|         | 2            | 10             | _         |           |                    |                        |                   | _        |                        |          |
|         | Ε            | 10             | 8         | 0.80      |                    | 28 53                  | 45 54             | 8        | 2 139                  |          |
|         | ۶            | 16             | 9         | C 9G      |                    | 28 93                  | 51.70             | S        | 2 530                  |          |
|         | G            | 10             | 15        | : 00      |                    | 29 98                  | 42.54             | 19       | 1.25€                  |          |
|         | <u> </u>     | 10             | <u>•c</u> | 1.0C      | 0.96               | 32.29                  | 59 33             | 10       | 2 704                  | 2.352    |
| *2549   | 4            | 10             | <u> </u>  | C 5C      |                    | 32 45                  | 49 59             | 4        | 4.285                  |          |
| 25-2    | 8            | 10             | 5         | 0.50      |                    | 33 73                  | 55.D7             | 5        | 4.258                  |          |
|         | C            | 10             | -         | 0.50      |                    | 55 · 5                 | / تا. تاب         | ÷        | 9.00C                  |          |
|         |              |                | -         |           |                    | 22.55                  | £7                |          |                        |          |
|         | D            | 10             |           | C 8C      |                    | 32 59                  | 57 67             | 8        | 3 135                  |          |
|         | E            | 10             | 4         | 0.40      |                    | 37 58                  | 52.7E             | 4        | 3 770                  |          |
|         | F            | 10             | 4         | C 40      |                    | 34.21                  | 47 00             | 3        | 4 263                  |          |
|         | G            | 10             | 3         | C 3C      |                    | 32 50                  | 41 17             | 3        | 2.857                  |          |
|         | <u> </u>     | 10             | €         | 0.60      | C 44               | 33 91                  | 43 43             | 5        | 1,587                  | 3.021    |
| 1255C   | 4            | 10             | •         | 8.5       |                    | 32 E7                  | 35 62             | •        | 2 750                  |          |
|         | 8            | 10             | 2         | 0.20      |                    | 31 55                  | 36 98             | ż        | 2715                   |          |
|         | č            | 10             | ş         | C 9C      |                    | 29 5E                  | 54 14             | ş        | 2 731                  |          |
|         | Ċ            | 10             | 2         | 0.40      |                    | 39 14                  | 48 55             | 4        | 2 353                  |          |
|         | ¥            | 10             | 4         | C 40      |                    | 33.25                  | 43 44             | 3        | 3 393                  |          |
|         | G            | 10             | ŧ         | 3 50      |                    | 27.47                  | 44 63             | Ę        | 2 56C                  |          |
|         | H            | 10             | 5         | 0.50      | 0.48               | 25 50                  | 52 48             | 5        | 3 363                  | 2.879    |
|         |              |                |           |           |                    |                        |                   |          |                        |          |
| · 255 · | 1            | 10             | -         | 5 70      |                    | 32.27                  | 52 & <del>S</del> | -        | 2 945                  |          |
|         | 8            | 10             | 4         | C 40      |                    | 34 14                  | 50 83             | <b>-</b> | 4 * - 3                |          |
|         | С            | 10             | £         | C 5C      |                    | 34 25                  | 59 58             | £        | 4.237                  |          |
|         | 0            | 10             | ē         | C 90      |                    | 34 46                  | 62 72             | ē        | 3 140                  |          |
|         | £            | TC             | •         |           |                    |                        |                   | •        |                        |          |
|         | F            | 10             | ŧ         | 0.80      |                    | 32 E7                  | <b>5</b> 8 07     | E        | 3 175                  |          |
|         | G            | 10             | -         | 0.70      |                    | 33 13                  | 54 47             | 5        | 3 557                  |          |
|         | <del>-</del> | 10             | ç         | 2.90      | 2.71               | 38 ET                  | 52 57             | Š        | 2 65E                  | 3 412    |

<sup>\*</sup> A indigenous predator was found in the sample during breakdown on day 10. See protocol deviations.

Dead Creek Chironomus tentans Acute Toxicity Test Summary of Statistical Tests and Probabilities

BTR: 3622/3629

|        |         |            | Sur             | Survival              |               |                      | Gre                   | Growth                |               |
|--------|---------|------------|-----------------|-----------------------|---------------|----------------------|-----------------------|-----------------------|---------------|
|        |         | Proportion | F-Test<br>Equal | T-Test<br>Statistical | Statistically | Average              | F-Test<br>Equal       | T-Test<br>Statistical | Statistically |
| Day 10 |         | Surviving  | Variance        | Probability           | Significant   | Weight (mg) Variance | Variance <sup>1</sup> | Probability           |               |
| 12615  | Control | 1.00       |                 |                       |               | 1.922                |                       |                       |               |
| 12589  | Sample  | 00.0       | $NA^2$          | 0.000                 | *             | 0.000                | NA <sup>2</sup>       | 0.000                 | *             |
| 12590  | Sample  | 0.04       | NA <sup>2</sup> | 0.000                 | *             | 0.529                | 900.0                 | 0.003                 | *             |
| 12591  | Sample  | 0.00       | NA <sup>2</sup> | 0.000                 | *             | 0.000                | NA <sup>2</sup>       | 0.000                 | *             |
| 12593  | Sample  | 96.0       | NA <sup>2</sup> | 0.030                 | *             | 1.964                | 0.447                 | 0.384                 |               |
| 12609  | Sample  | 0.91       | NA <sup>2</sup> | 0.004                 | *             | 1.079                | 0.373                 | 0.000                 | *             |
| 12610  | Sample  | 0.16       | NA <sup>2</sup> | 0.000                 | *             | 1.501                | 0.000                 | 0.293                 |               |
|        |         |            |                 |                       |               |                      |                       |                       |               |

\* A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05).

1. If the F-Test result was significant (relative to the Laboratory Control, P<0.05), the T-Test was performed using unequal variances.

2. There were not enough sample and/or control response variability to conduct a meaningful F-Test.

Sample 12592 was not included in the statistical analysis. See protocol deviations.

|                 | <del>:</del>  |                                        | Т                  |                                          | 99033      | Day 10                 | n Data         |                      |                |                   |
|-----------------|---------------|----------------------------------------|--------------------|------------------------------------------|------------|------------------------|----------------|----------------------|----------------|-------------------|
|                 | •             |                                        | 1                  |                                          |            | ·                      |                |                      |                |                   |
|                 |               | _                                      | 1                  |                                          | Mean       | Initial Boat           | •              |                      | Mean Wt.       |                   |
| Sample          | Ocal-ut-      | Start<br>Count                         | 8                  | •                                        | Proportion | •                      | Weight<br>(==) | Organisms<br>Weighed | within Rep     | -                 |
| Mumber<br>*26*5 | Replicate     | 10                                     | Surviving          | - SC                                     | Surviving  | (mg)                   | (mg)<br>46 TE  | Weighed              | (mg)<br>- 987  | (mg)              |
| 45 -            | 5             | 12                                     | •=                 | • 30                                     |            | 31 95                  | 53 69          | 10                   | 2 174          |                   |
|                 | č             | ·ž                                     | •                  | • 50                                     |            | 33 29                  | 51 53          | -5                   | · £24          |                   |
|                 | ۵             | 12                                     | •:                 | • 50                                     |            | <b>:7</b>              | 41.70          | 5.5                  | • 353          |                   |
| •               | E             | 10                                     | •:                 | • 00                                     |            | 27.57                  | 52 01          | •:                   | 2 404          |                   |
|                 | F             | 13                                     | *5                 | . 30                                     |            | 34 55                  | 53 20          | 7.0                  | 855            |                   |
|                 | G<br>⊭        | 12                                     | •:                 | . ac                                     | 4.00       | 25 90<br>28 90         | 45 71<br>50 95 | ••<br>•E             | 1 613<br>3 185 | * 922             |
|                 |               |                                        |                    |                                          | • 90       | 25 9.                  | 20.90          |                      | 2 100          | 244               |
| 12589           | A             | 10                                     | :                  | : 50                                     |            |                        |                | Ξ                    | 0.000          |                   |
|                 | 9             | 10                                     | :                  | 0.00                                     |            |                        |                | :                    | 0.000          |                   |
|                 | Ç             | 12                                     | :                  | 0.00                                     |            |                        |                | 2                    | 2000           |                   |
|                 | 0             | 10                                     | =                  | 2 30                                     |            |                        |                | Ξ                    | 0.000          |                   |
|                 | ج<br>3        | 10                                     | -                  | 0 00<br>0 00                             |            |                        |                | :                    | 0 000<br>0 000 |                   |
|                 | Ğ             | τĒ                                     | -                  | 2 20                                     |            |                        |                | :                    | 0.000          |                   |
|                 | <del>-</del>  | 13                                     | :                  |                                          | 0.00       |                        |                | Ē                    | 2 200          | 0.000             |
|                 |               |                                        |                    |                                          |            |                        |                |                      |                |                   |
| 12590           | A .           | 13                                     | •                  | : :                                      |            | 35 64                  | 40 30          | •                    | 1 480          |                   |
|                 | 3             | ::                                     | :                  | 5 50<br>5 55                             |            |                        |                | -                    | 0 000<br>0 000 |                   |
|                 | 0             | •:                                     | :                  | 2 20                                     |            |                        |                | :                    | 2 000          |                   |
|                 | E             | •=                                     | :                  | 5 5 5                                    |            |                        |                | :                    | 2 000          |                   |
|                 | F             | •=                                     | :                  | 0.00                                     |            |                        |                | :                    | : DOC          |                   |
|                 | G             | 1:                                     | Ξ                  | 5 25                                     |            |                        |                | Ξ                    | 0.000          |                   |
|                 |               | 10                                     | <u> </u>           | :::                                      | 0.04       | 25 65                  | 35 2C_         | :                    | 2 755          | <u> </u>          |
| *255*           | A .           | 13                                     |                    | <del>- : ::::</del>                      |            |                        |                |                      | 2 000          |                   |
| 4-3             | 8             | •:                                     | :                  | 0.00                                     |            |                        |                | -                    | 2 202          |                   |
|                 | č             | • =                                    | :                  | 2 20                                     |            |                        |                | :                    | 2 300          |                   |
|                 | ٥             | •:                                     | :                  | 0.00                                     |            |                        |                | :                    | 0.000          |                   |
|                 | E             | •:                                     | :                  | 0.00                                     |            |                        |                | :                    | 0.000          |                   |
|                 | F<br>G        | 10                                     | :                  | 0.00                                     |            |                        |                | -                    | 0.000          |                   |
|                 | <b>y</b>      | 10<br>10                               | :                  | 0 00<br>0 00                             | 0.00       |                        |                | ÷                    | 0 000<br>0 000 | 0.000             |
|                 |               |                                        |                    |                                          |            |                        |                | -                    |                |                   |
| - 2592          | 4             | •:                                     | •:                 | * 30                                     |            | 36 37                  | 4E             | -3                   | I 903          |                   |
|                 | 8             | •:                                     | I E                | I 50                                     |            | 30 32                  | 45 52          | 18                   | 3.557          |                   |
|                 | с<br>Э        | †:<br>*:                               | · i                | 1 50<br>1 10                             |            | 32 77<br>39 20         | 37 36<br>46 63 | · E                  | 5 259<br>3 867 |                   |
|                 | E             | ÷ē                                     | ع- و               | · 50                                     |            | 40.70                  | 45 55          | ·Ē                   | 2 *5           |                   |
|                 | F             | <b>→</b>                               | ٠.                 | - 50                                     |            | 34 35                  | 52 14          | • •                  | 1 153          |                   |
|                 | G             | 10                                     | ••                 | • •:                                     |            | 3E 25                  | 41 €2          | ••                   | 2 303          |                   |
|                 | <u> </u>      | •:                                     | <u> </u>           | <u>;                                </u> | . 53       | 35 \$5                 | 39 40          | <u>.</u>             | D 430          | 0 581             |
| *2593           | 4             | 7.5                                    |                    | 5 90                                     |            | 33 TE                  | 51 60          | Ē                    | * 5£2          |                   |
| 2333            | 3             | 10                                     |                    | 0.90                                     |            | 32 E<br>43 18          | 50 67          | ÷                    | . 243          |                   |
|                 | C             | 77                                     |                    | . 25                                     |            | 35 03                  | 57 58          |                      | • 956          |                   |
|                 | 2             | •:                                     | •:                 | • 50                                     |            | 35 15                  | 50 5E          | :                    | . 573          |                   |
|                 | E             | 12                                     | *:<br>*:<br>}      | 7 00                                     |            | 40 43                  | 60 00          | •:                   | - 5-5          |                   |
|                 | <u>د</u>      | 10                                     | ÷                  | 0.90                                     |            | 35 65                  | 50 59          | Ė                    | - 541          |                   |
|                 | G<br>₩        | ::<br>::                               | :<br>:             | . 50                                     | _0,9805    | 35 1 <b>6</b><br>36 52 | 56 60<br>57 14 | ÷:                   | 1 414<br>1 081 | - <del>56</del> 4 |
|                 | -7            |                                        |                    |                                          |            |                        |                | <del></del>          |                | <del>504</del>    |
| *2509           | 4             | •:                                     | :                  | : <b>£</b> C                             |            | 3. 54                  | 35             |                      | • ::=          | _                 |
|                 | 3             | •:                                     | •:                 | . 50                                     |            | 3- 99                  | 42 55          | -:                   | - ===          |                   |
|                 | c             | •:                                     | - :                | • 50                                     |            | 32 **                  | ۲£             | ::                   | 1 955          |                   |
|                 | O E           | ::<br>                                 | ÷<br>              | 0.80                                     |            | 32 <del>66</del>       | 39 DE<br>53 EE | ÷<br>•1              | 0.600          |                   |
|                 | E             | .:                                     | *C<br>8<br>*C<br>9 | . 20<br>2 <b>3</b> 0                     |            | 36 TB<br>31 57         | 35 99          |                      | 1 487<br>1 040 |                   |
|                 | 3             | ************************************** | -<br>-             | 2.92                                     |            | 27.36                  | 35 53          | ;<br>;               | 0.906          |                   |
|                 | . н           | <u> </u>                               |                    |                                          | 2 9*       | 2€ 2 <sup>-2</sup>     | 38 29          |                      | <u>- 33€</u>   | <u>• 679</u>      |
|                 |               |                                        |                    |                                          |            |                        |                |                      |                |                   |
| 12610           | 4             | •:                                     | =                  | : ::                                     |            | 32.27                  | 41 92          | _ :                  | 4 525          |                   |
|                 | <b>8</b><br>C | •:<br>•-                               | -                  | 0 00<br>0 00                             |            |                        |                | -                    | 0 000<br>0 000 |                   |
|                 | 9             | • =                                    | :                  | 2 *5                                     |            | 34 50                  | 39 0-          | :                    | 4 510          |                   |
|                 | 0 8 6         | ·÷                                     | :                  | 2 + 2<br>2 5 5 5                         |            |                        |                | -                    | 2 200          |                   |
|                 |               | •c                                     | •                  | : •:                                     |            | 34 19                  | 34 92          | •                    | 2 730          |                   |
|                 | G             | 10<br>10<br>10<br>10<br>10<br>10       | :                  | 0.00                                     |            |                        |                | 2                    | 0.000          |                   |
|                 | ₩             | •:                                     |                    | _ 0 90                                   | _ 2 *£     | 32 34                  | 45 E5          | ÷ .                  | - 545          | 1 501             |

Summary of Statistical Tests and Probabilities
Dead Creek *Chironomus tentans* Acute Toxicity Test
BTR: 3629/3633

|               |         |            | Sur      | ırvival     |               |                                       | Gre                            | Growth                     |                              |
|---------------|---------|------------|----------|-------------|---------------|---------------------------------------|--------------------------------|----------------------------|------------------------------|
|               |         | Proportion | F-Test   | T-Test      | Ctatistically | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | F-Test                         | T-Test                     |                              |
| <b>Day 10</b> |         | Surviving  | Variance | Probability | Significant   | Weight (mg) Variance                  | Equal<br>Variance <sup>1</sup> | Statistical<br>Probability | Statistically<br>Significant |
| 12622         | Control | 0.94       |          |             |               | 1.761                                 |                                |                            |                              |
| 12611         | Sample  | 0.97       | 0.379    | 0.160       |               | 2.240                                 | 0.826                          | 0.031                      |                              |
| 12612         | Sample  | 0.64       | 0.004    | 0.018       | *             | 2.643                                 | 0.027                          | 0.040                      | -                            |
| 12613         | Sample  | 0.40       | 0.012    | 0.000       | *             | 4.071                                 | 0.014                          | 0.001                      |                              |
| 12614         | Sample  | 0.53       | 0.002    | 0.009       | *             | 2.996                                 | 0.016                          | 0.016                      |                              |
| 12638         | Sample  | 0.14       | 0.001    | 0.001       | *             | 0.956                                 | 0.002                          | 0.137                      |                              |
| 12639         | Sample  | 0.31       | 0.005    | 0.000       | *             | 2.686                                 | 0.019                          | 0.042                      |                              |
| 12640         | Sample  | 0.16       | 0.002    | 0.001       | *             | 0.053                                 | NA <sup>2</sup>                | 0.000                      | *                            |
| 12641         | Sample  | 0.10       | 0.058    | 0.000       | *             | 0.969                                 | 0.007                          | 0.095                      |                              |
|               |         |            |          |             |               |                                       |                                |                            |                              |

\* A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05).

1. If the F-Test result was significant (relative to the Laboratory Control, P<0.05), the T-Test was performed using unequal variances.

2. There were not enough sample and/or control response variablility to conduct a meaningful F-Test.

|        |                |                      | T -          |                                        | 99033        | Day 10                 | Data             |             |                                  |        |
|--------|----------------|----------------------|--------------|----------------------------------------|--------------|------------------------|------------------|-------------|----------------------------------|--------|
|        |                |                      |              |                                        | Mean         | intoal Bost            |                  | #           | Mean W.                          | Mear W |
| Sample |                | San                  |              | Preparation.                           | Proportion   | Weight                 |                  | Organisms   |                                  |        |
| Number | Replicate      | Count                | Surviving    | Surviving                              |              | (mg)                   | (mg)             | Weighed     | ( <b>⇔</b> g)                    | (mg)   |
| .3522  | A              | *:                   | •:           | · ::                                   |              | 53.37                  | ~E D5            | •:          | . 52.                            |        |
|        | E              | ::                   | •            |                                        |              | 5 <b>9 34</b>          | 55 4"            | 7:          | 3.513                            |        |
|        | C              | 12                   | \$<br>•:     | 0.00                                   |              | 51 1 <b>6</b><br>56 21 | 76 25<br>64 49   | 5<br>12     | - 45-                            |        |
|        | E              | •                    | Ę            | .x<br>:€:                              |              | 56 63                  | 64               | ě           | . 82.<br>. 82.                   |        |
|        | F              | +=                   | ç            | 2 90                                   |              | 56 14                  | 76 7E            | Ē           | I 516                            |        |
|        | G              | •:                   | ÷            | 1.90                                   |              | 55 ET                  | 73.42            | •           | 950                              |        |
|        | <u></u>        | <u>:</u>             | <u>:</u>     | · x                                    | C 84         | 27.77                  | 63 CC            | 10          | <u>* 58*</u>                     | • "E"  |
| 12511  | 4              | <del>- :</del> -     | -:           | · <del>x</del>                         |              | 35 5.                  | 60.20            | 7.5         | 1:35                             | _      |
|        | 8              | •                    | Ę            | : 90                                   |              | 48 33                  | 63.29            | <u> </u>    | 662                              |        |
|        | C              | ::                   | •:           | • 30                                   |              | 3.5                    | £3 £7            | 7.2         | 2 390                            |        |
|        | C              | 12                   | ÷            | : =0                                   |              | 25 30                  | 5- 5-            | Ê           | 2.519                            |        |
|        | E              | 12<br>12<br>13       | •:           | . :c                                   |              | 4                      | Ez TT            | 7.5         | • 73                             |        |
|        | =              | 1:                   | •:           |                                        |              | 41.74                  | 63.70            | 7.5         | 1 296                            |        |
|        | ;<br>;         | •:                   | •:           | · 🛣                                    | : 57         | 34 78                  | 53 7E            | -5          | 2 596                            | ::4:   |
|        |                |                      |              |                                        |              |                        |                  |             |                                  |        |
| .14.1  | 4              | 12                   | <u>.</u>     | 2.50                                   |              | 44 2-                  | 50 54            | •           | 3 254                            |        |
|        | £<br>C         | ::                   | ·:           | 7 DE<br>28 C                           |              | 45 19<br>41 57         | 57 85<br>55 56   | -:<br>£     | - 966<br>3 090                   |        |
|        | 5              | • ;                  | •            | : 6C                                   |              | 4" 5 <del>5</del>      | 55 51            | 5           | 3 690<br>3 670                   |        |
|        | Ē              | •                    | :            | : :::                                  |              |                        |                  |             | 2 300                            |        |
|        | ī              | •:                   | -            | : ":                                   |              | ÷- ÷-                  | 75.50            | Ξ           | 2 566                            |        |
|        | 3              | ***                  | •:           | • 22                                   |              | 47 FZ                  | 75 83            | •:          | 1.50~                            |        |
|        | , <del></del>  |                      | <u>.</u>     | : 5:                                   | : 44         | 47 35                  | 54 <u>22</u>     | <u> </u>    | 3 368                            | 1843   |
| - 26-3 | 4              | •                    |              | :::                                    |              | 45                     | £3.48            | <del></del> | <u> </u>                         |        |
| •••    | -<br>-         | •                    | 5            | : #:                                   |              | 45 54                  | <del>4</del>     | ÷           | 348                              |        |
|        | 5              | •:                   | -            | : *:                                   |              | 44 60                  | <del>52</del>    | -           | 3.54"                            |        |
|        | 5              | •:                   | :            | I II                                   |              | 40.00                  | 4" £3            | =           | 1 5*5                            |        |
|        | ٤              | ::                   | 3            | : 30                                   |              | 51 FT                  | 53.34            | :           | 3 5*3                            |        |
|        | 5              |                      | ÷            | : <del>=</del> C                       |              | 50 58<br>60 50         | 41<br>53 86      | ŧ .         | 117                              |        |
|        | 7              | ::<br>::<br>::<br>:: | 3            | 1 11                                   | 1 41         | 50 00<br>50 48         | ft E.            | 3           | 3 54I<br>2 ~2~                   | 4 =    |
|        |                |                      |              |                                        |              |                        |                  |             |                                  |        |
| -3€-4  | - A            |                      | <u>:</u> _   | . 10                                   |              | 44                     | TĒ               |             | 167                              |        |
|        | E              | **                   | •:           | • DC                                   |              | 59.25<br>47.44         | F1 75            | •;          | 3 349                            |        |
|        | <b>S</b>       |                      | <u> </u>     | 1 51<br>1 70                           |              | £7 &5                  | £. 11            | ŧ<br>:      | 3 300                            |        |
|        | Ē              | • -                  | :            | : ::                                   |              | 46 29                  | 45 . F           | •           | 1 89C                            |        |
|        | F              | •=                   | 3            | : 30                                   |              | 53 44                  | 54 53            | 3           | 3 53                             |        |
|        | 3              | •:                   | •            | : 50                                   |              | 5. 3.                  | E2               | ŧ           | 3 415                            |        |
|        |                | <u> </u>             |              | _ : 5:                                 |              | <u> </u>               | <u> </u>         | E           | 4 010                            | 1 996  |
| *2636  | ā              | •:                   | :            | : :0                                   |              |                        |                  | <del></del> | 2 2000                           |        |
|        | £              | •:                   | :            | : 30                                   |              |                        |                  | :           | : 000                            |        |
|        | c              | •:                   | =            | : :::                                  |              |                        |                  | :           | 2 300                            |        |
|        | ε              | •=                   | :            | : ==                                   |              |                        |                  | :           | 2 200                            |        |
|        | E              | •=                   | :            | : ::                                   |              |                        |                  | Ξ.          | 2 000                            |        |
|        | Ğ              | ••                   | •            | . x                                    |              | 54 43                  | 82.74            | :           | 0.000<br>0.655                   |        |
|        | 9 1            | :                    | •            | - <i>1</i>                             | : -4         | 54 7E                  | 54 77<br>54 77   | •           | I 555<br>4 960                   | : 656  |
|        |                |                      |              |                                        |              |                        |                  |             |                                  |        |
| - 2636 | ī              | ••                   | <del></del>  |                                        |              | 43.47                  | 55.55            |             | • 965                            |        |
|        | 5<br>5         | ::                   | :            |                                        |              | 52 56                  | 51 89            | :           | # 1005<br>1: 1000                |        |
|        | ä              | ·÷                   | 3            | - <del>-</del>                         |              | 57 45                  | <del>55</del> 50 | 3           | 3 2*3                            |        |
|        | E              | •:                   | •            | : ::                                   |              | 53 50                  | 56 3E            | :           | 1 580                            |        |
|        | £              | •:                   | 4            | : #<br>: #<br>: #<br>: #<br>: #<br>: # |              | 42 20                  | 54 -             | Ł           | 3.45                             |        |
|        | S              |                      | •            | : ::                                   |              | \$2.0£                 | 5£ 0.5           | -           | 3 790                            |        |
|        | <del></del>    |                      |              | 1.41                                   | _::          | 53 73                  | £4.45            |             | <u></u>                          | 1 556  |
| 12542  | <u> </u>       | -:                   | -:           | : :c                                   |              |                        |                  | -:-         | I DOC                            |        |
|        |                |                      | :            | 3.30                                   |              |                        |                  | :           | : 000                            |        |
|        | £<br>:<br>:    | ::                   | :<br>:<br>:: | . 10<br>. 10                           |              |                        |                  | :           | 0.000                            |        |
|        |                | •                    | · <u>·</u>   | - 30                                   |              |                        |                  | =           | 2 300                            |        |
|        | Ē              | .:                   | :            | : 30                                   |              |                        |                  | :           | 2 000                            |        |
|        | 5              | • :                  |              | : ::                                   |              | 75 53                  | ZP 90            | -           | : 172                            |        |
|        | ,              | : <u>:</u>           | <u> </u>     | : ·:<br>: :::                          | : • <u>€</u> |                        |                  | <u> </u>    | : 300:                           | : 253  |
|        |                |                      |              |                                        |              |                        |                  |             |                                  |        |
| ****   |                |                      |              |                                        |              |                        |                  |             |                                  |        |
| *2541  | 5              | -:<br>::             | :            | 0.00<br>0.60                           |              | 3£ ° \$                | 45 55            |             | 2 200                            |        |
| *2541  | #<br>5<br>C    | ::                   | :            | 0.50                                   |              | 36 19<br>50 60         | 24 24<br>12 26   | ÷           | 1 200                            |        |
| *2541  | <b>4</b> 9 C D | ::                   | £            | 2.50<br>2.10<br>2.00                   |              | 50 60                  | £4 £4            |             | 2 ***5<br>4 ****5<br>2 ***5      |        |
| 12541  | * # 0 0 0 #    |                      | •<br>•       | 1 50<br>1 10<br>1 00<br>1 11           |              |                        |                  |             | . 850<br>: 300<br>* 500<br>: 100 |        |
| 12541  | <b>4</b> 9 C D |                      | £            | 2.50<br>2.10<br>2.00                   |              | 50 60                  | £4 £4            |             | 2 ***5<br>4 ****5<br>2 ***5      |        |

<sup>1.4</sup> indigenous precator was found in the sample ourning presidown on day 10. See protocol deviations

Summary of Statistical Tests and Probabilities
Dead Creek *Chironomus tentans* Acute Toxicity Test
BTR: 3641

|               |         |            | Sur             | Survival    |               |             | Gre                   | Growth |                           |
|---------------|---------|------------|-----------------|-------------|---------------|-------------|-----------------------|--------|---------------------------|
|               |         |            | F-Test          | T-Test      |               |             | F-Test                | T-Test |                           |
|               |         | Proportion | Equal           | Statistical | Statistically | Average     | Equal                 |        | Statistical Statistically |
| <b>Day 10</b> |         | Surviving  | Variance        | Probability | Significant   | Weight (mg) | Variance <sup>1</sup> | _      | Significant               |
|               |         |            |                 |             |               |             |                       |        |                           |
| 12668         | Control | 1.00       |                 |             |               | 2.065       |                       |        |                           |
| 12664         | Sample  | 0.16       | NA <sup>2</sup> | 0.000       | *             | 1.052       | 0.005                 | 0.047  | *                         |
| 12665         | Sample  | 0.55       | NA <sup>2</sup> | 0.000       | *             | 2.699       | 0.173                 | 0.024  |                           |
| 12666         | Sample  | 0.13       | NA <sup>2</sup> | 0.000       | *             | 0.346       | 0.306                 | 0.000  | *                         |
| 12671         | Sample  | 0.11       | NA <sup>2</sup> | 0.000       | *             | 1.409       | 0.004                 | 0.136  |                           |
|               |         |            |                 |             |               |             |                       |        |                           |

\* A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05)

1. If the F-Test result was significant (relative to the Laboratory Control, P<0.05), the T-Test was performed using unequal va

2. There were not enough sample and/or control response variablility to conduct a meaningful F-Test.

| <del></del> |                  |                |               |                              |            | Day 10        | Data             |             |                        |          |
|-------------|------------------|----------------|---------------|------------------------------|------------|---------------|------------------|-------------|------------------------|----------|
| Sample      | Replicate        | Start<br>Count | #<br>Cumining | Proportion<br>Surviving      | Proportion | _             | _                |             | Mean Wt.<br>within Rep | Reps I-L |
| Number      | <del> </del>     |                |               |                              | Surviving  | (mg)          | (mg)             |             | (mg)                   | (mg)     |
| 12668       | A                | 10             | 10            | 1 00                         |            |               |                  | 0           |                        |          |
|             | B                | 10             | 13            | . 30                         |            |               | F7 F0            | 0           | 2 202                  |          |
|             | С                | 10             | 10            | 1 00                         |            | 35 90         | 57 53            | 10          | 2.063                  |          |
|             | D                | 10             | 10            | 1 00                         |            | 38 94         | 64 79            | 10          | 2 585                  |          |
|             | E                | 10             | 10            | 1 33                         |            | 40 44         | 57 73            | 10          | 1.729                  |          |
|             | F                | 10             | 13            | 1 00                         |            | 36 10         | 56.71            | 19          | 2 061                  |          |
|             | G                | 10             | 13            | . 00                         |            | 43 85         | 60 7 <b>6</b>    | 10          | 1 691                  |          |
| <u>-</u>    | #1               | 10             | 1C            | 1,00                         | 100        | 35 95         | 59 57            | 19          | 2 262                  | 2.065    |
| 12554       | <b>A</b>         | 10             | G             | 5 33                         |            |               |                  | O           | 0 000                  |          |
|             | B                | 10             | 7             | 0.70                         |            | 35 51         | 53 SE            | 7           | 2 624                  |          |
|             | С                | 12             | €             | 0.50                         |            | 40.00         | 5€ 4€            | £           | 2 743                  |          |
|             | D                | 10             | S             | 0.00                         |            |               |                  | C           | 5.000                  |          |
|             | Ξ                | 1.0            | 1             | 0.10                         |            | 40 14         | 43 19            | 7           | 3 950                  |          |
|             | F                | 10             | С             | 0.00                         |            |               |                  | 2           | 000 C                  |          |
|             | G                | 10             | C             | 0.00                         |            |               |                  | C           | 2 00C                  |          |
|             | H                | 10             | G             | <u> </u>                     | 0.16       | <del></del> - |                  | <u> </u>    | 0 00                   | 1 052    |
| 12685       | <u> </u>         | 13             | 9             | 0.90                         |            | 37.51         | 56 22            | <u> </u>    | 2 079                  |          |
| 12000       | 9                | 10             | 8             | 0.80                         |            | 37 80         | 59 66            | £           | 2 733                  |          |
|             | C                | 10             | 8             | 0.83                         |            | 32 59         | 54 27            | £           | 2 7 10                 |          |
|             | D D              | 10             | 4             | 0.40                         |            | 35 21         | 54 2.<br>51 61   | 4           | 4 100                  |          |
|             |                  | 10             | 8             | 0.50                         |            | 35 84         | 52 66            | 8           | 2.103                  |          |
|             | E<br>F           |                | 4             | 0 <b>3</b> 0<br>0 <b>4</b> 0 |            | 42 47         | 54 17            | 4           | 2.925                  |          |
|             |                  | 10             |               |                              |            |               |                  |             |                        |          |
|             | G                | 13             | 2             | 0.20                         | 0.55       | 37.51         | 42 3E            | 2           | 2.385                  | 0.000    |
|             | <del>il-fi</del> | 10             | 1             | 3 10                         | 0.55       | 36 05         | 38-61            | 1           | 2.560                  | 2.699    |
| 12555       | A                | 10             | 1             | 2.40                         |            | 35 £3         | 37.52            |             | 0 890                  |          |
|             | ₽                | 10             | 4             | 0.45                         |            | 41 DE         | 46 <del>26</del> | 4           | 1 470                  |          |
|             | C                | 10             | †             | 0.10                         |            | 37.68         | 3T 81            | 1           | 0 150                  |          |
|             | Đ                | 10             | 3             | 0.30                         |            | 40 29         | 40 50            | •           | 0.210                  |          |
|             | £                | 10             | 7             | 3 10                         |            | 39 29         | 39 34            | 1           | 0 050                  |          |
|             | £                | 10             | C             | 3 30                         |            |               |                  | 3           | 0 000                  |          |
|             | G                | 10             | Ċ             | 3 33                         |            |               |                  | D           | 0 000                  |          |
|             | H                | 10             | 0             | 0.00                         | 0.13       |               |                  | <u> </u>    | 000                    | 0.346    |
| 12671       | •                | 10             | s             | 3 30                         |            |               |                  | <del></del> | 0.000                  |          |
| (25)        | Ä                |                |               |                              |            |               |                  |             | 0 000                  |          |
|             | B                | 10<br>10       | C             | 3 6G                         |            | ,,,,          | EE 50            | 0           | 0.000                  |          |
|             | C                | 10             | 4             | 3 40                         |            | 45 24         | 55 53            | 4           | 2 323                  |          |
|             | D                | 10             | C             | 3 30                         |            |               | 4= 00            | 5           | 0 000                  |          |
|             | E                | 10             | -             | 0 10                         |            | 44 E*         | 47 60            | -           | 2 990                  |          |
|             | F                | 10             | 3             | 0.30                         |            | 46 30         | 55 50            | 3           | 3 067                  |          |
|             | G                | 10             | •             | 2 *3                         | <u>.</u> . | 40 12         | 43 01            | •           | 2 890                  |          |
|             | ₩                | 10             | C             | 0.00                         | 0.11       |               |                  | 0           | 0 000                  | 1,409    |

### APPENDIX: B

South Burlington, VT 05403 NOTES TO SAMPLER(S): We recommend neating samples in ice to maintain 4°C during 75 Green Mountain Drive TEL; (802) 860-1638 VOLUME/CONTAINER 1YPE/ NUMBER OF CONTAINERS shipment. Please cover sample labels with clear tape (labels are not waterproof) PRESERVATIVE 600 7.0' plastic 1 931 **4**0C Chironomus tentans 10-d Survival & Growth Chnonouns tentims 10-d Survival & Growth Chirononus tentans 10 d Survival & Growth Chronomus fortuns 10 d Sarvival & Growth Chironomus tentans 10 d Survival & Growth Hyalalla aztaca 42. day Chronic Toxicity Hyalalla aztaca 42 day Chronic Toxicity Hyalalla aztaca 42 day Chronic Toxicaty Hynlotta aztoca 10-d Survival & Growth Hyntolla nzlaca 10 d Survival & Growth Hyalalla azlaca 42 day Chronic Toxicity Hyalalla aztaca 10 d Survival & Growth Hyalalla azlaca 42 day Chronic Toxicity Hymbolla aztaca 10-d Survival & Growth Hynlotta nztaca 10 d Survival & Growth Chironomus fortuns Chronic Loxicity Chhononus funtans Chronic Toxicity Chironomus funtains Chronic Toxicity Chironomus fantans Clyronic Toxicity Chironomus tentans Chronic Toxicity ŝ NOTIVE INFORMATION ANALYSIS / IN-MARKS Aquatec Biological Sciences **∀**03 Chain-of-Custody Record Client Code MENGUR Hand Delivered Airbill Number Data Shipped Carrier GRAB | COMPOSITE | MATRIX Sediment Sadiment Project Name Dend Creek Sediment fox COMPANY'S PROJECT INFORMATION Received by (signature) 00033 3/00 Sampler Name(s) Project Number COLLI CTION Quote # Address One Courthouse Lane, Suite 2 COMPANY INFORMATION Contact Name - Ken Ceneto, Ph D Menzig Cura & Associates SAMPLE IDENTIFICATION Chalmsford, MA 01824 (978) 453-7260 (978) 453-4300 Relinquished by; (signifling) Talaphone facsimile.

Name

Notes to Lab: Cooler ambient temperature upon delivery:

Received by: (signature)

Received by: (signature)

00:0 TIME

Relinquished by: (signature)

رت Rel<mark>fra</mark>uished by: (*signature*)

ö

75 Green Mountain Drive South Burlington, VT 05403 TEL; (802), 860-1638 FAX; (802), 658-3189 VOLUME/CONTAINER TYPE/ PRESERVATIVE plastic 1 gal 40C Š SHIPPING INFORMATION Aquatec Biological Sciences Yes Chain-of-Custody Record Client Code:MENCUR | Hand Delivered: Airbill Number: Date Shipped: Carrier: Dead Creek Sediment Tox COMPANY'S PROJECT INFORMATION Project Number: 99033 3/99 Sampler Name(s): Project Name: Quole #: Address: One Courthouse Lane, Suite 2 COMPANY INFORMATION Contact Name: Ken Cerreto, Ph.D. Menzie Cura & Associates Chelmsford, MA 01824 Facsimile: (978) 453-7260 Telephone: (978) 453-4300

Name:

|                              | Cuole #:                | 1             | J Cilent Code;           | MENLUR   | JASS Client Code:MENCUK Hand Delivered: Yes No                                  |            |
|------------------------------|-------------------------|---------------|--------------------------|----------|---------------------------------------------------------------------------------|------------|
| SAMPLE IDENTIFICATION        | COLLECTION<br>DATE TIME | N<br>E GRAB   | B COMPOSITE              | MATRIX   | ANALYSIS / REMARKS NIMBER OF CONTAINERS                                         | 583        |
| ()                           | _                       | <br>          | ,                        | Sediment | Growth /                                                                        |            |
| KINX-/20                     | T/C                     |               | /                        | _        | Hyalella azteca 42-day Chronic Toxicity                                         |            |
| J-1-1 2010                   |                         |               |                          |          | Chironomus tentans 10-d Survival & Growth Chironomus tentans Chronic Toxicily   |            |
|                              | , ,                     |               |                          | Sediment |                                                                                 |            |
| 2 (1 - 1/1/10                | _<br> <br> <br> <br>    |               | \                        |          | Hyalella azteca 42-day Chronic Toxicity / [-0.5]                                |            |
| ーをJoX ントレ                    | /-/                     |               | 7                        |          | Chirononnus tentans 10-d Survival & Growth /                                    |            |
|                              |                         |               |                          |          | Chirononnus tentans Chronic Toxicity                                            |            |
| 7                            | ,                       |               |                          | Sedhnont | Hyalalla azlaca 10-d Survival & Growth                                          |            |
| プレン// ファイノ                   | (0//0)                  |               | _                        |          | Hyalella azleca 42-day Chronic Toxicity / 丁二〇 4                                 |            |
| ノンジュー                        | 7/                      |               | \                        | _        | Chironomus (entans 10-d Survival & Growth /                                     | -          |
|                              |                         |               |                          |          | Chironomus tentans Chronic Toxicity /                                           |            |
|                              |                         |               |                          | Sediment | Hyalella azleca 10-d Survival & Growth                                          |            |
|                              | ) ବ                     |               | _                        |          | Hyalella azteca 42-day Chronic Toxicity                                         |            |
| しいし シークーク                    | 7                       |               | \<br>_                   |          |                                                                                 |            |
|                              |                         |               | <b>)</b>                 |          | Chironomus tentans Chronic Toxicity                                             |            |
|                              | / ; '                   |               |                          | Sediment | Hyalella azfeca 10-d Survival & Growth                                          |            |
| 0 / / / 0                    | (%)                     |               | _                        |          | Hyalella azteca 42-day Chronic Toxicity / 1=09                                  |            |
| ラント・バク                       | <u>J</u>                |               | _                        |          | / Luw                                                                           |            |
| )                            |                         |               | >                        |          | Chironomus tentans Chronic Toxicity /                                           |            |
| Relinquished by: (signature) | DA'TE TIME              | $\overline{}$ | Received by: (signature) | (aun)    | NOTES TO SAMPLER(S): We recommend nesting samples in ice to maintain 4°C during | 4°C during |
| Kinnet Minst                 | (1 SSI) NOI             | 8             |                          |          | Snipment. Prease cover sample labels with clear tape (labels are not waterprob) | 100        |
| Relinquished by: (signature) | DATE                    | TIME Re       | Received by: (signature) | (ure)    | Notes to Lab: Cooler ambient temperature upon delivery:                         |            |
|                              | $\leq$                  |               | Have Drive               | men/     |                                                                                 |            |
| Relinquished by: (signature) | DATE TI                 | TIME Re       | ceived by: (signa        | (nre)    | \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                          |            |
| 0                            |                         |               |                          |          |                                                                                 |            |
| ٠.٠٠                         |                         |               |                          |          |                                                                                 |            |

C199033VAICOC1.doc

76 Green Mountain Drive 17 (15 South Burlington, VT 05403 17 (17 EC) (602) 960-1638

Aquatec Biological Sciences

|                                                                                     |          | * The also as 4 and 4             |                    |                               |           |                                                                                       |                                                                                                                                                                                                       |                             |                                        |                      |                      |                   | 1   |
|-------------------------------------------------------------------------------------|----------|-----------------------------------|--------------------|-------------------------------|-----------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------|----------------------|----------------------|-------------------|-----|
| COMPANY INFORMATION                                                                 | ·        | COMPANY                           | rs moa             | COMPANY'S PROJECT INFORMATION | NOILY     | SHIPTING IN                                                                           | SHIPPING INFORMATION                                                                                                                                                                                  |                             | VOLUME/CONTAINER 1YPL/<br>PRESERVATIVE | ALICONTAINER         | INT R 17             | 716               |     |
| Jame Menzie Cura & Associates                                                       |          | Project Name                      |                    | Dead Crook Sodiment Tox       |           | Cardor                                                                                |                                                                                                                                                                                                       | 70¢                         |                                        |                      |                      |                   |     |
| Vidress One Courthouse Lane, Suite 2 Chelinsford, MA 01824 Felephone (978) 453 4300 |          | Projact Numbar<br>Samplar Namo(s) | ber 99033<br>ne(s) | 133                           |           | Airbill Number                                                                        |                                                                                                                                                                                                       | plastic                     | <u>.</u>                               | $\frac{1}{I}$        | 1                    | $\frac{1}{1}$     | 7   |
|                                                                                     |          |                                   |                    | '                             |           | Date Shipped                                                                          |                                                                                                                                                                                                       |                             | <del>.</del>                           | <del>'</del>         | - <u>!</u><br>-      | $\frac{\perp}{1}$ | 1   |
|                                                                                     | <u> </u> | Quoto #                           | 3888               | Chant Gody A                  | IN MUNCUR | Hand Dehvered                                                                         | Yes No                                                                                                                                                                                                |                             |                                        |                      | <u>.</u>             |                   | =   |
| SAMPLE IDENTIFICATION                                                               | 0.011    | COLLECTION<br>DATE TIME           | CISAB              | COMPOSITE                     | MATIRIX   | SHEAT VOICE                                                                           | ANALYSIS / REMARKS                                                                                                                                                                                    | -                           | NUMBE                                  | NUMBER OF CONTAINERS | N Z                  | <br>              |     |
| 610x () ()                                                                          | 10/1     |                                   |                    | \ <u>\</u>                    |           | Tyalolla azfoca 10<br>Hyalolla azfoca 42<br>Chicoconus fentans                        | Typiolla azfoca 10 d Survival & Growth<br>Typiolla azfoca 42 day Chronic Toxicity<br>Chironomas feutans 10 d Survival & Growth                                                                        | \                           | 20,5                                   |                      |                      |                   |     |
| Brox. D. Z. S                                                                       | 10/01    |                                   |                    |                               | Sedimant  | Chirononna tenta<br>Hyalalla aztaca 10<br>Hyalalla aztaca 42<br>Chirononna tentana    | Chirononna tentana Chronic Toxicaty<br>Hyalalla azfaca 10-d Survivat & Growth<br>Hyalalla azfaca 42 day Chronic Foxicity<br>Chirononna tentana 10-d Survival & Growth                                 |                             | 120.5                                  | :                    | <u> </u>             | <u> </u>          |     |
| P. () - () - ()                                                                     | 1/(0)    |                                   |                    | 7                             | Sedmunt   | Chironomus tonta<br>Hyalolla aztoca 10<br>Hyalolla aztoca 42.<br>Chironomus tentans ' | Chirononnas tentanas Chronic Toxicaty Hyalella azteca 10-d Survival & Growth Hyalella azteca 42-day Chronic Toxicity Chirononnas tentana 10-d Survival & Growth Chirononnas tentanas Chronic Toxicity |                             | ر -0.5                                 |                      |                      | :<br>             |     |
| F.77X D. 1-2                                                                        | );<br>Cy |                                   |                    | 1                             | Sadiment  | Typiolia aztaca 10 Hyalolla aztaca 42 Chironomus fontans                              | Hydella azlaca 10-d Survival & Growth Hydella azlaca 42-day Chronic Toxicity Chimnonus tentans 10-d Survival & Growth Chimnonus tentans Chronic Toxicity                                              |                             | F. 0, 5                                |                      |                      |                   |     |
| 8/0X ( 3                                                                            |          |                                   |                    | 7                             | Sadiment  | Hyalalla aztaca 10<br>Hyalalla aztaca 42-<br>Chironomus tentans                       | Hyalolla aztoca 10-d Survival & Growth Hyalolla aztoca 42-day Chronic Toxicity Chironomus tentans 10-d Survival & Growth Chironomus tentans Chronic Toxicity                                          |                             | 50.5                                   |                      |                      |                   | ¥   |
| Colinquished by (signatura)                                                         | 5///o/   | FIME //                           |                    | Received by (signature)       | (uua)     | NOTES TO SAM                                                                          | NOTES TO SAMPLER(S): We recommend neating samples in ice to maintain 4°C during shipment. Please cover sample labels with clear tape (labels are not waterproof)                                      | nd nostling<br>vith cloar t | seldmes (                              | in ice to            | maintain<br>waterpro | 4°C duri          | Out |
| (elinquished by: (signature)                                                        | 10/S/98  | TIME<br>10:00                     | j .                | Racaived by: (signature)      | Poly Moxx | Notes to Lab:                                                                         | Notos to Lab: Coolor ambient temperature upon delivery:                                                                                                                                               | orature u                   | pon deli                               | very:                | ပို                  |                   |     |
| elinquished by: (signature)                                                         | DÁTÉ     | TIME                              | $\overline{}$      | Received by: (signatura)      | ura)      | Λ<br>                                                                                 | 578/00                                                                                                                                                                                                |                             |                                        |                      |                      |                   |     |
| 199033YNGOC1.dog                                                                    |          | _                                 |                    |                               |           |                                                                                       |                                                                                                                                                                                                       |                             |                                        |                      | -                    |                   | ]   |
| <u> </u>                                                                            |          |                                   |                    |                               |           | •                                                                                     |                                                                                                                                                                                                       |                             |                                        |                      |                      |                   |     |

1

### CHAIN OF CUSTODY RECORD

| 64813 Sanged Man.                           | a.T. Dood Groot     | Propost Location: Calickies III | , 1, 1/          | MENZIE-CURA & ASSOCIATES, INC.                            |
|---------------------------------------------|---------------------|---------------------------------|------------------|-----------------------------------------------------------|
| 10/6/90                                     |                     | Analysos                        | Required         | CHEL MSFORD, MA 01824 161. 978/453-4300 FAX: 978/453-7260 |
| SAMPLERS CLOW 220, 1. FORMILY.              | Popula              | W POUR                          |                  |                                                           |
| SAMPLE ID DATE CORD. Gran                   | Station Locations   | No. of Containers               |                  | NOTES                                                     |
| E-1 1968 - 9:50                             | Dazil Ortop Soil. 6 | X X X                           |                  |                                                           |
|                                             | P. P. Down          | \hat{\chi_{\chi}}               |                  |                                                           |
| SP/C+ 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | $\rightarrow$       |                                 |                  |                                                           |
|                                             |                     |                                 |                  |                                                           |
|                                             |                     |                                 |                  |                                                           |
|                                             |                     |                                 |                  |                                                           |
|                                             |                     |                                 |                  |                                                           |
|                                             |                     |                                 |                  |                                                           |
|                                             |                     |                                 |                  |                                                           |
| May of Man (B) (B) which gard               | 10/6/99 1900        | 900 Ka a Callinature)           | 10/1/1 /0.00     | Romarks:<br>Note (1) H.azhera./                           |
| Relinquished By: (Signature)                |                     |                                 | Date Time        | C. Lembans accoulty                                       |
| Relinquished By: (Signature)                | Date                | Time Received By: (Signalure)   | Date Time        | aronic sedimon                                            |
| Laboratory: Aguatech                        |                     | Phone:                          |                  | -10 th cities there                                       |
| itact Pers                                  | -Fraum              |                                 | -                |                                                           |
| 0013                                        | VIa Federa          | in 3 coolers                    | (100212 Temp     | (100 let " Den p = 3, 12 - 884 E3                         |
| •                                           |                     | •                               | N = 1 - 16.25 VG |                                                           |

| DATE: 10/7-1999                 |      |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |      |                                     |
|---------------------------------|------|-------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|-------------------------------------|
|                                 |      |                         |                          | Dallin each mile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |      | TEL: 978/453-4300 FAX: 978/453-7260 |
| SAMPLERS C. Menzue , K. topaile | 7    | Popule                  | 1                        | s sometimes in the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction o |                 |      | -                                   |
| SAMPLE ID Date Gemp. G          | Q.   | Greth Station Locations | No. of Containers        | ۲. ۵.۲<br>د. جې<br>حوسا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |      | NOTES                               |
| 74.30                           |      | Barrew P.+              | ď                        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |      | 70 - 0                              |
|                                 |      | Dead Creek-Setur        |                          | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |      | C> C>                               |
| F-3 16,10                       |      |                         |                          | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |      | () ()                               |
| <b>&gt;</b>                     |      | 7                       | 8                        | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |      | CL CA                               |
|                                 |      |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |      |                                     |
|                                 |      |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |      |                                     |
|                                 |      |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |      |                                     |
|                                 |      |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |      |                                     |
|                                 |      |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |      |                                     |
|                                 |      |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |      |                                     |
|                                 |      |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |      |                                     |
|                                 |      |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |      | (o. (c. 1 2,3°5                     |
|                                 |      |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |      | 2016 Q 78100                        |
| Relinguished By: (Signature)    | #    | Date Thme   10/7=/99    | Respired By: (Signature) | ignature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date<br>100/9/5 | TIME | Remarks: A Coolers                  |
| Relinquished By: (Signature)    | 0    |                         | Received By: (Signature) | ignature) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date            | Time | Via Feder                           |
| Relinquished By: (Signature)    |      | Date Time               | Received By: (Signature) | ignature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date            | Time |                                     |
| Laboratory: Aguatech            |      |                         | Phone:                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |      |                                     |
| Contact Person: phil Downey     | 2/12 | *                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |      |                                     |

CHAIN OF CUSTODY RECORD

## CHAIN OF CUSTODY RECORD

|                              |                      | {      |                                   | COSTODI NECONO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | `    |      |                                     |          |
|------------------------------|----------------------|--------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------------------------------------|----------|
| Project No.   Project Name:  | -                    |        | Project Location:                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      | MENZIE GLIBA & AGGOSTATE INC        |          |
| 6486 Diad Crook - Souge Men. | C- SAUGEL ME         |        | Sugal-Cohoping, 1111.             | hatis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | //   |      | 1 COURTHOUSE LANE, SUITE 2          |          |
| 10 KM (1.1.5)                | >                    |        | A                                 | Analysos Roquirod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75   |      | CHELMSFORD, MA 01824                |          |
| DATE: / D/ 1/                |                      |        | <i>C'</i>                         | - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |      | TEL: 978/453-4300 FAX: 978/453-7260 |          |
| SAMPLERS ( ) NOW 7.11        | K. For spartly       |        | 1777.2.<br>12. 31.23<br>12. 31.23 | 1777 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |                                     | _        |
| TIM<br>Date Comp.            | et Station Locations |        | No. of Containers                 | ر<br>درستان<br>درستان                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      | NOTES                               |          |
| 0x.6 8/3/01 1-200            | Primus dulant (nio   | NOR    |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                     |          |
| 0C.71                        | Ray Crock            | =      | *X                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                     | -        |
|                              | : 0                  |        | -                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | -    |                                     |          |
|                              |                      |        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | į    |                                     | <u> </u> |
|                              |                      | -      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | i    |                                     |          |
|                              |                      |        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                     |          |
|                              |                      |        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                     | 1        |
|                              |                      |        | _                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |      |                                     | Ī        |
|                              |                      |        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                     |          |
|                              |                      |        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                     | T        |
|                              |                      |        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                     |          |
|                              |                      |        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                     | 1        |
|                              |                      |        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                     |          |
| Relinguished By: (Signature) | 18/01.87             | 11me 1 | Recoived Dy: (Signature)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date | Time | Romarks:                            |          |
| (e.n.                        | Zj.                  | 107.30 | Received By: (Signature)          | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | Date | Time | 7.00,00 61/Ab                       |          |
| Relinquished By: (Signature) | Date                 | Time   | Recoived By: (Signature)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date | Time | 1.t > 50t 6001 0                    |          |
| Laboratory: Acida tech       |                      |        | Phono:                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                     |          |
| Contact Porson Phil Durnely  | romaley              |        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                     |          |

PAGE OF

Jeny :112 310C

|               | Project No.                  | Project Name:         | Name:                   |         |                              |      | Project Location:        | on:                    |         |        |      |        |                                                              |
|---------------|------------------------------|-----------------------|-------------------------|---------|------------------------------|------|--------------------------|------------------------|---------|--------|------|--------|--------------------------------------------------------------|
|               | 849<br>849                   | -                     | d Se                    | 7       | Dead beet - Sauget Avea I    |      | Sauget/Cahollia, III.    | /Cah                   | ollia   | 111    |      | ,      | MENZIE-CURA & ASSOCIATES, INC.<br>1 COURTHOUSE LANE, SUITE 2 |
|               |                              | -                     |                         |         |                              |      | 6                        | Analy                  | 'ses Re | quired |      |        | CHELMSFORD, MA 01824                                         |
| = <del></del> | DATE: 10/9/99                | 66/6                  |                         |         |                              |      |                          | Mes.                   |         |        |      |        | TEL: 978/453-4300 FAX: 978/453-7260                          |
|               | SAMPLERS                     | C. Fre                | n n                     | 7.      | SAMPLERS C. Men in K. Foyart |      |                          | nstn<br>nstn<br>nb + d |         |        |      |        |                                                              |
|               | SAMPLEID                     | Date                  | 1=12<br>1=12<br>1:00 mp | <b></b> | Grab Station Locations       |      | No. of<br>Containers     | 4.0.4<br>C te<br>gud   |         |        |      |        | NOTES                                                        |
| Biox          | BTOX REFA-2                  | 10/6/49               | 10:30                   | -       | Reference Bollow DIT         |      | کے                       | 7                      |         |        |      |        |                                                              |
| )             |                              | /,                    |                         |         |                              |      |                          |                        |         |        |      |        |                                                              |
|               |                              |                       |                         |         |                              |      |                          |                        |         | 1      | +    | +      |                                                              |
| _             |                              |                       |                         |         |                              |      |                          |                        |         | -      | -    | 1      |                                                              |
|               |                              |                       |                         | .       |                              |      |                          |                        |         |        | -    |        |                                                              |
|               |                              |                       |                         |         |                              |      |                          |                        |         |        |      |        |                                                              |
|               |                              |                       |                         |         |                              |      |                          |                        |         |        |      |        |                                                              |
|               |                              |                       |                         |         |                              |      |                          |                        | +       |        | +    | +      |                                                              |
|               |                              |                       |                         |         |                              |      |                          |                        | 1       | +      |      | 1      |                                                              |
|               |                              |                       |                         |         |                              |      |                          |                        |         |        | +    | +      |                                                              |
|               |                              |                       |                         |         |                              |      |                          |                        |         | -      | +    | +      |                                                              |
|               |                              |                       |                         |         |                              |      |                          |                        |         | -      | -    |        |                                                              |
|               |                              |                       |                         |         |                              |      |                          |                        |         |        | -    |        |                                                              |
|               |                              |                       |                         |         |                              |      |                          |                        |         |        |      |        |                                                              |
|               |                              |                       |                         |         |                              |      |                          |                        |         |        |      |        | 0,40 10 mo.                                                  |
|               |                              |                       |                         |         |                              |      |                          |                        |         | -      | +    | $\neg$ |                                                              |
|               | Relinguished By: (Signature  | pulahed By: (Signatur | 7                       | the     | PP/2/9/01                    | Thm. | Rocelved By: (Signature) | nature)                |         | -      | Date | Time   | Romarks: $\zeta_{nm} + V_{i0} () \leq A_{i}V$                |
|               | Relinquished By: (Signature) | y: (Signatur          |                         | Þ       | t t Date                     |      | Received By: (Signature) | nature)                |         |        | Date | TIme   | Countr to counter                                            |
|               | Relinquished By: (Signature) | y: (Signatur          | -L                      |         | Date                         | TI™. | Received By: (Signature) | nature)                |         |        | Date | Time   |                                                              |
|               | Laboratory:                  | 1                     | Aguatech                | 7       |                              |      | Phone:                   |                        |         |        |      |        | -                                                            |
| 0             | Contact Person:              | +                     | Ohil Downey             | Down    | red                          |      |                          |                        |         |        |      |        |                                                              |
| $\mathbf{C}$  |                              |                       |                         |         |                              |      |                          |                        |         |        |      |        |                                                              |

PAGE OF

### Midge (Chironomus tentans) Day 10 Survival and Dry Weight Data

| Client:       | Menzie   | e-Cura & /    | Assoc.   |            |                          | ead Creek<br>er 7, 1999                          | <del></del>  | : 3615<br>: End: Oc | tober 17,                                        | 1999   |
|---------------|----------|---------------|----------|------------|--------------------------|--------------------------------------------------|--------------|---------------------|--------------------------------------------------|--------|
| Sample        | Repl.    | # Alive       | Init.    | Repick#    | Repick<br>Init.          | Total<br>Surv                                    | #<br>Weighed | Init Pan<br>Wt.     | Total<br>Dry Wt.                                 |        |
| 12546         | Α        | 4             | JG       | .0         | RB                       | 4                                                | 4            | 36.85               | 5360                                             |        |
|               | В        | ユ             | 36       |            |                          | 2                                                | 2            | 40.08               | 47.98                                            |        |
|               | С        | 2             | Im       |            |                          | 2                                                | 2            | 35,91               | 46.39                                            | Acuse  |
|               | D        | 0             | 3m       | 0          | Im                       | 0                                                | 0 -          | 35,57               |                                                  | ACUSE  |
| $\mathcal{N}$ | E        | Ö             | 76       |            |                          | 6                                                | 6            | 31.81               | 51.42                                            |        |
|               | F        | 5             | 1/g      | -          |                          | 5                                                | S            | 36.63               | 49.64                                            |        |
|               | G popo   | 0+17          |          | 0          | Im                       |                                                  | _0           | 34.45               |                                                  |        |
| <del></del>   | H/PP     | 3+17          | RB       | 0          | TM                       | 4                                                | 3            | 30,27               | 42.24                                            |        |
| 12547         | Α        | 0             | RB       | 0          | RB                       | 0                                                | 0            | 36,14               |                                                  |        |
|               | B ()     | 0             | <u> </u> |            |                          | 0                                                |              | 33.06               |                                                  | Ac     |
|               | С        |               | RIZ      | 0          | RB                       | 0                                                |              | 34.95               |                                                  | Aco    |
| $\sim$        | D        | 0             | 77n      |            |                          | 0                                                |              | 33,53               |                                                  |        |
|               | E        | 0             | TM       |            | 4/0:                     | <u> </u>                                         |              | 35.VI               |                                                  |        |
|               |          | <b>t</b> s) 0 | TM       | 0          | Im                       | <u>Q</u>                                         |              | 32.94               | <del>                                     </del> |        |
|               | G        | 0             | 7G       | 0          | Im                       | 0                                                |              | 34.10               | <del>                                     </del> |        |
|               | Н        | 0             | RB       | 6          | JG-                      | 0                                                |              | 31.73               | 1                                                | ļ      |
| 12548         | Α        | 10            | TM       |            |                          | 10                                               | 10           | 30,00               | 56.51                                            |        |
|               | В        | 10            | 1G       |            |                          | 70                                               | 10           | 27.30               | 49.64                                            |        |
|               | С        | 10            | 7m       |            |                          | 10                                               | iO           | 29.43               | 58.90                                            | Chro   |
| D             | D        | 0             | Tm       |            |                          | 0                                                | Large 18     | ch present          | <u> </u>                                         | ('N'   |
|               | E        | 8             | JG       |            |                          | 8                                                | 8            | 28.53               | 45.64                                            |        |
|               | F        | 9             | RB       |            |                          | 9                                                | cj           |                     | 151.70                                           |        |
|               | G        | 10            | RB       |            |                          | 10                                               | [0]          | 29.98               | 42.54                                            |        |
|               | H        | 10            | RB       |            |                          | 10                                               | 10           | 32.39               | 59.33                                            |        |
| 12549         | A۱۶۰۶۹   | 4+14)         | RB       | O          | RB                       | 5                                                | 4            | 32.45               |                                                  |        |
|               | В        | _5            | RA       | -          |                          | 2                                                | 5 337        | 32.60               | 55.07                                            | N = 11 |
| ,             | С        | -8            | RB       | 0          | RO                       | 0                                                | 0            |                     |                                                  | VC or  |
| <b>V</b> .    | D        |               | 7m       |            |                          | 8112                                             | 8            | 32.59               | 57.67                                            | Oir    |
|               | E        | 4             | m        |            |                          | 4                                                | 4            | 31.68               | 52.76                                            |        |
|               | Floup    | 3+119         | 30       |            |                          | Z41G                                             |              | 34,21               | 47.00                                            |        |
|               | Gldes    |               | 00       | 1          | 00                       | <del>                                     </del> | 3            | 32.60               | 41.17                                            |        |
|               | H        | 5             | RB       |            | RB                       | 6 10 67                                          | 10/22        | 39.91               | 43.43                                            |        |
| Balance (     | 30. J-33 | ial (20 mg ≈  | 10.01    | , <u> </u> | <u>In. 7</u><br>(20 mg = |                                                  | 1428         | : Asset #:          |                                                  |        |

Reviewer: Date: 12/10/89.
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

(#2) Draganfly nymph pre sent 10/12 JM

(1)

ctsurvwt.doc

000017

### Midge (Chironomus tentans) Day 10 Survival and Dry Weight Data

| Client: Menzie-Cura & Assoc. | Project: 99031 Dead Creek   | BTR: 3615                  |
|------------------------------|-----------------------------|----------------------------|
|                              | Test Start: October 7, 1999 | Test End: October 17, 1999 |

|             |                  |         |          |              | Repick      | Total           |              | Init Pan       | Total          |          |
|-------------|------------------|---------|----------|--------------|-------------|-----------------|--------------|----------------|----------------|----------|
| Sample      | Repl.            | # Alive | Init.    | Repick #     | Init.       | Surv            | Weighed      | Wt.            | Dry Wt.        |          |
| 12550       | Α                |         | 516-     |              |             | 1               |              | 32.87          | 35.62          |          |
| j           | BIZA             | 2       | RB       | !            |             | 2               | 2            | 31.55          | 36.98          |          |
|             | Clóca            | 19      | 36       |              |             | 9+8             | 9            | 29.56          |                | •        |
|             | D                | 4       | RB       |              |             | 4               | 4            | 39.14          | 48.55          | Chimic   |
| Y           | Ε.,              | 4(100   |          | Hi jekous.   |             | 4               | 4            | 27.05          | 38.51          |          |
| ľ           | FIRST            | 3 Birse | ひし       |              |             | <b>3</b> 419    | 3            | 33,26          | 43 44          |          |
|             | G"               | 6       | ユロ       |              |             | 9)              | 6            | 27.47          | 44-63          |          |
|             | Н                | 8       | 1G       |              |             | 8               | 8            | 25.50          | 52.40          |          |
|             |                  |         |          | <del></del>  |             |                 |              |                |                | 1        |
| 12551       | Α                | 7       | <u> </u> |              |             | 7               | 7            | 32.77          | 52 89          |          |
|             | В                | 4       | k iz     |              |             | ! 4             | 7 -          | 34.14          | 20.83          | 61 - V   |
| Gu gart     | C                | 6       | RB       | <del>-</del> |             | 6               | 6            | 34.26          |                | Choone   |
| 1000        | _                | 8849    |          |              |             | 9               | 9            | 34.46          | 62.72          | l        |
| l y         | E (I)            | Ŏ       | JG       |              |             | C               | 9            | 32.67          |                |          |
| '           | F                | 8 14    | RB       |              |             | 8               | 8,16         | 32,67          | 58.07          |          |
|             | GIF              | 167     | 16       |              |             | 7               | 9            | 32,61          | 54 47          |          |
|             | H                | 4       | RB       |              |             | 9               | 9            | 38.67          | 62 2 G         |          |
| 12552       | Α                | 10      | RB       |              |             | 1.5             | 10           | 28 Hs          | 1.0 (0         |          |
| 12552       | В                | 10      |          |              |             | (0)             | 10           | 38.40<br>32.07 | 60.60          |          |
| Idad -      | Cu               | 8       | <u> </u> |              |             | 28              | 8            | 28.90          | 61.15<br>49.39 | Chisnic. |
| 1000        | D                | 10      | JG-      | <del></del>  |             |                 | IC           |                | (61.28         | (10.4    |
|             | E                | 10_     | R\$      | <del></del>  |             | 10              | 10           | 29 112         | 53.70          |          |
|             | F                | 10      | ত্র      |              |             |                 |              | 29.16          | 54.08          |          |
|             | Gra              | 9+12    | 16       |              |             | . 10            | 2109         | 25 19          | 58 20          |          |
| 1           | Н                | 0       | 16       |              |             | $\frac{10}{10}$ | 10           | 37,72          | 6700           |          |
|             | <del>''' '</del> |         | 70       | ·            |             | 10              |              | <u> </u>       | <u>(4700</u>   |          |
|             | Α                |         |          | · ·          |             |                 |              | ų<br>į         |                |          |
|             | В                |         |          | ,            |             |                 |              |                |                |          |
|             | С                |         |          |              |             | ·               |              |                |                |          |
| 1           | D                |         |          | •            |             |                 |              |                | [              |          |
|             | E                |         |          |              |             |                 |              | 1              |                |          |
|             | F                |         |          | <del></del>  |             |                 |              | -              |                |          |
|             | G                |         |          | <del></del>  |             | <del></del>     |              | <del>,</del>   | <del> </del>   |          |
|             | Н                |         |          |              | <del></del> |                 |              | <del>-</del>   |                |          |
| <del></del> |                  |         |          | <del> </del> |             |                 | <del>!</del> |                |                |          |

Final (20 mg =

Date/time out

Comments:

(1) One Odanata found (predator.) 10/18/17 16

Reviewer (2) Nine larva weighed: correction
Laboratory Aquatec Brological Sciences. South Burlington Vermon 12/10/94 16
12/10/99

init.

Initial (20 mg =

Temp(°C)

Baiance QC:

Date/time In

ctsurvwt.doc

Init.

Balance Asset #:

Temp(°C)

### Chironomus tentans Head Capsule Width

Culture ID: <u>9/25, 9/26, 9/27</u> Age (d) of larvae: <u>10-12 days</u>

Magnification: 32 Ocular micrometer calibration: 35 micrometer units = 1 mm

Microscope Asset #: \_\_2929\_\_

Calculation of head capsule width:

head capsule width (micrometer units) / micrometer calibration units

| Organism<br>Number | Head Capsule Width (micrometer units) | Head Capsule Width<br>(mm)       |
|--------------------|---------------------------------------|----------------------------------|
| 1                  | 14                                    | 0.40                             |
| 2                  | 14                                    | 0.40                             |
| 3                  | 28                                    | 0.80                             |
| 4                  | 25                                    | 0.71                             |
| 5                  | 12                                    | 0.34                             |
| 6                  | 27                                    | 0.77                             |
| 7                  | 13                                    | 0.37                             |
| 8                  | 14                                    | 0.40                             |
| 9                  | 14                                    | 0.40                             |
| 10                 | 12                                    | 0.34                             |
| 11                 | 13                                    | 0.37                             |
| 12                 | 13                                    | 0.37                             |
| 13                 | 14                                    | 0.40                             |
| 14                 | 14                                    | 0.40                             |
| 15                 | 14                                    | 0.40                             |
| 16                 | 15                                    | 0.43                             |
| 17                 | - 10                                  | 0.43                             |
| 18                 |                                       | -                                |
| 19                 | -                                     | _                                |
| 20                 |                                       | _                                |
| 20                 |                                       |                                  |
| Initials: JWW      | Larval heads were severed and mour    | nted on a slide for measurement. |
| Date:              | Subset of larvae used to start Sam    | ples 12546, 12547, 12548,        |
| 12/10/99           | 12549, 12550, 12551, 12552 on 1       | 0/7/99.                          |
|                    |                                       |                                  |

Reviewer: jww Date: \_\_\_\_.
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| Egg Deposit Date: C    | Larva   | riation Date: 957 | Culture ID | 9 27 |
|------------------------|---------|-------------------|------------|------|
| Culture Source (flies) | Aquated | No Egg Cases      | s: 3       |      |

Instructions: Isolate egg cases in petri dish with sediment recon, water. Hold in petri dish up to two days or until larval hatching begins. Add mono-layer of Selenastrum prior to hatching. Transfer egg cases with hatching larvae to culture box with mono-layer of fine sand, water, and Selenastrum. Feed daily increasing amounts of Cerophyll/Tetrafin slurry to match consumption rates (food should not accumulate). Measure water chemistry / change 80% of water weekly. Measure temperature daily in one representative culture. Split cultures if needed to accompdate larval growth. When emergence occurs remove files daily to mating flask or disposal flask. Remove discarded body castes.

| ۽ ۽ ۽             |      |          |          |          |         |                              |             |                                           |
|-------------------|------|----------|----------|----------|---------|------------------------------|-------------|-------------------------------------------|
| Date              | Day  | Temp pH  | DO       | Cons Fed | WC      | Observations                 |             | Init.                                     |
| 9,32              | Ĉ    |          |          | Se .     |         |                              |             | Tm                                        |
| 7175              | ű .  |          |          | ોં       |         | S-11 renth                   | .νς         |                                           |
| 2/26              |      | 213      |          | ~c:      |         | To me - 20                   | Darin       |                                           |
| ئ ز ر ن           | 7    | ı        |          | TIL      |         | ج تين و <sup>د</sup> اجد برو |             |                                           |
| /s /,             | 4    |          |          | Telia    |         |                              |             | JG                                        |
| 11/2              |      |          |          |          | ے عبدار |                              |             | TIG                                       |
| ڊ <sup>/</sup> يد | ئ    |          |          | - ES     | 7       |                              |             | JĠ                                        |
| 16                | 7    |          |          | 70       |         |                              |             | 76                                        |
| 15                | Ē    |          |          | TC       |         |                              | <u>^_ :</u> | <u> </u>                                  |
| :/4               | ą    | 22.7 7.9 | g. Ç     | //_      |         | To 10 000                    | £ -19/200   | lese -                                    |
| 1=17              | /5   |          |          |          |         | <u></u>                      |             | <u> </u>                                  |
| 1-17              | Test | 572.75   | Sames    | .2546 /  | 2547    | 12508 2509                   | 12000       | 12537                                     |
|                   | ·    |          |          | 222      |         | <del></del>                  | ·           | · ·                                       |
|                   |      |          |          | <u>.</u> |         |                              |             | <u>:                                 </u> |
|                   |      |          |          |          |         |                              |             | <u> </u>                                  |
|                   | ·    |          |          |          |         |                              |             | <u> </u>                                  |
|                   |      |          | <u> </u> |          |         |                              |             | ·<br>                                     |
|                   |      |          |          |          |         |                              |             |                                           |
|                   |      |          |          |          |         |                              |             | ·                                         |
|                   |      |          |          |          |         |                              |             |                                           |
|                   |      |          |          |          |         |                              |             |                                           |
|                   |      |          |          |          |         |                              |             |                                           |
|                   |      |          |          |          |         |                              |             |                                           |
|                   |      |          |          |          |         |                              |             |                                           |
|                   |      |          | *        |          |         |                              |             |                                           |
|                   |      |          |          |          |         |                              |             |                                           |

| Egg Deposit Date: 9    | 123 Larva | el Hatch Date: 926 | Culture ID: | 9/2(0 |
|------------------------|-----------|--------------------|-------------|-------|
| Culture Source (flies) | Aquatec   | No. Egg Cases:     | 3           |       |

Instructions: Isolate egg cases in petri dish with sediment recon. water. Hold in petri dish up to two days or until larval hatching begins. Add mono-layer of Selenastrum prior to hatching. Transfer egg cases with hatching larvae to culture box with mono-layer of fine sand, water, and Selenastrum. Feed daily increasing amounts of Cerophyll/Tetrafin slurry to match consumption rates (food should not accumulate). Measure water chemistry / change 80% of water weekly. Measure temperature daily in one representative culture. Split cultures if needed to accomodate larval growth. When emergence occurs, remove flies daily to mating flask or disposal flask. Remove discarded body castes.

| Date   9 26   9 27 | Day | Temp | рН | DO   | Cond        | Fed  | WC          | Observations            | Init. |
|--------------------|-----|------|----|------|-------------|------|-------------|-------------------------|-------|
| <del></del>        |     |      |    | İ    |             | sel  | <del></del> |                         | m     |
| 9/12/              |     |      |    |      |             | sei  |             |                         | m     |
| 9/28               | 2   |      |    |      |             |      | 78          |                         | 10    |
| 9/29               | 3   |      |    |      | ;           | TC,  |             | 2 450 /2/VZE            | 5     |
| 9/30               | 4   |      |    |      |             | P/14 | /ec         |                         | 133   |
| 10/1               | -   |      |    |      |             | Tale | 115<br>170  |                         | 176   |
| 10/2               | G   |      |    | <br> | <del></del> | TC   |             |                         | 136   |
| 10/2               | 7   |      |    |      |             | 70   | <del></del> |                         | Ha    |
| 10/4               | 8   |      |    |      |             | FC _ |             |                         | HR    |
| 15/5               | 9   |      |    |      | •           | 90   |             |                         | 1     |
| 10/6               | 10  | 228  |    |      |             | 16   |             | Combined w/ 9/27 Culina |       |
| 10/7               | //  |      |    |      |             |      |             |                         |       |
|                    |     |      |    |      |             | 1    |             |                         |       |
|                    |     |      |    | ,    |             | ]    |             |                         |       |
|                    |     |      |    |      |             |      |             |                         |       |
|                    |     |      |    |      |             |      |             |                         |       |
|                    |     |      |    |      |             | j    |             |                         |       |
|                    |     |      |    |      |             |      |             |                         |       |
|                    |     |      |    |      |             |      |             | 1                       |       |
|                    |     |      |    |      |             |      |             |                         |       |
|                    |     |      |    |      |             |      |             | İ                       |       |
|                    |     |      |    |      |             |      |             |                         |       |
|                    |     |      |    |      |             | }    | 1           |                         |       |
|                    |     |      |    |      |             |      |             |                         |       |
|                    |     |      |    | Ī    |             |      |             |                         | 1     |
|                    |     |      |    |      |             | Ī    | <u> </u>    |                         |       |

| Egg Deposit Date 9     | a) Larva | Haish Date 9 25 | Culture ID: | 9125 |
|------------------------|----------|-----------------|-------------|------|
| Culture Source (fires) | Aquated  | No Egg Cases:   | 2           |      |

Instructions: Isolate egg cases in petricish with sediment recon, water. Hold in petricish up to two days or until arval hatching begins. Add mono-layer of Selenastrum prior to hatching. Transfer egg cases with hatching larvae to culture box with mono-layer of fine sand, water and Selenastrum. Feed daily increasing amounts of Cerophyll/Tetrafin slurry to match consumption rates (food should not accumulate). Measure water chemistry: change 80% of water weekly. Measure temperature daily in one representative outure. Spirt outures if needed to accompdate larval growth. When emergence occurs, remove files daily to mating flask or disposal flask. Remove disparded body castes.

| Date              | Day      | Temp          | рН            | 20 | Cons | Fed    | WC         | Observations   | lnit.    |
|-------------------|----------|---------------|---------------|----|------|--------|------------|----------------|----------|
| 9125              | 0        |               |               |    |      | sei    |            |                | 17m      |
| 1.545             | 1        |               |               |    |      | SEI    |            |                | Im       |
| <u> جي د</u>      | ŝ        |               |               |    |      | Seit   | <b>4:5</b> | added Sand Z   | Tm       |
| 9/25              | 3_       |               |               |    |      | Se: 1- | こ          | Grown so Erral |          |
| وزانا             | 4        |               |               |    |      | تني سب |            |                |          |
| 4/30              | 7        |               |               |    |      |        |            |                |          |
| 1=/1              | 6        |               |               |    |      | TCI    | ofic       |                | JG       |
| الادر             | 7_       |               |               |    |      | ے میا  | -<br>-     |                | 30       |
| <u> </u>          | Ģ        |               |               |    |      | ےمب    |            |                | <u> </u> |
| 12/5              | 9        |               |               |    |      |        |            |                | JE       |
| 10/5              | _/>_     |               |               |    |      |        |            |                | 1G       |
| من 1 <u>1 1 ر</u> | <u> </u> | 22.9          | _             |    |      |        |            |                |          |
| 10/7              | 12       |               |               |    |      |        |            |                | Ĭ        |
|                   |          |               | _             |    |      |        |            |                |          |
|                   |          |               |               |    |      |        |            |                |          |
|                   |          |               |               |    |      |        |            |                |          |
|                   |          |               | _             |    |      |        |            |                |          |
|                   |          |               |               |    |      |        |            |                | i        |
|                   |          |               |               |    |      | _      | _          |                |          |
|                   |          |               |               |    |      |        | -          |                | 1        |
|                   |          | <del>-,</del> |               |    |      |        |            |                |          |
|                   |          |               |               |    |      |        |            |                |          |
|                   |          |               |               |    |      |        |            |                |          |
|                   |          |               |               |    |      |        |            |                |          |
|                   |          |               |               |    |      |        |            |                |          |
|                   |          |               | - <del></del> |    |      |        |            |                |          |

# Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Acute Tests

|        |                                  |       |            |             |       | Day   | Day of Analysis | ysis  |       | •     |       |       |
|--------|----------------------------------|-------|------------|-------------|-------|-------|-----------------|-------|-------|-------|-------|-------|
| Sample | Parameter                        | 0     | -          | 2           | 6     | 4     | 5               | 9     | 7     | 8     | 6     | 10    |
| 12546  | T (°C)                           | 23.2  | 4.E.       | 33.0        | 22.2  | 23.4  | 7. CC           | 73.7  | 22.9  | 724   | 27.8  | 27.00 |
|        | Hd                               | 4.8   | ×          | ×           | ×     | ×     | 7.5             | ×     | ×     | ×     | ×     | 4     |
|        | DO (mg/L)                        | (0.5  | 6.1        | 55          | 5.3   | 56    | 5.4             | 4.5   | 4.7   | 5,0   | 2,9   | 1 A   |
|        | Conductivity                     | 350   | ×          | ×           | ×     | ×     | 370             | ×     | ×     | ×     | ×     | 350   |
|        | Ammonia, alk/hardness<br>Sulfide | >     | ×          | ×           | ×     | ×     | ×               | ×     | ×     | ×     | ×     | >     |
| 12547  | (°C)                             | 23.3  | J3.2       | 12. P. C.C. | 23.9  | 24.0  | 21.9            | 22.6  | おナ    | 22.8  | 279   | 8.CC  |
|        | Hd                               | 7.8   | ×          | ×           | ×     | ×     | 7.S             | ×     | ×     | ×     | ×     | 4,4   |
| -      | DO (mg/L)                        | 6,3   | 5.6        | 8.8         | 0.0)  | 5.7   | 5.4             | 0     | 5.5   | 5,4   | 60    | らる    |
| -      | Conductivity                     | 360   | ×          | ×           | ×     | ×     | 370             | ×     | ×     | ×     | ×     | 370   |
|        | Ammonia, alk/hardness<br>Sulfide | /     | ×          | ×           | ×     | X     | ×               | ×     | ×     | ×     | ×     | >     |
| 12548  | T (°C)                           | 23.3  | 23.2       | tee.        | 5.KC  | 923.3 | 22,4            | 223   | 6'EE  | 32,8  | 1.8%  | 22.8  |
|        | Hd                               | 7.8   | ×          | ×           | ×     | ×     | 7.4             | ×     | ×     | ×     | ×     | St    |
|        | DO (mg/L)                        | 6.4   | 5.4        | 5.6         | 4.9   | 4.4   | 4.3             | 4.6   | 4.1   | 4.5   | 0,0   | 4.4   |
|        | Conductivity                     | 350   | ×          | ×           | ×     | ×     | 385             | ×     | ×     | ×     | ×     | 390   |
|        | Ammonia, alk/hardness<br>Sulfide |       | X          | ×           | ×     | ×     | ×               | ×     | ×     | ×     | ×     |       |
|        | Init./Date (1999):               | 10/16 | 1 <b>%</b> | 76/01       | 81/61 | 18/1  | 21/15           | 19/13 | 18/16 | 45.65 | 19/16 | 10/17 |

Review: Date: (2/0/95 Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

1630-1800

55/1/01

1CST SRUT

Comments:

# Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Acute Tests

| Day of Analysis  0 1 2 3 4 5 6 7 8  3.3 9 33.1 33.8 33.7 32.9 32.7 33.0 32.9 32.9  3.6 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Project: Menzie-C | Project: Menzie-Cura & Associates | Project: | ect: 99033     | ĺ          | Dead Creek      |                   |                              | BTR: 3616 | 1      | Test Starts 877/99                                                              | 7/99                       |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------|----------|----------------|------------|-----------------|-------------------|------------------------------|-----------|--------|---------------------------------------------------------------------------------|----------------------------|------------------|
| T (°C)   33 q   33 1   2   3   4   5   6   7   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                   |          |                |            |                 | Day               | of Anal                      | ysis      |        |                                                                                 |                            |                  |
| T (°C)   33.9   33.3   33.8   33.7   33.9   32.7   33.0   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9   32.9    | Sample            | Paramotor                         | 0        | 1              | 2          | က               | 4                 | 2                            | 9         | ^      | 8                                                                               | 6                          | 9                |
| DO (mg/L) 6 9 6 3 6 0 5 3 4 9 4 9 6 5 1 5 2 2 Conductivity 3 6 0 0 5 2 4 9 4 9 4 6 5 1 5 1 5 2 2 4 9 4 9 9 4 6 5 1 5 1 5 2 2 4 9 9 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12549             | T (°C)                            | 6 EE     | 1.88           | 9:KC       |                 |                   | 7.cc.                        | .23.0     | 229    | 600                                                                             | 28.6                       | 6,00             |
| DO (mg/L)  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Condu |                   | Ŧ.                                | 2 t      | ×              | ×          | ×               | ×                 | 76                           | ×         | ×      | ×                                                                               | ×                          | 9/t              |
| Conductivity 36.0 X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | DO (mg/L)                         | 5.9      | 6.3            | 0.0)       | <i>ان</i><br>دز | 2                 |                              | 4         | 7.     | 7                                                                               | 77                         | <b>~</b> } ~ ` ` |
| Armmonia, aikthardness  T (°C)  A 3 0 23 A 73 9 2 A 23 0 24 A 1 A 2 A 2 A X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | Conductivity                      | 360      | ×              | ×          | ×               | -×                | 2/0                          | ×         | ×      | ×                                                                               | ×                          | 300              |
| T (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | Armmonia, atk/hardness<br>Sulfide | >        | ×              | ×          | ×               | ×                 | ×                            | ×         | ·×     | ×                                                                               | ×                          | 2                |
| DO (mg/L) (3.0 GO 5.2 49 4.2 46 4.3 4.1 5.3 Conductivity 370 × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12550             | T (°C)                            | 43.0     | ~              | 73.9       | ~∩              |                   | 22.4                         | 1. 5.7.   | Tec    | 23.62                                                                           | 600                        | 23.1             |
| DO (mg/L) (2.0 6.0 5.2 4.9 4.2 1.6 4.3 4.1 5.3 Conductivity 370 × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | Ha                                | · ·      | i              | ×          |                 | ×                 |                              | ×         | ×      | ×                                                                               | ×                          | 7.5              |
| Conductivity 370 X X X X X 370 X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | DO (mg/L)                         |          | 60             | 57         | 4.9             | 4.7               |                              | 4.2       | 4      |                                                                                 | 2,9                        | 42               |
| Animonia, alkhardness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | Conductivity                      | 370      | ×              | ×          | 1               | ×                 | 1                            | ×         | ×      | ×                                                                               | ×                          | 380              |
| T(°C) 22.9 23.4 25.4 23.2 23.1 22.3 23.6 23.0 23.3 29.9 DO (mg/L) 5.7 × × × × 7.6 × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | Ammonia, alk/hardness<br>Sulfide  | >        | ×              | ×          | ×               | ×                 | ×                            | ×         | ,<br>× | ×                                                                               | ×                          | >                |
| 7.7 × × × × 7.6 × × × × × × × × × × × × × × × 3.4 0 × × × × × × 3.4 0 × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12551             | T (°C)                            | 23.9     | 33.4           | 456        |                 | 33.1              | $\mathfrak{t}$ $\mathcal{C}$ | ی         | J.53.C | 23.3                                                                            | 22.9                       | 1.2c             |
| 360 × × × × 310 × × × × × 310 × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | Ha                                | 4.       | ×              | ×          | ×               | ×                 | 76                           | ×         | ×      | ×                                                                               | ×                          | 76               |
| 360 X X X 310 X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | DO (mg/L)                         | 5.6      | 50             |            | るい              | <del>4</del><br>N | 4                            | 4.4       | 4.8    | 4.8                                                                             | 43                         | 4.3              |
| 19(7, 19/8, 19/10, 10/11, 19/12, 19/13, 19/14, 19/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | Conductivity                      | 360      | ×              | ×          | ×               | ×                 | 3.10                         | ×         |        | ×                                                                               | ×                          | 390              |
| 1972 1978 1970 1971, 19712 1973 19714 19415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | Ammonia, alk/hardness<br>Sulfide  | >        | ×              | ×          | ×               | ×                 | ×                            | ×         | ×      | ×                                                                               | ×                          | >                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Init./Date (1999):                | 35       | <sup>1</sup> % | <b>1</b> % | 19/19           | 19/1/             | 19/12                        | 1913      | 19774  | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 18<br>4.84<br>4.45<br>4.45 | 1975             |

Comments:

Review: Date: (2/10/64
Laboratory: Aedatec Biological Sciences, South Burlington, Vermont

Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Acute Tests

Review: Date: 17/0/29
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Comments:

### Midge (Chironomus tentans) Day 10 Survival and Dry Weight Data

| Client: Menzie-Cura & Assoc. | Project: 99031 Dead Creek   | BTR: 3622 / 3629           |
|------------------------------|-----------------------------|----------------------------|
|                              | Test Start: October 8, 1999 | Test End: October 18, 1999 |

| 2590 A<br>E<br>()     | A B C D E F G H                                                                                       | 000000                                  | TM<br>RB<br>TM<br>TM<br>TM<br>TM<br>RB<br>RB<br>TM |               |          | 000000000                                           | To the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | 38.84        | 40.32             | Acuraly          |
|-----------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------|---------------|----------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|------------------|
| 2590 A<br>E<br>(      | C D E F G D E D E F G F C D E F G G F G G F G G F G G F G G F G G G G G G G G G G G G G G G G G G G G | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RB<br>TM<br>TM<br>RD<br>TM<br>RB<br>RB<br>TM       |               |          | 00000                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.84        | 40.32             | anly             |
| 2590 A<br>E<br>(      | D E F G H B C D E F G G                                                                               | 0 0 0 0 0 0 0 0 0 0                     | RB<br>TM<br>TM<br>RD<br>TM<br>RB<br>RB<br>TM       |               |          | 00000                                               | John Town                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38.84        | 40.32             | and              |
| 2590 A<br>E<br>(      | E<br>G<br>H<br>B<br>C<br>D<br>E                                                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | TM TM TM TM TM RB RB TM                            |               |          | 0000 10                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.84        | 40.32             | and              |
| 2590 A<br>E<br>(      | E<br>G<br>H<br>B<br>C<br>D<br>E                                                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | TM<br>RB<br>RB<br>TM                               |               |          | 0 0 0                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.84        | 40.32             |                  |
| 2590 A<br>E<br>C<br>E | F<br>G<br>H<br>A<br>B<br>C<br>D<br>E<br>F                                                             | 0 0 0 0 0 0 0 0                         | TM<br>RB<br>RB<br>TM                               |               |          | 0 0                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.84        | 40.32             |                  |
| 2590 A<br>E<br>C<br>E | A B C D E F G                                                                                         | 0 0 0 0 0 0 0                           | TM<br>RB<br>RB<br>7M                               |               |          | 0 0                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.84        | 40.32             | _                |
| 2590 A<br>E<br>C<br>E | A B C D E F G                                                                                         | 0 0 0 0 0                               | TM<br>RB<br>RB<br>7M                               |               |          | 0                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.84        | 40.32             |                  |
| 2590 A                | A B C D E G                                                                                           | 0 0 0                                   | TM<br>RB<br>RB<br>7M                               |               |          | 10                                                  | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38.84        | 40.32             | ,                |
| E<br>[<br>E<br>-<br>- | B<br>C<br>D<br>E<br>F                                                                                 | 0                                       | RB<br>7m<br>7m                                     |               |          |                                                     | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38.84        | 40.32             | ļ                |
| E<br>[<br>E<br>-<br>- | B<br>C<br>D<br>E<br>F                                                                                 | 0                                       | RB<br>7m<br>7m                                     |               |          |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            | _                 | ^                |
| [<br>[<br>[           | C D E G                                                                                               | ပ<br>0                                  | 7m<br>7m                                           |               |          |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |                  |
|                       | D<br>E<br>F<br>G                                                                                      | ပ<br>0                                  | 7m<br>7m                                           |               |          | $\supset$                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   | ابا ورا<br>درما  |
|                       | E<br>F<br>G_                                                                                          | 0                                       | TM                                                 |               |          | C                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                   | رحرط             |
|                       | <u>G</u>                                                                                              |                                         | <del> </del>                                       | ~             |          | $\overline{\mathcal{O}}$                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |                  |
|                       | <u>G</u>                                                                                              |                                         | 7m                                                 |               |          | $\delta$                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |                  |
|                       |                                                                                                       | 6                                       | 76                                                 |               |          | $\frac{\overline{\varsigma}}{\overline{\varsigma}}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del> |                   |                  |
|                       |                                                                                                       | 7                                       | 7G                                                 |               |          | 3                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2969         | 3.5.20            |                  |
|                       |                                                                                                       | <u>~</u> _                              |                                                    |               |          | $\mathcal{O}$                                       | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1 4        | 100.0             |                  |
| 2591 /                | A                                                                                                     | 0                                       | 7m                                                 |               |          | 0                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            |                   |                  |
|                       | В                                                                                                     | 0                                       | KIZ                                                |               |          | 0                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>     |                   | •                |
| -                     | C                                                                                                     | 0                                       |                                                    |               |          | 0                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |                   | Acol             |
| +                     | D                                                                                                     | 0                                       | JG                                                 |               |          | 0                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   | 1700             |
| <b>—</b>              | E                                                                                                     | Ŏ                                       | m                                                  | <u> </u>      |          | $\overline{\circ}$                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |                  |
|                       | F                                                                                                     | 0                                       | 76-                                                |               |          |                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                   |                  |
| 4                     | G                                                                                                     | 0                                       | FM                                                 |               | ~        |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            |                   |                  |
| -                     | H                                                                                                     | O                                       | 36                                                 |               |          | <u> </u>                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>  |                   | ı                |
|                       |                                                                                                       |                                         |                                                    |               |          |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·            | 48.11             | (th              |
|                       |                                                                                                       | 3120ge(6,4)                             | <u>"</u> <u>J</u> C                                | <u>Ø</u>      |          | 13                                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36,37        | 48.11             | Sieve            |
| <del></del>           | В                                                                                                     | 3 4 25                                  |                                                    |               |          | 78                                                  | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.7.7.00     | 45.42             | Exces            |
| <i>4</i> (            | C (****                                                                                               | 18                                      | YM.                                                |               |          | 8                                                   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32.71        | 37.38             | وبعديها          |
|                       | المنا ال                                                                                              | #                                       | RB                                                 |               |          | 11                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39.20        | 48.63             | Chipos<br>Chipos |
| <u> </u>              | E                                                                                                     | 18                                      | JG-                                                |               |          | 18.                                                 | ig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 142.72       | 173.33            | Creni            |
| 124 2 F               | FSMI"                                                                                                 | 15                                      | नार                                                |               |          | 15                                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34.39        | 52.14             |                  |
| <b>★</b> (            | <u>G 5-58</u>                                                                                         | <u> </u>                                | RB                                                 |               |          | <u> </u>                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39.29        | 41.62             | 1 ~ <i>D</i> 4   |
| . 1                   | Himi                                                                                                  | 8                                       | RB                                                 |               |          | 8                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3596         | 39,40             | indig            |
|                       |                                                                                                       |                                         |                                                    |               |          |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |                  |
| alance QC             |                                                                                                       | ial (20 mg =                            |                                                    |               | (20 mg = |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Asset #:     |                   | 40               |
|                       |                                                                                                       | is Temp(°                               | c) 81,                                             | Init. 7m      |          | ime out                                             | 7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mp(°C) &4    |                   | 7G-              |
| omments:              |                                                                                                       |                                         |                                                    |               |          |                                                     | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                   |                  |
| _                     |                                                                                                       | /                                       | /a -                                               |               |          | Someli                                              | 123 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>^)</b>    | er dio o d in the |                  |
| eviewer               |                                                                                                       | Date 11/10                              | 9/ <i>99</i><br>es, South Burlin                   | ncton Vermont |          | STE                                                 | ind Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . م. ٠       | er de             | tsurvwt doc      |
| Licially Mil          | maser OK                                                                                              | myria scend                             | E3, 300111 33 III                                  | g-wi. venight | 660      | 3.70 1                                              | ادر المادة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , v Sara (   | 1 1               | Histell          |

### Midge (Chironomus tentans) Day 10 Survival and Dry Weight Data

| Client: Menzie-Cura & Assoc. | Project: 99031 Dead Creek   | BTR: 3622 / 3629           |
|------------------------------|-----------------------------|----------------------------|
|                              | Test Start: October 8, 1999 | Test End: October 18, 1999 |

|          |                |                           |           |          | Repick  | Total   | #         | Init Pan | Total          |
|----------|----------------|---------------------------|-----------|----------|---------|---------|-----------|----------|----------------|
| Sample   | Repl.          | # Alive                   | init.     | Repick # | Init.   | Surv    | Weighed   | Wt.      | Dry Wt.        |
| 12593    | Α              | 9                         | TM        | -        |         | 9       | 9         | 33.78    | 51.62          |
|          | В              | 9                         | Im        |          |         | 9       | 9         | 43.18    | 60.67          |
|          | С              | 11                        | 76        |          |         | il      | []        | 36.03    | 57.58          |
|          | D              | 10                        | RB        | -        |         | 10      | 0         | 35.15    | 50.58          |
| <b>!</b> | E              | 10                        | 19        |          |         | 10      | 10        | 40.43    | 60,22          |
| İ        | F              | 109                       | 3CM       |          | ·       | 109 RS  | 8         | 35.86    | 50,59          |
| Ì        | G              | 10                        | TM        |          |         | 10      | 9         | 35.16    | 56,80          |
|          | Н              | 10                        | RB        |          |         | 10      | 10        | 36.52    | 57.14          |
|          |                | -2                        | 00        |          |         |         |           | 0: 2:    | 0.50           |
| 12609    | A              | 8                         | RB        |          |         | 8       | 8         | 31.56    | 39.77          |
|          | В              | 1.7                       | RB        |          |         | 10      | <u>i0</u> | 31.99    | 42.69          |
| 1        | C              | 10                        | RB        |          |         | 10      | 10        | 32.11    | 41.76          |
| othor    | <u></u> D.     | 8                         | TM        |          |         | 8       | 8         | 32.66    | 37.061         |
|          | l <del>-</del> | 10                        | TM        |          |         | 10      | 10        | 38.79    | 53.66          |
|          | FIPIP          | 9                         | RB        |          |         |         | 8         |          | 89.99          |
| (        | G              | 9                         | 16        |          |         | 3       | 9         | 27.38    | <i>35</i> , 53 |
| <u> </u> | Н              | 9                         | 16        |          |         | 9       | 9         | 26.07    | 38.09          |
| 12610    | Α              | à                         | TYE       |          | <u></u> | 入<br>一  | 2         | 32.27    | 41.92          |
| 12010    | В              | $\frac{\sim}{\sim}$       | 10        |          |         |         | <u> </u>  | 99.80    | 11.10          |
|          | C              | 7                         | Tm        |          |         | $\circ$ |           | 33.52    |                |
|          | D              | $\frac{\widetilde{7}}{7}$ | Tm        |          |         | i       | 1         | 34.50    | 39.01          |
|          | E              | 0                         | m         |          |         |         |           | 32.86    | 71.01          |
|          | F              | 1                         | im        |          |         | 1       | <u> </u>  | 34.19    | 34.92          |
|          | G              | Ö                         | RB        |          |         | 0       |           | 2408     |                |
|          | H              | 9                         | 76        | _        |         | 9       | 9         | 32.34    | 49,85          |
|          |                |                           |           |          |         |         |           |          |                |
| 12615    | Α              | 10                        | RB        |          | _       | 10      | 10        | 28.81    | 48.78          |
| 1        | В              | 10                        | 76        |          |         | 10      | 10        | 31.95    | 53.69          |
|          | С              | 10                        | m         |          |         | 10      | <u> </u>  | 33.29    | 51.53          |
|          | D              | 10                        | RB        |          |         | 0       | 10        | 27.77    | 41,70          |
|          | E<br>F         | 10                        | <u>JG</u> |          |         | 10      | 10        | 27.97    | 52.01          |
|          |                | 10                        | 7m        |          |         | 10      | 10        | 34.55    | 53,20          |
| <b>\</b> | G              | !                         | RB        |          |         | //      |           | 27.97    | 45.71          |
| 1        | Н              | 10                        | 9G        |          |         | 10      | 10        | 29.90    | 50.95          |

| Balance QC: Initial (20 mg = (9.98) | ) Final (20 mg = $1998$ )   | Balance Asset #:        |
|-------------------------------------|-----------------------------|-------------------------|
| Date/time In Wil 17:15 Temp(°C) 81° | Init. 7h Date/time out 11/7 | 30 Temp(°C) 84 Init. JG |
| Comments:                           |                             | 14                      |

Reviewer: 1 Date: 12/10/99. Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctsurvwt.doc

| Egg Deposit Date: 0123  | Larva   | Haton Date: 936 | Culture II | ): 9/a(a |
|-------------------------|---------|-----------------|------------|----------|
| Culture Source (flies). | Aquated | No Egg Cases:   | _3         |          |

instructions: Isolate egg cases in petri dish with sediment recon, water. Hold in petri dish up to two days or until larval hatching begins. Add mono-layer of Selenastrum prior to hatching. Transfer egg cases with hatching larvae to culture box with mono-layer of fine sand, water, and Selenastrum. Feed cally increasing amounts of Cerophyll/Tetrafin slurry to match consumption rates (food should not accumulate). Measure water chemistry: change 80% of water weekly. Measure temperature daily in one representative culture. Split cultures if needed to accompdate larval growth. When emergence occurs, remove files daily to mating flask or disposal flask. Remove discarded body castes.

| Date             | Day         | Temp   pH     | <b>33</b> Con                          | d Fec       | WC           | Observations                          | Init.       |
|------------------|-------------|---------------|----------------------------------------|-------------|--------------|---------------------------------------|-------------|
| 9/20             | 0           |               |                                        | <u></u> ⊱€1 |              |                                       | m           |
| 0 22             | j           |               |                                        | sei         |              |                                       | m           |
| 9/28             | 7           |               |                                        | cul-        | <u> بر ح</u> |                                       | σ           |
| 91:0             | 3           |               |                                        |             |              | = Lie iivae                           | J-          |
| 9/30             | 6           | !             | - <del></del>                          | -26/4       | 100          | :                                     | 33          |
| 101,             |             | <u>i</u>      | ······································ | Tais?       | <u> </u>     |                                       | 130         |
| 13/2             |             |               |                                        | <u>-رن</u>  |              |                                       | JG          |
| 10/3             | 7           | ·<br>         |                                        | TC          |              | ·                                     | <u> </u>    |
| 10/2             | 8           |               |                                        |             |              |                                       | 75          |
| 12/5             | Ŷ           | ·             |                                        | 10          |              |                                       | - 10        |
| <u> المالة ع</u> |             | 228           |                                        |             |              | Contact wil 1/27 Culi                 | <u>ve</u> ( |
| 7                |             | ·             |                                        | <u></u>     |              |                                       |             |
| - <del> </del>   | _ ا کـــ    | <del></del>   | <del></del>                            |             |              | Usab for Test STARTS                  | -           |
|                  |             | <del> </del>  | <del></del>                            |             |              | <del> </del>                          |             |
|                  |             |               | <del></del>                            | <del></del> |              |                                       |             |
|                  |             | <u>'</u>      |                                        |             |              |                                       |             |
|                  |             | <del></del>   |                                        |             |              |                                       |             |
|                  |             |               |                                        |             |              |                                       |             |
|                  |             | <del></del> - |                                        |             |              |                                       |             |
|                  | <del></del> | <del></del>   |                                        |             |              |                                       | <del></del> |
|                  |             |               |                                        | <del></del> | <del></del>  |                                       |             |
|                  | <del></del> | · ·           |                                        | <del></del> |              |                                       |             |
|                  |             | 1             |                                        |             |              |                                       |             |
|                  |             | <del></del>   |                                        |             |              |                                       |             |
|                  | 1           | <del></del>   |                                        | <del></del> |              | · · · · · · · · · · · · · · · · · · · |             |
|                  |             |               |                                        |             |              |                                       |             |

| Egg Deposit Date: ११३   | 4 Larval Hato | ch Date: 9/27  | Culture ID: | 9/27 |
|-------------------------|---------------|----------------|-------------|------|
| Culture Source (flies): | Aquatec       | No. Egg Cases: | 3           |      |

Instructions: Isolate egg cases in petri dish with sediment recon, water. Hold in petri dish up to two days or until larval hatching begins. Add mono-layer of Selenastrum prior to hatching. Transfer egg cases with hatching larvae to culture box with mono-layer of fine sand, water, and Selenastrum. Feed daily increasing amounts of Cerophyll/Tetrafin slurry to match consumption rates (food should not accumulate). Measure water chemistry / change 80% of water weekly. Measure temperature daily in one representative culture. Split cultures if needed to accomodate larval growth. When emergence occurs, remove flies daily to mating flask or disposal flask. Remove discarded body castes.

1999

| 1777         |                                                  |              |              |              |                                                  |                |                                                  |                          |             |                 |
|--------------|--------------------------------------------------|--------------|--------------|--------------|--------------------------------------------------|----------------|--------------------------------------------------|--------------------------|-------------|-----------------|
| Date         | Day                                              | Temp         | рН           | DO           | Cond                                             | Fed            | WC                                               | Observations             | Init.       |                 |
| 9127         | 0                                                |              |              |              |                                                  | Isei.          | {                                                |                          | Im          |                 |
| 9/28         | <u> </u>                                         |              |              |              |                                                  | Sel            |                                                  | Still herrhing           |             |                 |
| 9/29         | 12                                               | 21.8         |              | 1            | i                                                | TCL            | i                                                | Beginsing Table Armetion |             |                 |
| 9/3=         | 3                                                |              |              |              | 1                                                | TIL            |                                                  | Reginery The Armation    |             |                 |
| 10/1         | 4                                                |              |              | ]            |                                                  |                |                                                  |                          | JJG         | -               |
| 10/2         | 15                                               |              |              |              |                                                  | TCIO           | Y-1-C-                                           |                          | MG          |                 |
| 14/3         | 6                                                | 1            |              |              |                                                  | TO 01          |                                                  |                          | JG          | -               |
| 10/0         | 7                                                |              |              |              |                                                  | HC             |                                                  |                          | HA          | <u>_</u> _      |
| 13/5         | ß                                                |              |              | Ī            |                                                  | PC             | ļ                                                |                          | JAG         | <del> -</del> - |
| 10/6         | 9                                                | 22.7         | 7.9          | 3.€          |                                                  | 114            |                                                  | To 19 box 19/200         | Lane (      | 1.00            |
| 10/7         | 10                                               | İ            |              |              |                                                  | ITC            | 1                                                |                          | AM          | y               |
| 10/8         | //                                               |              |              |              | [                                                | 1              | 1                                                | lused for test stands    | 77          | Ì               |
| 7.           |                                                  | 1            |              |              | j                                                | İ              | 1                                                |                          |             |                 |
|              | 1                                                | İ            |              | Ì            | i – –                                            | İ              | İ                                                |                          |             | ĺ               |
|              | <u> </u>                                         | <del> </del> |              | <del> </del> |                                                  | i              | <u>}</u>                                         |                          |             |                 |
|              | 1                                                | <del> </del> |              | <u> </u>     | 1                                                | 1              | <del></del>                                      |                          |             |                 |
|              | <u> </u>                                         | 1            | ]            | <del></del>  | <del>                                     </del> | j              | 1                                                |                          | <del></del> | 1               |
|              |                                                  | <del> </del> |              |              | İ                                                | İ              | i                                                |                          | 1           | ĺ               |
| <b></b>      | <del>                                     </del> | <u> </u>     |              | 1            | 1                                                | 1              | <del>                                     </del> |                          | 1           | 1               |
|              | <del> </del>                                     | 1            | 1            | <del>†</del> | <del> </del>                                     | <del></del>    | <del> </del>                                     |                          | 1           | 1               |
| <del> </del> | <del> </del> -                                   | <del> </del> | <del> </del> | <del>†</del> | <del> </del>                                     | <del> </del> - | i                                                |                          | <del></del> | ĺ               |
| <del></del>  | <del> </del>                                     | <del> </del> | ]            | <del> </del> | <del> </del>                                     | <del> </del> - | <del> </del>                                     | 1                        | <del></del> | 1               |
|              | <del> </del>                                     | <del>†</del> | <del> </del> | 1            | <del> </del>                                     | -              | <del> </del>                                     | <del> </del>             | +           | 1               |
|              | <del> </del>                                     | <del> </del> | 1            | †            | <del> </del>                                     | <del> </del> - | <del> </del>                                     | <del> </del>             | <del></del> | }               |
|              | <del> </del>                                     | <del> </del> | <del> </del> | <del> </del> | <del> </del>                                     | +              | <del> </del>                                     | <del> </del>             | -           | 1               |
|              | <del> </del>                                     | <del> </del> | <del> </del> | <del></del>  | <del> </del>                                     | <del> </del> - | 1                                                |                          | +           | 1               |
| 1            | 1                                                | 1            | 1            | .l           |                                                  | _1             | 1                                                | 1                        |             | ل               |

| Egg Deposit Date      | 9/25 L   | arval Haton Dat | e 9/28    | Culture ID. | 9128 |
|-----------------------|----------|-----------------|-----------|-------------|------|
| Culture Source (fires | \ Aquate | s No            | Egg Cases | 34          |      |

Instructions: Isolate egg cases in petri dish with sediment recon, water. Hold in petri dish up to two days or until larval hatching begins. Add mono-layer of Selenastrum prior to hatching. Transfer egg cases with hatching larvae to culture box with mono-layer of fine sand, water, and Selenastrum. Feed daily increasing amounts of Cerophyll-Tetrafin slurry to match consumption rates (food should not accumulate). Measure water chemistry I change 80% of water weekly. Measure temperature daily in one representative duture. Split cultures if needed to accompate larval growth. When emergence occurs, remove fires daily to mating flask or disposal flask Remove disparaded body castes.

| Date                 | Day        | Temp | - pH | 20   | Cond           | Fed  | WC       | Observations         | init.    |
|----------------------|------------|------|------|------|----------------|------|----------|----------------------|----------|
| Date<br>Date<br>Gile | ٥          |      |      |      |                | ٤1.  |          |                      | 7727     |
| 6 16                 | ļ          |      | 1    |      |                | 46-  |          | STU FREELING TERMS   | 47       |
| 2 ::                 |            |      |      |      |                | 48 L |          | 2200 2125            |          |
| #37.                 |            |      |      |      |                | 7011 |          |                      | _JG-     |
| _ <u></u>            | 4          |      |      |      |                | TOIS | برسار    |                      | 76       |
| ₹                    | <u>.</u>   |      |      | ·    | · <del>-</del> | TOL  | 1100     |                      | <u> </u> |
| ,10                  | <u>ئ</u>   |      |      |      |                | 700  |          |                      | JE       |
|                      | _ ?        |      |      |      |                | 17   | <u> </u> | To promise tex       | 135      |
| 27                   | 8          | 219  | 77   | 7, 4 |                |      |          |                      | A        |
| 3.7                  | <u> </u>   |      |      |      |                | TC   |          |                      | Arr      |
| 12:5                 | <i>1</i> 3 |      |      |      |                |      |          | Used for TELT STARTS | 7        |
|                      |            |      |      |      |                |      |          |                      |          |
|                      |            |      |      |      |                |      |          |                      |          |
|                      |            |      |      |      |                |      |          |                      |          |
|                      |            |      |      |      |                |      |          |                      |          |
|                      |            |      |      |      |                |      |          |                      |          |
|                      |            |      |      |      | <del></del>    |      |          |                      |          |
|                      |            |      |      |      |                |      |          |                      |          |
|                      |            | ·    |      |      |                |      |          |                      |          |
|                      |            |      |      |      |                |      |          |                      |          |
|                      |            |      |      |      |                |      |          | <u>_:</u>            |          |
|                      |            |      |      |      |                |      |          |                      |          |
|                      |            |      |      |      |                |      |          | <del></del>          |          |
|                      |            |      |      |      |                |      |          |                      |          |
|                      |            |      |      |      |                |      |          | <del> </del>         | <u> </u> |
|                      |            |      |      |      |                |      |          |                      | j }      |

### Chironomus tentans Head Capsule Width

Culture ID: 9/26, 9/27, 9/28 Age (d) of larvae: 10-12 days

Magnification: 32 Ocular micrometer calibration: 35 micrometer units = 1 mm

Microscope Asset #: 2929

Calculation of head capsule width:

head capsule width (micrometer units) / micrometer calibration units

| Organism      | Head Capsule Width                 | Head Capsule Width              |
|---------------|------------------------------------|---------------------------------|
| Number        | (micrometer units)                 | (mm)                            |
| 1             | 8                                  | 0.23                            |
| 2             | 11                                 | 0.31                            |
| 3             | 14                                 | 0.40                            |
| 4             | 7                                  | 0.20                            |
| 5             | 13                                 | 0.37                            |
| 6             | 7                                  | 0.20                            |
| 7             | 15                                 | 0.43                            |
| 8             | 14                                 | 0.40                            |
| 9             | 15                                 | 0.43                            |
| 10            | 14                                 | 0.40                            |
| 11            | 14                                 | 0.40                            |
| 12            | 14                                 | 0.40                            |
| 13            | 13                                 | 0.37                            |
| 14            | 15                                 | 0.43                            |
| 15            | 15                                 | 0.43                            |
| 16            | -                                  |                                 |
| 17            | -                                  | -                               |
| 18            | -                                  | -                               |
| 19            | -                                  | -                               |
| 20            |                                    | _                               |
| Initials: JWW | Larval heads were severed and moun | ted on a slide for measurement. |
| Date:         | Subset of larvae used to start Sam | ples 12589, 12590, 12591,       |
| 12/10/99      | 12592, 12593, 12609, 12610 on 10   | 0/8/99.                         |
|               |                                    |                                 |

Reviewer: <u>jww</u> Date: \_\_\_\_. Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| ・ は                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | roject: Menzie-( | Project: Menzie-Cura & Associates |       | Project: 99033 |                         | Dead Creek |          |        | BTR: 36 | 22 / 3629     | Tost St                    | BTR: 3622 / 3629 Tost Starts 8/8/99 | 6      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------|-------|----------------|-------------------------|------------|----------|--------|---------|---------------|----------------------------|-------------------------------------|--------|
| Parameter   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :                |                                   |       |                |                         |            | Day      | of Ana | lysis   |               |                            |                                     |        |
| DO (mg/L)  DO (mg/L)  TO 5. 76.0 5.7 5.7 5.7 5.2 6.0 6.3 7.7 5.8 × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample           | Parameter                         | 0     | -              | 7                       | က          | 4        | 2      | 9       | 7             | 8                          | 6                                   | 9      |
| DO (mg/L) 7.0 5.76.0 5.7 5.7 5.2 6.0 6.3 7.7 5.6.  Conductivity 3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12589            | T (°C)                            | 4.1%  | 368            | 35.6                    |            | 23.2     | 23.2   | 22.91   | 8 4           | 223                        | 1.50                                | 229    |
| DO (mg/L)  Oconductivity  Annuonia, alkhardness  Annuonia, alkhardness  Annuonia, alkhardness  DO (mg/L)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (° |                  | Hď                                | 4.9   | ×              | ×                       |            | ×        | 4.4    | ×       | ×             | )<br> ×                    | ×                                   | 3 5    |
| Conductivity 370 × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | DO (mg/L)                         | 7.0   | 7              | 0 %                     |            | 4.4      | くい     | 0.0     | 7             | Ĺ                          |                                     | 40     |
| T (°C)   21,7   25,7   23,2   23,9   23,0   23,9   23,5   23,2   23,8     T (°C)   21,7   25,7   25,7   23,2   23,9   23,0   23,9   23,5     DO (mg/L)   7,9   5,7   6,0   5,4   5,7   6,1   7,0   5,4     Conductivity   360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Conductivity                      | 3.5   | `<br>`<br>`    | ×                       |            |          | 390    | ×       | ) ×           | ÷×                         | × 2                                 | 700    |
| T(°C) 21,7 25,745.7-33,2 229 23.0 23.4 22.5 22.2 22.8 - PH  DO (mg/L) 7,2 5,7 6.0 5,4 5.6 5.4 5.7 6,1 7,0 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Ammonia, alk/hardness<br>Suffide  | >     | ×              | ×                       | ×          | ×        | - ×    | ×       | ×             | ×                          | ×                                   | 250    |
| DO (mg/L) 7.5 5.7 6.0 5.4 5.6 5.4 5.7 6.1 7.0 5.4 X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12590            | T (°C)                            | 71.7  | 2,7            | 45.7                    | 33.2       |          | 23.0   | 2.4     | 8             | 22.2                       | 7                                   | 228    |
| Conductivity 360 × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | Hd                                | 19 E  |                | ×                       | ×          |          | 4 4    | ×       | ×             | ×                          | ×                                   | アレイ    |
| Conductivity 360 × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | DO (mg/L)                         | 7.    | 5.7            | 6.0                     | 17.        | ر)<br>کا | 4.7    | 5.7     | _<br>         | 7,0                        | 5.4                                 | 10     |
| Arimonila, aikthardness  T ("C)  A], U  ASC 33, U  A3, U  A3, U  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C  A3, C   |                  | Conductivity                      | 3%0   | ×              | ×                       | ×          | <b>×</b> | 710    | ×       | -<br> <br> -  | ×                          | ×                                   | 300    |
| T("C) 21.4 25.6 23.1 23.0 23.8 22.5 22.8 22.9 22.9 22.9 22.9 22.9 22.9 22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | Ammonia, alk/hardness<br>Sulfide  |       | ×              | ×                       | ×          | ×        | ×      | ×       | ×             | ×                          | ×                                   | 7      |
| 1.6 × × × × + + × × × × 7.6 6 × 6.9 6.9 6.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4 6.3 1.4    | 12591            | T ("C)                            | 7).1% | 356            | S. S.                   | 23.(       | 44.9     | 23.0   | 22 X    | 25.5          | 8,56                       |                                     | 22.9   |
| 360 X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | H                                 | 76    | ×              | ×                       | ×          | ×        | 4.4    | ×       | ×             | ×                          | ×                                   | 7      |
| 360 × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | DO (mg/L)                         | 7.4   | 6,3            | 6.6                     | 6.4        | 97       | 6.6    | 6.7     |               | 4.4                        |                                     | ()     |
| 1982 - 1982 1983 1984 1985 1983 1985 1983 1983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                                   | 2/60  | ×              | <b>×</b>                | ×          | ×        | 390    | ×       | ×             | ×                          | ×                                   | ν<br>Ø |
| 1982-198 1973 1974 1978 1974 1975 1975 1975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                                   | /     | ×              | ×                       | ×          | ×        | ×      | ×       | ×             | ×                          | ×                                   | ,      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                   | 1385  | <b>%</b>       | 15.75<br>25.75<br>75.75 | 19/11      | 19,12    | 19/13  | 19//14  | 5<br>25<br>25 | \$<br>\$<br>\$<br>\$<br>\$ | 19/17<br>19/17                      | 10/18  |

5:>-

haenv.doc

Review: Date:  $\frac{12/(s/5)}{2}$  Date: All Date: 12/(s/5) Laboratory: Aduatec Biological Sciences, South Burlington, Vermont

Comments:

Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Acute Tests

| Day of Analysis  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ect: Menzie-C | Project: Menzie-Cura & Associates | . Project: | ect: 99033 | 1 1 | Dead Creek  |       |         | BTR: 36 | 22 / 3629 | 3622 / 3629 Test Starts | arts 9/8/99 | g     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------|------------|------------|-----|-------------|-------|---------|---------|-----------|-------------------------|-------------|-------|
| Parameter   0   1   2   3   4   5   6   7   8   9     T (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                   |            |            |     |             | Day   | of Anal | lysis   |           |                         |             |       |
| T (°C)   2 .9   28.0   28.3   23.4   23.9   23.0   23.0   23.0   23.4     PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample        | Parameter                         | 0          | -          | 2   | က           | 4     | 5       | 9       | 7         | 8                       | 6           | 9     |
| Do (mg/L) 65 55 5.7 57 6.6 4.7 4.5 5,5 6,6 5.5 6.7 6.5 6.6 6.5 5.5 6.6 5.5 6.6 5.5 6.6 6.5 5.5 6.6 5.5 6.6 5.5 6.6 5.5 6.6 5.5 6.6 5.5 6.6 5.5 6.6 5.5 6.6 5.5 6.6 5.5 6.6 5.5 6.6 5.5 6.6 5.5 6.6 5.5 6.6 5.5 6.6 5.5 6.6 5.5 6.6 5.5 6.6 5.5 6.6 5.5 6.6 5.5 6.6 6.5 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12610         | T (°C)                            |            | 790.0      | 202 | 33.         | 23.3  | 23.4    | 9.86    | 23,0      | نہ ا                    | 23.         | 223   |
| DO (mg/L) 6.5 5.7 5.7 6.6 4.7 4.5 5.5 6.6 5.5 5.5 Conductivity 4/0 × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | Н                                 | 54         | ×          | ×   | ×           | ×     | 70      | }       | ×         | ×                       | ×           | 7     |
| Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness  Anmonia, alkihardness |               | DO (mg/L)                         | 65         | 52         | 4   | 45          | 6.6   | 4.7     | 4.5     |           | 6.6                     | 5.5         | 6,0   |
| Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  Ammonia, alkhardness  |               | Conductivity                      | 01/2       | ×          | ×   | ×           | ×     | 420     | ×       | ×         | ×                       | ×           | 12    |
| T (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | Ammonia, alk/hardness<br>Sulfide  | 7          | ×          | ×   | ×           | ×     | ×       | ×       | ×         | ×                       | ×           | /     |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12615         | T (°C)                            |            | 764        | 7   | ·           | 23.3  | 335     | ·       | 23.0      |                         | 73.7        | 37    |
| 8.1 64 6.3 6.3 6.4 6.1 6.1 6.2 7.1 6.6 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | Н                                 | ,          | ×          |     |             | ×     | 77      | ×       | ×         | ×                       | ×           | 7.7   |
| 30 × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | DO (mg/L)                         | 1          | 40)        | 6.3 | 6.3         | 6.4   | 6.1     | 6.1     |           | 4                       | 0.0         | 1     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Conductivity                      | R          | ×          | ×   | ×           | ×     | 4(0     | ×       | ×         | ×                       | ×           | 200   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Ammonia, alk/hardness<br>Sulfide  | _          | ×          | ×   | ×           | ×     | ×       | ×       | ×         | ×                       | ×           | 7     |
| 1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986     |               | T (°C)                            |            |            |     |             |       |         |         |           |                         |             |       |
| 1986   1987   1987   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988     |               | Hd                                |            | ×          | ×   | ×           | ×     |         | ×       | ×         | ×                       | ×           |       |
| X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | DO (mg/L)                         |            |            |     |             |       |         |         |           |                         |             |       |
| X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | Conductivity                      |            | ×          | ×   | ×           | ×     |         | ×       | ×         | ×                       | ×           |       |
| 1986 1995 1997 1997 1997 1999 1999 1995 1996 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | Ammonia, alk/hardness<br>Sulfide  |            | ×          | ×   | ×           | ×     | ×       | ×       | ×         | ×                       | ×           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Init./Date (1999):                | 1389       | 10%        |     | 19/11<br>WW | 19/12 | 19W3    | 1974    | (4)       | 1968<br>878             | 1977        | 10/18 |

Review: Date: (2//0/99 Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Comments:

| Client: Menzie-Cura & Assoc. | Project: 99031 Dead Creek   | BTR: 3629 / 3633           |
|------------------------------|-----------------------------|----------------------------|
|                              | Test Start: October 9, 1999 | Test End: October 19, 1999 |

| Sample   | Repl.            | # Alive  | Init.          | Repick#       | Repick<br>Init. | Total<br>Surv  | #<br>Weighed | Init Pan<br>Wt. | Total<br>Dry Wt. |         |
|----------|------------------|----------|----------------|---------------|-----------------|----------------|--------------|-----------------|------------------|---------|
| 12611    | Α                | i O;u    | -m             |               | ~               | 10,            | 10           | 38.81           | 60.20            |         |
|          | В                | 809      | TM             |               | <b>\</b>        | 819            | 9            | 48.33           | 63.29            |         |
|          | С                | 10       | RB             |               |                 | 70             | 10           | 39.77           | 63.67            | 10      |
|          | D                | 9        | <u> </u>       |               |                 | 9              | 9            | 35.30           | 57 97            | phionic |
|          | E                | iĆ       | AS             |               | _               | 10             | 10           | 47.71           | 65.44            | (1)     |
| 1 1      | F                | iO       | RB<br>RB       |               |                 | 10             | 10           | 40.74           | 63.70            |         |
| predator | G¥               | U        |                |               | <b>-</b>        | 0              |              | 43.13           |                  |         |
|          | Н                | 10       | m              |               |                 | 10             | 10           | 34.78           | 63. 76           |         |
| 40040    |                  |          | 0.0            |               |                 | (A)            | <del></del>  | 44 27           | 60 64            | ŀ       |
| 12612    | Α                | 5        | 15             |               |                 | 2              | 5            | 44.27           | 60.54            |         |
|          | В                | 10       | RB             |               |                 | 10,            | 10           | 48.19           | 67.85            | 10      |
|          | C<br>D           | \$       | 16             |               |                 | 46             |              | 41.87           | 66.59            | Chichic |
|          | <u> </u>         | 6        | RB<br>Tm       |               |                 | Ö              | 6            | 47.59           | 69.61            | (n      |
|          | E<br>F<br>G<br>H | 7        | 7m             |               |                 | 7              | 7            | 51.61           | 72.60            |         |
|          | <u>-</u>         | 10       | 35             |               |                 | 10             | 10           | 4792            | 75.43            |         |
|          | <del></del>      | 5 pip    | $\overline{m}$ |               |                 | 5              | 5            | 47.38           | 64.22            |         |
|          |                  |          |                |               |                 |                |              | 1111111111      | 01.22            |         |
| 12613    | Aldad            | 1 44     | RB             | _             | _               | In             | 1            | 146.77          | 53.48            | •       |
|          | В                | 89       | TM             |               |                 | 89             | 9            | 45.64           | 66.77            | /       |
|          | C<br>D           | 7        | TM             |               | _               | 7              | 7            | 44.80           | 71.69            | ()3     |
|          |                  | <u>a</u> | m              |               |                 | 。<br>る         | a            | 42.20           | 47-83            | Chrows  |
|          | E                | _3       | Try            |               |                 | _3             | 3            | 51.92           | 63.36            | C.      |
| ŀ        | F                | <u> </u> | <i>Y</i> S_    |               |                 | 6              | (a           | 50.58           |                  |         |
| İ        | G                |          | <u>77n</u>     |               |                 |                | 1            | 50.02           |                  |         |
| L        | Н                |          | R&             |               |                 |                | 3            | 50.43           | 64.61            |         |
| 12614    | Δ                | 10       | 46             | ·             | <del></del>     | 10             | 1C           | 44.77           | 71.48            |         |
| 12614    | R                | 10       | RB             |               |                 | 10             | 10           | 59,26           | 92.75            |         |
|          | C                | 6        | RB             |               |                 | 6              | 6            | 57.85           | 81.44            | 10      |
|          | D                | 0        | <b>2</b> 8     |               |                 | . 0            | <u> </u>     | 1-1             | 31. 1            | 10/2000 |
|          |                  | T T      | īm             |               |                 | <del>'</del> / | 1            | 46 29           | 49.18            |         |
|          | F                | 3        | ( E            |               |                 | 3              | 3            | 53.44           | 64.53            |         |
|          | A B C D E F G H  | G        | 95             |               |                 | 10             | <u> </u>     | 51.31           | 71.82            |         |
|          | Н                | (0       | Thi            |               |                 | 6              | G            | 55.17           | 79.23            |         |
|          | ·                |          |                | <del></del> - |                 |                |              |                 |                  | •       |

| Balance QC:  | Initial (20 mg | = 1999  |       | Final (2 | 20  mg = 19.99 | ) Balance Asset #: |       |
|--------------|----------------|---------|-------|----------|----------------|--------------------|-------|
| Date/time In | 7 14-30Temp(°  | c) Taic | init. | Tm       | Date/time out  | Temp(°C)           | Init. |
| Comments:    | 11/8/99        | 20 mg   | =     | 19.995   |                | <del></del>        |       |

Reviewer Date 12/0/90
Laboratory Aquatec Biological Sciences, South Burlington Vermont

| ſ | Client: Menzie-Cura & Assoc. | Project: 99031 Dead Creek   | BTR: 3629 / 3633           |
|---|------------------------------|-----------------------------|----------------------------|
| 9 |                              | Test Start: October 9, 1999 | Test End: October 19, 1999 |

|          |             | <del></del>   | <del></del>                    |         |                 | 51 0, 1000                   |              | Liid. Oc        |                  |                         |
|----------|-------------|---------------|--------------------------------|---------|-----------------|------------------------------|--------------|-----------------|------------------|-------------------------|
| Sample   | Repl.       | # Alive       | Init.                          | Repick# | Repick<br>Init. | Total<br>Surv                | #<br>Weighed | Init Pan<br>Wt. | Total<br>Dry Wt. |                         |
| 12622    | Α           | 101           | RB                             | _       | _               | 10                           | 10           | 53.37           | 73.08            |                         |
|          | В           | 10            | 36                             |         |                 |                              | 10           | 59.34           | 68.47            | ]                       |
|          | С           | 9             | TM                             |         |                 | 109                          | 9            | 51.16           | 64.49            | 10                      |
|          | D           | 10            | TM                             |         |                 | 10                           | 10           | 56.01           | 76.25            | Chronic                 |
|          | E           | 8             | Tm                             |         |                 | 8                            | 8            | 58.63           | 71.84            | (h)                     |
|          | F           | 9             | 16                             |         |                 | 4                            | 9            | 56.14           | 78.78            |                         |
|          | G<br>H      | 9             | 16                             | -       |                 | 9                            | 9            | 55.87           | 73.42            |                         |
|          |             | 10            | 16                             |         |                 | 10                           | 10           | 47.21           | 63.02            |                         |
| 12638    | Α           | 0             | TM                             |         |                 | 0                            |              |                 |                  |                         |
|          | BO          | (I dead)      | 76                             | _       |                 | <b>©</b>                     |              |                 |                  |                         |
|          | С           | 0             | JE                             |         |                 | O,                           |              |                 |                  | ٠, ,                    |
|          | D           | 0             | TM                             |         |                 | <u> </u>                     |              |                 |                  | Acust                   |
|          | E           | Q             | TM                             |         |                 | <u> </u>                     |              |                 |                  | only                    |
| 19294    | F           | 0             | RB                             |         |                 | 0                            | ~            | = 4 4 5         | 22 74            | ď                       |
| 18.4.    | G ⋆<br>H    | 1             | RB                             |         | -               |                              | - 4          | 51.79           | 56.77            |                         |
| <u> </u> | 11          |               | 45                             |         |                 |                              |              | 1.51.71         | 00,11            |                         |
| 12639    | Α           | [] [] sha     | m                              |         | _               | П                            | 11           | 43.47           | 65.09            |                         |
|          | В           | 2 slive/12    | ext 16                         |         |                 | 9                            | à            | 52.88           | 60.89            | 1                       |
| !        | С           | 0.            | TM                             |         |                 | 0                            |              |                 |                  | Acut                    |
|          | D           | 3             | B.B.                           |         |                 | _3                           | 3            | 60.46           | 69.50            | inly                    |
|          | E           |               | KB                             |         |                 | 4                            | 1            | 53.50           | 56.38            |                         |
|          | F bead<br>G | 4 m           | Tm                             |         |                 | TAN                          | 4            | 42.20           | 54.77<br>56.05   |                         |
|          | Н           | 4             | 77n<br>R.B                     |         |                 | 4                            | 4            | 53.72           | 64.49            | ·                       |
|          |             | _,            | 1/12                           |         |                 |                              |              | 10 31 1-4       | 01.11            |                         |
| 12640    | Α           | 0             | 76                             |         |                 | 0                            |              |                 |                  |                         |
| !        | В           | 0             | TM                             |         |                 | 0_                           |              |                 |                  | Acrino                  |
| ,        | С           | 0             | 76                             |         |                 | 0                            |              |                 |                  | Aconomics<br>* Only min |
|          | D           | 10            | 16                             |         |                 | (0                           |              | 37.48           |                  | ال من م                 |
| unata    | E<br>F*K    | $\frac{Q}{Q}$ | TM                             |         |                 | $\frac{0}{2}$                |              |                 |                  |                         |
| operata  | G           | 9             | UK!                            |         |                 |                              |              | 29.53           | 29.90            |                         |
|          | Н           | 0             | $-\frac{\partial}{\partial m}$ |         |                 |                              |              | 27.33           | 21.10            |                         |
|          |             |               | . (11                          |         |                 | $\underline{\hspace{0.1cm}}$ | L            |                 |                  | 1                       |

| ſ | Balance QC:     | Initial (20 mg = | 9.99  | ) Final | (20  mg = 19.99) | ) Balance Asset #: |       |
|---|-----------------|------------------|-------|---------|------------------|--------------------|-------|
| • | Date/time In II | 7 16⋅30 Temp(°C) | 72°C1 | nit. 7m | Date/time out    | Temp(°C)           | fnit. |
| ۲ | Comments:       |                  |       |         |                  |                    |       |

Reviewer: Date: (2/14/29).
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| Client: Menzie-Cura & Assoc. | Project: 99031 Dead Creek   | BTR: 3629 / 3633           |
|------------------------------|-----------------------------|----------------------------|
|                              | Test Start: October 9, 1999 | Test End: October 19, 1999 |

| Sample   | Repl.                      | # Alive       | lnit.          | Repick #                              | Repick<br>Init. | Total<br>Surv | #<br>Weighed | Init Pan<br>Wt. | Total<br>Dry Wt. |          |
|----------|----------------------------|---------------|----------------|---------------------------------------|-----------------|---------------|--------------|-----------------|------------------|----------|
| 12641    | Α                          | 0             | RB             |                                       | ~               | Ó             |              |                 |                  |          |
| ł        | В                          | 6             | Je             | -                                     |                 | G             | 6            | 36.19           | 48.88            |          |
|          | C<br>D<br>E<br>F<br>G      | Ī_            | $\mathcal{I}m$ |                                       |                 | 1             |              | 50.62           | 54.64            | Δ.       |
|          | D                          | $\mathcal{C}$ | 777i           |                                       |                 | 0             |              |                 |                  | fc<br>in |
|          | E                          |               | RB             |                                       |                 | 1             |              | 4197            | 43.59            | ~ىن      |
|          | F                          | Ò             | TM             |                                       |                 | 0             |              |                 |                  | ì        |
|          | G                          | 0             | R.B            |                                       |                 | 0             |              |                 |                  | i        |
|          | H                          | $\Box$        | 45             |                                       |                 | 0             |              |                 |                  | ł        |
|          | A                          |               |                |                                       |                 |               | 1            | Ţ               | 1                |          |
|          | B<br>C<br>D<br>E<br>F<br>G |               |                | <del></del>                           |                 |               |              | <u> </u>        |                  |          |
|          | C                          |               |                |                                       |                 |               |              | 1               |                  |          |
|          | D                          | <del></del>   |                | <del></del>                           | <del></del>     |               |              | 7               |                  |          |
| j        | E                          |               |                |                                       |                 |               |              | <del></del>     |                  |          |
| }        | F                          | ··            |                |                                       | ·               |               |              |                 |                  |          |
| }        | G                          | ,             |                |                                       |                 |               |              |                 |                  |          |
|          | Н                          |               |                |                                       |                 |               |              |                 |                  |          |
| <u> </u> | A                          |               |                |                                       |                 |               | Τ            | T               | į                | ŀ        |
|          | В                          |               |                | <del> </del>                          |                 |               | <del> </del> | <del> </del>    |                  |          |
| Ì        | C                          |               |                |                                       | ·               | <del>/</del>  |              | <del>-</del>    | <u> </u>         |          |
| 1        | D                          |               |                | · · · · · · · · · · · · · · · · · · · |                 | /             |              | <del>!</del>    |                  |          |
|          | E                          | <del></del>   |                | <del></del>                           |                 |               | <u> </u>     | <del></del> -   | <u> </u>         | }        |
| <b>]</b> | F                          |               |                | · · · · · · · · · · · · · · · · · · · |                 |               |              |                 |                  |          |
| ,        | B C D E F G H              |               |                |                                       |                 |               |              |                 |                  | j        |
|          | Н                          |               |                |                                       |                 |               |              | !               | 1                |          |
| <u> </u> | Α                          |               |                |                                       |                 | <del> –</del> |              |                 | ]                | ł        |
|          |                            |               |                | -/-                                   | <del> </del>    | <del></del>   | 1            | <del> </del>    |                  |          |
|          | C                          |               |                |                                       |                 |               | 1            | <del> </del>    |                  | 1        |
|          | D                          |               |                | /                                     |                 |               | <u> </u>     | !               |                  | 1        |
| į        | E                          | <del></del>   |                | <del> </del>                          |                 |               | <del> </del> | <del></del>     | ŀ                | 1        |
|          | F                          |               |                |                                       | <del></del>     |               | 1            | <del></del>     |                  | 1        |
| Ī        | B<br>C<br>D<br>E<br>F<br>G | <del></del>   | 7              | <del></del>                           | <del></del>     | ·—            | 1            | 1               | <del></del>      | 1        |
| Į.       | Н                          |               |                |                                       |                 |               |              |                 | i                | }        |

| Balance QC: Initial (20 mg = | 1994 | )     | Final | 20  mg = 549  | ) Balance Asset #:    |       |
|------------------------------|------|-------|-------|---------------|-----------------------|-------|
| Date/time In 间子 心 上Temp(°C   | ) まて | Init. | Īn    | Date/time out | Temp( <sup>c</sup> C) | Init. |
| Comments:                    |      |       |       |               |                       |       |

ctsurvwt.doc

### Chironomus tentans Head Capsule Width

Culture ID: 9/28, 9/29 Age (d) of larvae: 10-11 days

Magnification: 32 Ocular micrometer calibration: 35 micrometer units = 1 mm

Microscope Asset #: 2929

Calculation of head capsule width:

head capsule width (micrometer units) / micrometer calibration units

| Organism      | Head Capsule Width                 | Head Capsule Width               |
|---------------|------------------------------------|----------------------------------|
| Number        | (micrometer units)                 | (mm)                             |
| 1             | 7                                  | 0.20                             |
| 2             | 15                                 | 0.43                             |
| 3             | 13                                 | 0.37                             |
| 4             | 15                                 | 0.43                             |
| 5             | 7                                  | 0.20                             |
| 6             | 13                                 | 0.37                             |
| 7             | 14                                 | 0.40                             |
| 8             | 14                                 | 0.40                             |
| 9             | 13                                 | 0.37                             |
| 10            | 7                                  | 0.20                             |
| 11            | 14                                 | 0.40                             |
| 12            | 7                                  | 0.20                             |
| 13            | 16                                 | 0.46                             |
| 14            | 6                                  | 0.17                             |
| 15            | 7                                  | 0.20                             |
| 16            | 13                                 | 0.37_                            |
| 17            | 14                                 | 0.40                             |
| 18            | 13                                 | 0.37                             |
| 19            | 14                                 | 0.40                             |
| 20            | 13                                 | 0.37                             |
| Initials: JWW | Larval heads were severed and mour | lted on a slide for measurement. |
| Date:         | Subset of larvae used to start Sam | ples 12611, 12612, 12613,        |
| 12/10/99      | 12614, 12622, 12638, 12639, 126    | 40, 12641 on 10/9/99.            |
| L             | <u> </u>                           |                                  |

Reviewer: <u>jww</u> Date: <u>\12/10/29</u>
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

cthdcapw10999

### Chironomus tentans Culture and Pre-test Environmental Conditions Data

| Egg Deposit Date: 9,    | ନ୍ଦ୍ର Larva: | Haton Date: 9/28 | Culture ID: | 9128 |
|-------------------------|--------------|------------------|-------------|------|
| Culture Source (flies): | Aquated      | No. Egg Cases:   | 34          |      |

Instructions: Isolate egg cases in petri dish with sediment recon, water. Hold in petri dish up to two days or until larval hatching begins. Add mono-layer of Selenastrum prior to hatching. Transfer egg cases with hatching larvae to culture box with mono-layer of fine sand, water, and Selenastrum. Feed daily increasing amounts of Cerophyl/Metrafin slurny to match consumption rates (food should not accumulate). Measure water chemistry I change 80% of water weekly. Measure temperature daily in one representative culture. Split cultures if needed to accompdate larval growth. When emergence occurs remove files daily to mating flask or disposal flask Remove disparaded body castes.

| _Date      | Day        | . Temp | рн | DC_ | Cond | Fed    | WC       | Observations  | lnit.                                 |
|------------|------------|--------|----|-----|------|--------|----------|---------------|---------------------------------------|
| Date<br>OY | 0          |        | i  |     |      | Se     | <u>:</u> | ·             | 777                                   |
| 916        |            |        |    |     |      | 100    | :        | S-L' razina   | 100-217-1                             |
| 5 5 3      | -          |        |    |     |      | ئے تام |          | 1 200 /2/22   | <u>'</u>                              |
| 12%        | -          |        |    |     |      | 7010   |          |               | JG                                    |
| 2/7        | 6          |        |    |     |      | TC     | برسارته  |               | 76                                    |
| . /3       | <u>.</u> - |        |    |     |      | TCI    | TTC      |               | <u> </u>                              |
| 116        | <u>ن</u>   |        |    |     |      | 700    |          |               | J <del>C</del>                        |
| 10 15      | 7          |        |    |     | -    | 17     |          | To most a bo  | , 16                                  |
| 147        | Ģ          | 219    | 77 | - 4 |      |        |          |               | · · · · · · · · · · · · · · · · · · · |
| 2.7        | s          |        |    |     |      | TC     |          |               | PP                                    |
| 277<br>278 | 7 S        |        |    |     |      |        |          | Used for TelT | WI Ever                               |
| 10/9       | l.         |        |    |     |      | TC     |          | Used by       | THE STROKE (                          |
|            |            |        |    |     |      |        |          | BTR 3629/3    | 'c <u>3</u> 3                         |
|            |            |        |    |     |      |        |          |               |                                       |
|            |            |        |    |     |      |        |          |               |                                       |
|            |            |        |    |     |      |        |          |               |                                       |
|            |            |        |    |     |      |        |          |               |                                       |
|            |            |        |    |     |      |        |          |               |                                       |
|            |            |        |    |     |      |        |          |               |                                       |
|            |            |        |    |     |      |        |          |               |                                       |
|            |            |        |    |     |      |        |          |               |                                       |
|            |            |        |    |     |      |        |          |               |                                       |
|            |            |        |    |     |      |        |          |               | 1                                     |
|            |            |        |    |     |      |        |          |               |                                       |
|            |            |        |    |     |      |        |          |               |                                       |
|            |            |        |    |     |      |        |          |               |                                       |

### Chironomus tentans Culture and Pre-test Environmental Conditions Data

| Egg Deposit Date: 9/20  | Larva   | l Hatch Date:  | Culture ID: | -9/29 |
|-------------------------|---------|----------------|-------------|-------|
| Culture Source (flies): | Aquatec | No. Egg Cases: | 2           |       |

Instructions: Isolate egg cases in petri dish with sediment recon. water. Hold in petri dish up to two days or until larval hatching begins. Add mono-layer of Selenastrum prior to hatching. Transfer egg cases with hatching larvae to culture box with mono-layer of fine sand, water, and Selenastrum. Feed daily increasing amounts of Cerophyll/Tetrafin slurry to match consumption rates (food should not accumulate). Measure water chemistry / change 80% of water weekly. Measure temperature daily in one representative culture. Split cultures if needed to accomodate larval growth. When emergence occurs, remove flies daily to mating flask or disposal flask. Remove discarded body castes.

| Date | Day | Temp | рН  | DO  | Cond | Fed   | WC         | Observations                                            | Init. |
|------|-----|------|-----|-----|------|-------|------------|---------------------------------------------------------|-------|
| 9/29 | 0   |      |     |     |      | Sch,  |            | - Smill box                                             |       |
| 9/30 | 1   |      |     |     |      | 150/1 | CC.        | Observations  -> Smill box  Tuber brains  tubes Visible |       |
| 10/1 | 3   |      |     |     |      | TC 11 | <i>C</i> . | tubes Visible                                           | -1JG  |
| 10/2 | 3   |      |     |     |      | TClic | 0          |                                                         | JG    |
| 13/3 | 4   |      |     |     |      | TC1,9 | TC         |                                                         | 196   |
| 12/4 | 5   |      |     |     |      | TC 07 |            |                                                         | 136   |
| 13/5 | 6   |      |     |     |      | TC    |            |                                                         | IG    |
| 10/6 | 7   | 22.7 | 3.1 | 8.2 |      | TC    |            | To la hox                                               | 1     |
| 10/7 | 8   |      |     |     |      | TC    |            | U                                                       | Im    |
| 10/2 | 9   |      |     |     |      | TT    |            |                                                         | Tm    |
| 10/9 | 10  |      |     |     |      | 10    |            | Used for Test Some.<br>B-R 3629/3633                    | 40    |
|      | 11  |      |     |     |      |       |            | B-R 3629/3633                                           | 5     |
|      | 12  |      |     |     |      |       |            |                                                         |       |
|      | 13  |      |     |     | •    |       |            |                                                         |       |
|      | 14  |      |     |     |      |       |            |                                                         |       |
|      | 15  |      |     |     |      |       |            |                                                         |       |
|      | 16  |      |     |     |      |       |            |                                                         |       |
| {    | 17  |      |     |     |      |       |            |                                                         |       |
|      | 18  |      |     |     |      |       |            |                                                         |       |
|      | 19  |      |     |     |      |       |            |                                                         |       |
|      | 20  |      |     |     |      |       |            |                                                         |       |
|      | 21  |      |     |     |      |       |            |                                                         |       |
|      | 22  |      |     |     |      |       |            |                                                         |       |
|      | 23  |      |     |     |      |       |            |                                                         |       |
|      | 24  |      |     |     |      |       |            |                                                         |       |
|      | 25  |      |     |     |      |       |            |                                                         |       |

Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Acute Tests

| roject: Menzie-( | Project: Menzie-Cura & Associates | Project:                              | ect: 99033    |       | Dead Creek      | :<br>:<br>: |             | BTR: 36 | 3629 / 3633    | Test     | Starts 10/9/99 | 66            |
|------------------|-----------------------------------|---------------------------------------|---------------|-------|-----------------|-------------|-------------|---------|----------------|----------|----------------|---------------|
|                  |                                   |                                       |               |       |                 | Day         | of Analysis | ysis    |                | :        |                |               |
| Sample           | Paramoter                         | 0                                     | -             | 2     | က               | 4           | သ           | 9       | ^              | 8        | 6              | 5             |
| 12611            | T (°C)                            | 232                                   | つこで           | 21.6  | 31,0            | 200         | 33.3        | 23.3    | 23.3           | 23.4     | 23.3           | 23,4          |
|                  | Hď                                | 7.7                                   | ×             |       | ×               | ×           | 7.5         | ×       | ×              | ×        | ×              | 7/6           |
|                  | DO (mg/L)                         | - 17.<br>O                            | رب<br>ق       | 40,4  | 5.1             | <u>7</u>    | - 4         | 7       | 7              | 4        | 40             | 2 \<br>\<br>\ |
|                  | Conductivity                      | 101                                   | ×             | ×     | -<br>×          | `×          | 360         | ×       | ) ×            | ×        | ×              | ; ~           |
|                  | Armnonia, alk/hardness<br>Suffide | Ž                                     | ×             | ×     | ×               | ×           | ×           | ×       | ×              | ×        | ×              | ر بر          |
| 12612            | T (°C)                            | 77 66                                 | 5 7           | カス    | 3.16            | 21.1        | ~~          | 0%      | 2236           | <u>5</u> | 224            | 5             |
|                  | Hd                                | 36                                    | <br>          | .×    | )<br><u>′</u> × | ×           | - ) +       | ; ×     | ×<br>ک         | ×        | ×              | 776           |
|                  | DO (mg/L)                         | S S S S S S S S S S S S S S S S S S S | <u>ر</u><br>ق | 7.3   | 5               | 0 )         | . A.        | 75      | 6.5            | ル<br>4   | 19%            | 7.7           |
|                  | Conductivity                      | 40                                    | ×             | ×     | ×               | ×           | 390         | ×       | ×              | ×        | ×              | 7.7           |
|                  | Ammonia, alk/hardness<br>Sulfide  | 7                                     | ×             | ×     | ×               | ,<br>**     | ×           | ×       | ×              | ×        | ×              | 2/2           |
| 12613            | T (°C)                            | BAR                                   | 4.16          | 21.6  | 7.7             | ٦.١%        | 73.7        | 230     | 23.2           | 23.3     | 33.3           | 1) (1)        |
|                  | Hď                                | 000                                   | ×             | ×     | ×               | ×           | 7.7         | ×       | ×              | ×        | ×              | 7             |
|                  | DO (mg/L)                         | C 0                                   | 6,0           | 7.5   | 6,6             | 5.9         | 5.1         | 15      | 6.0            | 0, 4     | 5.3            | 5             |
|                  | Conductivity                      | 430                                   | ×             | ×     | ×               | ×           | 370         | ×       | ×              | ×        | ×              | 3.79          |
|                  | Armonia, alk/hardness<br>Suffide  | 7                                     | ×             | ×     | <b>×</b>        | ×           | ×           | ×       | ×              | ×        | ×              | 1             |
|                  | Init./Date (1999):                | 1.00                                  | <i>?</i> 3/6₁ | F1761 | 1918            | 19/13       | 19/14       | \$7%i   | 9)<br>9)<br>9) | 13/17    | 10/18          | 10/19         |
|                  |                                   |                                       |               |       |                 |             |             |         |                | 6        |                |               |

Comments:

Review: Date: 12/0/69
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

# Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Acute Tests

| Project: Menzie-C | Project: Menzie-Cura & Associates | Project: | ect: 99033 |      | Dead Creek |       |                 | BTR: 36    | 29 / 3633 | 3629 / 3633 Test Starts 10/9/99 | urts 10/9/ | 66    |
|-------------------|-----------------------------------|----------|------------|------|------------|-------|-----------------|------------|-----------|---------------------------------|------------|-------|
|                   |                                   |          |            |      |            | Day   | Day of Analysis | ysis       |           |                                 |            |       |
| Sample            | Parameter                         | 0        | -          | 2    | 8          | 4     | 22              | 9          | 7         | 8                               | 6          | 10    |
| 12614             | T (°C)                            | 23.0     | 21.6       | 7,20 | 71.4       | 21.2  | 23.2            | 23,1       | 23.7      | 23.3                            | 73.3       | 150   |
|                   | Hd                                | 4.9      | ×          | ×    | ×          | ×     | 7.6             | ×          | ×         | ×                               | ×          | 1.1   |
|                   | DO (mg/L)                         | 6.6      | 7          | 45   | 7          | 5.5   | 大大地             | 85         | 6         | 1                               | 47         | 7     |
|                   | Conductivity                      | 400      | ×          | ×    | ×          | ×     | 385             | ×          | ×         | ×                               | ×          | 3/0/  |
|                   | Ammonia, alk/hardness<br>Sulfide  | 7        | ×          | ×    | ×          | ×     | ×               | ×          | ×         | ×                               | ×          |       |
| 12622             | T (°C)                            | 230      | 21.7       | 215  | 21.3       | 21.2  | 33.5            | 23.2       | 23.3      | 235                             | 33.3       | 733   |
|                   | Hd                                | 7.6      | ×          | ×    | ×          | ×     | ± ±             | ×          | ×         | ×                               | ×          | 76    |
|                   | DO (mg/L)                         | 7.6      | 45         | 7.8  | 4.0        | 7.1   | 5.2             | 45         | 6.9       | 5-3                             | (-0)       | 6.0   |
|                   | Conductivity                      | 430      | ×          | ×    | ×          | ×     | 340             | ×          | ×         | ×                               | ×          | 125   |
|                   | Ammonia, alk/hardness<br>Sulfide  | 7        | ×          | ×    | ×          | X     | X               | ×          | ×         | ×                               | ×          | )     |
| 12638             | T (°C)                            | N.O.     | 21.6       | 970  | 21,5       | 21.3  | 33.4            | 23.0       | 73.4      | 33.4                            | 43.4       | 3.4   |
|                   | Н                                 | 4.9      | ×          | λX   | X          | ×     | 47              | ×          | ×         | ×                               | ×          | 7.6   |
|                   | DO (mg/L)                         | 6.7      | 71         | 44   | 4.0        | 6.1   | 4               | 1.0<br>1.0 | 2         | 4.7                             | 42         | 2,2   |
|                   | Conductivity                      | 400      | ×          | ×    | ×          | ×     | 375             | ×          | ×         | ×                               | ×          | 360,  |
|                   | Ammonia, alk/hardness<br>Sulfide  | 7        | ×          | ×    | ×          | ×     | X               | ×          | ×         | ×                               | ×          | 7     |
|                   | Init./Date (1999):                | 10%      | 30,00      | 15 X | 1992       | 19/13 | 10/14<br>10/14  | 19/15      | 19/16     | 19/1/2                          | 10/18      | 10/19 |
|                   |                                   |          |            |      | 1          |       |                 |            |           |                                 |            |       |

Comments: Test Size 10/9/69 1700 - 2130(

Review: Date: (2//0/92 Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

haenv.doc

# Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Acute Tests

| Day of Analysis  10 1 2 3 4 5 6 7  20 21.621.7 20.12 23 4 23.3 23.3 23.3 23.2 23.2 23.2 23.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Project: Menzie- | Project: Menzie-Cura & Associates | Project:   | ect: 99033                             | 4     | Dead Creek  |             |                 | BTR: 36 | 3629 / 3633 | Test Starts | ins 10/9/99 | 66       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------|------------|----------------------------------------|-------|-------------|-------------|-----------------|---------|-------------|-------------|-------------|----------|
| Parameter 0 1 2 3 4 5 6 7 7 1 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                   |            |                                        |       |             | Day         | of Anal         | ysis    |             |             |             |          |
| DO (mg/L) 5.0 (5.2 6.5 6.4 5.7 4.6 6.8 6.6 6.6 6.3 0.0 0.0 0.4 0.5 6.4 5.7 4 6 6.8 6.6 6.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample           | Parameter                         | 0          | 1                                      | 2     | င           | 4           | S               | 9       | 7           | æ           | 6           | 10       |
| DO (mg/L) 5.2 (c, 2 6.5 6, 4 5.7 4 6 6.8 6.6 6 6.8 x x x x x x x x x x x x x x x x x x x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12639            |                                   | 30.0       | 31.6                                   | 717   |             | 212         | 234             | M       | 23          | 733.3       | 4,4         | 77 1     |
| DO (mg/L) 5.0 (6,2,6,5,6,4,5,7,4,6,6,8,6,6,6,8,8,1,1,1,1,1,1,1,1,1,1,1,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                                   | 46         | ×                                      | ×     |             | ×           | St              |         | ×           | ×           | ×           | 1        |
| Conductivity 350 X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | DO (mg/L)                         | 30         | 73                                     | 6.5   | 6.4         | S.<br>Y     | 4               | ص<br>ص  | 0           | 4.4         | 7 7         | 4.7      |
| Arrimonia, alkihardness  T (°C)  DO (mg/L)  DO (mg/L)  DO (mg/L)  DO (mg/L)  Sulfide  T (°C)  Arrimonia, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Arrivoria, alkihardness  Ar |                  | Conductivity                      | 28C        | ×                                      | ×     | ×           | ×           | 360             | ×       | ×           | ×           | ×           | >7.      |
| T (°C) 23  33.0 34.6 21.5 21.1 233 23.2 33.2 33.2 33.2 33.2 33.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                | Armnonia, alk/hardness<br>Sulfide | 3          | ×                                      | ×     | ×           | ×           | ×               | ×       | ×           | <b>×</b>    | ×           | , )      |
| DO (mg/L) 6.3 6.3 7.0 6.15 5.4 1.2 6.7 6.4 Conductivity 385 x x x x x x x x x x x x x x x x x x x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12640            | T (°C)                            | 23.        |                                        | 91 18 | 71.5        | 1 1 /2      | 13.2            | 23.2    | 0.80        | 232         | د ډر        | 7.7      |
| DO (mg/L) 6.3 6.3 7.0 6.15 5.1 1.2 6.7 6.4  Conductivity 38.5 × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | Hd                                | 12.60      | ×                                      | ×     | ×           | ×           | 7.6             | ×       | ×           | ) ×         | ×           | 15/      |
| Conductivity 350 X X X X 3120 X X X X X 3120 X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | DO (mg/L)                         | 63         | 6.3                                    | 7,0   | ر<br>ق<br>ا | \<br>\<br>\ | ۲.              | 6.7     | 6, 4        | 4.5         | 1.5.        | 0.53     |
| Annmonlia, alk/hardness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Conductivity                      | 88.<br>88. | ×                                      | ×     | ×           | ×           | 144             | ×       |             | ×           | ×           | 3,50     |
| T (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | Anymonia, aik/hardness<br>Sulfide | 7          | ×                                      | ×     | ×           | ×           | ×               | ×       | ×           | ×           | ×           | ,/       |
| 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12641            | T (°C)                            | 4.50       | 816                                    | たけ    | 21,3        | 21.2        | \               | 78,1    |             | 23.4        | 733         | P.CC     |
| 53 65,6 6.56,0 48 45 6,4 6,3 4 //20 × × × × 310 × × //20 × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | Hd                                | 45         | ×                                      | ×     | ×           | ×           | 7.5             | ×       | ×           | ×           | ×           | 7.5      |
| 1/20 × × × × 310 × × × 1/20 × × × × 1000 × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | DO (mg/L)                         | 100        | 50<br>50<br>50<br>50                   |       | ف           | <u>^</u>    | <u>م</u><br>ار: |         | ! _         | 4.5         | 5.3         | \$\$ 5.0 |
| 1000 10010 10012 10013 19014 10015 1001B 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | Qunductivity                      | 420        | ×                                      | ×     | ×           | ×           | 310             | ×       | ×           | <b>×</b> _  | ×           | 3,0      |
| 1000 1000 10012 1013 1914 1045 1018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | Ammonia, alk/hardness<br>Sulfide  | 7          | ×                                      | ×     | ×           | ×           | ×               | ×       | ×           | ×           | ×           | 7        |
| 1012 101 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | Init./Date (1999):                | 20         | ************************************** | 18/3  | 1918        | 10/13       | 19/14           | 1992    | 10/18       | 1917        | 10/18       | 10/19    |

Review: Date: 14/0/29 Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| Client: Menzie-Cura & Assoc. | Project: 99031 Dead Creek    | BTR: 3641                  |
|------------------------------|------------------------------|----------------------------|
|                              | Test Start: October 10, 1999 | Test End: October 20, 1999 |

| Sample                       | Repl.   | # Alive           | Init.    | Repick# | Repick<br>Init. | Total<br>Surv                         | #<br>Weighed  | Init Pan<br>Wt. | Total<br>Dry Wt. | ]               |
|------------------------------|---------|-------------------|----------|---------|-----------------|---------------------------------------|---------------|-----------------|------------------|-----------------|
| 12664                        | A       |                   | 16       |         |                 | 5 0                                   |               |                 | T                |                 |
| 12001                        | В       | 7                 | TM       |         |                 | 7                                     | 7             | 35.61           | 53.98            | Acore<br>56 Ary |
|                              | С       | 6                 | LS       |         |                 | 6                                     | 6             | 40.14           | 43.194           | 56 Agry         |
|                              | D       | Ö                 | <u> </u> |         |                 | 0                                     |               | 40.00           | 6                | 1               |
|                              | E       |                   | RB       |         |                 |                                       | 1             | 40 00           | 56.46            | 143.19 One      |
|                              | F       |                   | 10       |         |                 | 0_                                    |               |                 |                  | Lu III          |
|                              | G       | 0_                | RB       |         |                 | 0_                                    |               |                 |                  |                 |
|                              | Н       | 0                 | TM       |         |                 | 0                                     |               |                 |                  | J               |
| 12665                        | Α       | 9                 | RB       | -       | _               | 9                                     | 9             | 37.51           | 56.22            | 10              |
|                              | В       | 8                 | RB       | _       |                 | 8                                     | 8             | 37.80           | 59.66            | CHRUNIC         |
|                              | С       | 8                 | Th       |         |                 | 8                                     | 8             | 32.59           | 54.27            |                 |
|                              | D       | 9                 | 76       |         |                 | 7                                     | 4             | 35.21           | 51.61            |                 |
|                              | E yeard | 8                 | TM       |         |                 | 8                                     | 8             | 35.84           | 50.66            |                 |
|                              | F<br>G  | <del>7</del><br>2 | 70       |         |                 | 4<br>2                                | <u>4</u><br>ス | 42.47           | 54,11            |                 |
| <b>.</b>                     | Н       | 7                 | TM       |         |                 | 1                                     | <u> </u>      | 37.61<br>36.05  | 78.61            |                 |
| <b>/</b>                     |         |                   |          |         |                 |                                       |               | 36.00           |                  | 1               |
| 12666                        | A       |                   | LS       |         |                 | 1                                     | 1             | 36.63           | 37,52            |                 |
| . 16.3                       | В       | 4                 | 77/      |         | ~               | 4                                     | 4             | 41.08           | 46.96            | Acute           |
| 1:420                        | С       | 3                 | RB       |         |                 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 10            | 37.66           | 37.81            | Acute           |
|                              | D<br>E  | -7-1              | Tm       |         |                 | 3                                     | 1 0           | 40.29           | 40.50            | oneg            |
| Z Chiroway                   | F       |                   | 12       |         |                 |                                       |               | 39.29           | 39.34            | 1 only          |
| Z Chirology<br>of author st. | G       | 0                 | RB       | _       |                 | $\mathcal{O}$                         |               |                 |                  | present 119     |
|                              | Н       | Ö                 | th       |         |                 | TIMO                                  |               |                 |                  | 71.             |
| 12671                        | Α       | 0                 | 40       |         |                 |                                       |               |                 |                  | •               |
| 12071                        | В       | 0                 | 36       |         |                 | $\frac{0}{0}$                         |               |                 |                  | ۸ . ـ۷          |
| !                            | C       | 4                 | 75       |         |                 | <u> </u>                              | 4             | 46.24           | 55,53            | Acure           |
|                              | D       | 0                 | TM       |         |                 | 0                                     |               |                 | 35,33            | UNLY            |
|                              | Ε       |                   |          |         | _               | $\overline{}$                         |               | 44.61           | 47.60            | *               |
|                              | E' Serg | 3                 | RB       | -       |                 | 3                                     | 3             | 46.30           | 55,50            |                 |
|                              | G       |                   | Tm       |         |                 |                                       |               | 40.12           | 43,01            |                 |
|                              | Н       | 0                 | 36       |         |                 | 0                                     |               |                 |                  |                 |
|                              |         |                   |          |         |                 |                                       |               |                 |                  |                 |

|       | Balance QC:     | Initial (20 mg = | 20.01 | )     | Final (2 | 0 mg = 20.01      | ) Balance Asset #: v^7 | <i>७</i> ड |  |
|-------|-----------------|------------------|-------|-------|----------|-------------------|------------------------|------------|--|
| line. | Date/time In it | q ۱،4:∞Temp(°C)  | 91,0  | Init. | 7m       | Date/time out 11/ | 0.163 (Temp(°C) \$70)  | Init. ر, / |  |
|       | Comments:       |                  |       |       |          | 19.47             | 19.97                  |            |  |
| ,     | Reviewer:(      | Date: 12/19      | 499   |       |          | /                 |                        | 000044     |  |

ctsurvwt.doc / Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| Client: Menzie-Cura & Assoc. | Project: 99031 Dead Creek    | BTR: 3641                  |
|------------------------------|------------------------------|----------------------------|
|                              | Test Start: October 10, 1999 | Test End: October 20, 1999 |

| Sample | Repl.   | # Alive | Init. | Repick#      | Repick<br>Init. | Total<br>Surv | #<br>Weighed                                     | Init Pan<br>Wt. | Total<br>Dry Wt. | € No   |
|--------|---------|---------|-------|--------------|-----------------|---------------|--------------------------------------------------|-----------------|------------------|--------|
| 12668  | Α       | 10      | TM    |              |                 | 10            | OD                                               | 37.31           |                  | () No. |
|        | В       | 0       | 125   |              |                 | 10            | 00                                               | 39.88           | اسب              | سيا    |
|        | С       | 10      | Tm    |              |                 | 10            | 10                                               | 36.90           | \$7,53           | ) 0    |
|        | D       | 10      | 16-   |              |                 | 10            | 10                                               | 38.94           | 64.79            | CITA   |
|        | E       | 10      | 36    |              |                 | ID            | 10                                               | 40.44           | 1 > 1.73         | 1      |
|        | F       | 10      | RB    |              | - :             | 10            | 10                                               | 36.10           | 34.71            | 1      |
|        | G       | 10      | RB    |              |                 | 16            |                                                  | 43.85           | 60.76            | 7      |
|        | Н       | 10      | 7m    |              |                 | 10            | 10                                               | 3695            | 5957             | Ţ      |
|        | <u></u> |         |       | <del></del>  |                 |               |                                                  |                 |                  | 1      |
|        | Α       |         | [     |              | •               |               |                                                  |                 |                  | }      |
| :      | В       |         |       |              |                 |               |                                                  | <u>/</u>        |                  | Ţ      |
|        | С       |         |       |              |                 |               | $\perp Z$                                        | P<br>B          |                  | 1      |
|        | D       |         |       |              |                 |               |                                                  |                 |                  | 1      |
|        | E       |         |       |              |                 |               |                                                  |                 |                  | 1      |
|        | F       |         |       | :            |                 |               |                                                  | <u> </u>        |                  | Ţ      |
| ;      | G       |         |       |              |                 |               |                                                  |                 |                  | Ţ      |
|        | Н       |         |       |              |                 |               |                                                  |                 |                  | Ţ      |
|        |         |         |       |              |                 | 7             |                                                  |                 | <del></del>      |        |
| 1      | Α       |         |       |              |                 | /             |                                                  |                 |                  | ļ      |
|        | В       |         |       |              |                 |               |                                                  |                 |                  | Į .    |
| 2      | С       |         | ·     |              |                 |               |                                                  | 1               |                  | Ţ      |
|        | D       |         |       |              |                 |               |                                                  |                 |                  | Ţ      |
| ,      | E       |         |       | بر           | /               |               |                                                  |                 |                  | Ţ      |
|        | F       |         |       |              |                 |               |                                                  | 1               |                  | Ţ      |
|        | G       |         |       |              |                 |               |                                                  |                 |                  | Ţ      |
| ·      | Н       |         |       |              |                 |               |                                                  |                 |                  | Ţ      |
|        |         |         |       |              |                 |               |                                                  | <del></del>     | ·                | -      |
|        | Α       |         |       | -            |                 |               |                                                  | 1               |                  | Ţ      |
|        | B<br>C  |         |       |              |                 |               |                                                  |                 |                  | Ţ      |
| :      | С       |         |       |              |                 |               |                                                  |                 |                  | 1      |
| i<br>i | D       |         |       |              |                 |               |                                                  |                 |                  | 1      |
|        | E       |         |       | İ            |                 |               |                                                  | <del></del>     |                  | 1      |
| ļ      | E       |         |       | j            |                 |               |                                                  | :               |                  | 1      |
| 1      | G       |         |       | <del>-</del> | <del></del>     |               |                                                  | !               | <del> </del>     | 1      |
| 1      | Н       |         |       | 1            |                 |               | <del>                                     </del> |                 | †                | 1      |

| Balance QC   | Initial (20 mg = ਕੋਪੋ ਨਾ | )    | Final (20 mg = $2\varepsilon c$ ) | Balance Asset #: |       | _ |
|--------------|--------------------------|------|-----------------------------------|------------------|-------|---|
| Date/time In | Temp(°C)                 | Inrt | Date/time out                     | Temp(°C)         | Init. |   |
| Comments.    |                          |      |                                   |                  |       |   |

Reviewer \_\_\_\_\_ Date 12/10/90 ctsurver doc

### Chironomus tentans Head Capsule Width

Culture ID: <u>9/30, 10/1</u> Age (d) of larvae: <u>9-10 days</u>

Magnification: 32 Ocular micrometer calibration: 35 micrometer units = 1 mm

Microscope Asset #: 2929

Calculation of head capsule width:

head capsule width (micrometer units) / micrometer calibration units

| Organism<br>Number | Head Capsule Width (micrometer units)                           | Head Capsule Width (mm)   |
|--------------------|-----------------------------------------------------------------|---------------------------|
| 1                  | 6                                                               | 0.17                      |
| 2                  | 7                                                               | 0.20                      |
| 3                  | 8                                                               | 0.23                      |
| 4                  | 7                                                               | 0.20                      |
| 5                  | 8                                                               | 0.23                      |
| 6                  | 7                                                               | 0.20                      |
| 7                  | 8                                                               | 0.23                      |
| 8                  | 14                                                              | 0.40                      |
| 9                  | 8                                                               | 0.23                      |
| 10                 | 14                                                              | 0.40                      |
| 11                 | 14                                                              | 0.40                      |
| 12                 | 14                                                              | 0.40                      |
| 13                 | 7                                                               | 0.20                      |
| 14                 | 7                                                               | 0.20                      |
| 15                 | 7                                                               | 0.20                      |
| 16                 | 6                                                               | 0.17                      |
| 17                 |                                                                 | -                         |
| 18                 | -                                                               | -                         |
| 19                 | -                                                               |                           |
| 20                 | -                                                               | -                         |
| Initials: JWW      | Larval heads were severed and moun                              |                           |
| Date:<br>12/10/99  | Subset of larvae used to start Sam<br>12671, 12668 on 10/10/99. | ples 12664, 12665, 12666, |
|                    |                                                                 |                           |

Reviewer: <u>jww</u> Date: <u>[2/6/99]</u>
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

cthdcapw.101099

000046

### Chironomus tentans Culture and Pre-test Environmental Conditions Data

| Egg Deposit Date: 9,    | 27   Larval Hatch Date | Culture ID: 9/30 |
|-------------------------|------------------------|------------------|
| Culture Source (flies): | Aquated No. Eg         | g Cases: /       |

Instructions: Isolate egg cases in petri dish with sediment recon, water. Hold in petri dish up to two days or until larval hatching begins. Add mono-layer of Selenastrum prior to hatching. Transfer egg cases with hatching larvae to culture box with mono-layer of fine sand, water, and Selenastrum. Feed daily increasing amounts of Cerophyll/Tetrafin slurry to match consumption rates (food should not accumulate). Measure water chemistry / change 80% of water weekly. Measure temperature daily in one representative culture. Split cultures if needed to accompdate larval growth. When emergence occurs, remove flies daily to mating flask or disposal flask. Remove discarded body castes.

| Date  | Day | Temp        | рН       | DO       | Cond        | Fed              | : WC                                    | Observations          | Init.    |
|-------|-----|-------------|----------|----------|-------------|------------------|-----------------------------------------|-----------------------|----------|
| 9/3e  | 0   |             | <u>i</u> |          |             | (ei              | 1                                       | -27there - sail bev   |          |
| 10/1  | 1   | <br>        |          |          |             | TCI              | 6                                       | table visible         | JG       |
| 10/2  | . 2 | 1           |          |          | <u>.</u>    | TOIL             | C                                       | Edded Line Sono       |          |
| 12/3  | 3   | 1           | <u> </u> |          | <b>.</b>    | 101,0            | <u>. i</u>                              | <u> </u>              | <u> </u> |
| بنالح | 4   | h .         | <br>     |          | -           | 101,00<br>191,00 | <del>Va</del>                           |                       | 136      |
| 12/5  | 5   | :           |          |          |             | TC 8             | 17-                                     | <u>:</u>              | 10       |
| 12/6  | 5   | 122.8       |          |          |             | ن ج:             | 1/                                      |                       |          |
| 15/7  | 7   |             |          |          |             | TC               | <u> </u>                                |                       | 17M      |
| 13/8  | 8   | :           |          |          |             | TC               | <b>\</b>                                | Transect Thinly son   | 31.      |
| 149   | 9   |             |          | ··       |             | TC               | . [                                     |                       | JG-      |
| 12/12 |     | 22.0        |          |          |             | TC               |                                         | TEST STETT 10/10/90 7 | - TM     |
| 1     | 11  | <u> </u>    |          |          |             |                  | :                                       |                       |          |
|       | 12  | : 4         |          |          |             |                  |                                         |                       |          |
|       | 13  |             |          |          |             |                  | - · · · · · · · · · · · · · · · · · · · | -                     |          |
| !     | 14  |             |          |          |             |                  |                                         |                       |          |
|       | 15  |             |          |          |             |                  | i                                       |                       |          |
|       | 16  | <del></del> |          |          |             |                  |                                         |                       |          |
|       | 17  |             |          |          |             | - <del></del>    | ļ                                       |                       |          |
|       | 18  |             |          |          | -           |                  | 1                                       |                       |          |
|       | 19  | <del></del> |          |          |             |                  | <u>i</u>                                |                       |          |
|       | 20  |             |          |          |             |                  |                                         |                       |          |
|       | 21  |             |          |          |             |                  | -                                       |                       |          |
|       | 22  |             |          |          |             |                  | ·                                       |                       |          |
|       | 23  |             |          | <u> </u> |             |                  |                                         |                       |          |
|       | 24  |             |          |          |             |                  | <del></del>                             |                       |          |
|       | 25  |             |          |          | . <u></u> . |                  |                                         |                       |          |

### Chironomus tentans Culture and Pre-test Environmental Conditions Data

| Egg Deposit Date: 9/29      | Larval Hatch Date: /o// | Culture ID: | 10/2 10/10 |  |
|-----------------------------|-------------------------|-------------|------------|--|
| Culture Source (flies): Aqu | atec No. Egg Cases:     | 4           |            |  |

Instructions: Isolate egg cases in petri dish with sediment recon. water. Hold in petri dish up to two days or until larval hatching begins. Add mono-layer of *Selenastrum* prior to hatching. Transfer egg cases with hatching larvae to culture box with mono-layer of fine sand, water, and *Selenastrum*. Feed daily increasing amounts of Cerophyll/Tetrafin slurry to match consumption rates (food should not accumulate). Measure water chemistry / change 80% of water weekly. Measure temperature daily in one representative culture. Split cultures if needed to accomodate larval growth. When emergence occurs, remove flies daily to mating flask or disposal flask. Remove discarded body castes.

| Date     | Day | Temp     | рΗ       | DO       | Cond     | Fed     | WC       | Observations         | Init.        |
|----------|-----|----------|----------|----------|----------|---------|----------|----------------------|--------------|
| 10/1     | 0   |          |          |          | 1        | tel     |          | hatching             | 176          |
| 16/2     | 1   |          |          |          |          | TC 1.1  |          |                      | IJG          |
| 10/3     | 2   |          |          |          |          | TC lich | }        | added fine said      | 176          |
| 10/4     | 3   |          |          |          |          | TCNO    | -        |                      | 136          |
|          | 4   |          |          |          |          | (       | D        |                      |              |
| 10/6     | 5   | <u> </u> |          | <u> </u> | <u> </u> | TC      |          | Many rubes           |              |
| 10/7     | 6   |          |          |          | <u> </u> | TC      |          |                      | m            |
| 10/8     | 7   |          |          |          |          | TC      |          |                      | m            |
| 10/9     | 8   |          |          |          |          | 70      |          |                      | IG           |
| 10/9     | 9   | 23.3     |          |          |          | ナこ      |          | TEST SETS 10/10/9507 | 777          |
| 10/11    |     |          |          |          |          |         |          |                      | 1            |
| <u> </u> | 11  |          |          |          |          |         |          |                      |              |
|          | 12  |          |          | <u> </u> |          |         | <u> </u> |                      | <u> </u>     |
|          | 13  |          |          | <u> </u> | ,        |         |          |                      |              |
|          | 14  |          |          | <u> </u> |          |         | <u> </u> |                      |              |
|          | 15  |          |          |          |          |         |          |                      |              |
|          | 16  | ,        | <u> </u> | <u> </u> |          |         | <u> </u> |                      |              |
|          | 17  |          |          | <u> </u> | <u> </u> |         | <u> </u> |                      |              |
|          | 18  |          |          | ļ        | <u> </u> |         |          |                      | 1            |
|          | 19  | •        |          |          | <u> </u> |         |          |                      | <u> </u>     |
|          | 20  | ļ        |          | ļ        | <u> </u> |         | ļ        |                      |              |
|          | 21  |          |          |          |          | ļ       | <u> </u> |                      |              |
|          | 22  |          |          |          | <u> </u> |         |          |                      |              |
|          | 23  | ļ        |          |          | <u> </u> |         |          |                      |              |
|          | 24  |          |          |          |          |         | <u> </u> |                      | <del> </del> |
|          | 25  |          |          |          |          |         | 1        |                      |              |

# Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Acute Tests

| Project: Menzie- | Project: Menzie-Cura & Associates | Project: | act: 99033 | ì      | Dead Creek |              |                   | BTR: 36     | 3641 Test Starts 10/10/99 | Starts 10 | /10/99 |       |
|------------------|-----------------------------------|----------|------------|--------|------------|--------------|-------------------|-------------|---------------------------|-----------|--------|-------|
|                  |                                   |          |            |        |            | Day          | of Analysis       |             | <b>43643</b>              |           |        |       |
| Sample           | Parameter                         | 0        | -          | 2      | ဗ          | 4            | S.                | 9           | 7                         | 8         | 6      | 10    |
| 12664            | T (°C)                            | 3.55     | 2/.8       | 7.79.  | 9) 66      | 13.4         | 43.7              | 22.4        | 72.7                      | 2.5       | 27.4   | 72.7  |
|                  | Hď                                | )<br>%   | ×          | ×      | ×          | ×            | 7                 | ×           | ×                         | ×         | ×      | 72    |
|                  | DO (mg/L)                         | 7.4      | 6.7        | ر<br>ق | ë.         | 0.0          | <u>ر</u>          | 4           | مر<br>کا                  | 5.6       | ز      | X',   |
|                  | Conductivity                      | 390      | -<br>;×    | ×      | ×          | ×            | 3.5               | -<br>-<br>- | ×                         | ×         | 2 ×    |       |
|                  | Ammonia, alk/hardness<br>Suifide  | /        | ×          | ×      | ×          | ×            | ×                 | ×           | ×                         | ×         | ×      | 9)    |
| 12665            | T (°C)                            | 22.6     | ケス         | 22.6   | (, (')     | 677.4        | 74%               | 22.5        | 330                       | ح.در      | 7,00   | 227   |
|                  | Hd                                | 7.7      | ;×         | ×      |            | ×            | <b>(</b> €        | ×į          | :<br>:×                   | ×         | ×      | 17    |
|                  | DO (mg/L)                         | 6.4      | 6.         | 5.6    | 5.5        | - S -        | (T)               | 7.66        | \(\frac{1}{2}\)           | 1         | 2      | 77    |
|                  | Conductivity                      | 0/12     | ×          | ×      | ×          | ×            | 00)5              | ×           | ×                         | ×         | ×      | 30    |
|                  | Anunonia, alk/hardness<br>Suffide |          | ×          | ×      | ×          | <b>×</b>     | ×                 | ×           | ×                         | ×         | ×      | 7     |
| 12666            | T (°C)                            | 22,5     | 216        | 325    | 6.56       | £.cr/        | y CC              | 22.3        | 23.0                      | 726       | 427    | 22.3  |
|                  | Ħ                                 | 7.5      | ا<br>بح    | ×      | ×          | ×            | 1                 | ×           | ×                         | ×         | ×      | 125   |
|                  | DO (mg/L)                         | 5,0      | 4.6        | 23     | 4.         | 28           | <del>ي</del><br>ئ | 6,3         | 5                         | ۲,0       | 50     | E S   |
|                  | Conductivity                      | 430      | ×          | ×      | ×          | ×            | 350               | ×           | ×                         | ×         | ×      | 385   |
|                  | Ammonia, alk/hardness<br>Suifide  | 7        | <b>×</b>   | ×      | ×          | ×            | ×                 | ×           | ×                         | ×         | ×      |       |
|                  | Init./Date (1999):                | 16/2     | 10,17      | 19/13  | 19/13      | 19/14<br>7/7 | 1975<br>200       | 50)<br>50)  | 19/17<br>7/               | 10/)8     | 10/19  | 10/20 |
|                  |                                   |          | t          |        | >          | 6            |                   |             | <b> </b>                  |           |        |       |

& Bave 12664 On ATTG MONUAL renewal 10/14 10:00 for Toss START 10/10/98 - 2002 1700 - 1700

Review: Date: 12/10/69
Laboratory: Aquatec Blological Sciences, South Burlington, Vermont

haenv.doc

Comments:

# haenv.doc

Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Acute Tests

| Project: Menzie-Cura & Associates | ura & Associates                 | Project: | ect: 99033 |               | Dead Creek |        |                                            | BTR: 36      | 11 Test S | 3641 Test Starts 10/10/99 | 10/99  |             |
|-----------------------------------|----------------------------------|----------|------------|---------------|------------|--------|--------------------------------------------|--------------|-----------|---------------------------|--------|-------------|
|                                   |                                  |          |            |               |            | Day    | Day of Analysis                            | ysis         |           |                           |        |             |
| Sample                            | Parameter                        | 0        | 1          | 2             | 3          | 4      | 2                                          | 9            | 7         | 80                        | 6      | 10          |
| 12661 उड                          | T (°C)                           | 8.08     | 2) {c      | 22.4          | -4.6C      | 22.4   | 22,3                                       | 22,7         | 23.       | 拉                         | 1.26   | 227         |
| Ť                                 | Hd                               | かと       | ×          | ××            | ×          | ×      | 7.8                                        | ×            | ×         | ×                         | ×      | 42          |
|                                   | DO (mg/L)                        | 土坑       | 0,0        | 17.6          | 5.2        | 4.7.   | 71.9                                       | 89           | (0.1      | 2.9                       | 5.7    | アイ          |
|                                   | Conductivity Je                  | 1400 A   | ×.         | ×             | ×          | ×      | 360 36                                     | ×            | ×         | ×                         | )<br>> | 290         |
|                                   | Ammonia, alk/hardness<br>Sulfide | >        | ×          | ×             | ×          | ×      | ×                                          | ×            | ×         | ×                         | ×      | 1           |
| 12668                             | T (°C)                           | tet      | 215        | J.CC          | 47.55      | 22.4   | MA                                         | 22.7         | 23.2      | 4r                        | P.CC   | 27.9        |
|                                   | Hd                               | ££       | ×          | ×             | ×          | ×      | 875                                        | ×            | ×         | ×                         | ×      | 72          |
|                                   | Do (mg/L)                        | 700      | 6.0        | 5.8           | 5.8        | 5.9    | 83                                         | 7.3          | 5.9       | 49                        | / /    | 6           |
|                                   | Conductivity                     | 430      | ×          | ×             | ×          | ×      | 380                                        | ×            | ×         | ×                         | ×      | 24          |
|                                   | Ammonia, alk/hardness<br>Sulfide | 7        | ×          | ×             | ×          | ×      | ×                                          | ×            | ×         | ×                         | ×      | 6           |
|                                   | T (°C)                           |          |            |               |            |        |                                            |              |           |                           |        |             |
|                                   | Hd                               |          | ×          | ×             | ×          | ×      |                                            | ×            | ×         | ×                         | ×      |             |
|                                   | DO (mg/L)                        |          |            |               |            |        |                                            |              |           |                           |        |             |
|                                   | Conductivity                     |          | ×          | ×             | ×          | ×      |                                            | ×            | ×         | ×                         | ×      |             |
|                                   | Ammonia, alk/hardness<br>Sulfide |          | ×          | ×             | ×          | ×      | ×                                          | ×            | ×         | ×                         | ×      |             |
|                                   | Init./Date (1999):               | 1967     | 1974       | 13<br>25<br>4 | 19//3      | 10/14N | (1) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | 10/16<br>(a) | 19/17     | 10/18                     | 10/49  | 10/20<br>// |
|                                   |                                  | )        |            |               |            | 6      |                                            |              |           |                           |        | *           |

Review: Date: 12/0/95
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

000050

Comments:

### **ALKALINITY & HARDNESS WORKSHEET**

 BTR Number:
 Several
 Project # 99033
 Analyst:
 LS

Species Chronomus tentans Analysis

Test Facility Aquated Biological Sciences South Burlington, Vermont Date: 10/13/99

Project Menzie-Cura Dead Creek Acute Tests

|                       |                     |       | ALI   | KALINIT | 1                |        | HA               | RDNESS |          |
|-----------------------|---------------------|-------|-------|---------|------------------|--------|------------------|--------|----------|
|                       | Sample              | Sampl | ntial | Fina!   | Alkalinity       | Sample | Initial          | Final  | Hardness |
| Date                  | Type                | -     | 1     | TT.     | img/L)           | mj     | ml               | m      | (mg/L)   |
| 10/07/99              | 1 <b>2546</b> Day 3 | 50    | 123   | 13.5    | 30 0             | 50     | 16 4             | 23 1   | 134 0    |
| 10/07/99              | 12547 Day C         | 50    | 13.5  | 15.3    | 36 0             | 50     | 23 1             | 28 7   | 1120     |
| 10/07/99              | 12548 Day 3         | 50    | 153   | 57 D    | 34.0             | 50     | 28 7             | 346    | 118 0    |
| 10/27/99              | 12549 Day 3         | 50    | C     | 18 7    | 34 D             | 50     | 34.5             | 406    | 120.0    |
| 19/07/99              | 12550 Day 3         | 50    | 18 7  | 20.4    | 34 0             | 50     | 40.5             | 48 5   | 118 0    |
| 10/07/99              | 12551 Day 3         | 25    | 20.4  | 22 2    | 72 D             | 50     | D 5              | € 3    | 114.0    |
| 10/07/99              | 12552 Day 3         | 50    | 22 2  | 24 0    | 36 0             | 50     | € 3              | 12.7   | 128 0    |
| 10/08/99              | 12589 Day 3         | 50    | 24 0  | 25 4    | 28 D             | 50     | 12.7             | 19.0   | 126.0    |
| 1070 <b>8/99</b>      | 12590 Day 3         | 50    | 25.4  | 26.9    | 3D D             | 50     | 19 0             | 25.5   | 130.0    |
| 10/08/99              | 12591 Day 3         | 50    | 26 9  | 28.3    | 28 0             | 50     | 25.5             | 49.3   | 476.0    |
| 10108/99              | 12592 Day 3         | 50    | 28 3  | 29.9    | 32 0             | 50     | 1.6              | 7.3    | 126.0    |
| 10/08/99              | 12593 Day 3         | 50    | 29 9  | 31.3    | 28.0             | 59     | 7.3              | 13.2   | 118.0    |
| 10/08/99              | 12609 Day 3         | 50    | 313   | 33 0    | 34 0             | 50     | 13.2             | 20.0   | 136 0    |
| 10/38/99              | 12610 Day 3         | 50    | 33 0  | 34 4    | 28 0             | 50     | 20 0             | 27.8   | 156.0    |
| 10/08/99              | 12615 Day 3         | 50    | 34 4  | 35 9    | <b>30</b> 0      | 5C     | 27.8             | 34.0   | 124.0    |
| 10/09/99              | 12611 Day 3         | 50    | 37.8  | 39 B    | 40 D             | 50     | 30.2             | 37.4   | 144.0    |
| 10/09/99              | 1 <b>2612</b> Day 0 | 50    | 39 8  | 418     | 40.0             | 50     | 37.4             | 45 0   | 152.0    |
| 10/0 <del>9/9</del> 9 | 12613 Day 0         | 50    | 41.5  | 43 7    | 38 C             | 50     | 0.8              | ê 0    | 164.0    |
| 10/09/99              | 12614 Day 0         | 50    | C 4   | 25      | 42 0             | 50·    | 90               | 16 5   | 150.0    |
| 10/09/99              | 12622 Day 0         | 50    | 2 5   | 44      | 38 D             | 50     | 165              | 24 1   | 152.0    |
| 10/09/99              | 12638 Day 0         | 50    | 44    | 6 6     | 44 D             | 50     | 24 1             | 32.2   | 162.0    |
| 16/09/99              | 12639 Day 0         | 51    | € €   | 83      | 34 0             | 5E     | 32.2             | 38.6   | 128.0    |
| 10/09/99              | 12640 Day 0         | 50    | E 3   | 10.0    | 34.0             | 50     | 38.E             | 46 1   | 150 0    |
| 10/109/99             | 12641 Day 3         | 50    | 100   | 12 0    | 40.0             | 30     | 0.5              | 5 2    | 153 3    |
| 10/13/99              | 12664 Day 3         | 50    | 35.9  | 372     | 2 <del>6</del> 0 | 50     | 34 8             | 42 0   | 160.0    |
| 10/10/99              | 12665 Day C         | 50    | 37.2  | 39.2    | 40 0             | 50     | 0.8              | 7.9    | 142 0    |
| 10/10/99              | 1 <b>2666</b> Day 0 | 50    | 39 2  | 41.5    | 46 D             | 50     | 79               | 160    | 162.0    |
| 10/10/99              | 12668 Day C         | 50    | 41.5  | 43.4    | 38 D             | 50     | 1 <del>6</del> 0 | 23.5   | 150.0    |
| 10/10/99              | 12671 Day 0         | 50    | 43.4  | 44 9    | 30 D             | 50     | 23.5             | 30.2   | 134.0    |

### **ALKALINITY & HARDNESS WORKSHEET**

BTR Number: Several Project #: 99033 Analyst: LS

Species: Chironomus tentans Analysis

Test Facility: Aquatec Biological Sciences, South Burlington, Vermont Dates: 11/21/99 12/2/99

Project: Menzie-Cura Dead Creek Acute Tests 12/7/99

|   |          |                 |        | ALi     | KALINIT | ,          |          | НА      | RDNESS | ; ]      |
|---|----------|-----------------|--------|---------|---------|------------|----------|---------|--------|----------|
|   |          | Sample          | Sample | Initial | Final   | Alkalinity | Sample   | Initial | Final  | Hardness |
|   | Date     | Туре            | ml     | ml      | ml      | (mg/L)     | ml       | mi      | ml     | (mg/L)   |
|   | 10/17/99 | 12546 Day 10 CT | 50     | 33.4    | 35.3    | 38.0       | 50       | 8.1     | 15.8   | 154.0    |
|   | 10/17/99 | 12547 Day 10 CT | 50     | 35.3    | 37.7    | 48.0       | 50       | 15.8    | 23.2   | 148.0    |
|   | 10/17/99 | 12548 Day 10 CT | 50     | 37.7    | 39.4    | 34.0       | 50       | 23.2    | 29.9   | 134.0    |
|   | 10/17/99 | 12549 Day 10 CT | 50     | 39.4    | 41.1    | 34.0       | 50       | 29.9    | 38.0   | 162.0    |
|   | 10/17/99 | 12550 Day 10 CT | 50     | 41.1    | 42.9    | 36.0       | 50       | 38.0    | 45.8   | 156.0    |
|   | 10/17/99 | 12551 Day 10 CT | 50     | 42.9    | 44.7    | 36.0       | 50       | 0.1     | 8.1    | 160.0    |
|   | 10/17/99 | 12552 Day 10 CT | 50     | 44.7    | 46.5    | 36.0       | 50       | 8.1     | 15.7   | 152.0    |
|   | 10/18/99 | 12589 Day 10 CT | 50     | 15.9    | 17.9    | 40.0       | 50       | 19.6    | 28.4   | 176.0    |
|   | 10/18/99 | 12590 Day 10 CT | 50     | 17.9    | 19.9    | 40.0       | 50       | 28.4    | 36.9   | 170.0    |
|   | 10/18/99 | 12591 Day 10 CT | 50     | 19.9    | 21.9    | 40.0       | 50       | 36.9    | 45.4   | 170.0    |
|   | 10/18/99 | 12592 Day 10 CT | 50     | 21.9    | 23.8    | 38.0       | 50       | 0.1     | 8.6    | 170.0    |
|   | 10/18/99 | 12593 Day 10 CT | 50     | 23.8    | 25.7    | 38.0       | 50       | 8.6     | 17.8   | 184.0    |
|   | 10/18/99 | 12609 Day 10 CT | 50     | 25.7    | 28.1    | 48.0       | 50       | 17.8    | 25.4   | 152.0    |
|   | 10/18/99 | 12610 Day 10 CT | 50     | 28.1    | 30.0    | 38.0       | 50       | 25.4    | 33.8   | 168.0    |
|   | 10/18/99 | 12615 Day 10 CT | 50     | 30.0    | 31.3    | 26.0       | 50       | 33.8    | 41.7   | 158.0    |
|   | 10/19/99 | 12611 Day 10 CT | 50     | 43.0    | 44.6    | 32.0       | 50       | 6.9     | 14.0   | 142.0    |
|   | 10/19/99 | 12612 Day 10 CT | 50     | 44.6    | 46.4    | 36.0       | 50       | 14.0    | 20.4   | 128.0    |
|   | 10/19/99 | 12613 Day 10 CT | 50     | 46.4    | 48.2    | 36.0       | 50       | 20.4    | 26.8   | 128.0    |
|   | 10/19/99 | 12614 Day 10 CT | 50     | 0.3     | 2.2     | 38.0       | 50       | 26.8    | 33.2   | 128.0    |
|   | 10/19/99 | 12622 Day 10 CT | 50     | 2.2     | 3.9     | 34.0       | 50       | 33.2    | 39.8   | 132.0    |
|   | 10/19/99 | 12638 Day 10 CT | 50     | 3.9     | 5.5     | 32.0       | 50       | 39.8    | 46.5   | 134.0    |
|   | 10/19/99 | 12639 Day 10 CT | 50     | 5.5     | 7.4     | 38.0       | 50       | 0.1     | 6.9    | 136.0    |
|   | 10/19/99 | 12640 Day 10 CT | 50     | 7.4     | 9.2     | 36.0       | 50       | 6.9     | 12.9   | 120.0    |
|   | 10/19/99 | 12641 Day 10 CT | 50     | 9.2     | 11.4    | 44.0       | 50       | 12.9    | 19.1   | 124.0    |
|   | 10/20/99 | 12664 Day 10 CT | 50     | 42.2    | 44.2    | 40.0       | 50       | 15.0    | 22.5   | 150.0    |
|   | 10/20/99 | 12665 Day 10 CT | 50     | 44.2    | 46.0    | 36.0       | 50       | 22.5    | 29.5   | 140.0    |
|   | 10/20/99 | 12666 Day 10 CT | 50     | 46.0    | 47.9    | 38.0       | 50       | 29.5    | 36.9   | 148.0    |
|   | 10/20/99 | 12668 Day 10 CT | 50     | 0.2     | 1.8     | 32.0       | 50       | 36.9    | 42.4   | 110.0    |
|   | 10/20/99 | 12671 Day 10 CT | 50     | 1.8     | 3.9     | 42.0       | 50       | 0.4     | 7.9    | 150.0    |
| _ |          |                 | L      |         |         |            | <u> </u> |         |        |          |

| Client: Men Zie-Cura Project: | 94033 | BTR: Several |  |
|-------------------------------|-------|--------------|--|
| Sample Description:           | Day O | HA/CT        |  |

|        |                            |                  |             | ALKA             | LINITY              | <del></del> |              | HARE         | NESS                |                                                  | Ī        |               |
|--------|----------------------------|------------------|-------------|------------------|---------------------|-------------|--------------|--------------|---------------------|--------------------------------------------------|----------|---------------|
|        |                            |                  | Sample      | Titrant          | Titrant             | Analyst     | Sample       | Titrant      | Titrant             | Analyst                                          | Data     |               |
|        | Sample                     | Sample           | Vol.        | Init.            | Final               | Date/       | Vol.         | Init.        | Final               | Date/<br>Init.                                   | enter    |               |
|        | ID ID                      | Date             |             | Vol.             | Vol.                | Init.       | <i>E</i> > 1 | Vol.         | Vol.                |                                                  | Init.    | $\overline{}$ |
|        | 1201                       | 10/9             | 50ml        | 37.8             | 398                 | 1934        | 50ml         | 30.2         | 110                 | 101345                                           | 11/23    | KB            |
|        | 121612                     | 1019             | 52          | 398              | 41.8                | 10/13/5     | -            | 31.4         | 145.U               | <del>                                     </del> | $\vdash$ |               |
|        | كسي                        | 10/19            | 12/2        | 41.8             | 43.7                | 135         |              | <u>0.8</u>   | 90                  | <del>                                     </del> | $\vdash$ | _             |
|        | 12614                      | 10/19            | 50          | 0.4              | 2,5                 | 14130       |              | 40           | 105                 | !                                                | $\vdash$ |               |
|        | 12111                      | 10/9             | 24          | $\alpha \supset$ | 4.4                 | 10113.8     | -            | 1105         | 24.1                | <del>-</del>                                     | $\vdash$ |               |
|        | 17.038                     | 10/9             | <u> න</u>   | 44               | <u> </u>            | 1235        |              | 24.1         | 132.2               | 1                                                |          | _             |
|        | 157632                     | 1019             | <u></u>     | 66               | حكيظ                | 1038        |              | 322          | <u> غېرن</u>        |                                                  |          |               |
|        | 13164Ö                     | 10/9             |             | <u> Š 3</u>      | 100                 | 101218      |              | 38.6         | 40.                 | <u> </u>                                         |          | _             |
|        | 12041                      | 10/9             | 50_         | 10.0             | <u>12-0</u>         | 13/13/15    | *X 3         | 0.6          | 52                  | <u>.                                    </u>     | 1        | <u></u>       |
| ನಕ್ಕಿ  |                            | <del>, , .</del> |             | <del></del>      | <del></del>         | :           |              | '            | <u> </u>            | 1                                                |          | _             |
| 12546  | 10546                      | 10/7             | 50          | Ia.C             | 135                 | 1013 x      | 50m          | 1 KO.4       | 23.1                | id348                                            | 1 23 R   | 22            |
| 12547  | 16547                      | 10/7             | 50          | 13.5             | 15.3                | 735         | 1            | 23.1         | 28.7                | -                                                |          |               |
| 12 548 | 105H8                      | WF               | 50          | 15.3             | 17.0                | 1013×       |              | 28.7         | 34.60               | <u> </u>                                         |          |               |
| 12 549 | 10549                      | :017             | 50          | 17-0             | 18.7                | 10/1345     |              | 34.6         | 40.6                |                                                  |          |               |
| 12550  | W550                       | 1017             | 50          | 18.7             | 20.4                | 10/38       |              | 140.6        | 405                 | 1                                                |          |               |
| 12551  | 12551                      | 1017             | 50          | 204              | 222                 | 10113/8     |              | 0.6          | 63                  | 1                                                |          |               |
| 12552  | 18552                      | 1017             | 50          | 232              | 240                 | 1413 8      |              | 6.3          | 127                 |                                                  |          |               |
| 12589  | 10589                      | 2101             | 50_         | 24.C             | 25.4                | 33 F        |              | p.7          | 19.0                | ă _                                              |          |               |
| 12590  | 12590                      | 10/8             | 50<br>50    | 20.4             | 2109                | 13734       |              | 19.0         | 255                 |                                                  |          |               |
| 12541  | 1591                       | 10/8             | 50          | 25.9             | 28.3                | عزجزن       |              | 25.5         | 493                 |                                                  |          |               |
| 12512  | 4592                       | 1:1/×            | 50          | 28.3             | 299                 | 1335        |              | 1.0          | 7,3                 | ii<br>N                                          |          |               |
| 1253   | 12593                      | 10/8             | 50          | 299              | 31.3                | 13.326      |              | 7.3          | 13.2                | 3147                                             |          |               |
| 1264   | ide09                      | 10/8             | 5D          | 3.3              | 33.0                | 10/345      |              | 13.2         | 20.0                | !                                                |          |               |
| 12.6 C | 10610                      | 15/8             | 50          | 330              | 34.4                | 14138       |              | 20.0         | 27.8                |                                                  |          |               |
| 12615  | 10015                      | 10/8             | 50          | 34.4             | 359                 | 141314      | l            | 27,5         | 34.D                |                                                  |          |               |
|        | 1210104                    | 10/10            | (カロ         | 359              | 372                 | 1013 9      | :            | 34,0         | 42.0                | i                                                |          |               |
|        | 12145                      | מילינו           | 50          | 37.2             | 39.2                | 1413 18     |              | 0.8          | 79                  |                                                  |          |               |
|        | 121ddo                     | 10/10            | 50          | 39.2             | -41.5               | 10138       |              | 79           | 110.0               |                                                  |          |               |
|        | IZIAGE<br>IZIAGE<br>IZIAGE | מוטו             | 50 50 50 50 | 41.5             | 43.4                | 1913 P      |              | 110.0        | 16.0<br>235<br>30.2 |                                                  |          |               |
|        | 12/07/                     | בונוכיו          | 50          | 43.4             | 444                 | 10/13/5     | ¥            | 23.5         | 30.2                | 1 1                                              |          | _             |
|        |                            | 7                |             |                  | <del>-1-1-1</del> - | 1711        | -            | <u> </u>     |                     |                                                  |          | -             |
|        |                            | -                |             |                  |                     |             |              | <del> </del> | <del></del>         | 1                                                | †        |               |
|        |                            |                  |             |                  |                     |             | L            |              | <del></del>         | <del> </del>                                     |          |               |

| Client: Menzie-Cura | Project:   | BTR: Several |
|---------------------|------------|--------------|
| Sample Description: | Day 10 (+. | 10/17        |
|                     |            |              |

|              |                |                | ALKA                     | LINITY                                       |                           | ·              | HARD                                             | NESS                     | <del></del>                                      |                          |
|--------------|----------------|----------------|--------------------------|----------------------------------------------|---------------------------|----------------|--------------------------------------------------|--------------------------|--------------------------------------------------|--------------------------|
| Sample<br>ID | Sample<br>Date | Sample<br>Vol. | Titrant<br>Init.<br>Vol. | Titrant<br>Final<br>Vol,                     | Analyst<br>Date/<br>Init. | Sample<br>Voi. | Titrant<br>Init.<br>Vol.                         | Titrant<br>Final<br>Vol. | Analyst<br>Date/<br>Init.                        | Data<br>entered<br>Init, |
| 12540        | 10/17          | 50ml           | 33.4                     | 353                                          | 12/2/8                    | 50M            | 8.1                                              | 15.8                     | 12/2 83                                          |                          |
| 147          | 1              |                | 35.3                     | .37.7                                        | 1                         | 1              | 8.1                                              | 23.2                     | 1                                                |                          |
| 48           |                |                | 37.7                     | 39.4                                         |                           |                | 232                                              | 29.9                     |                                                  |                          |
| 49           |                |                | 39.4                     | 41.                                          |                           |                | 29.9                                             | 38.0                     |                                                  |                          |
| 50           |                |                | 41.1                     | 42.9                                         |                           |                | 38.0                                             | 458                      |                                                  |                          |
| 151          |                | <b></b> -      | 42.9                     | 44.7                                         |                           |                | 0.1                                              | 18.1                     |                                                  |                          |
| 152          |                |                | 44.7                     | 465                                          |                           | <u></u>        | 8./                                              | 15.7                     | -4-                                              |                          |
|              |                |                |                          |                                              |                           |                | _                                                | 1                        |                                                  |                          |
| ļ            |                |                |                          |                                              |                           |                |                                                  | <u> </u>                 | <u> </u>                                         |                          |
|              |                |                |                          |                                              |                           |                | <del> </del>                                     | <u> </u>                 |                                                  |                          |
|              |                |                |                          |                                              |                           |                |                                                  | <u> </u>                 | -                                                |                          |
| <b> </b>     |                |                |                          | <u>                                     </u> |                           |                | <del></del>                                      |                          | <u> </u>                                         |                          |
|              | ·              |                |                          |                                              |                           |                |                                                  | <u> </u>                 | <u> </u>                                         |                          |
|              |                |                |                          |                                              | '                         |                |                                                  |                          | <u> </u>                                         |                          |
|              |                |                |                          |                                              |                           | <u> </u>       |                                                  | 1                        |                                                  |                          |
|              |                |                |                          |                                              |                           |                |                                                  |                          |                                                  |                          |
|              |                |                |                          |                                              |                           |                |                                                  | [                        |                                                  |                          |
|              |                |                |                          |                                              |                           |                |                                                  |                          |                                                  |                          |
|              |                |                |                          |                                              |                           |                |                                                  |                          |                                                  |                          |
|              |                |                |                          |                                              |                           |                |                                                  | ļ                        | ļ                                                |                          |
|              |                |                | -                        |                                              |                           |                |                                                  |                          |                                                  |                          |
|              |                |                |                          | <u> </u>                                     |                           | ·<br>·         |                                                  |                          |                                                  |                          |
| <b> </b>     |                |                |                          |                                              |                           |                |                                                  |                          |                                                  |                          |
| <u> </u>     |                |                |                          |                                              |                           |                |                                                  | <u> </u>                 | <u> </u>                                         | <b></b>                  |
| <b> </b>     |                |                |                          |                                              |                           |                |                                                  | <u> </u>                 |                                                  |                          |
|              |                |                |                          |                                              |                           |                |                                                  |                          | -                                                |                          |
|              |                |                |                          |                                              |                           |                | <del> </del>                                     | <u> </u>                 | <del>                                     </del> |                          |
| <del> </del> |                |                |                          |                                              |                           | <del> </del>   | <del> </del>                                     |                          | <del> </del>                                     | <b> </b>                 |
|              | ·····          |                |                          |                                              |                           | <del></del>    | <del>                                     </del> |                          |                                                  |                          |
| <b> </b>     |                |                |                          |                                              |                           |                | <del> </del>                                     | <del> </del>             | <del> </del>                                     |                          |
| <u> </u>     |                |                |                          |                                              |                           |                | 1                                                | <u> </u>                 | <u> </u>                                         | لــــــا                 |

| Client: Menzy (wa   | Project:    | BTR: Sevent |
|---------------------|-------------|-------------|
| Sample Description: | C.t. day 10 | 10/18       |
|                     | + H.a.      |             |

|            |              |                |          | ALKA             | LINITY        |                    |              | HARD                                             | NESS          |                                       |                                                  |
|------------|--------------|----------------|----------|------------------|---------------|--------------------|--------------|--------------------------------------------------|---------------|---------------------------------------|--------------------------------------------------|
|            |              | _              | Sample   | Titrant          | Titrant       | Analyst            | Sample       | Titran:                                          | Titrant       | Analyst                               | Data                                             |
|            | Sample<br>ID | Sample<br>Date | Vol.     | Init.<br>Vol.    | Final<br>Vol. | Date/<br>Init.     | Vol.         | Init.<br>Vol.                                    | Final<br>Vol. | Date/<br>Init.                        | entered<br>Init.                                 |
| Ċŧ-        | 12589        | 10/18          | 50my     | 15.9             |               | 12675              | 5im          | 19.60                                            | 28.4          | 3/18                                  | mic.                                             |
| <b>C</b> ' | 90           | 10118          | <u> </u> | 17.9             | 19.9          | <u>رو دم ۱۰</u>    | ) (110)      | 284                                              | 309           | 1                                     |                                                  |
|            | 91           |                |          | 19.9             | 21.9          | † -                |              | 310-9                                            | 45.4          |                                       |                                                  |
|            | 92           |                |          | 21.9             | 23.8          |                    |              | 0.1                                              | 86            |                                       |                                                  |
|            | -93          |                |          | 23.8             | 257           | :                  | :            | 8.6                                              | 17.8          |                                       |                                                  |
|            | 12609        |                |          | 257              | 28.1          | . !                |              | 17.8                                             | 25.4          |                                       |                                                  |
|            | -10°         |                |          | 28.1<br>30.0     | 30.0          |                    |              | 25.4                                             | 33.8          |                                       |                                                  |
| C+-        | 12/015       |                | 4        | 30.D             | 31.3          |                    |              | 33.8                                             | 41.7          | <u> </u>                              |                                                  |
| 1          |              |                |          |                  |               | <del></del>        |              | !                                                | i<br>1        |                                       |                                                  |
|            |              |                |          | <del>~ ~ ~</del> | - CO 1        | ;<br>.57 - 6       |              |                                                  | <u> </u>      |                                       |                                                  |
| H.a.       | 12415        | 1018           | Simu     | 3.3              | 33.4          | 14248              | 52 4         | 0.2                                              | 8.1           | 12/1/18                               |                                                  |
|            |              |                | ·        |                  |               |                    |              | <u> </u>                                         | <u> </u>      | · · · · · · · · · · · · · · · · · · · |                                                  |
|            |              | _              |          |                  |               | ··                 | <b></b>      | !                                                | <u> </u>      | 1                                     |                                                  |
| !          |              |                |          |                  |               | <del></del>        |              | <u>:</u>                                         | i             | <u>:</u>                              |                                                  |
|            |              |                |          |                  | <del></del>   |                    |              | <del>                                     </del> | i             | 1                                     |                                                  |
| 1          |              |                |          |                  |               |                    |              | 1                                                | <u> </u>      | 1                                     |                                                  |
|            | -            |                |          |                  |               |                    |              |                                                  |               | į                                     |                                                  |
|            |              |                |          |                  |               | <del>- · - ·</del> |              | 1                                                |               | i                                     |                                                  |
|            |              |                |          |                  |               |                    |              | l                                                |               | <del> </del>                          |                                                  |
|            |              |                |          |                  |               |                    |              |                                                  |               | i                                     |                                                  |
|            |              |                |          |                  |               |                    |              | !                                                |               |                                       |                                                  |
| !          |              |                | <u></u>  | . <u> </u>       |               |                    |              |                                                  |               |                                       |                                                  |
|            |              |                | ·        |                  |               |                    |              | :                                                |               |                                       |                                                  |
|            |              |                |          |                  |               | <del></del>        |              | <u> </u>                                         |               | <u> </u>                              |                                                  |
| ,          |              |                |          |                  |               |                    | <u> </u>     | <del> </del>                                     |               | 1                                     | <del> </del>                                     |
|            | ļ            |                |          |                  |               |                    |              | 1                                                |               |                                       | <del> </del>                                     |
|            |              |                |          |                  |               |                    | ļ            | <u> </u>                                         |               | · —                                   | <del>                                     </del> |
|            |              |                |          |                  |               |                    |              |                                                  |               |                                       | ├──-                                             |
|            |              |                |          |                  |               |                    | <del> </del> |                                                  |               | 1                                     | <del> </del>                                     |
|            |              |                |          | <del></del>      |               | <del></del>        | <del> </del> | <del></del>                                      |               | :                                     |                                                  |
|            | L            |                |          |                  |               |                    |              |                                                  |               | <u></u>                               | LL                                               |

Sample Description: Day 10 Ha + C. F

|      |              |                |                | ALKA                     | LINITY                   |                                                  |                                                  | HARD                     | NESS                                   |                           |                          |
|------|--------------|----------------|----------------|--------------------------|--------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------|----------------------------------------|---------------------------|--------------------------|
|      | Sample<br>ID | Sample<br>Date | Sample<br>Vol. | Titrant<br>Init.<br>Vol. | Titrant<br>Final<br>Vol. | Analyst<br>Date/<br>Init.                        | Sample<br>Vol.                                   | Titrant<br>Init.<br>Vol. | Titrant<br>Final<br>Vol.               | Analyst<br>Date/<br>Init. | Data<br>entered<br>Init. |
| H.a. | 12/011       | 10/19          | 50ml           | 270                      | 28.8                     | 11/21/18                                         | 50ml                                             | 36.9                     | 44,2                                   | "/21 45                   |                          |
| {    | 121012       |                |                | 28.8                     | 30.5                     |                                                  | i                                                | 0.3                      | 7.4                                    | 1                         |                          |
|      | 16/3         |                |                | 30.5                     | 32.4                     |                                                  |                                                  | 7.6                      | 14.5                                   |                           |                          |
|      | 614          | <i> </i>       |                | 32.4                     | 34.1                     |                                                  |                                                  | 145                      | 21.2                                   |                           |                          |
|      | 422          |                |                | 34.1                     | 35.6                     |                                                  | <u> </u>                                         | 21. 2                    | 27.8                                   | -                         |                          |
|      | U38<br>1039  |                |                | 35.10<br>37.5            | 37.5<br>39.2             | <del>                                     </del> | <del>  </del>                                    | 27.8<br>34.6             | 34.6                                   |                           |                          |
|      | 1040         |                |                | 39.2                     | 41.0                     |                                                  |                                                  | 41.4                     | 48.4                                   | <del></del>               |                          |
|      | - 671        |                |                | 41.0                     | 43.0                     | 1                                                |                                                  | 0.0                      | 69                                     | 1                         |                          |
|      |              |                |                | ,,,,,                    |                          |                                                  |                                                  | 0.0                      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                           |                          |
| C.t. | 12411        | 10/19          | 50ml           | 43.0                     | 44.6                     | 11/218                                           | 50ml                                             | 6.9                      | 14.0                                   | 11/2iys                   | 1/23 RB                  |
| i    | 1612         |                |                | 44.10                    | 46.4                     |                                                  |                                                  | 14.0                     | 20.4                                   |                           |                          |
|      | 613          |                |                | 46.4                     | 482                      |                                                  |                                                  | 20.4                     | 26.8                                   |                           |                          |
|      | 614          |                |                | 0.3                      | 39                       | 1                                                | <del>                                     </del> | 26.8                     | 33.2                                   |                           |                          |
|      | 022<br>038   |                |                | 3.9                      | 3.9                      |                                                  |                                                  | 33.2                     | 39.8                                   |                           |                          |
|      | 439          |                |                | 5.5                      | 7.4                      |                                                  | <del>  </del>                                    | 6.1                      | 40.5                                   |                           |                          |
| !    | 40           |                |                | 7.4                      | 92                       |                                                  |                                                  | (0.9                     | 12.9                                   |                           |                          |
| +    | - 641        |                | 1              | 9.2                      | 11.4                     |                                                  |                                                  | 12.9                     | 191                                    |                           | 4                        |
| •    |              |                |                |                          |                          |                                                  |                                                  |                          |                                        |                           |                          |
|      |              |                |                |                          |                          |                                                  |                                                  |                          | ļ <u>.</u>                             |                           |                          |
|      |              |                |                |                          | <del></del>              |                                                  | <u> </u>                                         | <u> </u>                 | ļ                                      |                           |                          |
|      |              |                |                |                          |                          | 1                                                |                                                  | <del> </del>             | 1                                      |                           |                          |
|      |              |                |                |                          | <del></del>              |                                                  |                                                  |                          | <u> </u>                               |                           |                          |
|      |              |                |                |                          |                          | !<br>                                            | ļ                                                | -                        |                                        |                           |                          |
|      |              |                |                |                          |                          | <u> </u>                                         |                                                  | }                        |                                        |                           |                          |
|      |              |                | ***            | -                        |                          |                                                  |                                                  |                          |                                        |                           |                          |
|      |              |                |                |                          |                          |                                                  |                                                  |                          |                                        |                           |                          |
|      |              |                |                |                          |                          |                                                  |                                                  |                          |                                        |                           |                          |
|      |              |                |                |                          |                          |                                                  | <b></b>                                          |                          |                                        |                           |                          |
|      |              |                |                |                          |                          | <u> </u>                                         | <u> </u>                                         |                          |                                        | <u> </u>                  | <u></u>                  |

| Sample Sample Vol. Init. Final Date: Vol. Init. Final Date: Vol. Vol. Vol. Vol. Vol. Vol. Vol. Vol.                                                                                                          |                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| ALKALINITY HARDNESS  Sample Sample trant Titrant Analyst Sample Titrant Titrant  Sample Sample Vol. Init. Final Date: Vol. Init. Final  Vol. Vol. Init. Vol. Vol.  DICH 1020 50nd 32.1 340 345 50nd 24.1 318 |                                  |
| Sample Sample trant Titrant Analyst Sample Titrant Titrant Sample Sample Vol. Init. Final Date: Vol. Init. Final 10 Date Vol. Vol. Init. Vol. Vol. 12 12 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15        |                                  |
| Sample Sample Vol. Init. Final Date: Vol. Init. Final Date: Vol. Vol. Vol. Vol. Vol. Vol. Vol. Vol.                                                                                                          |                                  |
| 10 Date Vol. Vol. Init. Vol. Vol. Jack 1020 50nJ 32.1 34.0 24.1 318                                                                                                                                          | Analyst Data                     |
| 121014 1020 50ml 32.1 34.0 24.1 31.8                                                                                                                                                                         | Date/ entered<br>Hnit. 198 Init. |
|                                                                                                                                                                                                              | 50m)                             |
| ****                                                                                                                                                                                                         |                                  |
| 10 100 31.3 35.4 39.8 46.5                                                                                                                                                                                   |                                  |
|                                                                                                                                                                                                              |                                  |
| L 17 1 1 40.1 422 1 1 7.4 150                                                                                                                                                                                | <u> </u>                         |
|                                                                                                                                                                                                              | 12/- 12                          |
| 121004 1720 50ml 42.2 44.2 12/55 50ml 150 225 1                                                                                                                                                              | 4 ys                             |
|                                                                                                                                                                                                              |                                  |
| 1+7 100 -: 0 47.9 29.5 30.9<br>100 02.18 30.9 42.9                                                                                                                                                           | <del></del>                      |
| -7 - 1.8 39 - 1 1 19 79                                                                                                                                                                                      | 1                                |
|                                                                                                                                                                                                              |                                  |
|                                                                                                                                                                                                              |                                  |
|                                                                                                                                                                                                              |                                  |
|                                                                                                                                                                                                              |                                  |
|                                                                                                                                                                                                              |                                  |
|                                                                                                                                                                                                              | <del></del>                      |
|                                                                                                                                                                                                              |                                  |
|                                                                                                                                                                                                              |                                  |
|                                                                                                                                                                                                              |                                  |
|                                                                                                                                                                                                              |                                  |
|                                                                                                                                                                                                              |                                  |
|                                                                                                                                                                                                              |                                  |
|                                                                                                                                                                                                              |                                  |
| <u> </u>                                                                                                                                                                                                     |                                  |
|                                                                                                                                                                                                              |                                  |
|                                                                                                                                                                                                              |                                  |
|                                                                                                                                                                                                              |                                  |
|                                                                                                                                                                                                              |                                  |
|                                                                                                                                                                                                              |                                  |

| Results of Ammonia Analyses (Total, mg/L)  Chironomus tentans / Dead Creek / Project 99033 |           |                 |                   |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|-----------|-----------------|-------------------|--|--|--|--|--|--|
| Sample                                                                                     | Porewater | Day 0           | Day 10 Chironomus |  |  |  |  |  |  |
| ID                                                                                         |           | Overlying Water | tentans           |  |  |  |  |  |  |
| 12546                                                                                      | 6.3       | 1.1             | 1.1               |  |  |  |  |  |  |
| 12547                                                                                      | 23.1      | 4.5             | 2.6               |  |  |  |  |  |  |
| 12548                                                                                      | 17.3      | 3.5             | 4.1               |  |  |  |  |  |  |
| 12549                                                                                      | 7.4       | 1.6             | 1.0               |  |  |  |  |  |  |
| 12550                                                                                      | 9.3       | 2.8             | 1.6               |  |  |  |  |  |  |
| 12551                                                                                      | 5.9       | 1.7             | 1.9               |  |  |  |  |  |  |
| 12552                                                                                      | -         | <0.5            | 0.5               |  |  |  |  |  |  |
| 12589                                                                                      | 2.9       | <0.5            | 1.3               |  |  |  |  |  |  |
| 12590                                                                                      | 4.4       | 0.5             | 0.9               |  |  |  |  |  |  |
| 12591                                                                                      | 2.1       | <0.5            | <0.5              |  |  |  |  |  |  |
| 12592                                                                                      | 5.7       | 0.9             | 0.5               |  |  |  |  |  |  |
| 12593                                                                                      | 13.3      | 2.1             | <0.5              |  |  |  |  |  |  |
| 12609                                                                                      | 2.2       | <0.5            | 1.4               |  |  |  |  |  |  |
| 12610                                                                                      | 7.1       | 0.9             | 0.7               |  |  |  |  |  |  |
| 12611                                                                                      | 12.9      | 4.3             | 0.8               |  |  |  |  |  |  |
| 12612                                                                                      | 2.4       | 0.7             | <0.5              |  |  |  |  |  |  |
| 12613                                                                                      | 2.7       | 0.9             | 0.7               |  |  |  |  |  |  |
| 12614                                                                                      | 3.5       | 1.2             | 1.1               |  |  |  |  |  |  |
| 12615                                                                                      | -         | <0.5            | 0.6               |  |  |  |  |  |  |
| 12622                                                                                      | -         | <0.5            | 0.7               |  |  |  |  |  |  |
| 12638                                                                                      | 4.0       | 1.2             | 0.9               |  |  |  |  |  |  |
| 12639                                                                                      | 1.6       | 0.8             | <0.5              |  |  |  |  |  |  |
| 12640                                                                                      | 0.6       | 0.6             | <0.5              |  |  |  |  |  |  |
| 12641                                                                                      | 6.4       | 2.7             | 1.7               |  |  |  |  |  |  |
| 12664                                                                                      | <0.5      | <0.5            | <0.5              |  |  |  |  |  |  |
| 12665                                                                                      | 10.3      | 3.4             | 1.3               |  |  |  |  |  |  |
| 12666                                                                                      | 6.5       | 2.2             | 0.9               |  |  |  |  |  |  |
| 12668                                                                                      | <u>.</u>  | <0.5            | 0.6               |  |  |  |  |  |  |
| 12671                                                                                      | 2.4       | 0.7             | <0.5              |  |  |  |  |  |  |



File name: C:\FLOW\_4\101299E.RST Date: October 12, 1999 Operator: LKS

| ek         | Cup      | Name      | Type | Dil      | Wt       | Height  | Calc. (mg/L) |
|------------|----------|-----------|------|----------|----------|---------|--------------|
| l          | 2        | Sync      | SYNC | - 1      | 1        | 1150681 | 9.935171     |
| 2          | 0        | Carryover | CO   | ī        | ī        | 3787    | 0.022838     |
| 3          | 0        | Carryover | CO   | ī        | ī        | 487     | -0.005682    |
| В          | 0        | Baseline  | RB   | ī        | 1        | 0       | -0.009894    |
| В          | 0        | Baseline  | RB   | ī        | ī        | 0       | -0.009894    |
| 6          | 1        | Cal 0     | C    | ī        | ī        | 2289    | 0.009893     |
| 7          | 2        | Cal 1     | Ċ    | ī        | ī        | 1158182 | 10.000000    |
| 8          | 0        | Blank     | Ū    | ī        | ī        | -233    | -0.011912    |
| В          | 0        | Baseline  | RB   | ī        | ī        | 0       | -0.009894    |
| 10         | 3        | ICV       | U    | ī        | ì        | 577044  | 4.977356     |
| 1 <u>1</u> | 1        | ICB       | U    | ī        | ī        | 130     | -0.008772    |
| 12         | 31       | 12546 PW  | U    | ī        | ı        | 734716  | 6.340084     |
| 13         | 32       | 12547 PW  | U    | 1        | 1        | 2679467 | 23.148100    |
| 14         | 33       | 12548 PW  | U    | 1        | 1        | 2004003 | 17.310225    |
| 15         | 34       | 12549 PW  | U    | 1        | 1        | 854013  | 7.371138     |
| 16         | 35       | 12550 PW  | Ū    | <u>1</u> | 1        | 1075568 | 9.285980     |
| 17         | 36       | 12551 PW  | Ū    | 1        | <u>1</u> | 685767  | 5.917027     |
| 18         | 37       | 10590 PW  | U    | 1        | 1        | 515983  | 4.449624     |
| 19         | 38       | 10591 PW  | U    | 1        | ı        | 249859  | 2.149575     |
| 20         | 39       | 10592 PW  | Ū    | 1        | <u>1</u> | 662263  | 5.713890     |
| 21         | 40       | 10593 PW  | U    | 1        | 1        | 1537687 | 13.279972    |
| 22         | 3        | CCV       | U    | 1        | 1        | 565021  | 4.873451     |
| 23         | 1        | CCB       | Ü    | 1        | <u>1</u> | 1306    | 0.001391     |
|            | 0        | Baseline  | RB   | 1        | 3        | 0       | -0.009894    |
| <b>W</b> 5 | 41       | 10609 PW  | U    | 1        | 1        | 256151  | 2.203963     |
| 26         | 42       | 12610 PW  | U    | 1        | 1        | 820805  | 7.084130     |
| 27         | 43       | 12611 PW  | U    | 1        | 1        | 1488515 | 12.854989    |
| 28         | 44       | 12612 PW  | U    | 1        | 1        | 277463  | 2.388149     |
| 29         | 45       | 12613 PW  | U    | 1        | ī        | 312054  | 2.687114     |
| 30         | 46       | 12614 PW  | U    | 1        | 1        | 411381  | 3.545574     |
| 31         | 47       | 12638 PW  | U    | 1        | 1        | 460495  | 3.970054     |
| 32         | 48       | 12639 PW  | U    | 1        | l        | 189538  | 1.628238     |
| 33         | 49       | 12640 PW  | ט    | 1        | 1        | 74455   | 0.633600     |
| 34         | 50       | 12641 PW  | U    | 1        | 1        | 738001  | 6.368472     |
| 35         | 3        | CCA       | Ū    | ı        | 1        | 563344  | 4.858951     |
| 36         | 1        | CCB       | Ū    | 1<br>1   | 1        | 892     | -0.002186    |
| В          | 0        | Baseline  | RB   |          | 1        | 0       | -0.009894    |
| 38         | 51       | 10589 PW  | U    | 1        | 1        | 335331  | 2.888294     |
| 39         | 52       | 12464 PW  | U    | 1        | 1        | 25478   | 0.210309     |
| 40         | 53       | 12465 PW  | U    | 1        | 1        | 1197437 | 10.339272    |
| 41         | 54<br>55 | 12466 PW  | U    | 1        | 1        | 748996  | 6.463504     |
| 42         | 55       | 12671 PW  | U    | 1        | ב        | 279177  | 2.402970     |
| 43         | 3        | CCV       | U    | 1        | J        | 563863  | 4.863436     |
| 44<br>D    | 1        | CCB       | U    | 1        | 1        | 605     | -0.004666    |
| В          | 0        | Baseline  | RB   | 1        | 1        | 0       | -0.009894    |

| Peak     | Cup | Flags |
|----------|-----|-------|
| <u> </u> | 2   |       |
| 2        | 0   |       |
| 3        | 0   | TO    |
| В        | 0   | BL    |
|          |     |       |

ĒCB 0 0034922 Baseme<del>r 0 003</del>32654

File name: C:\FLOW\_4\101299F.RST Date: October 12, 1999 Operator: NVW

|                    | Cup        | Name                     | Type Dil           | Kt.                                   |                  | Height          | Calc. (mg/L)          |
|--------------------|------------|--------------------------|--------------------|---------------------------------------|------------------|-----------------|-----------------------|
| -                  | 3          | Sync                     | SYNC               | 1                                     | 1                | 554454          | 4.898925              |
| 2                  | 0          | Carryover                | CO                 | 1                                     | l                | 2027            | 0.014281              |
| 3                  | 0          | Carryover                | CO                 | 1                                     | l                | 72              | -0.002705             |
| 0 H H 0            | 0          | Baseline                 | RB                 |                                       | 1                | 0               | -0.003327             |
| 3                  | 0          | Baseline                 | RB                 | <u>1</u>                              | 1                | 0               | -0.003327             |
| É                  | <u>1</u>   | Cal 0                    | С                  | J                                     | <u>1</u>         | 766             | 0.003326              |
| 7                  | 2          | Cal 1                    | C<br>C<br>U<br>RB  | <u> </u>                              | 1                | 1151801         | 10.000001             |
| 3                  | 0          | Blank                    | Ũ                  | -                                     | l                | -713            | -0.009521             |
| 8<br>B<br>10<br>21 | 0          | Baseline                 |                    | <u>.</u>                              | 1                | 0               | -0.003327             |
| <u> </u>           | 3          | ICV                      | Ü                  | <u> </u>                              | l                | 563210          | 4.888124              |
| 11                 | l          | ICB                      | ם ס כ ס כ כ כ כ    | <u> </u>                              | 1                | -185            | -0.004933             |
| -2                 | 61         | 12031 DAY28              | ij                 | ī                                     | ī                | 3397            | 0.026174              |
| 13                 | 62         | 12032 DAY28              | ີວ                 | <u>~</u>                              |                  | 3053            | 0.023187              |
| 24                 | 63         | 12033 DAY28              | Ü                  | <u> </u>                              | <u>1</u><br>1    | 3365            | 0.025895              |
| 15<br>16<br>17     | 64         | 12034 DAY28              | J                  | <u> </u>                              | 1                | 2666            | 0.019831              |
| 1.5                | 65         | 12035 DAY28              | Ū                  | <u> 1</u>                             |                  | 2652            | 0.019706              |
| <b>-</b> 7         | 66         | 10546 DAY0               | Ū                  | <u> </u>                              | 1                | 131553          | 1.139205              |
| 19 20 20           | 67         | 10547 DAY0               | ប<br>ប             | <u> </u>                              | 1                | 516340          | 4.481058              |
| <u> </u>           | 68         | 10548 DAY0               | IJ                 | <u> </u>                              | 1                | 399699          | 3.468033              |
| 20                 | 69         | 10549 DAY0               | Ū                  | <u> 3</u>                             | 1<br>1<br>1<br>1 | 187292          | 1.623291              |
| 2:                 | 70         | 10550 DAY0               | ij                 | 1                                     |                  | 320812          | 2.782907              |
| 22                 | 3          | CCV                      | บ                  | <u> </u>                              | ī                | 563248          | 4.888451              |
| 23                 | <u>1</u>   | CCB                      | Ü                  | 1                                     | <u>.</u><br>     | 192             | -0.001662             |
|                    | 0          | Baseline                 | RB                 | 1                                     | 1                | 0               | -0.003327             |
| Ŵ                  | 71         | 10551 DAY0               | ប                  | 1                                     | 1                | 191736          | 1.661889              |
| 25                 | 72         | 10552 DAY0               | Ü                  | 1                                     | <u> </u>         | 20094           | 0.171191              |
| 2.7                | 73         | 12664 DAY0               | ์<br>บ             | 1                                     | 1                | -655            | -0.009012             |
| 2.8                | 74         | 12665 DAY0               | Ü                  | ī                                     | l                | 390790          | 3.390665              |
| 29                 | 75         | 12666 DAYO               | ט                  | <u>1</u>                              | 1                | 256086          | 2.220768              |
| 30                 | 76         | 12668 DAYO               | U                  | 1                                     | 1                | 24824           | 0.212270              |
|                    | 77         | 12671 DAY0               | Ū                  | 1                                     | 1                | 82076           | 0.709502              |
| 32                 | 78         | 10589 DAY0               | <u> </u>           | . 1                                   | ı                | 41329           | 0.355618              |
| 33                 | 79         | 10590 DAY0               | Ŭ :                | 1                                     | <u> 1</u>        | 58592           | 0.505543              |
| 34                 | 60         | 10591 DAY0               | <u>n</u>           | 1                                     | 1                | 38378           | 0.329983              |
| 35                 | 3          | CCA                      | ਹ<br>              | 1                                     | 1                | 562789          | 4.884464              |
| 3 €                | 7-1        | CCB                      | บ                  | 1                                     | ī                | 775             | 0.003405              |
| ⊒<br>3 €           | 0          | Easeline<br>10592 DAY0   | RB                 | <u> </u>                              | 1                | 0               | -0.003327             |
| 2.5                | 81<br>82   |                          | Ū<br>-:            |                                       | ī                | 109196          | 0.945034              |
| 6 to 10            | 62<br>83   | 10593 DAY0<br>10609 DAY0 | บ<br>เว            | -                                     | 1                | 242593          | 2.103578              |
| 41                 | 63<br>84   | 10609 DATO               | <b>ប៊</b><br>. ប៊ូ | ÷ ;                                   | 1                | 35412           | 0.304225              |
| 42                 | 85         | 10610 DATO               | U                  | ÷ -                                   | 1                | 101344          | 0.876840              |
| 43                 | 86         | 12611 DAYO               | บ                  | ÷                                     | <u>1</u><br>1    | 15104<br>498576 | 0.127849              |
| 44                 | 8 <b>7</b> | 12611 DATO               | IJ                 | <u>.</u>                              |                  |                 | 4.326778              |
| 45                 | 88         | 12613 DAYO               | บี                 | ÷ ;                                   | <u>1</u>         | 82423<br>98867  | 0.712516              |
| 46                 | 89         | 12614 DAYO               | บี                 | <del>-</del>                          | <u> </u>         | 141727          | 0.855326<br>1.227565  |
| 47                 | 90         | 12614 DATO               | บั                 | -                                     | i                | 22778           | 0.194497              |
|                    | 3          | CCV                      | บั                 | -<br>-                                | i                | 559331          | 4.854431              |
| 48                 | ī          | CCB                      | Ü                  | ÷                                     | 1                | 188             | 4.854431<br>-0.001692 |
| in and             | 0          | Baseline                 | RB                 | d d d d d d d d d d d d d d d d d d d | ÷                | 700             | -0.001692             |
| <u> </u>           | 91         | 12638 DAYO               | หร<br>ช            | -                                     | 1                | 138983          | 1.203735              |
| 52                 | 92         | 12639 DAYO               | บี                 | ÷                                     | 1                | 91032           | 0.787281              |
| 53                 | 93         | 12640 DAYO               | ប៊                 | i<br>i                                | ì                | 73388           | 0.634042              |
| 54                 | 94         | 12641 DAYO               | บ                  | 1                                     | ì                | 306520          | 2.658779              |
| - <del>-</del>     | - •        |                          | =                  | -                                     | -                | \$ C C J Z O    |                       |
|                    |            |                          |                    |                                       |                  |                 | 000062                |
|                    |            |                          |                    |                                       |                  |                 |                       |

|                |           |              |                       |                  |                                        |                                                | Absort                                        | bance                                    | : (µAu, )                                     | (E+06)               |                |          |           |               |           |               |
|----------------|-----------|--------------|-----------------------|------------------|----------------------------------------|------------------------------------------------|-----------------------------------------------|------------------------------------------|-----------------------------------------------|----------------------|----------------|----------|-----------|---------------|-----------|---------------|
| 0 800          | 0 800     | 0 400        | 0 200                 | 0 000 -          | 0 200                                  | 0 400                                          | 0 600                                         | 0 800                                    | 1 000                                         | 1 200                | 1 400          | 1 000    | 1.800     | 2.000         | 2.200     | 2.400         |
| <b>=</b>       |           |              |                       |                  | <u> </u>                               | _                                              | _                                             | _                                        | _                                             | _                    | _              |          |           |               |           |               |
|                |           | <del>.</del> |                       |                  | 78-77                                  | over. 0.                                       | 13501                                         | ===                                      | ==                                            | ===                  | <del>===</del> |          |           | Sync:         | 9.9234    | ļ1            |
| ••             |           |              |                       |                  | Čanyov                                 | over: 0.0<br>ne: 0.00                          | 004469                                        | 974                                      |                                               |                      |                |          |           |               |           |               |
| Ö- · ·         |           |              |                       | E S              | Baselin                                | ne: 0.00<br>-0 0007                            | 007479                                        | 977                                      |                                               |                      |                |          |           | - 8           |           |               |
| <u>.</u>       | <b></b> . | . <b></b>    | <b>.</b> . <b>.</b> . |                  |                                        | -0.005                                         |                                               |                                          |                                               |                      |                |          |           | Cal 1:        | : 10      |               |
|                |           |              |                       |                  | ·                                      | ne 0 00                                        |                                               |                                          |                                               |                      |                |          |           | → <u>ē</u> v. | 10.066    | ž Q           |
| <u>:</u>       | ·         | , <b></b>    |                       |                  | ICB -                                  | D-001Z                                         | 4422                                          |                                          |                                               |                      |                |          |           |               |           |               |
|                |           |              |                       | ~                |                                        | 5+1A D                                         |                                               |                                          | 9294                                          | .CS: 5.2             | :4638          |          |           |               |           |               |
| • • •          |           |              |                       | <                | $\cong$                                | 12546                                          | 1254                                          | 47 HA I                                  |                                               | D: <b>2 493</b>      |                |          |           |               |           |               |
| <u>.</u>       |           | <b></b>      |                       |                  | $\leq$                                 |                                                | → : <sub>25</sub><br>2548+                    | 47 CT                                    | DAY10<br><b>¥</b> 70:-1.8<br>1 <b>254</b> 8 0 | C. 2 607<br>.88296 - | 72<br>         |          |           |               |           |               |
| _              | • • •     | -            | •                     |                  | ====================================== | ===                                            |                                               | -0.05                                    | 2548 (                                        | CT DAY               | /10: 4.        | 14085    |           |               |           |               |
|                |           | <b></b>      |                       | <u> </u>         |                                        | 849 HA<br>2549 C                               | CJ. DA                                        | م بعدی                                   | 0.97.12.1                                     | <b>L</b>             | <b></b> -      | <b>.</b> | <b></b>   | <i>.</i>      |           | <b>.</b>      |
|                |           |              |                       | <u> </u>         | 1255                                   | 50 NA 1                                        |                                               |                                          | 05201<br>10: 1.61                             | 1053                 |                |          |           |               |           |               |
|                |           | . <b></b>    |                       |                  | <u></u>                                | -0.0117                                        |                                               |                                          |                                               | Ç <u>CV: 5</u>       | .3 <u>644</u>  |          | <b>.</b>  | - <b></b>     |           |               |
| ;              |           |              |                       |                  | Base                                   | ne: 0.00                                       | OC7479                                        |                                          |                                               |                      |                |          |           |               |           |               |
|                |           | . <b></b>    |                       | <u>&lt;</u>      | 12                                     | 2551 N/                                        |                                               |                                          | 734703<br>Y10: 1.8                            |                      |                |          |           |               | · <b></b> |               |
| <u>.</u> :     |           |              |                       | $\leq$           | ت م                                    | 552 HA                                         | DAY:                                          | 0: 0.49                                  | 9769                                          |                      |                |          |           |               |           | •             |
|                |           |              | <b></b>               | <u>≻</u>         | <b>~</b> 2                             | 5 <b>9</b> 9 HA                                | A DAY                                         | 10: 0.7                                  | 727318                                        |                      |                |          |           |               |           |               |
|                |           |              |                       | $\leq$           |                                        | 90 HA E                                        | DAY10                                         | 0: 0.310                                 |                                               |                      |                |          |           |               |           |               |
|                |           |              |                       | 7                | . 4                                    | 2590 C                                         |                                               |                                          |                                               |                      |                |          |           | · <b></b> -   |           |               |
| 5              |           |              |                       | ≥                |                                        | 91 CT                                          |                                               |                                          | 55928                                         |                      |                |          |           | · •           |           |               |
| :              | • = :     | -            |                       |                  | L                                      | 0 0107                                         |                                               | _                                        | , CC v                                        | / 41680              | <b>i</b> 91    |          |           | -             | _         | •             |
|                |           |              | <i></i>               | <del>برک</del>   | _ C                                    | ne: 0 00<br>12 HA1D                            |                                               |                                          | 6698                                          |                      |                |          |           | <i>.</i>      | . <b></b> |               |
|                |           |              |                       | $\geq$           | 125                                    | 92 CT                                          | DAY1                                          | O: C 53                                  | 32669                                         |                      |                |          |           |               |           |               |
| _              |           |              | <b></b>               | <br>;=           |                                        |                                                |                                               | 0:078<br><b>≥≥</b> .0:0                  |                                               |                      |                |          |           |               | ·         | · • • • • • • |
| <u> </u>       |           | - · • • ·    |                       | =                |                                        |                                                | _                                             |                                          |                                               |                      |                |          |           |               |           |               |
| <u> </u>       |           |              |                       | 11/1             | <b>→</b> 12                            | eco H                                          | A DAY                                         | (10: 0.7                                 | 716995<br>0:1410                              |                      |                |          |           |               |           |               |
| 2<br>          |           |              |                       | ::<br>  ^<br>  ^ | 120                                    | 2609 HA<br>1260<br>510 HA                      | A DAY<br>09 CT (<br>1 DAY1                    | (10: 0.7<br>DAY10<br>10: 0.5             | 716995<br>0-1 410<br>664305                   | C17                  |                |          | · • • • • |               |           |               |
| 700<br>        |           |              |                       | ::<br>  v v  v v | 126                                    | 2609 HA<br>1260<br>6:0 HA<br>6:10 CT<br>5 HA D | A DAY<br>09 CT (<br>3 DAY1<br>T DAY1<br>DAY10 | 710: 0.7<br>DAY10<br>10: 0.5<br>710: 0.6 | 716995<br>0 1 410<br>664305<br>68444<br>6924  | C17                  |                |          | - <b></b> |               |           |               |
| 700<br>- · · · |           |              |                       | INTAMAM          | 126                                    | 2609 HA<br>1260<br>610 HA<br>1610 CT           | A DAY<br>09 CT (<br>3 DAY1<br>T DAY1<br>DAY10 | 710: 0.7<br>DAY10<br>10: 0.5<br>710: 0.6 | 716995<br>0:1 410<br>664305<br>68444<br>6924  | C17                  | 33             |          |           |               |           |               |

File name: F:\FLOW\_4\102799C.RST Date: October 28, 1999 Operator: LKS 27

| opez     |           | 215                              |          |        |               |                  |                      |
|----------|-----------|----------------------------------|----------|--------|---------------|------------------|----------------------|
| P. k     | Cup       | Name                             | Type Dil | Wt     |               | Height           | Calc. (mg/L)         |
| l        | 2         | Sync                             | SYNC     | 1      | 1             | 1826754          | 9.923410             |
| 2        | 0         | Carryover                        | CO       | 1      | 1             | 24722            | 0.135034             |
| 3        | 0         | Carryover                        | CO       | l      | 1             | 685              | 0.004470             |
| В        | 0         | Baseline                         | RB       | 1      | ı             | 0                | 0.000748             |
| В        | . 0       | Baseline                         | RB       | 1      | 1             | 0                | 0.000748             |
| 6        | 1         | Cal O                            | С        | 1      | l             | -276             | -0.000749            |
| 7        | 2         | Cal 1                            | C        | 1      | 1             | 1840854          | 10.000001            |
| 8        | 0         | Blank                            | Ū        | 1      | 1             | -1182            | -0.005674            |
| В        | 0         | Baseline                         | RB       | 1      | 1             | 0                | 0.000748             |
| 10       | 2         | ICV                              | U        | l      | 1             | 1853145          | 10.066763            |
| 11       | 1         | ICB                              | U        | 1      | 1             | -367             | -0.001244            |
| 12       | 3         | LCS                              | U        | 1      | 1             | 965717           | 5.246381             |
| 13       | 91        | 12546 HA DAY10                   | U        | 1      | 1             | 14025            | 0.076929             |
| 14       | 92        | 12546 CT DAY10                   | Ŭ<br>    | 1      | 1             | 196727           | 1.069342             |
| 15       | 93        | 12547 HA DAY10                   | U        | 1      | 1             | 458976           | 2.493840             |
| 16       | 94        | 12547 CT DAY10                   | U        | 1      | 1             | 479846           | 2.607204             |
| 17       | 95        | 12548 HA DAY10                   | U        | 1      | 1             | 346513           | 1.882956             |
| 18       | 96        | 12548 CT DAY10                   | U        | 1      | 1             | 762189           | 4.140845             |
| 19       | 97<br>60  | 12549 HA DAY10                   | U        | 1      | 1             | 103571           | 0.563331             |
| 20       | 98        | 12549 CT DAY10                   | U        | 1      | 1             | 178661           | 0.971210             |
| 21<br>22 | 99<br>100 | 12550 HA DAY10<br>12550 CT DAY10 | U        | 1      | 1             | 74460            | 0.405201             |
| 22       | 3         | 12550 CT DAY10<br>CCV            | U        | 1      | 1             | 296360           | 1.610535             |
| -        | 1         | CCB                              | U<br>U   | 1<br>1 | 1             | 987444           | 5.364398             |
| В        | 0         | Baseline                         | RB       | 1      | <u>1</u>      | -2301            | -0.011749            |
| 26       | 101       | 12551 HA DAY10                   | U        | 1      | <u> </u>      | 0                | 0.000748             |
| 27       | 102       | 12551 RA DATIO                   | บ        | ì      | 1<br>1        | 135120<br>343845 | 0.734703             |
| 28       | 103       | 12552 HA DAY10                   | Ū        | ì      | 1             | 91487            | 1.868462<br>0.497690 |
| 29       | 104       | 12552 CT DAY10                   | Ū        | 1      | 1             | 101338           | 0.497690             |
| 30       | 105       | 12589 HA DAY10                   | บี       | ì      | ì             | 133761           | 0.727318             |
| 31       | 106       | 12589 CT DAY10                   | Ū        | ì      | ì             | 243394           | 1.322828             |
| 32       | 107       | 12590 HA DAY10                   | Ū        | ī      | ī             | 56959            | 0.310143             |
| 33       | 108       | 12590 CT DAY10                   | Ū        | ĩ      | ī             | 170229           | 0.925407             |
| 34       | 109       | 12591 HA DAY 10                  | U        | i      | ı             | 16286            | 0.089209             |
| 35       | 110       | 12591 CT DAY10                   | Ū        | 1      | 1             | 83796            | 0.455918             |
| 36       | 3         | CCV                              | U        | 1      | 1             | 861614           | 4.680911             |
| 37       | 1         | CCB                              | Ū        | 1      |               | 1846             | 0.010774             |
| В        | 0         | Baseline                         | RB       | 1      | <u>1</u><br>1 | 0                | 0.000748             |
| 39       | 111       | 12592 HA DAY10                   | U        | ı      | 1             | 47120            | 0.256698             |
| 40       | 112       | 12592 CT DAY10                   | Ū        | 1      | 1             | 97926            | 0.532669             |
| 41       | 113       | 12593 HA DAY 10                  |          | l      | 1             | 14273            | 0.078279             |
| 42       | 114       | 12593 CT DAY10                   | U        | l      | 1             | 81341            | 0.442583             |
| 43       | 115       | 12609 HA DAY10                   | U        | 1      | 1             | 131861           | 0.716995             |
| 44       | 116       | 12609 CT DAY10                   | U        | 1      | 1             | 259474           | 1.410171             |
| 45       | 117       | 12610 HA DAY10                   | U        | 1      | 1             | 103750           | 0.564305             |
| 46       | 118       | 12610 CT DAY10                   | U        | 1      | 1             | 125867           | 0.684440             |
| 47       | 119       | 12615 HA DAY10                   | U        | 1      | 1             | 41639            | 0.226924             |
| 48       | 120       | 12615 CT DAY10                   | U        | 1      | 1             | 112056           | 0.609421             |
|          | 3         | CCA                              | U        | l      | 1             | 853959           | 4.639331             |
|          | ı         | CCB                              | U        | 1      | 1             | 210              | 0.001889             |
| В        | 0         | Baseline                         | RB       | 1      | 1             | 0                | 0.000748             |



File name: F:\FLOW\_4\102799D.RST Date: October 26, 1999 Operator: LKS 27

| Cup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _        |     | 210      |          |   |        |         |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|----------|----------|---|--------|---------|--------------|
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | Cup | Name     | Type Dil |   | Wt<br> | Height  | Calc. (mg/L) |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7        | 2   | Sync     | SYNC     | 7 | ·      | 1828142 | . 10 004595  |
| 3 0 Carryover CO 1 1 682 0.002375 3 0 Baseline RB 1 1 0 0 -0.001356 6 1 Cal 0 C 1 1 495 0.00355 7 2 Cal 1 C 1 1 1827302 10.000000 3 0 Blank U 1 1 -843 -0.005968 10 0 2 ICV U 1 1 186458 10.104847 11 1 ICB U 1 1 1846458 10.104847 11 1 ICB U 1 1 1 1846458 10.104847 11 1 ICB U 1 1 1 182528 0.286144 14 32 12611 CT DAY10 U 1 1 1 52528 0.286144 14 32 12611 CT DAY10 U 1 1 1 139074 0.759838 15 33 12612 HA DAY10 U 1 1 1 104208 0.569004 16 34 12612 CT DAY10 U 1 1 1 162598 0.448412 17 35 12613 HA DAY10 U 1 1 1 163397 0.745184 19 37 12614 HA DAY10 U 1 1 1 163397 0.745184 19 37 12614 HA DAY10 U 1 1 1 163397 0.745184 19 37 12614 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 1 195324 1.067707 21 39 12622 CT DAY10 U 1 1 1 195324 1.067707 21 39 12622 CT DAY10 U 1 1 1 195324 1.067707 21 39 12622 CT DAY10 U 1 1 1 104208 0.328016 22 40 12622 CT DAY10 U 1 1 1 166178 0.328016 23 3 CCV U 1 1 1 168841 0.922760 24 1 2638 HA DAY10 U 1 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 1 168841 0.9227760 27 42 12638 CT DAY10 U 1 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 1 168620 0.802235 28 44 12659 CT DAY10 U 1 1 1 168620 0.802235 29 44 12659 CT DAY10 U 1 1 1 168620 0.802235 20 48 12640 CT DAY10 U 1 1 1 166620 0.802235 20 44 12659 CT DAY10 U 1 1 1 168680 0.425679 21 1 CCB U 1 1 1 155300 0.30318 22 47 12644 HA DAY10 U 1 1 1 166620 0.802235 24 45 12640 CT DAY10 U 1 1 1 166620 0.802235 25 50 12557 10/19 U 1 1 1 136636 0.60535381 20 45 12640 CT DAY10 U 1 1 1 166620 0.80535381 20 45 12640 CT DAY10 U 1 1 1 166620 0.80535381 20 45 12640 CT DAY10 U 1 1 1 166620 0.80535381 20 45 12640 CT DAY10 U 1 1 1 166620 0.80535381 20 45 12640 CT DAY10 U 1 1 1 166620 0.80535381 20 45 12650 10/19 U 1 1 1 166666 0.805553 20 12550 10/19 U 1 1 1 126616 0.527453 21 1 CCB U 1 1 1 166666 0.805553 22 50 12550 10/19 U 1 1 1 166666 0.805553 23 12550 10/19 U 1 1 1 166666 0.80555 |          |     |          |          |   |        |         |              |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |          |          |   |        |         |              |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | פ        |     |          |          |   | _      |         |              |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ה<br>ה   |     |          |          |   | _      |         |              |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u> | _   |          |          |   |        | -       |              |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |          |          |   |        |         |              |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |          |          |   |        |         |              |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |          |          |   | _      |         |              |
| 11 I CB U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |     |          |          |   |        |         |              |
| 122 3 LCS U 1 1 55528 0.286144 14 32 12611 HA DAY10 U 1 1 152528 0.286144 14 32 12612 CT DAY10 U 1 1 139074 0.7559838 15 33 12612 HA DAY10 U 1 1 104208 0.565004 16 34 12612 CT DAY10 U 1 1 1 62175 0.448412 17 35 12613 HA DAY10 U 1 1 1 76558 0.417885 18 36 12613 CT DAY10 U 1 1 1 76558 0.417885 18 36 12613 CT DAY10 U 1 1 1 36397 0.745184 19 37 12614 HA DAY10 U 1 1 1 195324 1.067707 20 38 12614 CT DAY10 U 1 1 1 995324 1.067707 21 39 12622 HA DAY10 U 1 1 1 998992 5.466417 22 40 12622 CT DAY10 U 1 1 1 32205 0.722242 23 3 CCV U 1 1 1 998992 5.466417 24 12638 CT DAY10 U 1 1 1 168641 0.922760 26 41 12638 CT DAY10 U 1 1 166841 0.922760 27 42 12638 CT DAY10 U 1 1 166841 0.922760 38 42 12640 HA DAY10 U 1 1 166841 0.922760 39 44 12639 CT DAY10 U 1 1 166841 0.922760 39 44 12639 CT DAY10 U 1 1 166841 0.922760 30 45 12640 HA DAY10 U 1 1 172681 0.943775 30 45 12640 HA DAY10 U 1 1 166847 0.419249 31 46 12640 CT DAY10 U 1 1 176687 0.35831 32 47 12641 HA DAY10 U 1 1 1 55300 0.301318 32 47 12641 HA DAY10 U 1 1 1 55300 0.301318 32 47 12641 HA DAY10 U 1 1 1 309039 1.59013 34 49 12546 10/19 U 1 1 1 309039 1.59013 35 50 12547 10/19 U 1 1 1 982633 5.376822 37 1 CCB U 1 1 1 982633 5.376822 37 1 CCB U 1 1 1 982633 5.376822 37 1 CCB U 1 1 1 982633 5.376822 37 1 CCB U 1 1 1 98263 5.376822 37 1 CCB U 1 1 1 98263 5.376822 37 1 CCB U 1 1 1 982663 5.376822 37 1 CCB U 1 1 1 982663 5.376822 37 1 CCB U 1 1 1 982663 5.366863 42 54 12551 10/19 U 1 1 1 152816 0.855053 44 56 12589 10/19 U 1 1 1 19606 0.652191 45 57 12590 10/19 U 1 1 1 19606 0.652191 46 58 12591 10/19 U 1 1 1 19606 0.652191 47 59 12592 10/19 U 1 1 1 196593 5.026368 49 3 CCV U 1 1 1 196593 5.026368                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |          |          |   |        |         |              |
| 13 31 12611 HA DAY10 U 1 1 139074 0.759838 15 33 12612 HA DAY10 U 1 1 104208 0.569004 16 34 12612 CT DAY10 U 1 1 1 04208 0.569004 16 34 12612 CT DAY10 U 1 1 1 62175 0.448412 17 35 12613 HA DAY10 U 1 1 1 76598 0.417885 18 36 12613 CT DAY10 U 1 1 1 76598 0.417885 18 36 12613 CT DAY10 U 1 1 1 76058 0.425879 0.745184 19 37 12614 HA DAY10 U 1 1 1 76058 0.425879 10 38 12614 CT DAY10 U 1 1 1 195324 1.067707 12 1 39 12622 HA DAY10 U 1 1 1 195324 1.067707 12 1 39 12622 HA DAY10 U 1 1 1 132205 0.722242 1 1 067707 1 1 1 132205 0.722242 1 1 067707 1 1 1 132205 0.722242 1 1 067707 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |          |          |   |        |         |              |
| 14 32 12611 CT DAY10 U 1 1 104208 0.569004 16 34 12612 CT DAY10 U 1 1 104208 0.569004 17 35 12613 HA DAY10 U 1 1 1 76598 0.417885 18 36 12613 CT DAY10 U 1 1 176058 0.425879 19 37 12614 HA DAY10 U 1 1 176058 0.425879 20 38 12612 CT DAY10 U 1 1 195524 1.667707 21 399 12622 HA DAY10 U 1 1 195524 1.667707 21 399 12622 HA DAY10 U 1 1 1 998992 5.466417 22 40 12622 CT DAY10 U 1 1 1 998992 5.466417 21 1 CCB U 1 1 1 16881 0.922760 23 3 CCV U 1 1 1 16881 0.922760 24 1 12638 HA DAY10 U 1 1 1 168841 0.922760 26 41 12638 HA DAY10 U 1 1 1 166841 0.922760 27 42 12638 CT DAY10 U 1 1 166841 0.922760 28 43 12639 HA DAY10 U 1 1 166841 0.922760 29 44 12639 CT DAY10 U 1 1 168841 0.922760 30 45 12640 HA DAY10 U 1 1 168841 0.922760 31 46 12640 HA DAY10 U 1 1 168895 0.353831 0.45 12640 HA DAY10 U 1 1 176847 0.419249 31 46 12640 HA DAY10 U 1 1 176847 0.419249 31 46 12640 CT DAY10 U 1 1 176847 0.419249 31 47 12641 HA DAY10 U 1 1 1 98620 0.301318 32 47 12641 HA DAY10 U 1 1 1 98620 0.301318 32 47 12641 HA DAY10 U 1 1 1 98620 0.301318 33 48 12641 CT DAY10 U 1 1 1 98620 0.301318 34 49 12556 100/19 U 1 1 1 98620 0.301318 35 50 12547 10/19 U 1 1 1 98620 0.301338 36 37 1 CCB U 1 1 1 98620 0.30385 39 51 12548 10/19 U 1 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 1 304925 1.667588 41 55 12552 10/19 U 1 1 1 304925 1.667588 41 55 12552 10/19 U 1 1 1 304925 1.667588 41 55 12552 10/19 U 1 1 1 19406 0.552191 45 57 12590 10/19 U 1 1 1 19406 0.552191 46 60 12589 10/19 U 1 1 1 19406 0.552191 47 59 12552 10/19 U 1 1 1 195599 3.036863 48 60 12593 10/19 U 1 1 1 555099 3.036863 49 3 CCV U 1 1 1 985992 1.585416 48 60 12593 10/19 U 1 1 1 555099 3.036863                                                                                                                                                                                                                                                                                                                                                                                                                               |          |     |          |          |   |        |         |              |
| 15 33 12612 HA DAY10 U 1 1 104208 0.569004 16 34 12612 CT DAY10 U 1 1 182175 0.448412 17 35 12613 HA DAY10 U 1 1 76598 0.417885 18 36 12613 CT DAY10 U 1 1 136397 0.745184 19 37 12614 HA DAY10 U 1 1 155324 1.067707 20 38 12614 CT DAY10 U 1 1 155324 1.067707 21 39 12622 HA DAY10 U 1 1 132205 0.722242 2 40 12622 CT DAY10 U 1 1 132205 0.722242 2 1 CCB U 1 1 196892 5.466417 2 1 CCB U 1 1 166841 0.922760 27 42 12638 HA DAY10 U 1 1 166841 0.922760 27 42 12638 CT DAY10 U 1 1 166841 0.922760 27 42 12639 CT DAY10 U 1 1 166841 0.922760 28 43 12639 HA DAY10 U 1 1 166895 0.353831 30 45 12640 HA DAY10 U 1 1 166895 0.353831 30 45 12640 CT DAY10 U 1 1 166847 0.419249 31 46 12640 CT DAY10 U 1 1 166847 0.419249 31 46 12640 CT DAY10 U 1 1 166847 0.419249 31 46 12640 CT DAY10 U 1 1 166847 0.419249 31 46 12640 CT DAY10 U 1 1 166847 0.419249 31 46 12640 CT DAY10 U 1 1 166847 0.419249 31 46 12640 CT DAY10 U 1 1 166847 0.419249 31 46 12640 CT DAY10 U 1 1 166847 0.419249 31 48 12641 CT DAY10 U 1 1 176847 0.419249 31 49 12546 10/19 U 1 1 1766682 36 3 CCV U 1 1 1766682 37 1 CCB U 1 1 176658 4.129107 39 51 12547 10/19 U 1 1 1766682 49 1 25550 10/19 U 1 1 176658 4.129107 40 52 12549 10/19 U 1 1 176658 4.129107 41 53 12550 10/19 U 1 1 1766668 42 54 12551 10/19 U 1 1 176666 0.527453 43 12592 10/19 U 1 1 152816 0.835053 44 55 12552 10/19 U 1 1 152816 0.835053 45 55 12552 10/19 U 1 1 152816 0.835053 46 58 12551 10/19 U 1 1 152816 0.835053 47 59 12592 10/19 U 1 1 1528616 0.835053 48 60 12593 10/19 U 1 1 1528616 0.835053 49 3 CCV U 1 1 1 555099 3.036863 49 3 CCV U 1 1 1 555099 3.036863 49 3 CCV U 1 1 1 555099 3.036863                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |     |          |          |   |        |         |              |
| 16 34 12612 CT DAY10 U 1 1 76598 0.448412 17 35 12613 HA DAY10 U 1 1 1 76598 0.417885 18 36 12613 CT DAY10 U 1 1 136397 0.745184 19 37 12614 HA DAY10 U 1 1 176058 0.425879 20 38 12614 CT DAY10 U 1 1 153324 1.067707 21 39 12622 HA DAY10 U 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 195324 1.067707 21 39 12622 CT DAY10 U 1 1 1989892 5.466417 22 40 12622 CT DAY10 U 1 1 1998992 5.466417 2 1 CCB U 1 1 1-1003 -0.006847 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |     |          |          |   |        |         |              |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |          |          | 1 |        |         |              |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |          |          | 1 |        |         |              |
| 19 37 12614 HA DAY10 U 1 1 76058 0.425879 20 38 12614 CT DAY10 U 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 60178 0.328016 22 40 12622 CT DAY10 U 1 1 1958592 5.466417 2 1 CCB U 1 1 998592 5.466417 2 1 CCB U 1 1 -1003 -0.006847 3 0 Baseline RB 1 0 -0.001356 26 41 12638 HA DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 168841 0.922760 28 43 12639 HA DAY10 U 1 1 168840 0.802255 29 44 12639 CT DAY10 U 1 1 64895 0.353831 30 45 12640 HA DAY10 U 1 1 64895 0.353831 30 45 12640 HA DAY10 U 1 1 55300 0.301318 32 47 12641 HA DAY10 U 1 1 155300 0.301318 32 47 12641 HA DAY10 U 1 1 168670 6.21684 33 48 12641 CT DAY10 U 1 1 156070 6.21688 34 49 12546 10/19 U 1 1 256130 1.400515 35 50 12547 10/19 U 1 1 256130 1.400515 36 3 CCV U 1 1 1982623 5.376822 37 1 CCB U 1 1 76458 4.129107 40 52 12549 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 326616 0.527453 44 56 12589 10/19 U 1 1 326616 0.652191 45 57 12592 10/19 U 1 1 326616 0.652191 46 58 125591 10/19 U 1 1 3289912 1.585416 47 59 12592 10/19 U 1 1 986516 0.527453 47 59 12592 10/19 U 1 1 986593 5.026368 49 3 CCV U 1 1 985593 5.026368 1 CCB U 1 1 985593 5.026368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |     |          |          | 1 |        |         |              |
| 20 38 12614 CT DAY10 U 1 1 195324 1.067707 21 39 12622 HA DAY10 U 1 1 160178 0.328016 22 40 12622 CT DAY10 U 1 1 132205 0.722242 23 3 CCV U 1 1 1998992 5.466417 2 1 CCB U 1 1 1-1003 -0.006847 3 0 Baseline RB 1 1 0 0 -0.001356 26 41 12638 HA DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 166841 0.922760 27 42 12638 CT DAY10 U 1 1 166841 0.922760 28 43 12639 HA DAY10 U 1 1 166820 0.802235 29 44 12639 CT DAY10 U 1 1 66895 0.353831 30 45 12640 HA DAY10 U 1 1 66895 0.353831 30 45 12640 CT DAY10 U 1 1 176847 0.419249 31 46 12640 CT DAY10 U 1 1 155300 0.301318 32 47 12641 HA DAY10 U 1 1 355631 1.726184 33 48 12641 CT DAY10 U 1 1 315631 1.726184 34 49 12546 10/19 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 136070 6.216682 37 1 CCB U 1 1 786263 5.376822 37 1 CCB U 1 1 786263 5.376822 37 1 CCB U 1 1 786558 4.129107 40 52 12549 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 43 55 12552 10/19 U 1 1 352618 0.191553 44 56 12589 10/19 U 1 1 352618 0.191553 45 57 12590 10/19 U 1 1 1278030 1.520385 46 58 12551 10/19 U 1 1 1289912 1.585416 47 59 12592 10/19 U 1 1 1289912 1.585416 48 60 12593 10/19 U 1 1 1289912 1.585416 48 60 12593 10/19 U 1 1 196593 5.026368 49 3 CCV U 1 1 196593 5.026368 49 3 CCV U 1 1 196593 5.026368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |     |          |          | 1 |        |         |              |
| 21 39 12622 HA DAY10 U 1 1 60178 0.328016 22 40 12622 CT DAY10 U 1 1 132205 0.722242 23 3 CCV U 1 1 1 998992 5.466417 2 1 CCB U 1 1 1-1003 -0.006847 3 0 Baseline RB 1 1 0 0 -0.001356 26 41 12638 HA DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 176881 0.943775 28 43 12639 HA DAY10 U 1 1 146820 0.802255 29 44 12639 CT DAY10 U 1 1 1 64895 0.353831 30 45 12640 HA DAY10 U 1 1 1 76847 0.419249 31 46 12640 CT DAY10 U 1 1 55300 0.301318 32 47 12641 HA DAY10 U 1 1 1 55300 0.301318 32 47 12641 HA DAY10 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1 256130 1.400515 35 50 12547 10/19 U 1 1 1266130 1.400515 36 3 CCV U 1 1 1 982623 5.376822 37 1 CCB U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 42 54 12551 10/19 U 1 1 304925 1.667588 43 55 12552 10/19 U 1 1 304925 1.667588 44 56 12589 10/19 U 1 1 35264 0.191653 45 57 12590 10/19 U 1 1 1278030 1.520385 46 58 12591 10/19 U 1 1 152816 0.835053 47 59 12592 10/19 U 1 1 152816 0.835053 48 60 12593 10/19 U 1 1 1585099 3.036663 49 3 CCV U 1 1 1 9916593 5.026368 40 1 CCB U 1 1 1 916593 5.026368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |     |          |          |   |        |         |              |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |          |          | 1 |        |         |              |
| 23 3 CCV U 1 1 1 998992 5.466417 2 1 CCB U 1 1 1 -1003 -0.006847 3 0 Baseline RB 1 1 1 0 0 -0.001356 26 41 12638 HA DAY10 U 1 1 166841 0.922760 27 42 12638 CT DAY10 U 1 1 172681 0.943775 28 43 12639 HA DAY10 U 1 1 146820 0.802235 29 44 12639 CT DAY10 U 1 1 164847 0.419249 31 46 12640 HA DAY10 U 1 1 76847 0.419249 31 46 12640 CT DAY10 U 1 1 55300 0.301318 32 47 12641 HA DAY10 U 1 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 256130 1.400515 35 50 12547 10/19 U 1 1 1266130 1.400515 36 3 CCV U 1 1 1982623 5.376822 37 1 CCB U 1 1 982623 5.376822 37 1 CCB U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 304925 1.6667588 41 53 12550 10/19 U 1 1 304925 1.6667584 42 54 12551 10/19 U 1 1 326030 1.520385 43 55 12552 10/19 U 1 1 326030 1.520385 44 56 12589 10/19 U 1 1 1986616 0.835053 45 57 12590 10/19 U 1 1 196616 0.652191 46 60 12593 10/19 U 1 1 198593 5.026368 47 59 12592 10/19 U 1 1 198593 5.026368 48 60 12593 10/19 U 1 1 555099 3.0366630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |     |          |          | 1 |        |         |              |
| 1 CCB U 1 1 1 -1003 -0.006847  Baseline RB 1 1 0 0 -0.001356 26 41 12638 HA DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 172681 0.943775 28 43 12639 HA DAY10 U 1 1 146820 0.802235 29 44 12639 CT DAY10 U 1 1 64895 0.353831 30 45 12640 HA DAY10 U 1 1 76847 0.419249 31 46 12640 CT DAY10 U 1 1 55300 0.301318 32 47 12641 HA DAY10 U 1 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 256130 1.400515 50 12547 10/19 U 1 1 126070 6.216682 36 3 CCV U 1 1 182623 5.376822 37 1 CCB U 1 1 982623 5.376822 37 1 CCB U 1 1 754658 4.129107 30 Baseline RB 1 1 0 0 -0.001356 39 51 12548 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 1278030 1.520385 43 55 12552 10/19 U 1 1 35264 0.191653 44 56 12589 10/19 U 1 1 196616 0.652191 45 57 12590 10/19 U 1 1 152816 0.835053 46 58 12591 10/19 U 1 1 152816 0.835053 47 59 12592 10/19 U 1 1 152816 0.835053 48 60 12593 10/19 U 1 1 1585099 3.036863 49 3 CCV U 1 1 198593 5.026368 1 CCB U 1 1 198593 5.026368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |     |          |          | 1 |        |         |              |
| 0 Baseline RB 1 1 0 -0.001356 26 41 12638 HA DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 172681 0.943775 28 43 12639 HA DAY10 U 1 1 146820 0.802235 29 44 12639 CT DAY10 U 1 1 64895 0.353831 30 45 12640 HA DAY10 U 1 1 76847 0.419249 31 46 12640 CT DAY10 U 1 1 55300 0.301318 32 47 12641 HA DAY10 U 1 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 309039 1.690103 35 50 12547 10/19 U 1 1 1266130 1.400515 36 3 CCV U 1 1 982623 5.376822 37 1 CCB U 1 1 982623 5.376822 37 1 CCB U 1 1 754658 4.129107 40 52 12548 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 278030 1.520385 44 56 12589 10/19 U 1 1 129406 0.652191 45 57 12590 10/19 U 1 1 192406 0.652191 45 57 12590 10/19 U 1 1 152816 0.835053 46 58 12591 10/19 U 1 1 152816 0.835053 46 58 12591 10/19 U 1 1 152816 0.835053 46 58 12591 10/19 U 1 1 152816 0.835053 47 59 12592 10/19 U 1 1 152816 0.835053 48 60 12593 10/19 U 1 1 1589912 1.585416 49 3 CCV U 1 1 1916593 5.026368 1 CCB U 1 1 1916593 5.026368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |     |          |          | 1 |        |         |              |
| 26 41 12638 HA DAY10 U 1 1 168841 0.922760 27 42 12638 CT DAY10 U 1 1 172681 0.943775 28 43 12639 HA DAY10 U 1 1 166820 0.802235 29 44 12639 CT DAY10 U 1 1 166895 0.353831 30 45 12640 HA DAY10 U 1 1 76847 0.419249 31 46 12640 CT DAY10 U 1 1 155300 0.301318 32 47 12641 HA DAY10 U 1 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 1266130 1.400515 35 50 12547 10/19 U 1 1 126670 6.216682 36 3 CCV U 1 1 1982623 5.376822 37 1 CCB U 1 1 982623 5.376822 37 1 CCB U 1 1 754658 4.129107 40 52 12548 10/19 U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 41 53 12551 10/19 U 1 1 304925 1.667588 41 53 12551 10/19 U 1 1 304925 1.667588 41 53 12551 10/19 U 1 1 1276030 1.520385 44 56 12589 10/19 U 1 1 128064 0.191653 44 56 12589 10/19 U 1 1 152816 0.835053 45 58 12591 10/19 U 1 1 152816 0.835053 46 58 12591 10/19 U 1 1 196616 0.527453 47 59 12592 10/19 U 1 1 196593 5.026368 49 3 CCV U 1 1 196593 5.026368 1 CCB U 1 1 198593 5.026368 1 CCB U 1 1 198593 5.026368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |     |          |          |   | l      | -1003   |              |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |          |          |   |        |         |              |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |          |          |   | l      |         | 0.922760     |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |          |          |   | ı      |         | 0.943775     |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |          |          |   | 1      |         |              |
| 31 46 12640 CT DAY10 U 1 1 55300 0.301318 32 47 12641 HA DAY10 U 1 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 256130 1.400515 35 50 12547 10/19 U 1 1 1982623 5.376822 36 3 CCV U 1 1 1 982623 5.376822 37 1 CCB U 1 1 2 982623 5.376822 38 0 Baseline RB 1 1 0 0 -0.001796 3 0 Baseline RB 1 1 0 0 -0.001356 39 51 12548 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 278030 1.520385 42 54 12551 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 19406 0.652191 45 57 12590 10/19 U 1 1 152816 0.835053 46 58 12591 10/19 U 1 1 289912 1.585416 48 60 12593 10/19 U 1 1 289912 1.585416 48 60 12593 10/19 U 1 1 555099 3.036863 49 3 CCV U 1 1 918593 5.026368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |     |          |          | l | 1      |         | 0.353831     |
| 32 47 12641 HA DAY10 U 1 315631 1.726184 33 48 12641 CT DAY10 U 1 1 309039 1.690103 34 49 12546 10/19 U 1 1 256130 1.400515 35 50 12547 10/19 U 1 1 136070 6.216682 36 3 CCV U 1 1 1 982623 5.376822 37 1 CCB U 1 1 754658 4.129107 40 52 12548 10/19 U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 278030 1.520385 42 54 12551 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 35264 0.191653 44 56 12589 10/19 U 1 1 152816 0.652191 45 57 12590 10/19 U 1 1 152816 0.835053 46 58 12591 10/19 U 1 1 289912 1.585416 47 59 12592 10/19 U 1 1 289912 1.585416 48 60 12593 10/19 U 1 1 555099 3.036863 49 3 CCV U 1 1 916593 5.026368 49 3 CCV U 1 1 916593 5.026368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |     |          |          |   | 1      |         | 0.419249     |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |          |          |   | l      |         | 0.301318     |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |          |          |   | ı      |         | 1.726184     |
| 35 50 12547 10/19 U 1 1136070 6.216682 36 3 CCV U 1 1 982623 5.376822 37 1 CCB U 1 1 -81 -0.001796 3 0 Baseline RB 1 1 0 -0.001356 39 51 12548 10/19 U 1 1 754658 4.129107 40 52 12549 10/19 U 1 1 304925 1.667588 41 53 12550 10/19 U 1 1 400111 2.188566 42 54 12551 10/19 U 1 1 278030 1.520385 43 55 12552 10/19 U 1 1 35264 0.191653 44 56 12589 10/19 U 1 1 19406 0.652191 45 57 12590 10/19 U 1 1 152816 0.835053 46 58 12591 10/19 U 1 1 96616 0.527453 47 59 12592 10/19 U 1 1 289912 1.585416 48 60 12593 10/19 U 1 1 555099 3.036863 49 3 CCV U 1 1 918593 5.026368 1 CCB U 1 1 133 -0.000630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |     |          |          |   |        |         | 1.690103     |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     | _        |          |   |        |         |              |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |          |          |   | ı      |         |              |
| 3       0       Baseline       RB       1       1       0       -0.001356         39       51       12548 10/19       U       1       1       754658       4.129107         40       52       12549 10/19       U       1       1       304925       1.667588         41       53       12550 10/19       U       1       1       400111       2.188566         42       54       12551 10/19       U       1       1       278030       1.520385         43       55       12552 10/19       U       1       1       35264       0.191653         44       56       12589 10/19       U       1       1       119406       0.652191         45       57       12590 10/19       U       1       1       152816       0.835053         46       58       12591 10/19       U       1       1       289912       1.585416         48       60       12593 10/19       U       1       1       289912       1.585416         48       60       12593 10/19       U       1       1       918593       5.026368         49       3       CCV       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |          |          | 1 | 1      |         |              |
| 39 51 12548 10/19 U 1 1 754658 4.129107<br>40 52 12549 10/19 U 1 1 304925 1.667588<br>41 53 12550 10/19 U 1 1 400111 2.188566<br>42 54 12551 10/19 U 1 1 278030 1.520385<br>43 55 12552 10/19 U 1 1 35264 0.191653<br>44 56 12589 10/19 U 1 1 19406 0.652191<br>45 57 12590 10/19 U 1 1 152816 0.835053<br>46 58 12591 10/19 U 1 1 96616 0.527453<br>47 59 12592 10/19 U 1 1 289912 1.585416<br>48 60 12593 10/19 U 1 1 555099 3.036863<br>49 3 CCV U 1 1 918593 5.026368<br>1 CCB U 1 1 133 -0.000630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |     |          |          |   | 1      |         |              |
| 10 52 12549 10/19 U 1 1 304925 1.667588<br>11 53 12550 10/19 U 1 1 400111 2.188566<br>12 54 12551 10/19 U 1 1 278030 1.520385<br>13 55 12552 10/19 U 1 1 35264 0.191653<br>14 56 12589 10/19 U 1 1 19406 0.652191<br>15 57 12590 10/19 U 1 1 152816 0.835053<br>16 58 12591 10/19 U 1 1 96616 0.527453<br>17 59 12592 10/19 U 1 1 289912 1.585416<br>18 60 12593 10/19 U 1 1 555099 3.036863<br>19 3 CCV U 1 1 918593 5.026368<br>1 CCB U 1 1 133 -0.000630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |     |          |          | 1 | 1      |         | -0.001356    |
| 41       53       12550 10/19       U       1       1       400111       2.188566         42       54       12551 10/19       U       1       1       278030       1.520385         43       55       12552 10/19       U       1       1       35264       0.191653         44       56       12589 10/19       U       1       1       119406       0.652191         45       57       12590 10/19       U       1       1       152816       0.835053         46       58       12591 10/19       U       1       1       96616       0.527453         47       59       12592 10/19       U       1       1       289912       1.585416         48       60       12593 10/19       U       1       1       555099       3.036863         49       3       CCV       U       1       1       918593       5.026368         1       CCB       U       1       1       133       -0.000630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |     |          |          |   | ı      |         | 4.129107     |
| 42       54       12551 10/19       U       1       1       278030       1.520385         43       55       12552 10/19       U       1       1       35264       0.191653         44       56       12589 10/19       U       1       1 19406       0.652191         45       57       12590 10/19       U       1       1 52816       0.835053         46       58       12591 10/19       U       1       1 96616       0.527453         47       59       12592 10/19       U       1       1 289912       1.585416         48       60       12593 10/19       U       1       1 555099       3.036863         49       3       CCV       U       1       1 918593       5.026368         1       CCB       U       1       1 133       -0.000630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |     |          |          |   | 1      | 304925  | 1.667588     |
| 43       55       12552 10/19       U       1       1       35264       0.191653         44       56       12589 10/19       U       1       1 129406       0.652191         45       57       12590 10/19       U       1       1 52816       0.835053         46       58       12591 10/19       U       1       1 96616       0.527453         47       59       12592 10/19       U       1       1 289912       1.585416         48       60       12593 10/19       U       1       1 555099       3.036863         49       3       CCV       U       1       1 918593       5.026368         1       CCB       U       1       1 133       -0.000630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |     |          |          | 1 | 1      |         | 2.188566     |
| 47       59       12592       10/19       U       1       1       289912       1.585416         48       60       12593       10/19       U       1       1       555099       3.036863         49       3       CCV       U       1       1       918593       5.026368         1       1       CCB       U       1       1       133       -0.000630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |     |          |          |   | ב      |         | 1.520385     |
| 47       59       12592       10/19       U       1       1       289912       1.585416         48       60       12593       10/19       U       1       1       555099       3.036863         49       3       CCV       U       1       1       918593       5.026368         1       1       CCB       U       1       1       133       -0.000630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |     |          | Ū        |   | 1      |         | 0.191653     |
| 47       59       12592       10/19       U       1       1       289912       1.585416         48       60       12593       10/19       U       1       1       555099       3.036863         49       3       CCV       U       1       1       918593       5.026368         1       1       CCB       U       1       1       133       -0.000630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |     |          |          |   | 1      |         | 0.652191     |
| 47       59       12592       10/19       U       1       1       289912       1.585416         48       60       12593       10/19       U       1       1       555099       3.036863         49       3       CCV       U       1       1       918593       5.026368         1       1       CCB       U       1       1       133       -0.000630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |     |          |          |   | 1      | 152816  | 0.835053     |
| 47       59       12592       10/19       U       1       1       289912       1.585416         48       60       12593       10/19       U       1       1       555099       3.036863         49       3       CCV       U       1       1       918593       5.026368         1       1       CCB       U       1       1       133       -0.000630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |     |          |          |   | ı      |         | 0.527453     |
| 49 3 CCV U 1 1 918593 5.026368<br>1 CCB U 1 1 133 -0.000630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |     |          |          |   | 1      |         | 1.585416     |
| 1 CCB U 1 1 133 -0.000630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |     |          |          |   |        | 555099  | 3.036863     |
| 1 CCB U 1 1 133 -0.000630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49       |     |          |          |   | 1      | 918593  | 5.026368     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1   |          |          |   |        | 133     | -0.000630    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3        | 0   | Baseline | RB       | 1 |        | 0       | -0.001356    |



File name: E:\FLOW\_4\102799E.RST Date: October 28, 1999

Operator: LKS

| <b>↓</b> k   | Cup        | Name           | Type Dil | Wt       |          | Height  | Calc. (mg/L) |
|--------------|------------|----------------|----------|----------|----------|---------|--------------|
| 1            | 2          | Sync           | SYNC     | 1        | 1        | 1827617 | 10.001991    |
| 2            | 0          | Carryover      | CO       | 1        | 1        | 25041   | 0.136264     |
| 3            | 0          | Carryover      | CO       | 1        | 1        | 756     | 0.003350     |
| В            | 0          | Baseline       | RB       | 1        | 1        | 0       | 0.000789     |
| В            | 0          | Baseline       | RB       | 1        | 1        | 0       | -0.000789    |
| 6            | 1          | Cal 0          | С        | 1        | 1        | 288     | 0.000787     |
| 7            | 2          | Cal 1          | С        | 1        | 1        | 1827253 | 10.000001    |
| 8            | Ö          | Blank          | Ū        | 1        | ı        | -47     | -0.001044    |
| В            | 0          | Baseline       | RB       | 1        | 1        | 0       | -0.000789    |
| 10           | 2          | ICV            | Ŭ        | 1        | 1        | 1820698 | 9.964125     |
| 11           | 1          | ICB            | U        | <u>1</u> | 1        | 474     | 0.001807     |
| 12           | 3          | LCS            | ์<br>บี  | ī        | 1        | 946075  | 5.177200     |
| 13           | 61         | 12609 10/19    | Ū        | 1        | ī        | 19572   | 0.106333     |
| 14           | 62         | 12610 10/19    | Ū        | 1        | ī        | 214916  | 1.175473     |
| 15           | 63         | 12611 10/20    | บี       | ī        | <u> </u> | 528736  | 2.893049     |
| 16           | 64         | 12612 10/20    | Ū        | 1        | <u>-</u> | 113899  | 0.622594     |
| 17           | 65         | 12613 10/20    | Ū        | 1        | 1        | 143349  | 0.783781     |
| 18           | 66         | 12614 10/20    | Ū        | 1        | ī        | 181478  | 0.992465     |
| 19           | 67         | 12622 10/20    | Ū        | ī        | ī        | 19245   | 0.104540     |
| 20           | 68         | 12589 HA 10/20 | Ū        | ī        | ì        | 107284  | 0.586392     |
| 21           | 69         | 12590 HA 10/20 | Ŭ        | 1        | 1        | 63518   | 0.346856     |
| 22           | 70         | 12591 HA 10/20 | Ŭ        | ī        | ì        | 62219   | 0.339743     |
| 53           | 3          | CCV            | Ū        | ĺ        | 1        | 996983  | 5.455823     |
| يد.<br>استان | 1          | CCB            | Ū        | 1        | 1        | 91      | -0.000289    |
|              | Ō          | Baseline       | RB       | ī        | 1        | 0       | -0.000789    |
| 26           | 7 <u>1</u> | 12692 HA 10/20 | Ŭ        | 1        | 1        | 133525  | 0.730012     |
| 27           | 72         | 12593 HA 10/20 | Ŭ        | 1        | 1        | 367392  | 2.009997     |
| 28           | 73         | 12609 HA 10/20 | Ŭ        | ī        | 1        | 2840    | 0.014754     |
| 29           | 74         | 12610 HA 10/20 | Ū        | 1        | ī        | 256203  | 1.401440     |
| 30           | 75         | 12615 HA 10/20 | บั       | ī        | ì        | 15254   | 0.082697     |
| 31           | 76         | 12664 HA 10/20 | Ū        | ī        | ī        | 3156    | 0.016483     |
| 32           | 77         | 12664 CT 10/20 | Ū        | 1        | ī        | 15207   | 0.082443     |
| 33           | 78         | 12665 HA 10/20 | Ŭ        | 1        | 1        | 327542  | 1.791890     |
| 34           | 79         | 12665 CT 10/20 | Ŭ        | ī        | ī        | 245075  | 1.340539     |
| 35           | 80         | 12666 HA 10/20 | Ū        | 1        | 1        | 413889  | 2.264477     |
| 36           | 3          | CCV CCV        | Ŭ        | ī        | 1        | 996484  | 5.453096     |
| 37           | 1          | CCB            | Ŭ        | ī        | ī        | 423     | 0.001527     |
| В            | 0          | Baseline       | RB       | ĺ        | 1        | 0       | -0.000789    |
| 39           | 81         | 12666 CT 10/20 | U        | ĺ        | 1        | 158879  | 0.868775     |
| 40           | 82         | 12668 HA 10/20 | Ŭ        | ĺ        | 1        | 104857  | 0.573109     |
| 41           | 83         | 12668 CT 10/20 | Ū        | ĺ        | 1        | 110728  | 0.605241     |
| 42           | 84         | 12671 HA 10/20 | Ŭ        | · 1      | 1        | 34611   | 0.188643     |
| 43           | 85         | 12671 HA 10/20 | Ū        | 1        | 1        | 55855   | 0.304911     |
| 43<br>44     | 3          | CCV CT 10/20   | Ŭ        | 1        | 1        | 1010641 | 5.530580     |
| 45           | 3<br>1     | CCB            | Ŭ        | 1        | 1        | 6481    | 0.034681     |
| 45<br>B      | 0          | Baseline       | RB       | 1        | 1        | 0401    | -0.000789    |
| Ð            | U          | Dasettije      | ΛD       | _        | 7        | U       | -0.000769    |

| ak | Cup | Flags |
|----|-----|-------|
|    |     |       |
| 1  | 2   |       |
| 2  | 0   |       |
| 3  | 0   |       |

| ABS                                  | NVW JWW                               |
|--------------------------------------|---------------------------------------|
| # Surie ID                           | 40.5 40.5                             |
| 2 6 5 6                              |                                       |
| 1. 18589 0                           |                                       |
| 2. 590 <sup>6</sup> 591 <sup>5</sup> |                                       |
| 3. 597 3<br>4. 592 3                 | · · · · · · /////                     |
| 5. 5°,3 °C                           | · · · · · · · · · · · · · · · · · · · |
| 6. 10609 3                           | <u> </u>                              |
| 7. 106.D &                           |                                       |
| 5 106.5 3                            |                                       |
| 9 2611 2                             |                                       |
| 10. 612 3                            |                                       |
| 11, 613 C                            | ·                                     |
| 17 6(Y 2                             |                                       |
| 13 12672 3                           |                                       |
| 17635 C                              | : '                                   |
| 15 17639                             |                                       |
| 12640 3                              |                                       |
| 17 1764 3                            | · · · · · · · · · · · · · · · · · · · |
| 16 12546 M                           |                                       |
|                                      |                                       |
| える。  が  を  が                         |                                       |
| ,                                    | 1, in 12/99                           |
|                                      |                                       |
| <del></del>                          |                                       |

| ABS                     | NVW                                   | JWW       |
|-------------------------|---------------------------------------|-----------|
| # Sample ID             | 40.5 ppm                              | 20-5      |
|                         |                                       |           |
| 1 12664 PW              |                                       |           |
| 2 ex3 65 PW             |                                       |           |
| 3 17671 PW<br>4 10546 M | ·                                     |           |
| 5 10 547 0              | · · · · · · · · · · · · · · · · · · · | )         |
| 6 10546 D               |                                       | /         |
| > 10549 P               |                                       |           |
| 6 550 Ø                 |                                       |           |
| 9 10 551 0              |                                       |           |
| 0 1552                  |                                       | -         |
| 11 72664 7              |                                       |           |
| 12 665 0<br>13 666 V    |                                       |           |
| 14 668 0                |                                       |           |
| 15 671 9                | V                                     |           |
|                         | WW                                    | 10/12/99. |
|                         | 10/12/99                              | ,         |
|                         |                                       |           |
|                         |                                       |           |

|                  | NVW                                       | Jun          |                                         |
|------------------|-------------------------------------------|--------------|-----------------------------------------|
|                  | < 0.5 pm5                                 | 20-5 p       | gm 5                                    |
| 1. 17549 Fr.     | ~                                         |              |                                         |
| Z 550 Pr         |                                           |              |                                         |
| 3. 12 551 PM     |                                           | <del> </del> |                                         |
| 16569 î.         |                                           |              |                                         |
| 5, 590 î         | <u>:/</u>                                 |              |                                         |
| 6 5918:          | ·<br>•                                    |              |                                         |
| = 592 FV         | •                                         |              |                                         |
| 593 F            | и<br>———————————————————————————————————— |              |                                         |
| 9, 10609 8:      |                                           |              |                                         |
| D. 12610 f.      |                                           |              |                                         |
| 1. 611 F.        | •                                         |              |                                         |
| 12. 612 ÎV       | ,                                         |              |                                         |
| 5. <u>613 î.</u> |                                           |              |                                         |
| Y. 614 F.        |                                           |              | - ·———————————————————————————————————— |
| 5. 12638 2:      | · · · · · · · · · · · · · · · · · · ·     |              |                                         |
| .c. 639 F.       |                                           |              |                                         |
| 7. 640 fr.       |                                           |              |                                         |
| 5. 64[E:         |                                           |              |                                         |
| 76665            | 1.0                                       | <u>.</u>     |                                         |
| 70. 176667       | · N                                       |              |                                         |
|                  | 100 mm                                    | 13/1/99      |                                         |
|                  | . •                                       |              |                                         |
| 5.0 pm           | K MS                                      |              |                                         |
| , •              |                                           |              |                                         |

| Client: Menzie-Cura & Assoc. Project: 99033        | BTR: 3615                         |
|----------------------------------------------------|-----------------------------------|
| • H. azteca acute test: 10/6/99 10/18/99; ALL SA   | omogenized sediment):<br>MPLES ゴム |
| • C. tentans acute test. 10/6/99                   |                                   |
| • H. azteca chronic test: 10/18/99; ALL SAMPLES JO | 5 for LS                          |
| • C. tentans chronic test: 18548, 12550, 12551; 16 | 118/99 JG for LS                  |

| 10/28/99 - Lozden sediments for aux males (12548, 12550, 12537, 12532, 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12593, 12609) | 12592, 12609) | 12592, 12609) | 12592, 12609) | 12592, 12609) | 12592, 12609) | 12592, 12609) | 12592, 12609) | 12592, 12609) | 12592, 12609) | 12592, 12609) | 12592, 12609) | 12609, 12609) | 12592, 12609) | 12609, 12609) | 12609, 12609) | 12609, 12609) | 12609, 12609) | 12609, 12609) | 12609, 12609) | 12609, 12609) | 12609, 12609) | 12609, 12609) | 12609, 12609) | 12609, 12609) | 12609, 12609, 12609) | 12609, 12609, 12609) | 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 12609, 126

| Sample<br>Number | porew<br>pH | porew<br>H2S | porew<br>Amm | Sediment Visual Characterization                                                                               |
|------------------|-------------|--------------|--------------|----------------------------------------------------------------------------------------------------------------|
| 12546            | 6.9         |              |              | Viscous mud, NO Overlying water                                                                                |
|                  |             |              |              |                                                                                                                |
| 12547            | 7.0         |              |              | Liquid, fine mud, Many freshwater gastropoids, removed visible gastropoids ide                                 |
|                  |             |              |              |                                                                                                                |
| 12548            | 7.0         |              |              | Liquid mud, gastropads present, removed Those visible 1016 Tm                                                  |
| 12549            | 7.0         |              |              | Soft mud, pine needles some overlying water                                                                    |
|                  |             |              |              |                                                                                                                |
| 12550            | 7.0         |              |              | soft mud with overlying water pine needles                                                                     |
| 12551            | 7.0         |              |              | Soft mud with overlying water                                                                                  |
|                  |             |              |              |                                                                                                                |
|                  |             |              |              |                                                                                                                |
|                  |             |              |              |                                                                                                                |
| 12552            | mic16199    |              | <u> </u>     | EPA artificial control sediment (77% med. and fine sand; 17% kaolinite clay; 5% 0.5 mm-sieved peat; 1% CaCO3). |
| LCS              | ), (0,      |              |              | Stored dry, then hydrated prior to addition to test chambers.                                                  |

Extract porewater, measure and record pH, decant and preserve sulfide and ammonia samples.

Entered by: 1 Date: 10 6 99

Reviewer: Date: 1/0/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

 $0 \ 0 \ 0 \ 0 \ 0 \ 0$ 

TM

| Client: Menzie- | Cura & Ass  | soc. Proj               | ect: 9903    | BTR: 3622 / 3629                                                                                               |
|-----------------|-------------|-------------------------|--------------|----------------------------------------------------------------------------------------------------------------|
|                 |             |                         |              | 100 mL homogenized sediment):                                                                                  |
| H. azteca acu   | ute test: 1 | 0/7/99 <sup>¥</sup> 16/ | 18/99 JG     | - TM (Hystells revest)                                                                                         |
| • C. tentans ac | cute test:  | 10/7/99                 |              |                                                                                                                |
| H. azteca chi   | ronic test: |                         |              | × 2.01. 12597                                                                                                  |
| • C. tentans ch | ronic test  | 10/18/9                 | 4: 185       | 92,12593,12609 TM Signed to remove                                                                             |
|                 |             | , ,                     | ,            | 1 TO I TELLE CICION INCL                                                                                       |
|                 | <del></del> |                         | <del>-</del> | (for C.t. only                                                                                                 |
| Sample          | porew       | porew                   | porew        |                                                                                                                |
| Number          | рН          | H2S                     | Amm          | Sediment Visual Characterization                                                                               |
| 12589           | 7.1         |                         | لل           | chrown muddy sediment with sticks an                                                                           |
| 12590           | 6,9         |                         | طا           | brown muddy sediment with sticks and brown chestive mud with veg mater                                         |
| 12591           | 69          |                         |              | brown mud with veg material                                                                                    |
| <b>★</b> 12592  | 7.1         |                         |              | cik, busin mud with little veg, mater                                                                          |
| 12593           | 7,0         |                         | ·            | black watery much w/petrolium-like oder.                                                                       |
| 12609           | 7.1         |                         |              | thick ik brown oshesive mud with y                                                                             |
| 12610           | 7.2         |                         |              | ak brown very thick ashesive mud whome veg.                                                                    |
|                 |             | ;<br>;                  |              | w/some veg.                                                                                                    |
|                 |             |                         |              | material                                                                                                       |
|                 | ;           | ,<br>,                  |              |                                                                                                                |
|                 |             |                         |              |                                                                                                                |
|                 |             |                         |              |                                                                                                                |
|                 |             | !                       |              |                                                                                                                |
|                 |             |                         |              |                                                                                                                |
|                 |             |                         | <u></u>      |                                                                                                                |
|                 |             |                         |              |                                                                                                                |
|                 |             |                         |              |                                                                                                                |
| 12615           |             | !                       | 1            | EPA artificial control sediment (77% med. and fine sand; 17% kaolinite clay; 5% 0.5 mm-sieved peat; 1% CaCO3). |
| LCS             |             | !<br>!                  | ,            | Stored dry, then hydrated prior to addition to test chambers.                                                  |

Extract porewater, measure and record pH, decant and preserve sulfide and ammonia samples.

Entered by: Date: 10 7 4 9

Reviewer Date 12/10/99
Laboratory Advetec Biological Sciences, South Burlington, Vermont

hasurwt.doc 10073

| Client: Menzie-Cura & Assoc. | Project: 99033 | BTR: | 3629 / 3633 |
|------------------------------|----------------|------|-------------|
|                              |                |      |             |

H. azteca acute test: 10/8/99C. tentans acute test: 10/8/99

H. azteca chronic test:C. tentans chronic test:

| Sample<br>Number | porew<br>pH | porew<br>H2S | porew<br>Amm | Sediment Visual Characterization                                                                               |
|------------------|-------------|--------------|--------------|----------------------------------------------------------------------------------------------------------------|
| 12611            | 6.8         |              |              | black mud w/leaf litter                                                                                        |
| 12612            | 7.7         |              |              | Fine Brown mud                                                                                                 |
| 12613            | 7.7         |              |              | Soft Brown mud                                                                                                 |
| 12614            | 7.5         |              |              | SOFT Brown mud                                                                                                 |
| 12638            | 7.6         |              |              | Soft Brown mud                                                                                                 |
| 12639            | 7.3         |              |              | sticks + leaves on top + through out cohesive mud, dark                                                        |
| 12640            | 7.2         |              |              | Sticks + leaf litter<br>Dark thick mud                                                                         |
| 12641            | 72          |              |              | SOFT Brown mud                                                                                                 |
|                  |             |              |              |                                                                                                                |
|                  |             |              |              |                                                                                                                |
|                  |             |              |              |                                                                                                                |
|                  |             |              |              |                                                                                                                |
|                  |             |              |              |                                                                                                                |
| 12622            |             |              |              | EPA artificial control sediment (77% med. and fine sand; 17% kaolinite clay; 5% 0.5 mm-sieved peat; 1% CaCO3). |
| LCS              |             | _ <u></u>    |              | Stored dry, then hydrated prior to addition to test chambers.                                                  |

Extract porewater, measure and record pH, decant and preserve sulfide and ammonia , samples.

sam Entered by: <u>116</u> Date: 10/8/99

Reviewer: \_\_\_\_\_ Date: \_\_\_(\(\mu/\left(1)\left(49\) Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

nasurwt.doc

| -Cura & Ass                                    | oc. Proj                                    | ject: 99033                                                                                                        | BTR: 3641                                                       |                                                                                                                                |
|------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| cute test: 10<br>ncute test: 1<br>nronic test: | /9/99                                       | hambers (100 ml                                                                                                    | . homogenized sediment):                                        |                                                                                                                                |
|                                                | Dorew                                       | norew                                                                                                              |                                                                 |                                                                                                                                |
|                                                | distributed<br>ute test: 10<br>cute test: 1 | distributed to test cute test: 10/9/99<br>cute test: 10/9/99<br>cute test: 10/9/99<br>pronic test:<br>hronic test: | cute test: 10/9/99 cute test: 10/9/99 cronic test: hronic test: | distributed to test chambers (100 mL homogenized sediment):  ute test: 10/9/99  cute test: 10/9/99  pronic test:  hronic test: |

| Sample<br>Number   | porew<br>pH | porew<br>H2S | porew<br>Amm | Sediment Visual Characterization                                                                                                                                             |
|--------------------|-------------|--------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12664              | 7.8         |              |              | fine cohesive and                                                                                                                                                            |
|                    |             |              |              |                                                                                                                                                                              |
| 12665              | 7.3         |              |              | fine soft mud                                                                                                                                                                |
|                    | ,           |              |              |                                                                                                                                                                              |
| 12666              | 7.5         |              |              | fine. Sticky/Cohesive mud                                                                                                                                                    |
|                    |             |              |              |                                                                                                                                                                              |
| -12667-56<br>12671 | 7.4         |              |              | fine, brown mud - chimomide present                                                                                                                                          |
|                    |             |              |              | ,                                                                                                                                                                            |
|                    |             |              |              |                                                                                                                                                                              |
|                    |             | :            | <del>-</del> | :<br>                                                                                                                                                                        |
|                    |             |              |              |                                                                                                                                                                              |
|                    | ,           |              |              |                                                                                                                                                                              |
|                    |             |              |              |                                                                                                                                                                              |
| 12668<br>LCS       |             |              |              | EPA artificial control sediment (77% med. and fine sand; 17% kaolinite clay; 5% 0.5 mm-sieved peat; 1% CaCO3). Stored dry, then hydrated prior to addition to test chambers. |

Extract porewater, measure and record pH, decant and preserve sulfide and ammonia samples.

Entered by:  $\frac{1 - \sqrt{3}}{\sqrt{9}} = \frac{1 - \sqrt{3}}{\sqrt{9}}$ 

Reviewer Date 11/5/94
Laboratory Aquatec Biological Sciences, South Burlington, Vermont

hasurvwt.doc $0.0\,7\,7\,$ 

# Preparation of Formulated Control Sediment for Freshwater Sediment Toxicity Tests

Procedure based on EPA/600/R-94/024

Batch No. 10/4 Preparation Date: 10/4/99 Prepared by: 116.

| Ingredient                                          | Amount (g) | Percent composition |
|-----------------------------------------------------|------------|---------------------|
| Fine sand                                           | 1848       |                     |
| Medium sand                                         | 924        | 77                  |
| Kaolinite clay                                      | 612        | 17                  |
| Blended and 0.3 mm sieved<br>Canadian sphagnum peat | 180        | 5                   |
| CaCO3                                               | 36         | 1                   |
| Total                                               | 3600       | 100                 |

Store well-mixed and dry in a sealed Rubbermaid box. Label by batch number. Store copy of this documentation in project file. Store original in Sed/Water preparation notebook.

Hydrate to a cohesive sediment consistency before use.

-Week of October 3, 1999

| ACTIVITY / DAY                                                                                                                                  | Sun.                                      | Mon.                                   | Tues.                                  | Wed.             | Thurs.                | Fri.                                  | Sat.          |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|----------------------------------------|------------------|-----------------------|---------------------------------------|---------------|
| Prior to noon fill reservoirs (1L)                                                                                                              |                                           | /                                      |                                        | V                |                       | V                                     |               |
| Noon delivery cycle                                                                                                                             |                                           |                                        |                                        |                  |                       |                                       |               |
| • splitter boxes filling?                                                                                                                       |                                           | . /                                    |                                        |                  |                       |                                       |               |
| • synnges filling?                                                                                                                              |                                           |                                        |                                        |                  |                       | · ·                                   |               |
| • needles flowing?                                                                                                                              |                                           |                                        |                                        |                  | ! V                   | 100                                   |               |
| • beaker screens clear, flowing?                                                                                                                |                                           | _/_                                    |                                        |                  |                       | 1 1/2                                 |               |
| oranage to waste ox?                                                                                                                            |                                           | <u> </u>                               | 1                                      |                  | V                     | <u> </u>                              |               |
| • empty waste buckets?                                                                                                                          |                                           |                                        | <u> </u>                               |                  | .V                    |                                       |               |
| Test monitoring                                                                                                                                 |                                           |                                        | ·                                      |                  |                       |                                       |               |
| • test temperature ox?                                                                                                                          |                                           | 1/                                     | , /                                    | V                |                       | 1                                     |               |
| • D.O. 0K?                                                                                                                                      | <b>V</b>                                  |                                        |                                        |                  |                       |                                       |               |
| checik for floating organisms                                                                                                                   | <b>V</b>                                  | $\checkmark$                           | $\sqrt{/}$                             | V .              |                       |                                       | $\mathcal{J}$ |
| • feeding completed?                                                                                                                            | /                                         | <b>V</b>                               |                                        |                  |                       | 1                                     | V             |
| Additional activities                                                                                                                           |                                           |                                        |                                        |                  | ·                     |                                       | <del></del>   |
| Prior to midnight fill reservoirs (11)                                                                                                          |                                           |                                        |                                        | V                | Y                     | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |               |
| Check sediment water supply                                                                                                                     |                                           |                                        |                                        |                  | <b>/</b>              | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |               |
| Corrective Action / Comments                                                                                                                    |                                           | · · · · · · · · · · · · · · · · · · ·  | :                                      | [<br>            |                       |                                       |               |
|                                                                                                                                                 |                                           |                                        |                                        | 1                | İ                     |                                       | į į           |
| Initials/Date                                                                                                                                   | 16/3                                      | 35,0/4                                 | -(G-<br>1-/5                           | ر<br>م<br>د<br>د | 55.0/7                | M. Y                                  | 76 . of       |
| Initials/Date  Procedure: All operating systemests are in progress. Corrective action on this form. If project-spocumentation form) and include | ns listed at<br>e action m<br>pecific doc | pove must<br>ust be take<br>umentation | be checke<br>en whenev<br>n is require | er appropr       | ly basis whiate. Docu | nen sediment com                      | ective        |
| Procedure: All operating systemests are in progress. Correctivation on this form. If project-species                                            | ns listed at<br>e action m<br>pecific doc | pove must<br>ust be take<br>umentation | be checke<br>en whenev<br>n is require | er appropr       | ly basis whiate. Docu | nen sediment com                      | ective        |
| Procedure: All operating systemests are in progress. Correctivaction on this form. If project-spocumentation form) and include                  | ns listed at<br>e action m<br>pecific doc | pove must<br>ust be take<br>umentation | be checke<br>en whenev<br>n is require | er appropr       | ly basis whiate. Docu | nen sediment com                      | ective        |

Reviewer Date 12/13/9 9
Laboratory: Aquatec Biological Sciences: South Surfington, Vermont

seddelfw.doc

### Week of October 10, 1999

| ACTIVITY / DAY                         | Sun.     | Mon.        | Tues.        | Wed.         | Thurs.       | Fri.         | Sat.        |
|----------------------------------------|----------|-------------|--------------|--------------|--------------|--------------|-------------|
| Prior to noon fill reservoirs (1L)     | <b>V</b> |             |              |              | V            | /            | V           |
| Noon delivery cycle                    |          |             | ,            |              | ,            |              |             |
| splitter boxes filling?                | V.       |             |              | •/           | V,           | /            |             |
| • syringes filling?                    |          |             | V            |              | V            | /            | /           |
| • needles flowing?                     |          | V           | V            | 7,           | V            | /            | /           |
| beaker screens clear, flowing?         |          |             |              | V,           | V            | /            | <b>V</b>    |
| drainage to waste ok?                  | 1/1      | V           | V            | V            | V /          | /            |             |
| empty waste buckets?                   | ///      |             |              | <b>V</b>     | $\checkmark$ |              |             |
| Test monitoring                        |          | <del></del> |              |              |              | <del></del>  | <del></del> |
| test temperature ok?                   |          |             |              | V/           | V            |              | V           |
| • D.O. ok?                             |          |             | <u> </u>     |              | 137          |              | /           |
| · · · · · · · · · · · · · · · · · · ·  | ¥1) (    |             | V            | V            | V            | //           | \\/_\c_     |
| • feeding completed?                   | <u> </u> |             | V            | V            | V            |              |             |
| Additional activities                  |          |             |              | ,            | ,            | ,            |             |
| Prior to midnight fill reservoirs (1L) |          | V/          | $\checkmark$ | $\checkmark$ | ///          | V,           | V           |
| Check sediment water supply            | V        | 1/          |              | ·/           | V            | $\checkmark$ | V           |
|                                        |          |             |              | <u>-</u>     |              |              |             |
| Corrective Action / Comments           |          |             |              |              |              |              |             |
|                                        | 40       |             |              |              |              |              |             |
| Initials/Date                          | m 10/10  | 10/11       | 3/20         | m<br>10/13   | m<br>:014    | 10/15        | 7G<br>10/16 |
|                                        |          | 1           | 7,           |              |              | <del></del>  |             |

<u>Procedure</u>: All operating systems listed above must be checked on a daily basis when sediment toxicity tests are in progress. Corrective action must be taken whenever appropriate. Document corrective action on this form. If project-specific documentation is required, write a brief description (on Project Documentation form) and include with the test data package.

|           | <u> </u>                                           |   |
|-----------|----------------------------------------------------|---|
| Comments: | ne ar\y                                            |   |
| K1) 10    | 2591, all reps had floaters 10110 Tm squirted Them | l |
| )         | down most seemed to be living                      |   |
| (F) 13    | 591 E.F.H had fleorers ich 1997 The                |   |

(x3) 12666 Ha and (+. got an extra manual renewal 10/14 Jun pm

Reviewer Date 12/13/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

 $\begin{array}{c} \text{seddelfw.doc} \\ 000078 \end{array}$ 

### Week of October 17, 1999

| ACTIVITY / DAY                        | Sun.     | Mon.                                         | Tues.    | Wed.       | Thurs. | Fri.     | Sat.     |
|---------------------------------------|----------|----------------------------------------------|----------|------------|--------|----------|----------|
| Prior to noon fill reservoirs (1L)    | V        | /                                            |          |            | V      |          | <b>/</b> |
| Noon delivery cycle                   |          |                                              |          | ,          |        |          |          |
| splitter boxes filling?               |          | 1                                            |          | V.         |        |          |          |
| * synnges filling?                    | /        | - /                                          |          |            |        | V        |          |
| * needles flowing?                    |          |                                              |          | V          |        | <b>√</b> |          |
| beaver screens clear, flowing?        | _/       | ` /                                          |          | V          | V      |          |          |
| cramage to waste ok?                  |          | //                                           |          | //         |        |          |          |
| · emoty waste buckers Turk            | _//      | · / /                                        |          |            |        | V V      | / 1/     |
| Test monitoring DAILY                 |          | ·                                            | <u>.</u> |            |        |          |          |
| test temperature oic?                 | <u>/</u> |                                              |          | /          |        |          |          |
| • 10 ok?                              | 1/       | <u>                                     </u> |          |            |        | V        |          |
| check for floating organisms          |          | 1/2                                          | <u> </u> |            |        | V/       |          |
| feeding completed?                    |          | <u> </u>                                     | 1/       |            |        |          |          |
| Additional activities                 |          |                                              |          | / ,        |        |          |          |
| Poor to midnight fill reservoirs (1L) |          |                                              |          | <b>/</b> . | V,     | V/       |          |
| Check sediment water supply           | _/       |                                              |          |            |        |          | 1        |
|                                       |          |                                              |          |            |        |          |          |
| Corrective Action / Comments          |          |                                              | 4        |            |        | •        |          |
| Initials/Date                         | mile     | 77 70                                        | 767      | 10/30      | 10/21  | 10/53.   | (ch2     |
| miliais/Date                          | Ui: I    | 114. 24                                      | 1 10117  | 1 111/     | 1-     | /9/e     | 14/03    |
|                                       |          |                                              |          |            |        |          |          |

<u>Procedure</u>: All operating systems listed above must be checked on a daily basis when sediment toxicity tests are in progress. Corrective action must be taken whenever appropriate. Document corrective action on this form. If project-specific documentation is required, write a brief description (on Project Documentation form) and include with the test data package.

| Comments: | C. 4072    | CÉCENIC | TCST 5 | er ups | nere  | La   | on D      | 4-1 | (den |   |
|-----------|------------|---------|--------|--------|-------|------|-----------|-----|------|---|
| proc      | To 0/g2nis | रत्ने र | m) (   | 10/,   | = /45 |      |           |     |      |   |
| L         |            |         |        |        | _     | É si | ه یی بر ه | wn  | for  | H |

Experie war for H.2. change = Lane / Recon MX.

Experience for C.T. chronis
= Recon Warr.

seddettw.doc 10/19

Reviewer Date 12/13/95
Laboratory Aquatec Biological Sciences, South Burlington, Vermont

### Week of October 24, 1999

| ACTIVITY / DAY                                                                                                                                | Sun.                                       | Mon.                                   | Tues.                                 | Wed.        | Thurs.                                | Fri.        | Sat.     |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------|---------------------------------------|-------------|---------------------------------------|-------------|----------|
| ACTIVITY / DAY  Prior to noon fill reservoirs (1L)  Noon delivery cycle  spitter boxes filling?                                               |                                            |                                        | /                                     |             |                                       |             |          |
|                                                                                                                                               | \/                                         |                                        | V                                     |             |                                       | V           | <b>/</b> |
| N                                                                                                                                             |                                            |                                        |                                       |             |                                       |             |          |
|                                                                                                                                               |                                            |                                        |                                       | 1           |                                       | · · · · · · | , ,      |
| • splitter boxes filling?                                                                                                                     |                                            | V                                      | V                                     |             | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | I V         |          |
| • syringes filling?                                                                                                                           | V                                          | ·/                                     | V                                     |             | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | V           | V        |
| • needles flowing?                                                                                                                            | //                                         |                                        |                                       | V           | V                                     |             |          |
| beaker screens clear, flowing?                                                                                                                | V                                          | //                                     |                                       | 1/          | L V                                   |             |          |
| drainage to waste ok?                                                                                                                         | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \      | r i                                    | 1                                     | //          |                                       | / \         | / /      |
| empty waste buckets?                                                                                                                          |                                            |                                        | Y                                     | $\vee$      | VV                                    | VV          |          |
| Test monitoring                                                                                                                               |                                            |                                        |                                       |             | •                                     |             |          |
| • test temperature ok?                                                                                                                        |                                            |                                        | V                                     | V           | V                                     | /           | V        |
| • D.O. ok?                                                                                                                                    | -,                                         | <b>V</b>                               |                                       | /_          | /                                     | VI          |          |
| check for floating organisms                                                                                                                  |                                            | V,                                     |                                       | V           | 1                                     |             |          |
| • feeding completed?                                                                                                                          |                                            | V                                      |                                       |             |                                       | V           | ./       |
| Additional activities                                                                                                                         |                                            |                                        |                                       |             |                                       |             |          |
| Prior to midnight fill reservoirs (1L)                                                                                                        |                                            | V,                                     | <b>\</b>                              | V           | 1                                     | V           |          |
| Check sediment water supply                                                                                                                   | <b>V</b>                                   | <b>/</b>                               |                                       | ·/          | <u> </u>                              |             |          |
|                                                                                                                                               |                                            |                                        |                                       |             |                                       |             |          |
| Corrective Action /<br>Comments                                                                                                               |                                            |                                        |                                       |             |                                       |             |          |
|                                                                                                                                               |                                            |                                        |                                       | 16          |                                       | 1           |          |
| Initials/Date                                                                                                                                 | 10/24                                      | TM, Olas                               | Morce                                 | 10/33       | 10/38                                 | 10/39       | 10/30/16 |
| Procedure: All operating system tests are in progress. Corrective action on this form. If project-sp Documentation form) and includ Comments: | ns listed ab<br>e action mu<br>ecific docu | oove must<br>ust be take<br>umentation | be checke<br>n wheneven<br>is require | er appropri | iate. Docu                            | ment corre  | ective   |
|                                                                                                                                               |                                            |                                        |                                       |             |                                       |             |          |

Reviewer Date 12/13/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Week of October 31, 1999

| ACTIVITY / DAY                                                                                                                        | Sun.                  | Mon.                         | Tues.                     | Wed.         | ากบาร.     | Fri.       | Sat.                                  |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|---------------------------|--------------|------------|------------|---------------------------------------|
| Prior to noon fill reservoirs (1L)                                                                                                    | V                     |                              |                           | $\checkmark$ | V          |            |                                       |
| Noon delivery cycle                                                                                                                   |                       |                              |                           |              |            |            |                                       |
| • splitter boxes filling?                                                                                                             | <b>✓</b>              | <b>/</b>                     | <b>V</b>                  |              | V          |            | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| * synnges fitting?                                                                                                                    | /                     | /                            |                           |              |            |            |                                       |
| • needles flowing?                                                                                                                    | V                     |                              | /                         |              | · /        |            |                                       |
| <ul> <li>beaker screens clear, flowing?</li> </ul>                                                                                    | V                     | V                            | \ \/ .                    |              |            | <u>/</u>   |                                       |
| oramage to waste ok?                                                                                                                  | 4                     | 1                            | . Y ,                     | 1            |            | VI         | 1                                     |
| empty waste buckets?                                                                                                                  | VV                    | VV                           |                           | VV           | VI         | VV         | VV                                    |
| Test monitoring                                                                                                                       |                       |                              |                           |              |            | · ·        |                                       |
| • test temperature ok?                                                                                                                | V                     | 1                            |                           |              |            |            |                                       |
| • D.C. ok?                                                                                                                            |                       | . V                          | <u> </u>                  |              |            |            | -                                     |
| check for floating organisms                                                                                                          | V                     |                              |                           | / \          | V          |            |                                       |
| • feeding completed?                                                                                                                  | V                     | : V                          |                           | ·/           |            |            | V                                     |
| Additional activities                                                                                                                 |                       |                              |                           |              |            |            |                                       |
| Prior to midnight fill reservoirs (1L)                                                                                                |                       | • 🗸                          |                           | V            | 11,        | 1//        |                                       |
| Check sediment water supply                                                                                                           |                       | V                            |                           | <b></b>      |            |            |                                       |
|                                                                                                                                       |                       |                              |                           |              |            |            |                                       |
| Corrective Action / Comments                                                                                                          |                       |                              |                           |              |            |            |                                       |
| Initials/Date                                                                                                                         | 10/31                 | 11/176                       | 1/2/10                    | 11/3<br>m    | 114<br>711 | 11/5       | 11/6                                  |
| Procedure: All operating system tests are in progress. Corrective on this form. If project-specific d Documentation form) and include | action mi<br>ocumenta | ust be take<br>ition is requ | n wheneve<br>lired, write | r appropri   | ate. Docui | ment corre |                                       |
| Comments: 11/5/99/mianis                                                                                                              | J rene                | wial mi                      | عمون ترو                  | كمصيعم       | citiat     | र्ध क्र    | 09:30                                 |
| " Noak                                                                                                                                | أرجدون                | uial mi                      | led at 10                 | 1:00 11/E    | <b>:</b> G | 11/6       | 14. JJG                               |
|                                                                                                                                       |                       |                              |                           |              |            |            |                                       |

APPENDIX: D

# Reference Toxicant Control Chart Chironomus tentans in Potassium chloride (g/L)

|            |                      | Organism   |        |       |              |                 |                             |
|------------|----------------------|------------|--------|-------|--------------|-----------------|-----------------------------|
| Test       | Test                 | Age        | 96-Hr. | Mean  | Lower        | Upper           | Organism                    |
| Number     | Date                 | (Days)     | LC50   | LC50  | Limit        | Limit           | Source                      |
| •          | 13/28/97             | <b>•</b> c | 5 612  | 5.61  |              |                 | Aquatec Biologica! Science  |
| 2          | 16/31/97             | ç          | 5 612  | 5 61  | 5.51         | 5 €1            | Aquatec Biological Science  |
| 3          | 1/1/02/97            | ç          | 3 466  | 4 90  | 2 42         | 7.37            | Aquatec Biological Science  |
| ٤          | 11/09/97             | :0         | 6 484  | 5.29  | 2.72         | 7 <b>E</b> 7    | Aduated Biological Science  |
| £          | 11/10/97             | ē          | 5 000  | 5.23  | 2 99         | 7.48            | Aduated Biological Science  |
| £          | C8:23/98             | • •        | 6 454  | 5 44  | 3 <b>-</b> 8 | 7.69            | Aduated Bibliogical Science |
| -          | 09:15 <i>1</i> 98    | ê          | € €74  | 5 62  | 3 3€         | 7 <b>£</b> 7    | Aduated Biological Science  |
| Ē          | 10/23/98             | •:         | 5 454  | 5 T3  | 3 55         | 7.90            | Aduates Biological Science  |
| ş          | 11/10/98             | 9          | 3 827  | 5 52  | 3.12         | 7 <b>9</b> 1    | Aduated Biological Science  |
| •:         | 36.23.99             | ş          | 6 804  | € €4  | 3 24         | 8 D5            | Aquates Biological Science  |
| ••         | 06/24/99             | ** a-= *:  | 5 946  | 5.67  | 3 39         | - <del>56</del> | Abusted Bibliogical Science |
| . 2        | 06/26/99             | g and ""   | 6 804  | £     | 3 4 9        | € 24            | Aduated Biological Science  |
| · 3        | 07 15/9 <del>9</del> | <i>*</i> 3 | € 484  | 5 E2  | 3 €*         | E 54            | Env. Consulting & Testing   |
| ~ 4        | ST 15 799            | •:         | £      | £ 89  | 3 70         | E DE            | Aduates Biological Science  |
| - 5        | ET 15/99             | ş          | 3 400  | 5 72  | 3 25         | £ . ē           | Aduated Biological Science  |
| 1 E        | £7 <i>™ 6/</i> 99    | €          | E 804  | 5 78  | 3 35         | E.24            | Env. Consulting & Testing   |
|            | 09/13 <b>/9</b> 9    | -:         | £ 395  | 5.81  | 3 44         | E.18            | Aquates Biological Science  |
| 18         | 10°07'99             | • •        | 7.57   | 5 5 5 | 3 50         | E.2€            | Aduated Biological Science  |
| <i>•</i> € | 10/11/99             | 10         | 6 804  | 5 93  | 3 58         | E.28            | Aduated Siblogical Science  |
| 20         | 10/27/99             | ٤          | - :    | 5 98  | 3.54         | 8.33            | Adusted Biological Science  |



### Chironomus tentans Chronic Survival, Growth, Emergence and Reproduction Toxicity Tests Conducted on Sediment Samples from the Solutia Site, Sauget, Illinois

Reference BTRs 3615, 3622, 3629, 3633, 3641, 3643

Prepared for:
Menzie-Cura & Associates
1 Courthouse Lane, Suite 2
Chelmsford, MA 01824





# **Aquatec Biological Sciences**









BTRs 3615, 3622, 3629, 3633, 3641, 3643

PROJECT:

99033

I have reviewed this data package, which was completed under my supervision. This data package is complete, and to the best of my ability, accurately reflects the conditions and the results of the reported tests.

John W Williams

Toxicity Laboratory Manager

12/22/99

Date

I have reviewed and discussed this data package with the responsible laboratory manager. Based on this review, the data package was, to the best of my knowledge and belief, conducted in accordance with established company quality assurance procedures.

Philip O. Downey, Ph.D.

Director

12/23/99

Date

### **TABLE OF CONTENTS**

| EXECUTIVE SUMMARY   | 1 |
|---------------------|---|
| INTRODUCTION        | 2 |
| METHODS             | 2 |
| PROTOCOL DEVIATIONS | 4 |
| RESULTS             | 4 |
| QUALITY ASSURANCE   | 5 |

### LIST OF APPENDICES

| APPENDIX A: | RESULTS OF WHOLE SEDIMENT TOXICITY TESTS |  |
|-------------|------------------------------------------|--|

| APPENDIX B: CHAIN | ·OF-CUSTODY | DOCUMENTATION |
|-------------------|-------------|---------------|
|-------------------|-------------|---------------|

| APPENDIX C: | LABORATORY DOCUMENTATION AND DATA ANALYSES FOR |
|-------------|------------------------------------------------|
|             | Chironomus tentans TOXICITY TESTS              |

APPENDIX D: RESULTS OF STANDARD REFERENCE TOXICANT TESTS

### **EXECUTIVE SUMMARY**

100.5CT Midge. Chironomus tentans Chronic Survival, Growth,
Emergence, and Reproduction
Conducted October 19 - December 14, 1999
for Menzie-Cura & Associates
Solutia Site, Sauget, Illinois

| Laboratory<br>Sample ID | Client<br>Sample ID      | Day 20<br>Mean<br>Survival<br>(%) | Day 20<br>Mean Ash<br>Weight<br>(mg) | Emergence<br>Proportion<br>(%) | Mean<br>Eggs<br>Hatched/<br>Female | Mean<br>Days<br>Survived,<br>Female | Mean<br>Days<br>Survived,<br>Male |
|-------------------------|--------------------------|-----------------------------------|--------------------------------------|--------------------------------|------------------------------------|-------------------------------------|-----------------------------------|
| 12546                   | BTOX-C-1                 | Acute                             | Toxicity                             |                                |                                    |                                     |                                   |
| 12547                   | BTOX-C-2                 | Acute                             | Toxicity                             |                                |                                    |                                     |                                   |
| 12548                   | BTOX-C-3                 | 63                                | 3.186                                | 56                             | 526                                | 2.4                                 | 3.7                               |
| 12549                   | BTOX-D-1                 | Acute                             | Toxicity                             |                                |                                    |                                     |                                   |
| 12550                   | BTOX-D-2                 | 31                                | 0.937*                               | 2*                             | 0*                                 | 0.8*                                | 0*                                |
| 12551                   | BTOX-D-3                 | 42*                               |                                      | 10*                            | 298                                | 0.6*                                | 1.1*                              |
| 12552                   | Laboratory Control       | 81                                | 2.679                                | 50                             | 130                                | 2.8                                 | 4.5                               |
| 12589                   | BTOX-B-1                 | Acute                             | Toxicity                             |                                |                                    |                                     |                                   |
| 12590                   | BTOX-B-1 (DUPE)          | Acute                             | Toxicity                             |                                |                                    |                                     |                                   |
| 12591                   | BTOX-B-2                 | Acute                             | Toxicity                             |                                |                                    |                                     |                                   |
| 12592                   | BTOX-B-3                 | 52                                | 2 244                                | 52                             | 302                                | 2.5                                 | 3.1                               |
| 12593                   | BTOX-M                   | 40                                | 2.216                                | 54                             | 430                                | 3.6                                 | 4.1                               |
| 12609                   | E-1 Dead Creek           | 54                                | 2 501                                | 42                             | 576                                | 3.5                                 | 2.4                               |
| 12610                   | E-2 Dead Creek           | Acute                             | Toxicity                             |                                |                                    | ***                                 |                                   |
| 12611                   | E-3 Dead Creek           | 0 <b>*</b>                        |                                      | 1*                             | 0-                                 | 0.6*                                | 0*                                |
| 12612                   | BP-1 Borrow Pit          | 0*                                |                                      | 5*                             | 0*                                 | 0*                                  | 0.7*                              |
| 12613                   | BP-1 Borrow Pit (DUPE)   | 0*                                |                                      | 8*                             | 127*                               | 0.3*                                | 0.8*                              |
| 12614                   | BP-3 Borrow Prt          | 6 <b>*</b>                        |                                      | 14*                            | 106*                               | 0.8*                                | 1.2*                              |
| 12622                   | Laboratory Control       | 46                                | 2.959                                | 45                             | 554                                | 3.1                                 | 4.9                               |
| 12638                   | BP-2 Borrow Pit          | Acute                             | Toxicity                             |                                |                                    |                                     |                                   |
| 12639                   | F-1 Dead Creek Section F | Acute                             | Toxicity                             | ••                             |                                    |                                     |                                   |
| 12640                   | F-2 Dead Creek Section F | Acute                             | Toxicity                             |                                |                                    |                                     |                                   |
| 12641                   | F-3 Dead Creek Section F | Acute                             | Toxicity                             |                                |                                    |                                     |                                   |
| 12664                   | Prairie DuPont Creek     | Acute                             | Toxicity                             |                                |                                    |                                     |                                   |
| 12665                   | Prairie DuPont Creek 2   | 69                                | 3.074                                | 13*                            | 249                                | 1.1*                                | 1.4*                              |
| 12666                   | Reference Creek          | Acute                             | Toxicity                             |                                |                                    |                                     |                                   |
| 12668                   | Laboratory Control       | 65                                | 2.923                                | 69                             | 354                                | 3.6                                 | 4.3                               |
| 12671                   | Ref 2-2 Ref. Borrow Pit  | Acute                             | Toxicity                             |                                |                                    |                                     | <b></b>                           |

The response data were statistically significantly different from the corresponding laboratory control sediment (p < 0.05)

<sup>--</sup> When a statistically significant reduction in survival was detected mean ash-free dry weight data were only reported in Appendix A.

### INTRODUCTION:

Samples were received for toxicity testing at Aquatec Biological Sciences of 75 Green Mountain Drive, South Burlington, Vermont. The results of the following tests are reported:

Client: Facility/Location:

Menzie-Cura & Associates Dead Creek / Sauget, Illinois October 4 - October 9, 1999

Initial Sampling Date: Testing Dates:

October 19 - December 14, 1999

Tests Conducted:

Midge, Chironomus tentans, Chronic Survival,

Growth, Emergence, and Reproduction

### **METHODS:**

### **Toxicity Tests**

The procedures followed in conducting these toxicity tests were based on <u>draft</u> methods described by the USEPA (EPA 600/R-98/XXX [new number pending]). Test conditions for *Chironomus tentans* are listed in Table 1. Testing was completed in three separate groupings based upon chronological sequencing from the time of sediment collection. The objective for the test groupings was to complete the 10-day acute tests prior to expiration of a project-specific 14-day sediment storage time so that subsequent chronic toxicity tests could be started within a 14-day time frame. The acute toxicity results were reported separately (Aquatec Biological Sciences, December 1999).

Sediments were loaded into beakers for chronic testing within one day after completion of the acute toxicity tests, therefore, the objective of starting all tests within 14-days from the time of collection was accomplished for all samples. Chronic toxicity testing for the first testing group was initiated on October 19, 1999. The second testing group was initiated on October 20, 1999. The third testing group was initiated on October 21, 1999. A laboratory control (artificial sediment) was included with each testing group. Midge larvae less than four hours old were obtained from Aquatec Biological Sciences in-house cultures. Chronic toxicity tests were ended (on an individual sample basis) following seven days with no observed emergence. Overlying water was renewed either automatically or manually. For those samples/replicates renewed automatically, the renewal cycle was programmed for midnight and noon of each day. For

samples/replicates renewed manually, the renewal cycle was performed at approximately 7:00 a.m. and 7:00 p.m. daily. Documentation of renewals and renewal system checks is located in Appendix C

### Sediment Preparation

The samples were stored refrigerated and in the dark whenever they were not being used in preparation for testing. Sediments distributed in test beakers were examined for the presence of indigenous organisms which were removed when observed. Also, large pieces of vegetative material (e.g., leaf litter, sticks, grass) were removed if observed. Qualitative observations regarding the sediment type and indigenous organisms removed were recorded. The laboratory control sediment (artificial sediment) was prepared following formulations specified in the USEPA protocols and then hydrated prior to distribution to test chambers. Sediments were then distributed to individual replicate test chambers, overlying water was added, and the overlying water renewal system was activated. The unused portion of each sample (in the original sample container) was returned to refrigerated storage.

During acute toxicity testing indigenous chironomid larvae found in Sample 12592 (BTOX-B-3) confounded the acute toxicity assessment. Prior to loading this sediment into beakers for the chronic toxicity test the sediment was sieved through a 0.3 micron Nitex mesh screen to remove indigenous chironomids.

### Statistical Analyses

Statistical endpoints included survival and growth (as measured by mean ash-free dry weight) of midge larvae, evaluated on Day 20. At the end of the test, proportion emergence, reproduction (mean number of eggs per female), and mean number of days male and female flies survived (after emergence) were evaluated.

Statistical comparisons were performed against the concurrent laboratory control. In some cases, where the mean laboratory control response was numerically less than or equal to the test sediment the test samples were judged to be non-significant. If complete mortality was observed in any sample, the response was considered to be significant. Statistical significance for any sample was based upon the most sensitive endpoint observed.

An F-Test was performed to test for equality of variances between each sample and the corresponding control for each endpoint examined. Proportion surviving data were transformed (Arcsin square-root) before analysis. If variances were not significantly different, paired T-Tests with equal variances were used to determine whether there was a significant reduction in the mean response relative to the corresponding control. If the variance between a sample and control comparison was significantly different, paired T-Tests adjusted for unequal variances were used to identify significant reductions in the response.

### **PROTOCOL DEVIATIONS:**

At the Day 20 assessments of survival and growth, some pupating larvae and post-emergent body casts were found in some test replicates. Day 20 survival totals were established by combining larvae, pupae, and the number of body casts present. Day 20 growth assessments (ash-free dry weight) were based upon surviving larvae only.

Replicate J of Sample 12551 (one larva surviving) had an apparent weighing and was excluded from the data analysis.

On occasion, the number of days that emerged flies survived was not recorded due either to escapes from emergence traps or oviposition chambers, accidental injury, or a laboratory error in recording the number of days until mortality for individual flies. A list of the affected test replicates is located at the end of Appendix C. For those flies where time-to-mortality was not recorded, they were included in the emergence tabulations but were excluded from the days survived tabulations.

### **RESULTS:**

Summary result tabulations for the *Chironomus tentans* whole sediment toxicity tests are located in Appendix A.

Group 1 Test Results: This group included Samples 12548 (BTOX-C-3). 12550 (BTOX-D-2),

12551 (BTOX-D-3). 12592 (BTOX-B-3). 12593 (BTOX-M), and 12609 (E-1 Dead Creek). Sample 12550 (BTOX-D-2) had a significant reduction in Day 20 growth and also significant reductions in proportion emerged and mean number of days male and female flies survived. Sample 12551 (BTOX-D-3) had significant reductions in Day 20 survival and also significant reductions in proportion emerged and mean number of days male and female flies survived.

Group 2 Test Results: This group included samples 12611 (E-3 Dead Creek), 12612, (BP-1 Borrow Pit). 12613 (BP-1 Borrow Pit duplicate), and 12614 (BP-3 Borrow Pit). Samples 12611 (E-3 Dead Creek). 12612. (BP-1 Borrow Pit), 12613 (BP-1 Borrow Pit duplicate), and 12614 (BP-3 Borrow Pit) had significant reductions for all response parameters evaluated.

Group 3 Test Results: This group included sample 12665 (Prairie Du Pont Creek 2). Sample 12665 had significant reductions in proportion emerged and mean number of days males and females survived.

<u>Total Ammonia and Sulfide</u>: Total ammonia concentrations were less than 25mg/L in porewater and less than 5 mg/L in overlying water. Total sulfide was not detected (<0.5mg/L) in any porewater samples during the initial acute toxicity testing, therefore, testing for sulfide in overlying water was not conducted.

### **QUALITY ASSURANCE:**

A standard reference toxicant SRT tests were conducted with representative batches of *Chironomus tentans*. The resulting LC50 values fell within control chart limits and were viewed as being acceptable.

Table 1. Test Conditions for the Midge (*Chironomus tentans*) Chronic Whole Sediment Survival, Growth, Emergence and Reproduction Toxicity Test.

ASSOCIATED PROTOCOL: EPA, 1997. <u>Draft</u> Methods for Measuring the Toxicity and Bioaccummulation of Sediment-associated Contaminants with Freshwater Invertebrates, <u>Second Edition</u> Method 100.5 (EPA/600/R-98/XXX).

1. Test type: Whole-sediment toxicity (static renewal)

2. Test temperature:  $23 \pm 1^{\circ}$ C

3. Light quality: Wide-spectrum fluorescent lights

4. Light illuninance: 500 to 1000 lux

5. Photoperiod: 16 hr. light, 8 hr. dark

6. Test chamber size: 300 mL beaker

7. Sediment volume: 100 mL (distributed to test chambers on the

day prior to administration of test organisms

8. Overlying water volume: 175 mL

9. Renewal of overlying water Twice daily

10. Age of test organisms: Larvae less than 24-h old

11. Number of organisms /

test chamber: 12 (acclimated to test conditions)

12. Number of replicate test

chambers / treatment: 16 (4 for 20-day survival and growth and 8 for emergence, reproduction, and fly

survival). An additional 4 replicates on Day

20 started as a source of auxiliary males.

13. Feeding regime: 1.0 mL Tetrafin slurry (1.0 mg/mL daily)

14. Aeration: None, unless dissoved oxygen in overlying

water drops below 2.5 mg/L. Supplemental water renewals may be implemented to raise

dissolved oxygen concentrations.

Table 1. Test Conditions for the Midge (Chironomus tentans) Chronic Whole Sediment Survival, Growth. Emergence and Reproduction Toxicity Test (continued).

15. Overlying water: Reconstituted water Formulated sediment (EPA/600/R-94/024, 16. Control sediment: section 7.2.3.2) Overflow screens, as needed 17. Test chamber cleaning: 18. Monitoring: Overlying water Temperature Daily, one replicate Dissolved oxygen At least three days weekly At least three days weekly pН Conductivity At least Days 0, 20, and end of test Alkalinity, hardness, ammonia At least Days 0, 20, and end of test Organism behavior Daily, all replicates 19. Test duration: On an individual sample basis, when no additional emergence has been recorded for seven consecutive days. 20. End points: Day 20 survival and growth (ash-free dry weight larvae dried 60°C-90°C overnight. then ashed at 550°C for 2 h). Reproduction (average hated eggs produced per female) and number of days emergent flies survived

21 Reference toxicant: 96-h acute, water only (KCI)

22. Test acceptability: Reference or Laboratory Control survival

should be 70% or greater on Day 20 with adherence to performance-based criteria outlined in EPA/600/R-98/XXX. Table 15.3

23. Statistical analysis and data interpretation:

Paired-sample hypothesis testing (e.g. t-test) versus the negative control and/or the

appropriate reference site. Proportion data transformed (Arc-sine (square-root)) before

analysis.

(male and female).

**APPENDIX A** 

Summary of Statistical Tests and Probabilities
Dead Creek *Chironomus tentans* Chronic Toxicity Test
BTR: 3615/3622

|        |         |                         | Sur                            | rvival                     |                                           |                                       | SE                | Growth                     |                              |
|--------|---------|-------------------------|--------------------------------|----------------------------|-------------------------------------------|---------------------------------------|-------------------|----------------------------|------------------------------|
|        |         |                         | F-Test                         | T-Test                     |                                           |                                       | F-Test            | T-Test                     |                              |
| Day 20 |         | Proportion<br>Surviving | Equal<br>Variance <sup>2</sup> | Statistical<br>Probability | Statistically<br>Significant <sup>1</sup> | Avorage Equal<br>Weight (mg) Variance | Equal<br>Variance | Statistical<br>Probability | Statistically<br>Significant |
| 12552  | Control | 0.81                    |                                |                            |                                           | 2.679                                 |                   |                            |                              |
| 12548  | Sample  | 0.63                    | 0.218                          | 0 092                      |                                           | 3.186                                 | 0.579             | 0.225                      |                              |
| 12550  | Sample  | 0.31                    | 0.033                          | 0.053                      |                                           | 0.937                                 | 0 396             | 0.026                      | •                            |
| 12551  | Sample  | 0 42                    | 0.072                          | 0.031                      | •                                         | 1 950                                 | 0 161             | 0.243                      |                              |
| 12592  | Sample  | 0.52                    | 0 095                          | 0.053                      |                                           | 2.244                                 | 0 546             | 0.179                      |                              |
| 12593  | Sample  | 0.40                    | 0 160                          | 0000                       | •                                         | 2.216                                 | 0.946             | 0.195                      |                              |
| 12609  | Sample  | 0.54                    | 0.079                          | 0.088                      |                                           | 2.501                                 | 0 869             | 0.376                      |                              |

1. \* A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05). 2. If the F-Test result was significant (relative to the Laboratory Control, P<0.05), the T-Test was performed using unequal variances.

|        | <del> v</del> | <del></del>  | T           | <del>- \</del>     |             | Day 2              | 0 Data     | <del></del> | <del></del>    |             |
|--------|---------------|--------------|-------------|--------------------|-------------|--------------------|------------|-------------|----------------|-------------|
|        |               |              | Ì           |                    |             |                    | Ashed Pan  |             | 8.6            |             |
|        |               | <b>5</b> 4 4 | <i>"</i>    | 5 4                | Mean ~      | Wt. + Larval       |            | #.          | Mean Wt.       | Mean Wt     |
| Sample |               | Start        | #           |                    | Proportion  |                    | Larval Wt. |             |                | Reps I-L    |
| Number | Replicate     | Count        | Surviving   | Surviving          | Surviving   | (mg)               | (mg)       | Weighed     | (mg)           | (mg)        |
| 12552  | i             | 12           | 10          | 0.83               |             | 2503.78            | 2487.15    | 5           | 3.326          |             |
|        | J             | 12           | 11          | 0.92               |             | 2289.24            | 2269.48    | 11          | 1.796          |             |
|        | K             | 12           | 9           | 0.75               |             | 2407.95            | 2388.70    | 6           | 3.208          |             |
|        | L             | 12           | 9           | 0.75               |             | 2453.63            | 2432.17    | 9           | 2.384          |             |
|        |               |              |             |                    | 0.81        |                    |            |             |                | 2.679       |
|        |               |              |             |                    |             |                    |            |             |                |             |
| 12548  | 1             | 12           | 11          | 0.92               |             | 2267.44            | 2243.55    | 11          | 2.172          |             |
|        | J             | 12           | 7           | 0.58               |             | 2142.36            | 2123.31    | 7           | 2.721          |             |
|        | K             | 12           | 7           | 0.58               |             | 2408.08            | 2388.36    | 6           | 3.287          |             |
|        | L             | 12           | 5           | 0.42               |             | 2306.17            | 2287.91    | 4           | 4.565          |             |
|        | <b>-</b>      | _            | -           | - · · <del>-</del> | 0.63        |                    |            |             |                | 3.186       |
|        | · <del></del> |              |             |                    |             |                    |            |             |                |             |
| 12550  | <del></del>   | 12           | 0           | 0.00               |             | 0.00               | 0.00       | 0           | 0.000          |             |
|        | j             | 12           | 11          | 0.92               |             | 2167.44            | 2136 97    | 11          | 2.770          |             |
|        | ĸ             | 12           | 3           | 0.25               |             | 2182.25            | 2180.82    | 3           | 0.477          |             |
|        | L             | 12           | 1           | 0.08               |             | 2491,36            | 2490.86    | 1           | 0.500          |             |
|        | _             | 12           | •           | 0.00               | 0.31        | 2431,00            | 2430.00    | •           | 0.500          | 0.937       |
|        |               |              | <del></del> | ···                | 0.51        | <del></del>        |            | <del></del> |                | 0.007       |
| 12551  | ī             | 12           | 8           | 0.67               | ·           | 2323.33            | 2292.54    | 8           | 3.849          |             |
|        | j             | 12           | 1           | 0.08               |             |                    |            | •           | *              |             |
|        | ĸ             | 12           | 9           | 0.75               |             | 2315.55            | 2290.15    | 9           | 2.822          |             |
|        | Ĺ             | 12           | 2           | 0.17               |             | 2392.79            | 2389.75    | 2           | 1.520          |             |
|        | _             | 12           | 2           | 0.17               | 0.42        | 2002.70            | 2000.70    | -           | 1.020          | 2.048       |
|        |               |              |             | <del></del>        | 0.42        | - <del></del>      |            |             | <del></del>    | 2.040       |
| 12592  | <del></del> - | 12           | 1           | 0.08               |             | 2446.30            | 2444.62    | 1           | 1.680          |             |
| 12332  | J             | 12           | 8           | 0.67               |             | 2192.47            | 2176.60    | 7           | 2.267          |             |
|        |               | 12           |             | 0.67               |             | 2192.47            | 2380.29    | 8           | 2.878          |             |
|        | K<br>L        | 12           | 9<br>7      | 0.75<br>0.58       |             | 2403.31<br>2397.21 | 2382.15    | o<br>7      | 2.070<br>2.151 |             |
|        | Ļ             | 12           | 1           | 0.56               | 0.50        | 2397.21            | 2302.13    | /           | 2.151          | 2 244       |
|        | <del></del>   |              | <del></del> | <del></del>        | 0.52        |                    |            | <del></del> |                | 2.244       |
| 12593  |               | 12           |             | 0.42               | <del></del> | 2316.30            | 2302.13    | 5           | 3.234          |             |
| 12393  | •             |              | 5           |                    |             | 2318.30            |            |             |                |             |
|        | . J           | 12           | 5           | 0.42               |             | 2427.55            | 2422.12    | 3           | 1.810          |             |
|        | K             | 12           | 5           | 0.42               |             | 2317.83            | 2307.51    | 5           | 2.064          |             |
|        | L             | 12           | 4           | 0.33               |             | 2305.34            | 2301.83    | 2           | 1.755          | 0.010       |
|        | ···           |              | <del></del> | <del></del>        | 0.40        |                    |            |             |                | 2.216       |
| 12609  |               | 12           | 11          | 0.92               |             | 2146.97            | 2131.58    | 11          | 1.399          | <del></del> |
| 12005  | <u>'</u>      | 12           | 8           | 0.92               |             | 2205.14            | 2184.15    | 8           | 2.624          |             |
|        | J             | 12           |             | 0.67               |             | 2509.45            | 2492.85    |             | 3.320          |             |
|        | k             |              | 5           |                    |             |                    |            | 5           |                |             |
|        | L             | 12           | 2           | 0.17               | 0.54        | 2288.60            | 2283.28    | 2           | 2.660          | 2.504       |
|        |               |              |             |                    | 0.54        |                    |            |             |                | 2.501       |

<sup>\*</sup> A weighing error occurred. See Protocol Deviations.

J 12/22/99

# Summary of Statistical Tests and Probabilities Dead Creek Chironomus tentans Chronic Toxicity Test

BTR: 3615/3622

|       |         |                       | Emer                        | dence.                               |                                  |                                 | Kepro                       | <b>deproduction</b>                  |                                  |
|-------|---------|-----------------------|-----------------------------|--------------------------------------|----------------------------------|---------------------------------|-----------------------------|--------------------------------------|----------------------------------|
|       |         | Proportion<br>Emerged | F-Test<br>Equal<br>Variance | T-Test<br>Statistical<br>Probability | Statistically<br>Significant 1,3 | Mean Eggs<br>Hatched/<br>Female | F-Test<br>Equal<br>Variance | T-Test<br>Statistical<br>Probability | Statistically<br>Significant 1.3 |
| 12552 | Control | 0.50                  |                             |                                      |                                  | 130 2                           |                             |                                      |                                  |
| 12548 | Sample  | 0.56                  | 0800                        | 0 398                                |                                  | 526 5                           | 0.034                       | 0 052                                |                                  |
| 12550 | Sample  | 0.02                  | 0 324                       | 0000                                 | •                                | 0 0                             | V<br>V                      | 0.079                                | •                                |
| 12551 | Sample  | 0.10                  | 0.312                       | 000.0                                | •                                | 297 6                           | 0.024                       | 0.251                                | -                                |
| 12592 | Sample  | 0.52                  | 0 121                       | 0.260                                |                                  | 301.8                           | 0.223                       | 0.160                                |                                  |
| 12593 | Sample  | 0.54                  | 0 032                       | 0.312                                |                                  | 430.2                           | 0 271                       | 0.041                                |                                  |
| 12609 | Sample  | 0.42                  | 0.120                       | 0.066                                |                                  | 576.3                           | 0.094                       | 0.018                                |                                  |

|       |         | Day           | Days Survi | ived, Female | ale           | Da            | ys Sun      | Days Survived, Male | a<br>e        |
|-------|---------|---------------|------------|--------------|---------------|---------------|-------------|---------------------|---------------|
|       |         | Mean          | F-Tost     | T-Test       |               | Mean          | F-Test      | T-Test              |               |
|       |         | Days Survived |            | Statistical  | Statistically | Days Survived | Equal       | Statistical         | Statistically |
|       |         | / Female      | Variance   | Probability  | Significant   | / Male        | Variance    | Probability         | Significant   |
| 1     | -       | ć             |            |              |               | U <b>*</b>    |             |                     |               |
| 12552 | Control | 27.08         |            |              |               | φ.<br>Ω       |             |                     |               |
| 12548 | Sample  | 2.4           | 0 805      | 0.296        |               | 3.7           | 0.836       | 0.198               |               |
| 12550 | Sample  | 0.8           | 0.221      | 0.028        | •             | 0.0           | ,<br>A<br>V | 0.000               | •             |
| 12551 | Sample  | 9.0           | 0.661      | 0.003        | •             | 1.1           | 0.850       | 0.003               | •             |
| 12592 | Sample  | 2.5           | 0 860      | 0.369        |               | 3.1           | 0.618       | 0.074               |               |
| 12593 | Sample  | 3.6           | 0.634      | 0.174        |               | 4.1           | 0.793       | 0.344               |               |
| 12609 | Sample  | 3.5           | 0.209      | 0.250        |               | 2.4           | 0.824       | 0.034               | •             |
|       |         |               |            |              |               |               |             |                     |               |

1. \* A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05).

2. There were not enough sample and/or control response variability to conduct a meaningful F-Test.

3. If the F-Test result was significant (relative to the Laboratory Control, P<0.05), the T-Test was performed using unequal variances.

| į                |              |                |                    |              |               |               |              |              | Chronic End    | points          |                |            |               |            |
|------------------|--------------|----------------|--------------------|--------------|---------------|---------------|--------------|--------------|----------------|-----------------|----------------|------------|---------------|------------|
|                  |              |                | End of Test        |              | Eme           | rged          |              |              | Eggs           |                 | Nu             | mber of Da | ys Survive    | d          |
| Sample<br>Number | Replicate    | Start<br>Count | Larvae<br>Survived | Females<br># | Males<br>#    | Total<br>#    | Proport.     | Total<br>#   | Unhatched<br># | Eggs<br>/female | Female<br>days | Ave.       | Males<br>days | Ave.       |
| 12552            | A            | 12             | 0                  | 3            | 5             | 8             | 0.67         | Ď            | Ö              | 0               | 8              | 40         | 24            | 4.8        |
|                  | B<br>C       | 12<br>12       | 0                  | 3<br>0       | 3<br>4        | 6<br>4        | 0 50         | 516<br>0     | 516<br>0       | 0               | 12<br>0        | 4 0<br>0 0 | 18<br>21      | 60         |
|                  | Ď            | 12             | 0                  | 3            | 2             | 5             | 0 33         | 1285         | 12             | 424             | 5              | 25         | 13            | 5.3<br>6.5 |
|                  | E            | 12             | 0                  | 2            | 8             | 10            | 0.83         | 0            | 0              | 0               | 4              | 20         | 38            | 48         |
|                  | F            | 12             | 0                  | 3            | 3             | 6             | 0.50         | 1862         | 11             | 617             | 13             | 43         | 8             | 4.0        |
|                  | G<br>H       | 12<br>12       | 0                  | 2            | 5<br>0        | 7<br>2        | 0.58<br>0.17 | 902<br>1506  | 902<br>1508    | 0               | 5<br>6         | 25<br>30   | 23<br>0       | 4 6<br>0 0 |
| Aver             | age per sam  |                |                    | L            |               |               | 0.50         | 1300         | 1300           | 130             | ·              | 2.E        |               | 4.5        |
| 12548            | Α            | 12             | 0                  | 4            | 3             | 7             | 0 58         | 3064         | 170            | 724             | 14             | 3.5        | 15            | 5.0        |
|                  | 8<br>C       | 12<br>12       | 0 0                | 1            | 5<br>6        | 6<br>10       | 0 50<br>0 83 | 0<br>3452    | 0<br>1462      | 0<br>498        | 4<br>10        | 4 0<br>3 3 | 20<br>16      | 40         |
|                  | D            | 12             | 0                  | 2            | 8             | 10            | 0.63         | 3452<br>1674 | 810            | 432             | 6              | 30         | 18            | 27<br>26   |
|                  | Ē            | 12             | 1                  | 4            | 3             | 7             | 0.58         | 3591         | 376            | 804             | 9              | 2.3        | 15            | 50         |
|                  | F            | 12             | 0                  | 2            | 10            | 12            | 1.00         | 3559         | 49             | 1755            | 6              | 30         | 45            | 4 5        |
|                  | G<br>H       | 12<br>12       | 0 2                | 0            | 0<br>2        | 0<br>2        | 0.00<br>0.17 | 0            | 0              | 0               | 0              | 0.0<br>0.0 | 0<br>11       | 00<br>55   |
| Avera            | age per sam  |                |                    |              |               |               | 0.56         |              |                | 526             | L              | 2.4        |               | 3.7        |
| 12550            | A            | 12             | 0                  | 0            | 0             | 0             | 0.00         | 0            | 0              | G               | o o            | 0.0        | 0             | 00         |
|                  | Б<br>С       | 12<br>12       | 0                  | 0            | 0             | 0             | 0.00         | 0            | 0<br>0         | 0               | )<br>0         | 00         | 0<br>0        | 00         |
|                  | D            | 12             | ō                  | 0            | 0             | 0             | 0.00         | 0            | 0              | 0               | 0              | 0.0        | 0             | 0.0        |
|                  | E            | 12             | 0                  | 0            | Ö             | ō             | 0.00         | Ö            | Ö              | ō               | ō              | 0.0        | ō             | 0.0        |
|                  | F            | 12             | 0                  | 0            | 0             | 0             | 0 00         | 0            | 0              | 0               | 0              | 0.0        | 0             | 0 0        |
|                  | G<br>H       | 12             | 0                  | 2            | Ο<br>Ω        | 2<br>D        | 0.17<br>0.00 | 0            | 0<br>D         | 0               | 13<br>0        | 65<br>50   | 0             | 0.0<br>0.0 |
| Avera            | age per sam  |                |                    |              |               |               | 0.00 7       |              |                | - 6             |                | 0 E        |               | 20         |
| 12551            | Α            | 12             | 1                  | 2            | 1             | 3             | 0.25         | 1254         | 12             | 621             | 6              | 3 0        | 5             | 5.0        |
|                  | В            | 12             | 0                  | 0            | ٥             | 0             | 0.00         | 0            | 0              | 0               | C              | 0.0        | 0             | 0.0        |
|                  | C D          | 12<br>12       | 0                  | 0            | 0             | 0             | 0.00<br>0.00 | 0<br>0       | 0<br>D         | 0               | 0              | 0 0<br>0 0 | 0             | 0 0<br>0 0 |
|                  | Ē            | 12             | ŏl                 | Ö            | Ö             | ŏ             | 0 00         | Ö            | Ö              | ō               | ō              | 0.0        | Ö             | 00         |
|                  | F            | 12             | 0                  | 0            | 0             | 0             | 0.00         | 0            | 0              | 0               | G              | 00         | 0             | 0.0        |
|                  | G<br>H       | 12<br>12       | 0                  | 1<br>0       | 6<br>0        | 7<br>0        | 0.58<br>0.00 | 2077<br>0    | 317<br>0       | 1760<br>0       | 2              | 2 0<br>0.0 | 25<br>0       | 4 2<br>0 0 |
| Avera            | age per sam  |                |                    |              |               |               | 0,10         |              |                | 298             | l              | 0.6        |               | 1,1        |
| 12592            | Α            | 12             | 1                  | 4            | 2             | 6             | 0.50         | 4022         | 373            | 912             | 19             | 4 6        | 9             | 4.5        |
|                  | B<br>C       | 12             | 0                  | 3            | 2             | 5             | 0.42         | 0            | 0<br>ვე        | 0               | 3              | 1 0<br>2 7 | 6             | 3.0        |
|                  | D            | 12<br>12       | ŏ                  | 3<br>1       | 5<br>3        | 8<br><b>4</b> | 0.67<br>0.33 | 700<br>0     | 30<br>0        | 223<br>0        | 6<br>3         | 30         | 13<br>6       | 26<br>20   |
|                  | Ē            | 12             | ŏ ,                | 3            | 5             | 8             | 0.67         | 3090         | 224            | 955             | 11             | 37         | 21            | 4.2        |
|                  | F            | 12             | 0                  | 0            | 0             | 0             | 0 00         | 0            | 0              | 0               | 0              | 0.0        | C             | 0.0        |
|                  | G<br>H       | 12<br>12       | 0                  | 4            | 6<br>5        | 10<br>9       | 0.83<br>0.75 | 1076<br>530  | 200<br>115     | 220<br>104      | 13<br>6        | · 33       | 31<br>10      | 52<br>33   |
| Avera            | age per samp |                |                    |              |               |               | 0.52         | 330          |                | 302             |                | 2.5        |               | 31         |
| 12593            | A            | 12             | 0                  | 2            | 5             | 7             | 0.58         | 1822         | 140            | 841             | S              | 4.5        | 17            | 3 4        |
|                  | B<br>C       | 12<br>12       | 0                  | 3<br>5       | 3<br>1        | 6<br>6        | 0.50<br>0.50 | 900<br>3974  | 900<br>339     | 0<br>727        | 9<br>17        | 30<br>34   | 6<br>7        | 2 0<br>7.0 |
|                  | D            | 12             | ö                  | 4            | 1             | 5             | 0 30         | 3678         | 435            | 861             | 17             | 40         | Ó             | 0.0        |
|                  | E            | 12             | 0                  | 1            | 5             | 6             | 0.50         | 0            | 0              | 0               | 0              | 0.0        | 14            | 47         |
|                  | F            | 12             | 0                  | 2            | 6             | 8             | 0.67         | 941          | 75<br>800      | 433             | 6              | 40         | 27            | 54         |
|                  | G<br>H       | 12<br>12       | 0                  | 4<br>1       | <b>4</b><br>5 | 8<br>6        | 0.50         | 3118<br>0    | 800<br>0       | 580<br>0        | 14             | 35<br>60   | 20<br>25      | 5.0<br>5.0 |
| Avera            | age per sam  |                |                    |              |               |               | 0.54         |              | <u>~_</u>      | 430             |                | 36         |               | 41         |
| 12609            | A            | 12             | 0                  | 3            | 3             | 6             | 0 50         | 1628         | 1181           | 216             | 11             | 37         | 9             | 3.0        |
|                  | E<br>C       | 12<br>12       | 0                  | 3<br>3       | 1<br>4        | <b>4</b><br>7 | 0.33         | 4004<br>2089 | 2258<br>560    | 582<br>510      | 11<br>18       | 37<br>60   | 0<br>17       | 00<br>43   |
|                  | D            | 12             | ö                  | 1            | 4             | 5             | 0 58 0 42    | 1102         | 13             | 1089            | 5              | 6 O        | 8             | 27         |
|                  | Ε            | 12             | 0                  | 3            | 6             | 9             | 0.75         | 395ê         | 271            | 1229            | 13             | 4 3        | 25            | 5 0        |
|                  | F            | 12             | 0                  | 4            | 5             | 9             | 0.75         | 4179         | 240            | 985             | 15             | 4 0        | 23            | 4.6        |
|                  | G<br>H       | 12<br>12       | 0                  | 0            | 0             | D<br>0        | 0 00         | 0<br>0       | 0              | 0               | 0              | 00         | ົນ<br>0       | 0 0<br>0 0 |
|                  |              |                |                    |              |               |               |              |              |                |                 |                |            |               |            |

15/55 543

Summary of Statistical Tests and Probabilities
Dead Creek Chironomus tentans Chronic Toxicity Test
BTR: 3629

|        |         |           | Sur      | urvival     |                         |                      | Gro         | Growth      |                          |
|--------|---------|-----------|----------|-------------|-------------------------|----------------------|-------------|-------------|--------------------------|
|        |         | 1         | F-Tost   | T-Test      |                         |                      | F-Test      | T-Test      |                          |
| Day 20 |         | Surviving | Variance | Probability | Significant Significant | Weight (mg) Variance | Variance    | Probability | Significant <sup>1</sup> |
| 12622  | Control | 0.46      |          |             |                         | 2.959                |             |             |                          |
|        | Sample  | 0.00      | `<<br>Z  | 0000        | •                       | 0000                 | Z<br>Z<br>Z | 0000        | •                        |
|        | Sample  | 0.00      | NA.      | 0000        | •                       | 000.0                | ZAZ         | 000.0       | •                        |
| 12613  | Sample  | 00 0      | NA,      | 0000        | •                       | 000.0                | NA,         | 000.0       | •                        |
| 12614  | Sample  | 90.0      | NA,      | 0.003       | •                       | 0.959                | Z<br>Y<br>Z | 0.000       | •                        |
|        |         |           |          |             |                         |                      |             |             |                          |

1. \* A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05).

<sup>2.</sup> There were not enough sample and/or control response variability to conduct a meaningful F-Test.

|        |             |       | 1         |             |            | Day 2        | 0 Data      |             |             |             |
|--------|-------------|-------|-----------|-------------|------------|--------------|-------------|-------------|-------------|-------------|
|        |             |       | ł         |             |            | •            | Ashed Pan   |             |             |             |
|        |             |       | ſ         |             | Mean       | Wt. + Larval | and Ashed   | #           | Mean Wt.    | Mean Wt.    |
| Sample |             | Start | #         | Proportion  | Proportion |              | Larval Wt.  | Organisms   | within Rep  | Reps I-L    |
| Number | Replicate   | Count | Surviving | Surviving   | Surviving  | (mg)         | (mg)        | Weighed     | (mg)        | (mg)        |
| 12622  | 1           | 12    | 7         | 0.58        | ~ <u></u>  | 2139.80      | 2123.57     | 6           | 2.705       |             |
|        | J           | 12    | 4         | 0.33        |            | 2396.04      | 2387.54     | 3           | 2,833       |             |
|        | K           | 12    | 7         | 0.58        |            | 2303.40      | 2289.39     | 5           | 2.802       |             |
|        | L           | 12    | 4         | 0.33        |            | 2322.18      | 2315.19     | 2           | 3.495       |             |
|        |             |       |           | ··          | 0.46       |              | <del></del> | <del></del> |             | 2.959       |
| 12611  | 1           | 12    | 0         | 0.00        |            | 0.00         | 0.00        | 0           | 0.000       |             |
|        | J           | 12    | 0         | 0.00        |            | 0.00         | 0.00        | 0           | 0.000       |             |
|        | K           | 12    | 0         | 0.00        |            | 0.00         | 0.00        | 0           | 0.000       |             |
|        | L           | 12    | 0         | 0.00        |            | 0.00         | 0.00        | 0           | 0.000       |             |
|        | <del></del> |       |           | <del></del> | 0.00       |              | <del></del> |             | <del></del> | 0.000       |
| 12612  | <del></del> | 12    | 0         | 0.00        |            | 0.00         | 0.00        | 0           | 0.000       | <del></del> |
|        | J           | 12    | 0         | 0.00        |            | 0.00         | 0.00        | 0           | 0.000       |             |
|        | K           | 12    | 0         | 0.00        |            | 0.00         | 0 00        | 0           | 0.000       |             |
|        | L           | 12    | 0         | 0.00        |            | 0.00         | 0.00        | 0           | 0.000       |             |
|        |             |       |           |             | 0.00       | <del></del>  |             |             |             | 0.000       |
| 12613  | <del></del> | 12    | 0         | 0.00        |            | 0.00         | 0.00        | 0           | 0.000       |             |
|        | J           | 12    | 0         | 0.00        |            | 0.00         | 0.00        | 0           | 0.000       |             |
|        | K           | 12    | 0         | 0.00        |            | 0.00         | 0.00        | 0           | 0.000       |             |
|        | L           | 12    | ٥         | 0.00        |            | 0.00         | 0.00        | 0           | 0.000       |             |
|        | <del></del> |       |           |             | 0.00       |              |             |             |             | 0.000       |
| 12614  | <del></del> | 12    | 0         | 0.00        |            | 0.00         | 0.00        | 0           | 0.000       |             |
|        | J           | 12    | 0         | 0.00        |            | 0.00         | 0.00        | 0           | 0.000       |             |
|        | K           | 12    | 3         | 0.25        |            | 2251.81      | 2240.30     | 3           | 3.837       |             |
|        | L           | 12    | 0         | 0.00        |            | 0.00         | 0.00        | 0           | 0.000       |             |
|        |             |       |           |             | 0.06       |              |             |             |             | 0.959       |

# Summary of Statistical Tests and Probabilities Industriplex *Chironomus tentans* Chronic Toxicity Test BTR: 3629

|       |         |                       | Emel              | Emergence                  |                                             |                        | Repro             | Reproduction               |                               |
|-------|---------|-----------------------|-------------------|----------------------------|---------------------------------------------|------------------------|-------------------|----------------------------|-------------------------------|
|       |         |                       | F-Test            | T-Test                     |                                             | Mean Eggs              | F-Test            | T-Test                     |                               |
|       |         | Proportion<br>Emerged | Equal<br>Variance | Statistical<br>Probability | Statistically<br>Significant <sup>1,3</sup> | Hatched/<br>Female     | Equal<br>Variance | Statistical<br>Probability | Statistically Significant 1.3 |
| !     |         |                       |                   |                            |                                             |                        |                   |                            |                               |
| 12021 | Control | 0.43                  |                   |                            |                                             | 2 700                  |                   |                            |                               |
| 12611 | Sample  | 0.01                  | 0.004             | 0.000                      | •                                           | 00                     | NA.               | 0 003                      | •                             |
| 12612 | Sample  | 0.05                  | 0.365             | 0.000                      | •                                           | 0.0                    | À<br>Z            | 0.003                      | •                             |
| 12613 | Sample  | 0 08                  | 0.694             | 0.002                      | •                                           | 127 0                  | 0.434             | 0.033                      | •                             |
| 12614 | Sample  | 0 14                  | 0.791             | 0.008                      | •                                           | 106.0                  | 0.063             | 0.017                      | •                             |
|       |         | Day                   | 's Survi          | Days Survived, Female      | ale                                         | Da                     | ys Sur            | Days Survived, Male        | le                            |
|       |         | •                     | F-Test            | T-Test                     |                                             |                        | F-Tost            | T-Test                     |                               |
|       |         | Mean                  | Equal             | Statistical                | Statistically                               | Mean                   | Equal             | Statistical                | Statistically                 |
|       |         | Days Survived         | Variance          | Probability                | Significant 1,3                             | Days Survived Variance | Variance          |                            | Probability Significant 1,3   |
| 12622 | Control | ა<br>-                |                   |                            |                                             | 4.9                    |                   |                            |                               |
| 12611 | Sample  | 90                    | 0.568             | 0.004                      | •                                           | 0.0                    | NA <sup>2</sup>   | 0.000                      | •                             |
| 12612 | Sample  | 00                    | ×<br>V<br>V       | 0.000                      | •                                           | 0.7                    | 0.413             | 0.000                      | •                             |
| 12613 | Sample  | 03                    | 0.308             | 0.000                      | •                                           | 0 8                    | 0.997             | 0000                       | •                             |
| 12614 | Sample  | 0 8                   | 0.965             | 0.002                      | •                                           | 1.2                    | 0.237             | 0.001                      | •                             |

<sup>1. \*</sup> A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05). 2. There were not enough sample and/or control response variability to conduct a meaningful F-Test.

<sup>3.</sup> If the F-Test result was significant (relative to the Laboratory Control, P<0.05), the T-Test was performed using unequal variances.

| ,        |                   |            |             |         |        | ············ |              |              | Chronic End   | points      |             |            |              |          |
|----------|-------------------|------------|-------------|---------|--------|--------------|--------------|--------------|---------------|-------------|-------------|------------|--------------|----------|
| ]        |                   |            | End of Test |         | Emer   | aed          |              |              | Eggs          |             | Ne          | mber of Da | ıys Survived | 1        |
| Sample   |                   | Start      | Larvae      | Females | Males  | Total        | Proport.     | Total        | Unhatched     | Eggs/       | Female      |            | Males        | <b>-</b> |
| Number   | Replicate         | Count      | Survived    | #       | #      | #            | , , , , , ,  | #            | #             | Female      | days        | Ave.       | days         | Ave.     |
| 12622    | Α                 | .12        | 0           | 4       | 8      | 12           | 1.00         | 265          | 25            | 64          | 16          | 4.0        | 35           | 5.0      |
| ł        | 5                 | 12         | 0           | 3       | 1      | 4            | 0.33         | 0            | O             | 0           | 10          | 33         | 5            | 50       |
| i        | С                 | 12         | 0           | 1 1     | 3      | 4            | 0.33         | 1361         | 6             | 1355        | 4           | 4.0        | 16           | 5.3      |
| <b>S</b> | D                 | 12         | 0           | 1       | 1      | 2            | 0.17         | 883          | 100           | 783         | 3           | 30         | 2            | 2.0      |
| 1        | E                 | 12         | 0           | 3       | 2<br>6 | 5<br>9       | 0.42<br>0.75 | 2062<br>2576 | 143<br>75     | 640<br>834  | 5<br>8      | 2.5<br>4.0 | و<br>26      | 45<br>43 |
| ł        | G                 | 12  <br>12 | 1           | 3       | 3      | 6            | 0.75         | 25/6<br>2447 | 75<br>174     | 758         | 13          | 4.3        | 26<br>18     | 6.0      |
| ł        | Н                 | 12         | Ö           | 1 0     | 1      | 1            | 0.08         | 0            | 0             | 0           | 0           | 0.0        | 7            | 7.0      |
| Aver     | age per sam       |            |             | L¥      | '      |              | 0.45         |              |               | 554         | <u></u>     | 3.1        | <del></del>  | 4.9      |
| 12611    | A                 | 12         | ٥           | ٥       | 0      | 0            | 0.00         | 9            | ē             | 0           | 0           | 0.0        | 0            | 0.0      |
| ł        | 8                 | 12         | . 0         | 0       | 0      | D            | 0.00         | Đ            | ō             | ٥           | 0           | 0.0        | 0            | 0.0      |
| }        | С                 | 12         | 0           | 0       | 0      | 0            | 0 00         | ō.           | ē             | D           | D           | 0.0        | 0            | 0.0      |
| į        | D                 | 12         | 0           | 0       | 0      | 0            | 0 00         | 0            | 9             | 0           | 0           | 0.0        | ٥            | 0.0      |
| <b>{</b> | Ε                 | 12         | 0           | 0       | 0      | 0            | 0.00         | ε            | Ĉ.            | 0           | 0           | 00         | D            | סס       |
| 1        | F                 | 12         | 0           | 0       | 0      | 0            | 0.00         | 5            | ξ             | 0           | 0           | 0 0        | Ō            | 0.0      |
| ŀ        | G                 | 12         | 0           | 0       | 0      | 0            | 0.00         | ε            | 5             | Ģ.          | 0           | 0.0        | 0            | 00       |
| A        | <u> </u>          | 12         | 00          |         |        |              | 0.08         | <u> </u>     | <u> </u>      | <u>c</u>    | 5           | 5.0<br>0.6 | 0            | 0.0      |
| 12612    | age der sam.<br>A | 12 T       | Ö           | 0       | 0      | 0            | 0.01         |              | <del></del> - | <del></del> | 0           | 0.6        | 0            | 0.0      |
| 12012    | ŝ                 | 12         | č           | ٥       | 0      | 0            | 0 00 0       | 5            | -             |             | 0           | 90         | C C          | 0.0      |
| ļ        | Č                 | 12         | Ö           | 0       | Õ      | 0            | 0.00         | ÷            | :             | ζ           | 0           | 0.0        | ٥            | 0.0      |
| ł        | Ö                 | 12         | Ö           | Ö       | Ö      | 0            | 0 00         | 3            | ÷             | ě           | Ö           | 0.0        | Č            | 00       |
| j        | £                 | 12         | 0           | 0       | Ō      | 0            | 0 00         | 9            | e             | G           | 0           | 0.0        | 0            | 00       |
|          | F                 | 12         | 0           | 0       | 0      | C            | 000          | 2            | :             | C-          | 0           | 0.0        | Э            | 00       |
| l        | G                 | 12         | 0           | 0       | 0      | 0            | 0.00         | ٥            | 5             | c           | 0           | 0.0        | 0            | 0.0      |
|          | н                 | 12         | 0           | 2       | 3      | 5            | 0 42         | <u> </u>     | <u> </u>      | <u> </u>    | <u> </u>    | 0.0        | 17           | 57       |
|          | age per sam       |            |             |         |        |              | 0.05         |              |               | C           | <del></del> | 0.0        |              | 0.7      |
| 12613    | A                 | 12         | 0           | 0       | 0      | 0            | 0 00         | C            | ٥             | 0           | 0           | 0.0        | 0            | 0.0      |
|          | 8<br>C            | 12<br>12   | 0           | 0<br>3  | 1<br>4 | 1<br>7       | 0.08<br>0.58 | ე<br>3591    | 5<br>548      | 0<br>1016   | 0<br>8      | 0.0<br>2.7 | 3<br>13      | 30<br>33 |
|          | 0                 | 12         | Ö           | 0       | 0      | 0            | 0.00         | 0            | 543<br>()     | 0.          | ì           | 00         | 0            | 0.0      |
|          | E                 | 12         | ő           | 0       | 0      | 0            | 0.00         | G            | C C           | 2           | ٥           | 00         | 0            | 0.0      |
|          | F                 | 12         | ő           | 0       | ٥      | 0            | 000          | 0            | Ö             | č           | lŏ          | 0.0        | ō            | 0.0      |
|          | Ġ                 | 12         | ŏ           | Ö       | Ö      | ō            | 0.00         | ō            | Ö             | ō           |             | 0.0        | Ō            | 0.0      |
|          | н                 | 12         | 0           | 0       | 0      | 0            | 0.00         | ō            | 2             | Ċ           | 0           | 0.0        | 0            | 0.0      |
| Avera    | age per sam       | ple        |             |         |        |              | 0.08         |              |               | 127         |             | 03         |              | 0.6      |
| 12614    | 4                 | 12         | 0           | 3       | 6      | 9            | 0.75         | 612          | 3             | 283         | o,          | 30         | 22           | 3.7      |
|          | Б                 | 12         | 0 1         | 0       | 0      | 0            | 0 00         | O            | Ç             | ę           | 0           | 0 0        | 0            | 0.0      |
|          | C                 | 12         | 0           | 0       | 0      | 0            | 0.00         | ĵ            | c             | Ĉ           | 0           | 0.0        | 0            | 0.0      |
|          | Ď                 | 12         | 0           | 0       | 0      | 0            | 0.00         | 0            | C             | C<br>Ē      | 0           | 0.0        | 0            | 00       |
|          | E                 | 12         | 0 }         | 0       | 0      | 0            | 0.00         | 0<br>0       | C<br>0        | ÷           | 0           | 0 0<br>0.0 | 0            | 00       |
|          | G                 | 12<br>12   | 0           | 3       | 1      | 4            | 0.00         | 2336         | 400           | 645         | 6           | 3.0        | 6            | 60       |
|          | H                 | 12         | 0           | 0       | ó      | 0            | 0 00         | 2330<br>0    | 400<br>0      | 020         | Ö           | 0.0        | 0            | 0.0      |
| Avera    | age per sam       |            |             |         |        |              | 0.14         |              | <u>-</u>      | 105         | ·           | 0.8        | <u>-</u>     | 1.2      |



Summary of Statistical Tests and Probabilities
Dead Creek Chironomus tentans Chronic Toxicity Test
BTR: 3641

|               |         |            | Sur      | Survival    |                         |                      | Gro      | Growth      |                           |
|---------------|---------|------------|----------|-------------|-------------------------|----------------------|----------|-------------|---------------------------|
|               |         |            | F-Test   | T-Test      |                         |                      | F-Test   | T-Test      |                           |
|               |         | Proportion | Equal    | Statistical | Statistically           | Avorage              | Equal    | Statistical | Statistical Statistically |
| <b>Day 20</b> |         | Surviving  | Variance | Probability | Probability Significant | Woight (mg) Variance | Variance | Probability | Probability Significant   |
| 12668         | Control | 0.65       |          |             |                         | 2 923                |          |             |                           |
| 12665         | Sample  | 69.0       | 0 689    | 0.404       |                         | 3.074                | 0 899    | 0.400       |                           |
|               | į       | ı          | ì        |             |                         |                      |          |             |                           |

1 \* A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05)

|        |             |       | 1         |            |            | Day 20       | 0 Data     |           |            |          |
|--------|-------------|-------|-----------|------------|------------|--------------|------------|-----------|------------|----------|
|        |             |       | ł         |            |            | Ashed Pan    | Ashed Pan  |           |            |          |
|        |             |       | 1         |            | Mean       | Wt. + Larval | and Ashed  | #         | Mean Wt.   | Mean Wt. |
| Sample |             | Start | #         | Proportion | Proportion | Dry Weight   | Larval Wt. | Organisms | within Rep | Reps I-L |
| Number | Replicate   | Count | Surviving | Surviving  | Surviving  | (mg)         | (mg)       | Weighed   | (mg)       | (mg)     |
| 12668  | J           | 12    | 7         | 0.58       |            | 2271.36      | 2263.76    | 3         | 2.533      |          |
|        | j           | 12    | 10        | 0.83       |            | 2398.12      | 2386.84    | 4         | 2.820      |          |
|        | ĸ           | 12    | 10        | 0.83       |            | 2448.78      | 2430.38    | 8         | 2.300      |          |
|        | L           | 12    | 4         | 0.33       |            | 2453.15      | 2445.07    | 2         | 4.040      |          |
|        |             |       |           |            | 0.65       |              |            |           |            | 2.923    |
| 12665  | <del></del> | 12    | 11        | 0.92       |            | 2346.80      | 2326.20    | 11        | 1.873      |          |
|        | J           | 12    | 3         | 0.25       |            | 2290.05      | 2282.89    | 2         | 3.580      |          |
|        | K           | 12    | 9         | 0.75       |            | 2420.25      | 2395.18    | 8         | 3.134      |          |
|        | L           | 12    | 10        | 0.83       |            | 2488.41      | 2484.70    | 1         | 3.710      |          |
|        |             |       |           |            | 0.69       |              |            |           |            | 3.074    |

# Summary of Statistical Tests and Probabilities Industriplex Chironomus tentans Chronic Toxicity Test

BTR: 3641

|                |                   |                       | Eme                         | Emergence                            |                              |                                       | Repro                       | Reproduction                         |                                                                |
|----------------|-------------------|-----------------------|-----------------------------|--------------------------------------|------------------------------|---------------------------------------|-----------------------------|--------------------------------------|----------------------------------------------------------------|
|                | ;<br>;<br>;       | Proportion<br>Emerged | F-Test<br>Equal<br>Variance | T-Test<br>Statistical<br>Probability | Statistically<br>Significant | Mean Eggs<br>Hatched/<br>Female       | F-Test<br>Equal<br>Variance | T-Test<br>Statistical<br>Probability | T-Test<br>Statistical Statistically<br>Probability Significant |
| 12668          | Control<br>Sample | 0 69 0 13             | 0 454                       | 000 0                                | ٠                            | 354.2<br>248.8                        | 0 7 10                      | 0.317                                |                                                                |
|                |                   | Day                   | Days Surviv                 | ved, Female                          | ale                          | Day                                   | ys Surv                     | Days Survived, Male                  | <u>a</u>                                                       |
|                |                   | Mean                  | F-Test<br>Equal             | T-Test<br>Statistical                | Statistically                | Mean                                  | F-Test<br>Equal             | T-Test<br>Statistical                | Statistically                                                  |
| ,              |                   | Days Survived         | Variance                    | Probability                          | Probability Significant '.*  | Days Survived Variance                | Variance                    |                                      | Probability ignificant '.*                                     |
| 12668<br>12665 | Control<br>Sample | 3.6                   | 0.049                       | 0.003                                | •                            | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0.007                       | 0.007                                | •                                                              |

1. A statistically significant reduction in the response was observed (relative to the Laboratory Control, P<0.05).

<sup>2.</sup> If the F-Test result was significant (relative to the Laboratory Control, P<0.05), the T-Test was performed using unequal variances.

|                  |               |                |                    |              |            |            |          |            | Chronic End    | points          |                |            |               |          |
|------------------|---------------|----------------|--------------------|--------------|------------|------------|----------|------------|----------------|-----------------|----------------|------------|---------------|----------|
|                  |               |                | End of Test        |              | Eme        | rged       |          |            | Eggs           |                 | Nu             | mber of Da | ys Survive    | <u>d</u> |
| Sample<br>Number | Replicate     | Start<br>Count | Larvae<br>Survived | Females<br># | Males<br># | Total<br># | Proport. | Total<br># | Unhatched<br># | Eggs<br>/female | Female<br>days | Ave.       | Males<br>days | Ave.     |
| 12668            | Α             | 12             | 0                  | 6            | 2          | 8          | 0 67     | 3669       | 435            | 539             | 18             | 3.6        | 10            | 50       |
|                  | В             | 12             | 0                  | 4            | 3          | 7          | 0.58     | 2275       | 350            | 481             | 18             | 4.5        | 9             | 3.0      |
|                  | С             | 12             | D                  | 2            | 5          | 7          | 0.58     | 1372       | 250            | 561             | 10             | 5.0        | 20            | 4.0      |
|                  | D             | 12             | 0                  | 2            | 8          | 10         | 0.83     | 0          | 0              | 0               | 3              | 3.0        | 33            | 4.7      |
|                  | E             | 12             | 0                  | l 1          | 8          | 9          | 0.75     | 0          | 0              | 0               | 2              | 2.0        | 30            | 38       |
|                  | F             | 12             | 0                  | 4            | 7          | 11         | 0.92     | 703        | 207            | 124             | 14             | 35         | 32            | 5.3      |
|                  | G             | 12             | ٥                  | 4            | 7          | 11         | 0 92     | 2637       | 2637           | 0               | 14             | 35         | 26            | 37       |
|                  | H             | 12             | 0                  | 11           | _ 2        | _ 3        | 0.25     | 1144       | 16             | 1128            | 4              | 4.0        | 5             | 5.0      |
| Ave              | erage per san | nple           |                    |              |            |            | 0 69     |            |                | 354             |                | 3.6        |               | 43       |
| 12665            | Α             | 12             | 0                  | 0            | 0          | 0          | 0 00     | 0          | 0              | 0               | 0              | 0.0        | 0             | 00       |
|                  | В             | 12             | 0 .                | 0            | 0          | 0          | 0 00     | 0          | 0              | 0               | 0              | 0.0        | 0             | 0.0      |
|                  | С             | 12             | ٥                  | 0            | 0          | 0          | 0 00     | G          | 0              | 0               | 0              | 0.0        | 0             | 0 0      |
|                  | D             | 12             | 0                  | 4            | 1          | 5          | 0.42     | 3834       | 191            | 911             | 15             | 3.8        | 6             | 60       |
|                  | E             | 12             | 0                  | 0            | 0          | 0          | 0.00     | 0          | 0              | 0               | 0              | 00         | 0             | 00       |
|                  | F             | 12             | 0                  | 1            | 4          | 6          | 0.50     | 1104       | 24             | 1080            | 5              | 50         | 20            | 50       |
|                  | G             | 12             | 0                  | ٥            | 0          | 0          | 0 00     | ٥          | 0              | 0               | 0              | 0.0        | 0             | 0 0      |
|                  | H_            | 12_            | 0                  | ٥            | 0          | 1          | 0.08     | 0          | 0              | 0               | 0              | 0.0        | 0             | 0,0_     |
| Ave              | race per sam  | ple            |                    |              |            |            | 0.13     |            |                | 249             |                | 11         |               | 1.4      |

RHB Izlz1

# **APPENDIX B**

Page

|                                                               |                 | Agu              | Aquatec E                             | 3iolog         | tec Biological Sciences                                                                                                                                          | 75 Green Mountain Drive<br>South Burlington, V1 05403<br>TEL, (002) 660-1630    | hive<br>05403 |
|---------------------------------------------------------------|-----------------|------------------|---------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------|
|                                                               |                 |                  | Chain-of-C                            | -or-Cus        | tody/Record                                                                                                                                                      | ( FAX (002) 650-3109                                                            |               |
| COMPANY INFORMATION                                           | COMI'           | ANY'S 1130       | COMPANY'S PROJECT INFORMATION         | NOLLVY         | SHIPTING INFORMATION                                                                                                                                             | VOLUME/CONTAINER TYPY!/<br>PRESERVATIVE                                         |               |
| Name: Menzie Gura & Associates                                | Project N       | anne; Dear       | Project Name: Dead Greek Sedingal Tox | mind Fox       | Carrier: 40C                                                                                                                                                     |                                                                                 |               |
| Address: One Counthouse Lane, Suite 2<br>Chelmsford, MA 01024 | Project Number: |                  | 99033                                 |                | Airbill Manber:                                                                                                                                                  |                                                                                 |               |
| Telephone: (978) 453-4300                                     | Sample          | Sampler Name(s): |                                       |                |                                                                                                                                                                  |                                                                                 |               |
| Facsimile: (978) 453-7260                                     |                 |                  |                                       |                | Date Shipped:                                                                                                                                                    | <br> <br> <br>                                                                  |               |
| Contact Name - Ken Centelo, Ph.D.                             | Ouote #.        | 3/00             | Client Code:MENCUR                    |                | Hand Delivered: Yes No                                                                                                                                           | i gail                                                                          |               |
| SAMPLE DENTIFICATION                                          | COLLECTION      | טוגעוו           | COMPOSITE                             | MATIRIX        | ANALYSIS / IREMARKS                                                                                                                                              | NUMBER OF CONTAINERS                                                            | ,             |
|                                                               |                 |                  |                                       | Sediment       | Hyalolla aztaca 10-d Survival & Growth                                                                                                                           |                                                                                 | !             |
|                                                               |                 |                  |                                       |                | Hyalella azteca 42 day Chronic Toxicity Chironomus tentans 10 d Survival & Growth                                                                                | 1,00%                                                                           |               |
|                                                               |                 |                  | ,                                     |                | Chironomus tentans Chronic Toxicity                                                                                                                              |                                                                                 |               |
|                                                               |                 |                  |                                       | Sediment       | Hyatella azteca 10-d Survival & Growth                                                                                                                           |                                                                                 |               |
| (-2-)-0-0                                                     |                 |                  |                                       |                | Opposite Agree 12 day Chronic Foxicity Chironomus fortlans 10 d Survival & Growth                                                                                | 150,6                                                                           |               |
|                                                               |                 | :                | · · · · · · · · · · · · · · · · · · · | Sediment       | Chiromonus tentans Chronic Toxicity /                                                                                                                            |                                                                                 | :             |
|                                                               |                 |                  |                                       | ;              | Hyalella azteca 42 day Chronic Toxicity                                                                                                                          |                                                                                 |               |
|                                                               |                 | <del></del>      |                                       |                | Chirononnes tentans 10-a Salvival & Orowin<br>Chirononnes tentans Chronic Toxicity                                                                               |                                                                                 |               |
|                                                               | -               |                  |                                       | Sedimont       | Hymfolla uzfaca 10.d Shuvival & Growth                                                                                                                           |                                                                                 |               |
|                                                               |                 |                  |                                       |                | Chiranonnus Indians 10 d Survival & Grawth                                                                                                                       |                                                                                 |               |
|                                                               | -               |                  |                                       | - Internal and | Chichen forthis (Juone Loxicity)                                                                                                                                 |                                                                                 |               |
|                                                               |                 |                  |                                       |                | Plyation against 20 Commission of Physician Physician Conference 10 d Guident & Grandin                                                                          |                                                                                 | ***           |
|                                                               | <del></del>     |                  |                                       |                | Chironopurs features Chronic Toxicity                                                                                                                            |                                                                                 | 1             |
| Reinquished by: (signpline)                                   | JATIN 111MI     | II. Receiv       | Received by: (signature)              | (ura)          | NOTES TO SAMPLER(S): We recommend nesting samples in ice to maintain 4"C during shipment. Please cover sample labels with clear lape (labels are not waterproof) | sting samples in ice to maintain 4°C c<br>loar tape (labels are not waterproot) | furing        |
| ( VIVVO) / YOUVES                                             |                 |                  | 1 WE BASSING IN GENERAL               | (5.1)          | Notes to Lab. Cooler ambient temperature upon delivery.                                                                                                          | Do , Louis delivers                                                             |               |
| (2) (adhama): (adhama) (2)                                    | 1/2//5/         | 00               | marking) - Carnon                     | /-O            |                                                                                                                                                                  |                                                                                 | <del></del>   |
| Relinquished by (signature)                                   | DATE TIME       | T                | Received by: (signalure)              | (am)           |                                                                                                                                                                  |                                                                                 |               |
| **                                                            |                 |                  |                                       |                |                                                                                                                                                                  |                                                                                 |               |
| CV99013VAVCOCT. doc                                           |                 |                  |                                       |                |                                                                                                                                                                  |                                                                                 |               |

South Budington; VT 05403

TEL: (802) 860-1638 FAX: (802) 658-3189

75 Green Mountain Drivn

Aquatec Biological Sciences Chain-of-Clistody Record

NOTES TO SAMPLER(S): We recommend nesting samples in ice to maintain 4"C during VOLUME/CONTAINER LYPL / shipment. Please cover sample labels with clear tape (labets are not waterproof) NUMBER OF CONTAINERS PRESCRAMIVE Notes to Lab. Coaler ambient temperature upon delivery: (=0:J T:03 1503 1=0.9 1:0.7 plastic ادر؛ ١ 20V Chirononns fentans 10.4 Survival & Growth Chironomus fordans 10 d Sarvival & Growth Chironomus tentans 10-d Survival & Growth Chironophus fentans 10 d Sarvival & Growth Chirononnes fontaine 10, d Survival & Growth Hyalalla azlaca 42-day Chronic Foxicity Hyalella azteca 42 day Chronic Luxicity Hyalella aztoca 42-day Chionic Toxicity Hynlella azteca 10 d Sarvival & Growth Hyalalla aztaca 42-day Chronic Toxicity Hyalalla aztaca 42.-day Ghronic Toxicity Phalalla aztaen 10.0 Sarvival & Growth Hyalella azfeca 10.d Survival & Growlli Hyalella aztaca 10-d Survival & Growth Hyalella azteca 10-d Survival & Growth Chirononnis tentana Chronic Toxicity Chirononus tentans Chronic Toxicity Chironomus tentans Chronic Toxicity *Chironomus tentans* Chronic Toxicity Chiranonnes tantans Chronic Toxicity ٩ N NOTIVERSINE STREET ANALYSIS / REMAIRES ۲<u>ر:</u> ۲ Client Code:MENGUR | Hand Delivered: Airbill Number: Date Shipped: Carrier: MATTRIX Sediment Project Name: Dead Greek Sediment Tox AXAAA MARKELI Received by (signature) COMPANYS PROJECT INFORMATION Received by: (signalure) Received by: (signature) THEOMNOD CRAII 37.619 Sampler Name(s): Project Number: 1 09:07 7 10:00 1 IMI -COLLECTION Ouole #: 11/1 Address: One Courthouse Lane, Suile 2 BTOX-0-3-2 COMPANY INFORMATION Contact Name, Ken Gerreto, Ph.D. Name: Menzie Gura & Associates BIDX-C-3-2 2-2-7-Xald SAMPLE IDENTIFICATION Chelmsford, MA 01824 BTOX - 1)-3 BTOX- C-2 (978) 453-7260 Telephone: (970) 453-4300 Relinquished by: (signature) Relinquished by (signalure) Facsimile:

CIBBOLLIVIC

Page

'5 Green Mountain Drive

South Burlington, VT 05403 NOTES TO SAMPLEMS): We recommend needing samples in ice to maintain 4°C during # 15 TEL: (002) 860-1630 VOLUME/CONTAINER LYPY / shipment. Phase cover sample tabets with clear tape (tabets are not waterproof) NUMBER OF CONTAINERS PRESERVATIVE Notes to Lab: Gooler ambient temperature upon delivery: 5'0= 20. 7,0,5 5005 1:0,5 plastic Jeb I Chimmonnes tentines 10 d Sarvival & Growth Chirononnes fantana 10-d Survival & Growth Chirononus fentana 10 d Survival & Growth Chiranannus tantans 10 d Sanvival & Growth Chiranannes fantanes 10 d Sanvived & Crowth Hyalolla axfoon 42 day Chronic Loxicity Hyalella natuca 42-day Chronic Toxicity Hyalalla azfaca 10.d Survival & Growth Hyalella axfeca 42.day Chronic Toxicity Hyalella azteca 42.day Ghronic Toxicity Hyalalla agleca 10.d Survival & Growth Hyalella axfoca 10 d Survival & Growth Hyalolla aztaca 42-day Chronic Toxicity Hyalella aztaca 10-d Survival & Growth Hyalella aztoca 10.d Survival & Growth Chiranonnus fentans Chronic Toxicity Chitomonus fantaus Chronic Toxicity Chiranonnus fentans Chronic Toxicity Chironomus fentans Chronic Toxicity Chiromonnes tentana Chronic Texicity ž NOTIVINIO INFORMATION ANALYSIS / REMARKS Aquatec Biological Sciences Chain-of-Gustody/Record Hand Delivered: Airbill Number: Date Shipped. Carrier: Client Code:MUNCUIR XISI.VW Sediment Sectioner! Sediment Project Name: Dead Greek Sudiment Tox ROMPANYS PROJECT INI GENARITON Received by: (signalum) Received by (signaline) (Secentral by: (signature) GRAB | COMPOSITE Project Number: 99033 17.09 Sampler Name(s) 00:0/16 COLLICION Quole 11. Address: One Courthouse Lane, Suite 2 COMPANY INFORMATION Contact Name - Ken Cereeto, Ph.D. Name: Menzie Gura & Associates SAMPLE TOLINITIFICATION Chelinslaid, MA 01824 BTOX-D-2-2 (971) 453 7260 Telephone: (978) 453-4300 610X-C-3 (am) Endished by (signs/me) Characth Mell Relinquenced by (signature) GTOX- O-DPAOX D AND TOOCH doc Facsimile

| ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 (2014) betestnat Plaza Devo, Tailahasso<br>1 1414 (3W 1214 Avenne, Desdinkt Best)<br>1 1900 Falceade Divo, Mebile, Al. 36693<br>1 16712 Despirite Road, Suite 100, Tamp | Catalis biological Plaza Drive, Tallaharsage, FT 32301 1414 SW 129 Avenue, Deerfield Berch, FE, 33442 1900 Calerante Drive, Mehale, At, 36693 16712 Bergmon Boad, Soile 100, Lampa, ET 33634 1700 Abberthayer Soile 100, Lampa, ET 33634 | Phone; (904) 678;1994<br>Phone; (154) 421;7400<br>Phone; (234) 666;6533<br>Phone; (113) 805;7427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fax (904) 470 9504<br>Fax (954) 421-2544<br>Fax (234) 666 6696<br>Fax (913) 865 7049<br>Fax (913) 705 7040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In two (2) coolere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                           | MALIUX X (A) XIII O III O III I DANAI YEEES                                                                                                                                                                                              | Control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (control (con | I Poet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FINDIFICATION SAMPLINGS NAME TO THE PROPERTY OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE |                                                                                                                                                                           |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF TH |
| 1 Constraint and law South a Chapmand MI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100 1-100 S                                                                                                                                                               |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLE POT NULL CALLON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                           | CHARLEON CONTAINING SUBMITTED                                                                                                                                                                                                            | Gill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H MAINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 670x-8-1<br>070x-8-1<br>870x-8-2<br>1070x-8-3<br>1070x-8-3<br>1070x-10-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ાં હ મ જ હ                                                                                                                                                                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                           | ·                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C 0 20 C                                                                                                                                                                  | S. C.                                                                                                                                 | 1, ch " (chan)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Receipe con les.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ALURE) DATE                                                                                                                                                               | HAI HEGEVENIN (SIGNALURE)                                                                                                                                                                                                                | TILLING (FIGHT, DTDY (SIGNALUTU)<br>HEGLIVED DY (SIGNALUTE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DATE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NATURE CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                           | SI, LOG NO. LABOHATORY DEMARKS:                                                                                                                                                                                                          | JIY NEMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| KECORD  |
|---------|
| CUSTODY |
| 0       |
| CHAIN   |

| 5cd. 6 11mm 11mm 11mm | Project Location: $Securyet/Callo Kia, 1.77$ i courthouse lane, suite ? | 2-04<br>2-04                  | Containers S V NOTES | X X X            | XXX          |  |  | Heretwelly: Glynature) -A a cox A Man of Collins Romanks: -A a cox A Man of Collins A Core O by a 2 loc o | () Date Time | Received By: (Signature) Unite Thur Charles Sedumonil |                | UNIX 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 |
|-----------------------|-------------------------------------------------------------------------|-------------------------------|----------------------|------------------|--------------|--|--|-----------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------|----------------|--------------------------------------------|
|                       |                                                                         | SAMPLENS CLOM DEO, K. FORDALA |                      | Dand Orap Sed, 6 | Doma 00 1917 |  |  | 10/c/q/y 1900                                                                                             | Date         | Ilme                                                  | <br>Agonorical |                                            |

# CHAIN OF CUSTODY RECORD

| 648 B Dona Croode Sangy I Won                    | Sangal Men. T.        | Source of Calorina, III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | MENZIE-GURA & ASSOCIATES, INC. 1 GOURTHOUSE LANE, SUITE 2 |
|--------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------|
|                                                  |                       | Analyses Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | CHELMSFORD, MA 01024                                      |
| 13 /3 / 6 /01 EDIVO                              |                       | المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المراب |             | TEL: 970/453-4300 FAX: 970/453-7260-                      |
| SAMPLERS C. Manzey J. Folgerile                  | . Forgards            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                           |
| SAMPLE ID Date Goppp. Omb                        | Station Locations     | No. of (0.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·           | NOTES                                                     |
| 4,0-3 10 to 130                                  | 1.10.01.00 m.l.       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                           |
|                                                  | Dearl Create Sel (ant | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | () ()                                                     |
|                                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 71 C>                                                     |
| F-3 V W.D                                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | CI C >-                                                   |
|                                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                           |
|                                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                           |
|                                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                           |
|                                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                           |
|                                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                           |
|                                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                           |
|                                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 50°C (                                                    |
|                                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ان ا                                                      |
| Relinguished By (Signatura) Astron. (1. 10) 1119 | 10/3/19/9 (1/01)      | Heretvert ty: (5tymstyre)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 16 10:30 | Romarks: Q. COO (O.A.)                                    |
| Relinquished By: (5lqnature)                     |                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Data Time   | )<br>3<br>3<br>7                                          |
| Refinquished By: (Signature)                     | Hafe                  | e Received By: (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Uate Time   |                                                           |
| Laboratory: Aguartech                            |                       | Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                                           |
| Contact Per                                      | A.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                           |
| 18                                               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | AO DEDVA                                                  |
| w <sup>g</sup>                                   |                       | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | u p                                                       |

|                                 | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |              |                                     | آم.<br>[       |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|-------------------------------------|----------------|
| Project No. Project Name:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Location:                |              | ONI PHENDING A COLO HIGH            |                |
| 648B Dud Crube                  | Dud Creek-Souged Nout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sauget-Cohohia, III.             | .//.         | 1 COURTHOUSE LANE, SUITE 2          |                |
|                                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analyses Required                |              | CHELMSFORD, MA 01824                |                |
| DATE: 10/6/99                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (T)                              |              | TEL: 978/453-4300 FAX: 978/453-7260 |                |
| SAMPLERS C. NO.41 Z.C. ) (      | C Formark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 777. TE<br>74. VY.<br>3 703      |              |                                     |                |
| SAMPLE 10 Data Comp. Grab       | Grab Station Locations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No. of Al-3<br>Containers (1:0)& | -,-          | NOTES                               |                |
| -                               | Riginal dulying One all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                |              |                                     | Ī              |
| i                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                                     | !              |
| 16.62-1 V- 11.20                | 124. Crech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | 4            |                                     |                |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                                     | <u> </u>       |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                                     | <del></del>    |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                                     | <del>-</del> - |
|                                 | e (mpagatage) (pagata amatage) pagatage) and a second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of t |                                  |              |                                     | <u> </u>       |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                                     |                |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                                     | <u> </u>       |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                                     | 1 :            |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                                     |                |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                                     |                |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                                     |                |
| Hallymistrality (Signatura)     | [6.3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hacatyad By: (Signatura)         | (Late There  | Romarks:                            | <del></del>    |
| (C) (MV1111 (N) (N) (M) (M) (M) | 13/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  | <del> </del> | 12 cooloss VIG 1-ec/0x              |                |
| Relinquished By: (51gnature)    | 10/3/19 101.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | Date Thure   | 32,00 may 61/10                     |                |
| Reflaquished tyy: (Signature)   | Dale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Heceload Ily:                    | Date Thue    | 1-E >60 h 660 h                     |                |
| Laboratory:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phone:                           | <u> </u>     |                                     |                |
| Confed Purson                   | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |                                  |              |                                     |                |
| Come and property many          | 111.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                |              |                                     | $\neg$         |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · / / /                          | ,            |                                     |                |

( 00 Can 11 2 81)

PAGE 1 OF 1

000019

| RECORD   |
|----------|
| CUSTODY  |
| CHAIN OF |

| 640B Deadonte: 10/9/99 SAMPLEUS C. Mes |                                |       |                                              |                                        | · · · · · · · · · · · · · · · · · · ·                     | :                          |         |          |             | _           | ONI SELECTION & ASSOCIATES INC.                            |
|----------------------------------------|--------------------------------|-------|----------------------------------------------|----------------------------------------|-----------------------------------------------------------|----------------------------|---------|----------|-------------|-------------|------------------------------------------------------------|
| SAMPLE<br>SAMPLE                       | OB Dead Ore                    | J.C   | 640B Dead Court - Sauget Ave I               |                                        | Sanget,                                                   | 1000/                      | olCia,  | 11.71    | . !         | į           | I COURTHOUSE LANE, SUITE 2                                 |
| SAMPLE                                 | 1010.100                       |       |                                              |                                        |                                                           | Vinn                       | sas Roc | whod     | -           |             | CHEL.MSFORD, MA 01024  TEL: 970/453-4300 FAX: 970/453-7260 |
| SAMPL                                  | SAMPLEUS C. Man Tid, K. Pozzat | 1/2   | Frakes.                                      |                                        | 7 6154<br>1 6154<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2002 2<br>2002 2<br>2003 2 |         |          |             | <del></del> |                                                            |
|                                        | LE 10 Data Comp.               | Grab  | Grab Station Locations                       |                                        | No. of<br>Containers                                      | 10.H<br>(4.)<br>(2.00      |         |          | <del></del> |             | NOTES                                                      |
| miof Netala                            | 10/1/11                        | 1 !   | Rafaciante Bordow Dit                        |                                        | ~                                                         | 7                          |         |          |             |             |                                                            |
|                                        |                                |       |                                              |                                        |                                                           |                            |         |          | İ           |             |                                                            |
|                                        |                                |       |                                              |                                        |                                                           |                            |         |          |             |             |                                                            |
|                                        |                                |       |                                              |                                        |                                                           |                            |         | 1        | <u> </u>    |             |                                                            |
|                                        |                                |       |                                              |                                        |                                                           |                            |         | -        |             |             |                                                            |
|                                        |                                |       |                                              |                                        |                                                           |                            |         | -        |             |             |                                                            |
|                                        |                                |       |                                              |                                        |                                                           |                            |         |          |             |             |                                                            |
|                                        |                                |       |                                              |                                        |                                                           |                            |         |          |             |             |                                                            |
|                                        |                                |       |                                              |                                        |                                                           |                            |         | <u> </u> | !           |             |                                                            |
|                                        |                                |       |                                              |                                        |                                                           | !                          |         | -        |             |             |                                                            |
|                                        |                                |       |                                              |                                        |                                                           |                            |         |          |             |             | ),()() () m, ),                                            |
| alupylla)                              | (telliquished Dy: (5tquatura)  | Per   | 10/0/09                                      | ······································ | Hacalvad Dy: (Alignatura)                                 | Julius)                    |         | e e      | 9 6         | e uil       | Romarks:                                                   |
| Rellingule                             | Relinquished By: (Signature)   | -(-)- | <u>.                                    </u> | Hane                                   | Racalvad Ily: (Signatura)                                 | nafure)                    |         | =        | 614(1       | Thm         | Country to Country                                         |
| Refinquis                              | Rellnquished By: (Signature)   |       | Date                                         | Heren                                  | Hacalvad Hy: (5tgnatura)                                  | natura)                    |         | =        | nie()       | # III       |                                                            |
| Laboratory:                            | Mory: Aquatach                 |       |                                              |                                        | Phona:                                                    |                            |         |          |             |             |                                                            |
| Contac                                 | Contact Person: Dh. On Dry C.  | )OOr  | ישיל.                                        |                                        |                                                           |                            |         |          |             |             | -                                                          |



# Midge (Chironomus tentans) Chronic Toxicity Test Day 20 Survival and Dry Weight Data

| Client: Menzie-Cura & Assoc. | Project: 99033 Dead Creek    | BTR: 3186 / 3189         |
|------------------------------|------------------------------|--------------------------|
|                              | Test Start: October 19, 1999 | Day 20: November 8, 1999 |

| Sample | Repl. | Initial #<br>Larvae | # Alive | 11/8/99<br>Init. | Larvae<br>preserve<br>d?<br>Y/N | Crucible # | #<br>Weighed | Ashed<br>Pan Wt. | Ashed<br>Pan Wt.<br>+ Larval<br>Dry Wt. | Ashed<br>Pan and<br>Ashed<br>Larvai<br>Wt. |
|--------|-------|---------------------|---------|------------------|---------------------------------|------------|--------------|------------------|-----------------------------------------|--------------------------------------------|
| 12548  | l     | 12 C                | 5P51    | Tm               | Υ                               | 1          | 11           | 2238,99          | 2,267,44                                | 2,243,55                                   |
|        | J     | 12                  | DP 7L   | TM               | Υ                               | 2          | 7            | 2120.34          | 2,142,36                                | 2, 123.31                                  |
|        | K     | 12                  | 1P6L    | TM               | Υ                               | 3          | 6            | 2385.96          | 3,403.08                                | 2,388.31                                   |
|        | L     | 12                  | 1P 4L   | TM               | Y                               | 4          | 4            | 1286.61          | 3306.17                                 | 2.287.91                                   |

| 12550        | 1 | 12 | OPOL                                   | TM            | Υ | 5                                     |     | 2313.28 |             |          |
|--------------|---|----|----------------------------------------|---------------|---|---------------------------------------|-----|---------|-------------|----------|
| Ī            | J | 12 | OPIL                                   | Th            | Y | 6                                     | 111 | 2129.95 | 2,167,44    | 2,136,97 |
| very small * | K | 12 | OP 3L                                  | Tm            | Y | 7                                     | 3   | 2180.96 | 2182,25     | 2,180.87 |
| very small * | L | 12 | OP IL                                  | TM            | Y | 8                                     | 1   | 2491.01 | 2,491.36    | 2,490,86 |
| (3)          |   |    | ······································ | <del></del> - |   | · · · · · · · · · · · · · · · · · · · |     |         | <del></del> |          |

| 12551    | l   | 12 | OP 8L | TM | Υ | 9  | 8  | 2282.84 2,323,33 2,392.54 |
|----------|-----|----|-------|----|---|----|----|---------------------------|
| Small-   | J   | 12 | OP IL | TM | Y | 10 | ì  | 2321.00 2,321.45 2,321.89 |
|          | K   | 12 | OP 9L | TM | Y | H  | 19 | 2282.20 2,315.55 2,2901   |
| Isnall I | > L | 12 | OPaL  | TM | Y | 12 | 12 | 2389.33 2,392,79 2,389,75 |
| 1 '''' ' |     |    |       |    |   | į  |    | ,                         |

| 12552 | 1 | 12 | 5 P 5 L | Tm | Y | [ 13 | 5  | 2484.61 2,503.78 2,487.15 |
|-------|---|----|---------|----|---|------|----|---------------------------|
|       | J | 12 | 0P 11L  | TM | Y | 14   | 11 | 2263.172,289,242,219.48   |
|       | K | 12 | 39 6L   | TM | Y | 15   | 6  | 2385.21 2,407.95 2388.70  |
|       | L | 12 | 0P 9L   | TM | Y | 16   | 9  | 2426.11 2,453.63 2,432,17 |

|               |       | 111V | } <u>'</u> | 1 7 | 1  | 62444.71 2,446,30 3,444,60   |
|---------------|-------|------|------------|-----|----|------------------------------|
| body 118 J 12 | OP 7L | Tm   | Υ          | 18  | 7  | 2174.02/2/19247/2/176/60     |
| County K 12   | IP 8L | Tm   | Y          | 19  | 8  | 2377.44-2,403,31 2,4350,19 1 |
| (8 50 L 12    | 0P 7L | TM   | Y          | 20  | 17 | 2380.32 2,397.21 2,382.15    |

| Date / Time / L | nit Larvae in oven: ɪ/l | 22/99 17:4 | 5 M Date / Time / Init. Larv | ae out of oven: 11/13/99 | Juit 16 300:0                           |
|-----------------|-------------------------|------------|------------------------------|--------------------------|-----------------------------------------|
|                 |                         |            | Date / Time / Init. La       |                          | 141111111111111111111111111111111111111 |
| Balance QC:     | Initial (20 mg = 2000)  | (34) Fi    | nal (20 mg = 2000 .03 mg)    | Balance Asset #:         |                                         |
| Date/time In    | Temp(°C)                | Init.      | Date/time out                | Temp(°C) 79°C            | Init.                                   |
|                 |                         |            |                              |                          |                                         |
| Comments:       |                         |            |                              |                          |                                         |

Reviewer: Date: 12/21/99 . ctday20doc Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

P= pupe L= larva

O(orrection 7m 11/8/99

# Midge (Chironomus tentans) Chronic Toxicity Test Day 20 Survival and Dry Weight Data

| Client: Menzie-Cura & Assoc. | Project: 99033 Dead Creek    | BTR: 3186 / 3189         |
|------------------------------|------------------------------|--------------------------|
|                              | Test Start: October 19, 1999 | Day 20: November 8, 1999 |

| Sample | Repl. | Initial #<br>Larvae | # Alive | 11/8/99<br>Init. | Larvae<br>preserve<br>d?<br>Y / N |    | #<br>Weighed | Ashed<br>Pan Wt. | Ashed<br>Pan Wt.<br>+ Larval<br>Dry Wt. | Ashed<br>Pan and<br>Ashed<br>Larval<br>Wt. |
|--------|-------|---------------------|---------|------------------|-----------------------------------|----|--------------|------------------|-----------------------------------------|--------------------------------------------|
| 12593  | 1     | 12                  | OP5L    | Tm               | Υ                                 | 21 | 5            | 2300.33          | 2,318,30                                | 2,302,13                                   |
|        | J     | 12                  | ap3L    | m                | Υ                                 | 22 | 3            | 2421.67          | 2.427.55                                | 2,422,12                                   |
|        | K     | 12                  | OP5L    | TM               | Y                                 | 23 | 5            | 33 2306.A.       | 2,317.83                                | 2,307,51                                   |
|        | L     | 12                  | ap al   | TM               | Y                                 | 24 | 2            | 2301.54          | 2305.34                                 | 2,301,83                                   |

| 12609 | 1 | 12 | OP IIL | TM | Y | 6 | 11 | 2,129.87 3,146.97 2,131.58 |
|-------|---|----|--------|----|---|---|----|----------------------------|
|       | J | 12 | 088L   | TM | Y | 7 | 8  | 2,180.43 2,205.14 2,184.15 |
|       | K | 12 | 0P5L   | TM | Y | 8 | 5  | 2,490,992,507.45 2,492.85  |
|       | L | 12 | DP 2L  | TM | Y | 9 | 12 | 2,282.83 2,283.60 2,283.28 |

|   | 1 | 12 | Y |     |  |
|---|---|----|---|-----|--|
| 1 | J | 12 | Y |     |  |
| 1 | K | 12 | Y | - 1 |  |
| 1 | L | 12 | Y |     |  |
|   |   |    |   |     |  |
|   |   |    |   |     |  |
|   |   | 12 |   |     |  |

|   | K L | 12              | Y    | 4 |   | <br>                                  |
|---|-----|-----------------|------|---|---|---------------------------------------|
|   |     |                 |      |   |   | <br>                                  |
|   |     | ورواكات والمراض |      |   |   |                                       |
|   | 11  | 12              | Y    |   | 1 |                                       |
|   | J   | 12              | Y    |   |   | · · · · · · · · · · · · · · · · · · · |
| 1 | К   | 12              | Y    |   |   |                                       |
| Ì | L   | 12              | Y    |   |   |                                       |
| 1 |     |                 | <br> |   |   | <br>                                  |

| Date / Time / Init. Larvae in oven: 11/36/6:45    | Date / Time / Init. Larvae out of oven: 11/27 15:00 ゴケ |
|---------------------------------------------------|--------------------------------------------------------|
| Date / Time / Init. Larvae in furnace! 1137 15:15 | Date / Time / Init. Larvae out of furnace:             |
| Balance QC: Initial (20 mg = 入の ひ, 0 7 ) Final (2 | 20 mg =λόεο,ο δ ) Balance Asset #:                     |
| Date/time In // Ag. 45 Temp(°C) (€) Init. ((5     | Date/time out 11/27 is to Temp(°C) Init                |
| 16                                                | 3                                                      |
| Comments:                                         |                                                        |

Reviewer: Date: 12/21/99 . ctday20doc

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

12

Project: 95033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99 Sample / Repl. Response 21 22 23 24 25 26 27 28 29 30 31 # Males 12548 A emerged Male Time to (1d (11/13) 69,731 Mortality (days) # Females emerged 50,1124 рd Time to Mortality 11/13 (days) Cumulative 3 2 number emerged 342 342F W/5/8D wi # Pairings 548 A & A.E. # Egg Case 1,414 # Eggs / 1,650 Time to hatch / ~ 70 mhatches # hatched 1426 11/23/AUTHOLCHEC # Males ID 12548 B emerged Male Time to 00,114 Mortality (days) # Females emerged Females Time to Mortality (days) number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12548 C Male Time to Mortality (days) Females 30,117 Time to Mortality (days) Cumulative 2 number emerged Not 548E # Pairings # Egg Case 616 39 uninatesed Time to hatch / # hatched 17/17 11/10 11/12 Init./Date 11/13 11/18 (1999)Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not

Review: Date: 12/21/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

surviving. P = pupa

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99 Sample / Repl. Response 21 22 23 24 25 26 27 28 29 30 31 # Males 12548 D 11 (323418 emerged Male Time to 60 4/23 31/15 Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12548 E emerged Male Time to 5923 Mortality (days) # Females emerged Females Time to Mortality (days) 7 number emerged 4548F2 # Pairings # Egg Case # Eggs / سکوومنه Time to hatch / r isciudu # hatched # Males 12548 F emerged Male Time to 4d 70 1423 Mortality (days) emerged Females 4du/23 Time to Mortality (days) Cumulative 3 9 10 number emerged 2)/548° # Pairings # Egg Case # Eggs / Time to hatch / # hatched\_ 11/13 11/14 11/10 11/16 Ww 11/9 11/11 11/18 Init./Date 11/12 1/17 45 (1999)Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not

surviving. P = pupa

Review: Date: 12/21/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Female dead III and Cidays21-31 egg case deposited III and Company

| BCI, 99033 N   | I-C Dead Cr                              | eek | BTF          | R: 3615  | 3622 |    |    | Tes   | t Start: | 10/19/9 | 9     |    |
|----------------|------------------------------------------|-----|--------------|----------|------|----|----|-------|----------|---------|-------|----|
| Sample / Repl. | Response                                 | 21  | 22           | 23       | 24   | 25 | 26 | 27    | 28       | 29      | 30    | 31 |
| 12548 G        | # Males<br>emerged                       |     | <del> </del> |          | -    |    |    |       |          |         |       |    |
|                | Male Time to<br>Mortality<br>(days)      |     |              |          |      |    |    |       |          |         |       |    |
|                | # Females<br>emerged                     |     |              |          |      |    |    |       |          |         |       |    |
|                | Females Time to Monality (days)          |     |              |          |      |    |    |       |          |         |       |    |
|                | Cumulative<br>number<br>emerged          |     |              |          |      |    |    |       |          |         |       |    |
|                | # Pairings                               |     |              |          |      |    |    |       |          |         |       |    |
|                | # Egg Case                               |     |              |          |      |    |    |       |          |         |       |    |
|                | # Eggs /<br>Time to hatch /<br># hatched |     |              |          |      |    |    |       |          |         |       |    |
| 12548 H        | # Males<br>emerged                       |     |              |          |      |    |    |       |          |         |       |    |
|                | Male Time to<br>Mortality<br>(days)      |     |              |          |      |    |    |       |          |         |       |    |
|                | # Females<br>emerged                     |     |              | 1        |      |    |    |       |          |         |       |    |
|                | Females<br>Time to Mortality<br>(days)   |     |              |          |      |    |    |       |          |         |       |    |
|                | Cumulative<br>number<br>emerged          |     |              |          | ļ    |    |    | ļ     |          |         |       |    |
|                | # Pairings                               |     |              |          |      |    |    |       |          |         |       |    |
|                | # Egg Case                               |     |              |          |      |    |    |       |          |         |       |    |
|                | # Eggs /<br>Time to hatch /<br># hatched |     |              | <u> </u> |      |    |    |       |          |         |       |    |
|                | T THE LIBITOR INCO                       |     |              |          |      |    |    | 11/15 | 11/16    | 11/17   | 11/18 |    |

Review: Date: 12/2/59
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/20/99

| Sample / Repl. | Response                                 | 32    | 33           | 34           | 35                | 36         | 37        | 38       | 39      | 40       | 41        | 42           |
|----------------|------------------------------------------|-------|--------------|--------------|-------------------|------------|-----------|----------|---------|----------|-----------|--------------|
| 12548 A        | # Males<br>emerged                       | ·     | †            |              |                   |            |           |          |         |          |           |              |
|                | Male Time to<br>Mortality<br>(days)      |       | <del> </del> |              |                   |            |           |          | ····    |          |           | <del> </del> |
|                | # Females<br>emerged                     |       |              |              |                   |            |           |          |         |          |           |              |
|                | Females<br>Time to Mortality<br>(days)   |       |              |              |                   |            |           |          |         |          |           |              |
|                | Cumulative<br>number<br>emerged          |       | 7            |              |                   |            |           |          |         |          |           |              |
|                | # Pairings                               |       |              |              |                   |            |           |          |         |          |           |              |
|                | # Egg Case                               |       |              |              | ****              |            | <u> </u>  |          | ,       |          |           |              |
|                | # Eggs /<br>Time to hatch /<br># hatched |       |              |              |                   |            |           |          |         | <u></u>  |           |              |
| 12548 B        | ≄ Males<br>emerged                       |       | 1            |              |                   |            | ì         | 1        |         |          |           | 1            |
|                | Male Time to Mortality (days) # Females  |       | 40/1/25      | 70/109       |                   |            | 3/1%      | 104,2/2  |         |          |           |              |
|                | emerged                                  |       |              | 1            |                   |            |           |          |         |          |           |              |
|                | Females<br>Time to Mortality<br>(days)   |       |              | 49 11/20     |                   |            |           |          |         |          |           |              |
|                | Cumulative<br>number<br>emerged          |       | 2            | 4            |                   |            | 5         | 6        |         |          | ļ         |              |
|                | # Pairings                               |       |              |              |                   |            |           |          |         |          |           |              |
|                | # Egg Case                               |       |              |              |                   |            |           |          |         |          |           |              |
|                | # Eggs /<br>Time to hatch /<br># hatched |       |              |              |                   |            |           |          |         |          |           |              |
| 12548 C        | # Males<br>emerged                       |       | ī            |              |                   | IDI        |           |          |         |          |           |              |
|                | Male Time to<br>Mortality<br>(days)      |       | 40,135       |              |                   | od 2d      | u         |          |         |          |           |              |
|                | # Females<br>emerged                     |       |              | 1            | •                 | 1          |           |          |         |          |           |              |
|                | Females<br>Time to Mortality<br>(days)   |       |              | 3411/25      | · [               | NE CUSAL   |           |          |         |          |           |              |
|                | Cumulative<br>number<br>emerged          |       | 4            | (e ]         |                   | 9          |           |          |         |          |           |              |
|                | # Pairings                               |       |              | 11 54 8 22 E |                   | 1-         |           |          |         |          |           |              |
|                | # Egg Case                               |       |              |              | ۱٬۱ عاد           | By Mila    | i         | 10 Small |         |          |           |              |
|                | # Eggs /<br>Time to hatch /<br># hatched |       |              |              | 1,663<br>4250 un. | 1/29 ~ 2Li | c unhilai | 0% hat   | in 12/2 | egg (ase | disint qi | oting        |
|                |                                          | 11/20 | 1,1/21<br>1m | 11/22        | 11/23             | 11/24      | 11/25     | 11/26    | 11/27   | 11/28    | 11/29     | 11/30        |

Emergence scoring: Record any purpae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: \_\_\_\_\_ Date: 12/21/59
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99

| Sample / Repl. | Response                     | <b>21</b> 32                                 | 22                                                | <b>23</b>    | 24            | 25<br>36              | 36                                               | 38                                               | <b>-28</b>   | - <del>29</del> -                                | -30<br>41                                        | <del>-31</del><br>42 |
|----------------|------------------------------|----------------------------------------------|---------------------------------------------------|--------------|---------------|-----------------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|----------------------|
| 12548 D        | # Maies                      |                                              | 1 - 1 -                                           |              | 1             | 1                     | <del></del>                                      | <del>                                     </del> |              |                                                  | <del>                                     </del> |                      |
| 14340 D        | emerged                      |                                              | 1                                                 |              |               |                       |                                                  |                                                  |              |                                                  |                                                  |                      |
|                | Male Time to                 | <u> </u>                                     |                                                   |              |               | λ.                    |                                                  |                                                  |              |                                                  |                                                  |                      |
|                | Mortality<br>(days)          | 1                                            | }                                                 | }            | }             | 1935                  | }                                                | }                                                |              | ]                                                | }                                                | ]                    |
|                | # Females                    |                                              | <del>                                      </del> |              | <del> </del>  | <u> </u>              | <del></del>                                      | <del>                                     </del> |              |                                                  |                                                  |                      |
|                | emerged                      |                                              | •                                                 | ٠,           | z.            |                       | l                                                |                                                  |              |                                                  | ļ                                                |                      |
|                | Females                      | 71 70                                        | <del> </del>                                      |              | <del> </del>  |                       |                                                  | <del> </del>                                     | <del> </del> | <del>├</del>                                     | <del> </del>                                     | <del> </del>         |
|                | Time to Mortality            | 31 30                                        | .                                                 |              |               | Ì                     | {                                                | ł                                                | 1            | }                                                |                                                  | ł                    |
|                | (days)<br>Cumulative         | n/23 1/2                                     | <u> </u>                                          |              | <u> </u>      | <u> </u>              |                                                  | <del> </del>                                     | <del> </del> | <del> </del>                                     | ļ- <b>-</b>                                      |                      |
|                | number                       | 0 V21                                        | 3.28                                              |              |               | 9                     |                                                  | l                                                | i            | -                                                | 1                                                |                      |
|                | emerged                      | 2 1/2                                        | 164 0                                             |              |               |                       |                                                  |                                                  |              |                                                  |                                                  |                      |
|                | # Pairings                   | W/48 145                                     | 48                                                | ĺ            |               | İ                     | İ                                                | ĺ                                                |              |                                                  | 1                                                | İ                    |
|                | # Fairings                   | FIVE MA                                      | <b>*</b> \                                        | }            |               | 1                     | }                                                |                                                  | )            | )                                                | ]                                                | }                    |
|                |                              | 11707                                        |                                                   |              | No 883        | BUNNACH               | े गावन                                           |                                                  |              | T                                                |                                                  |                      |
|                | # Egg Case                   |                                              |                                                   | ــــــ       | Alo 8 0°      | المتدامد لؤ           | 128 u/30                                         | ļ                                                |              | Į                                                | }                                                | ł                    |
|                |                              |                                              |                                                   |              | J ' -/•       |                       | 1                                                | ľ                                                | İ            | İ                                                | 1                                                | i                    |
|                | # Eggs /                     |                                              |                                                   |              | 100           | marato                | 11139                                            |                                                  |              |                                                  |                                                  |                      |
|                | Time to hatch /<br># hatched | 1                                            |                                                   | l            | 110           | orinated<br>or/oliste | 11/30                                            |                                                  | ł            |                                                  | 1                                                | 1                    |
| 40540 E        | # Males                      |                                              | <del>                                     </del>  | <u> </u>     |               | 0 10 1101             | <del>                                     </del> | <del> </del>                                     | <del> </del> | <del> </del>                                     |                                                  | <del> </del>         |
| 12548 E        | emerged                      |                                              | -                                                 | -            |               |                       | •                                                |                                                  |              | 1                                                | 1                                                | 1                    |
|                | Male Time to                 | / 1.                                         | <del> </del>                                      | <del> </del> |               |                       | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del>                                     |                                                  | <del> </del>         |
|                | Mortality                    | 601124                                       | ]                                                 |              |               | ļ                     | ]                                                |                                                  | }            | }                                                |                                                  | ļ                    |
|                | (days)                       |                                              | ļ <u>.</u>                                        | <del> </del> | ļ             | ļ <u>-</u>            | ļ                                                | <u> </u>                                         | ļ            | ļ                                                | <u> </u>                                         |                      |
|                | # Females<br>emerged         |                                              |                                                   |              |               |                       | {                                                |                                                  |              |                                                  |                                                  | 1                    |
|                |                              | <u>                                     </u> | ļ                                                 |              | ļ             | ļ                     | ļ                                                | ļ                                                | <b> </b>     | <b></b>                                          | <b></b>                                          |                      |
|                | Females<br>Time to Mortality | nn. 2                                        |                                                   |              |               |                       |                                                  |                                                  |              | ļ                                                |                                                  |                      |
| 1              | (days)_                      | 20,12                                        | 1                                                 |              |               |                       |                                                  |                                                  |              | <u> </u>                                         | <u> </u>                                         | l                    |
|                | Cumulative                   |                                              |                                                   |              |               |                       |                                                  |                                                  |              |                                                  |                                                  |                      |
|                | number<br>emerged            |                                              | 17                                                |              | _             |                       |                                                  |                                                  |              |                                                  |                                                  |                      |
|                |                              | 400,113                                      |                                                   |              |               |                       |                                                  |                                                  |              |                                                  |                                                  |                      |
|                | # Pairings                   | dounily.                                     | 1                                                 |              | }             | }                     |                                                  | }                                                |              | }                                                | ļ                                                | }                    |
|                |                              | 1,                                           | \$ 3/10.                                          | 60 1         |               | 7                     |                                                  | <del> </del>                                     | <del> </del> |                                                  |                                                  | <b></b>              |
|                | # Egg Case                   |                                              | 1, 2, 116                                         | 260 2        | ened 11/25    |                       | 1                                                |                                                  |              |                                                  | }                                                |                      |
|                |                              |                                              | \\ lila                                           | · zunha      | tener         | ļ                     |                                                  |                                                  |              |                                                  |                                                  |                      |
|                | # Eggs /                     |                                              | very 5m                                           | u            |               |                       |                                                  |                                                  |              | 1                                                |                                                  |                      |
|                | Time to hatch /<br># hatched |                                              | very 5m                                           | 11/2.7       |               |                       | 1                                                | l                                                | 1            | 1                                                | 1                                                |                      |
| 40540 F        | # Males                      |                                              | Oztwich                                           | 1/25         |               |                       |                                                  | <del> </del>                                     |              | <del>                                     </del> |                                                  | <del></del>          |
| 12548 F        | emerged                      |                                              | UGIMITO                                           | 1/47         | <b>1 1</b> '  |                       | 1                                                | <b>[</b>                                         |              | 1                                                |                                                  |                      |
|                | Male Time to                 |                                              | <del> </del>                                      |              | · · · · · · · |                       | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del>                                     | <del></del>          |
|                | Mortality                    |                                              |                                                   |              | 301426        |                       |                                                  | j                                                |              | }                                                | ]                                                | }                    |
|                | (days)<br># Females          |                                              | -                                                 |              |               |                       | <u> </u>                                         | <del> </del>                                     | ļ            | <del> </del>                                     | <del> </del>                                     | ļ                    |
|                | emerged                      |                                              |                                                   |              | j             |                       | ]                                                |                                                  | Ì            | 1                                                |                                                  |                      |
|                |                              |                                              |                                                   |              |               |                       |                                                  |                                                  |              |                                                  |                                                  | <b></b>              |
|                | Females<br>Time to Mortality |                                              |                                                   |              |               |                       |                                                  |                                                  | }            |                                                  |                                                  |                      |
|                | (days)                       |                                              |                                                   |              |               |                       |                                                  | <u> </u>                                         |              |                                                  |                                                  |                      |
|                | Cumulative                   |                                              | 10                                                |              | 111           |                       |                                                  |                                                  | -            |                                                  |                                                  |                      |
|                | emerged                      |                                              | 10                                                |              |               |                       |                                                  |                                                  |              |                                                  |                                                  |                      |
|                |                              |                                              |                                                   |              |               |                       |                                                  | 1                                                |              |                                                  |                                                  | 1                    |
|                | # Pairings                   |                                              | }                                                 |              |               | ]                     | ]                                                |                                                  |              | J                                                |                                                  | 1                    |
|                |                              |                                              | 1                                                 |              |               |                       | 1                                                | <del>                                     </del> | <del> </del> | 1                                                | †                                                |                      |
|                | # Egg Case                   |                                              |                                                   |              | [             |                       | [                                                |                                                  |              |                                                  |                                                  |                      |
|                |                              | İ                                            | !                                                 |              | 1             |                       |                                                  |                                                  | 1            |                                                  |                                                  | 1                    |
|                | # Eggs /                     | <u> </u>                                     | <del> </del>                                      |              | 1             |                       | <del>                                     </del> | <b>†</b>                                         | <del> </del> | <del> </del>                                     | <del> </del>                                     | 1                    |
|                | Time to hatch /<br># hatched |                                              | 1                                                 | <b>)</b><br> | 1             | }                     | }                                                | 1                                                | 1            | 1                                                | 1                                                | 1                    |
|                | # Hatched                    |                                              | l                                                 |              | 1             |                       | 1                                                |                                                  |              | <u></u>                                          | <u></u>                                          | <u> </u>             |
|                | Init./Date                   | 11/20                                        | 1/214                                             | 1100         | 14/23         | 1 4 4 10 4            | 11/25                                            | 11/26                                            | 11/27        | 11/28                                            | 11/29                                            | 11/30                |

Emergence scoring: Record any pupple which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Test Dey correction

"Indeed to flies which emerge but are not surviving. P = pupa

Review: \_\_\_\_\_ Date: 12/21/69
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| sample / Repl.  | Response                            | 240              | 222                                              | 02                                               | T 04/          | 0.5%                                             | 7000         | 070            | 200             | 20-                  | 20-          | 1 24                                             |
|-----------------|-------------------------------------|------------------|--------------------------------------------------|--------------------------------------------------|----------------|--------------------------------------------------|--------------|----------------|-----------------|----------------------|--------------|--------------------------------------------------|
| ample / Repl.   | Response                            | 25/2             | <b>22</b> 33                                     | <b>23</b>                                        | 35             | 36                                               | <b>26</b> 37 | 27<br>38       | <b>28</b><br>39 | 2 <del>9</del><br>40 | 30-          | 31                                               |
| 12548 G         | # Males<br>emerged                  |                  |                                                  |                                                  |                |                                                  |              |                |                 |                      |              |                                                  |
|                 | Male Time to<br>Mortality           |                  |                                                  |                                                  |                |                                                  |              |                |                 |                      | <u> </u>     |                                                  |
|                 | (days)                              |                  | <u> </u>                                         | <u> </u>                                         | 1              | <u> </u>                                         |              |                |                 |                      |              |                                                  |
|                 | # Females<br>emerged                |                  |                                                  |                                                  |                |                                                  |              |                |                 |                      |              |                                                  |
|                 | Females Time to Mortality           | <u> </u>         | <del>                                     </del> | <del>                                     </del> |                | <del> </del>                                     | <del> </del> |                |                 | <del> </del>         | <del> </del> | <del>                                     </del> |
|                 | (days)                              | ļ                |                                                  | <del> </del>                                     |                | ļ                                                | <del> </del> | ļ              | ļ               | ļ                    | ļ            | <del> </del>                                     |
|                 | Cumulative<br>number<br>emerged     |                  |                                                  |                                                  |                | <u> </u>                                         |              |                |                 |                      |              |                                                  |
|                 | # Pairings                          |                  |                                                  |                                                  |                |                                                  |              |                |                 |                      |              |                                                  |
|                 | # Egg Case                          |                  |                                                  |                                                  |                |                                                  |              |                |                 |                      | }            |                                                  |
|                 | # Eggs /                            | <del> </del> -   | +                                                | <del> </del>                                     | 1              | +                                                | <del> </del> | <del> </del> - | <del> </del>    | <del> </del> -       | <u> </u>     | <del> </del>                                     |
|                 | Time to hatch /<br># hatched        |                  |                                                  |                                                  | <u> </u>       |                                                  |              |                |                 |                      |              |                                                  |
| 12548 H         | # Males<br>emerged                  |                  |                                                  |                                                  |                | l                                                |              |                |                 |                      |              |                                                  |
|                 | Male Time to<br>Mortality<br>(days) |                  |                                                  |                                                  |                |                                                  | 30,1/28      |                |                 |                      |              |                                                  |
|                 | # Females<br>emerged                | -                |                                                  | <del> </del>                                     |                |                                                  |              |                |                 | <del> </del>         |              | 1                                                |
|                 | Females Time to Mortality           |                  |                                                  | <del>                                     </del> | <del> </del>   | <del>                                     </del> |              |                |                 |                      |              | -                                                |
|                 | (days)                              |                  |                                                  | <del> </del>                                     | ļ              |                                                  | ļ            |                | <u> </u>        | <u> </u>             | <del> </del> | <u> </u>                                         |
|                 | Cumulative number                   |                  |                                                  |                                                  |                | 1                                                |              |                |                 | ĺ                    |              |                                                  |
|                 | emerged                             |                  | -                                                | <del> </del>                                     | <del>-</del>   |                                                  | <del> </del> |                | <del> </del>    | <del> </del>         | <del> </del> | <u> </u>                                         |
|                 | # Pairings                          |                  |                                                  |                                                  |                | <u></u>                                          |              |                |                 |                      |              | <u> </u>                                         |
|                 | # Egg Case                          |                  |                                                  |                                                  |                |                                                  |              |                |                 |                      |              |                                                  |
|                 | # Eggs /                            |                  | 1                                                | <del> </del>                                     | <del> </del>   | <del> </del>                                     | <del> </del> | <del> </del>   | <del> </del> -  | <del> </del>         | <del> </del> | <del> </del>                                     |
|                 | Time to hatch /<br># hatched        |                  |                                                  |                                                  |                |                                                  |              |                |                 | -                    | }            |                                                  |
|                 | Init./Date                          | 11/20            | 11/21                                            | 11/22                                            | 11/23          | 11/24                                            | 1477         | 11/26          | 11/27           | 11/28<br>TM          | 11/29        | 11/30                                            |
| ergence sco     | (1999)                              | d any ni         | inae wh                                          | ich die (                                        | )<br>D) before | emera                                            |              | = dead         | for flies       |                      | nerge hi     | it are n                                         |
| viving. $P = p$ | ung. Kecer<br>Juna                  | a any po         | apac wiii                                        | ion die (i                                       | D) DOIOIN      | cine.g                                           | C.1.0C. D    | acaa           | 101 11103       | ••••                 | norge o      | at are m                                         |
| nents:          | 1) Test                             | - 1/2            | 1 1706                                           | ce (no                                           | in a           | Trala                                            | 0            | · <del></del>  |                 |                      | <del></del>  |                                                  |
|                 | (1:17 18 31                         | <del>Janes</del> | <del>/ (</del>                                   |                                                  | <del>,</del>   | <del>7.3-7.7</del> .                             |              |                |                 |                      |              |                                                  |
|                 |                                     |                  |                                                  | <del></del>                                      |                |                                                  |              |                |                 |                      |              |                                                  |
| ·               |                                     |                  |                                                  |                                                  |                |                                                  |              |                |                 |                      |              |                                                  |
| <del></del>     | <del></del> ~                       |                  |                                                  | <del></del>                                      |                |                                                  |              |                |                 |                      |              |                                                  |
|                 |                                     |                  |                                                  |                                                  |                |                                                  |              |                |                 |                      |              |                                                  |
|                 |                                     |                  |                                                  |                                                  | <del></del>    |                                                  |              |                |                 |                      |              |                                                  |
|                 |                                     |                  |                                                  | <del></del>                                      |                | <del></del>                                      |              |                |                 |                      |              |                                                  |
|                 |                                     |                  | <del></del>                                      | <del></del>                                      |                | <del></del>                                      |              |                |                 |                      |              |                                                  |
|                 |                                     |                  |                                                  |                                                  |                |                                                  |              |                |                 |                      |              |                                                  |
|                 |                                     |                  |                                                  |                                                  |                |                                                  |              |                |                 | <del></del>          |              |                                                  |
|                 |                                     |                  |                                                  |                                                  |                |                                                  |              |                |                 |                      |              |                                                  |

Review: \_\_\_\_\_\_Date: 11/21/49
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99

| Sample / Repl. | Response                                 | 43           | 44           | 45                                               | 46                                               | 47           | 48                                               | 49                                               | 50           | 51           | 52           | 53           |
|----------------|------------------------------------------|--------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------|--------------|--------------|
| 12548 A        | # Males<br>emerged                       |              | <del> </del> |                                                  | <del> </del>                                     |              | +                                                | <del>                                     </del> | <del> </del> | <del> </del> | <del> </del> |              |
|                | Male Time to                             | <del> </del> | <del> </del> | ┼                                                | +                                                | <del> </del> | ┼                                                | <del> </del> -                                   | -            | <del></del>  | <del></del>  |              |
|                | Mortality                                |              |              |                                                  |                                                  |              | ļ                                                | }                                                |              | 1            |              | 1            |
|                | (days)<br># Females                      | <del> </del> | <del></del>  | +                                                | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del> -                                   | <del> </del> | +            | <del> </del> | <del> </del> |
|                | emerged                                  | 1            |              | j                                                |                                                  |              | İ                                                |                                                  |              | 106          |              |              |
|                | Females Time to Mortality                |              |              | T                                                | 1                                                |              | 1                                                |                                                  |              |              |              |              |
|                | (days)                                   |              | <u> </u>     |                                                  |                                                  |              | ļ                                                |                                                  |              | OP           | <u> </u>     |              |
|                | Cumulative number                        |              | 1            |                                                  | 1                                                | 1            |                                                  |                                                  |              | m            |              |              |
|                | emerged                                  | <del> </del> | <del> </del> | <del></del>                                      | <del>-}</del>                                    | ļ            | <del> </del>                                     | <del></del>                                      | <del> </del> | 12/9         | <del></del>  | <del> </del> |
|                | # Pairings                               |              |              |                                                  |                                                  |              |                                                  |                                                  |              | 101          |              |              |
|                | # Egg Case                               |              |              |                                                  |                                                  |              |                                                  |                                                  |              |              |              |              |
|                | # Eggs /<br>Time to hatch /<br># hatched |              |              | -                                                |                                                  |              |                                                  |                                                  | · · ·        | <del> </del> |              |              |
| 12548 B        | # Males<br>emerged                       |              |              |                                                  |                                                  |              |                                                  |                                                  |              |              |              |              |
|                | Male Time to                             | <del> </del> |              | -                                                | <del> </del>                                     | <del> </del> | <del> </del>                                     | -                                                | <del> </del> |              | <del> </del> | <del> </del> |
|                | Mortality<br>(days)                      | 1            |              |                                                  |                                                  |              |                                                  |                                                  |              | OL           | <u> </u>     | <u> </u>     |
|                | # Females<br>emerged                     |              |              |                                                  |                                                  |              |                                                  |                                                  |              | 00           |              |              |
|                | Females                                  |              | f            | <del>                                     </del> | <del>                                     </del> | <del> </del> | <del>                                     </del> | <del> </del>                                     | +            | <del> </del> | <del> </del> | <del> </del> |
|                | Time to Mortality<br>(days)              | ]            | ]            | 1_                                               |                                                  |              |                                                  |                                                  |              | Im           |              | <u> </u>     |
|                | Cumulative<br>number<br>emerged          |              |              |                                                  |                                                  |              |                                                  |                                                  |              | 1219         |              |              |
|                | # Pairings                               |              |              | <del> </del>                                     |                                                  |              |                                                  |                                                  |              |              |              |              |
|                | # Egg Case                               |              |              | <del> </del>                                     |                                                  |              |                                                  |                                                  |              | 1            |              |              |
|                | # Eggs /                                 | <u> </u>     |              |                                                  | +                                                |              |                                                  | <del> </del>                                     | <del> </del> | <del> </del> |              | <del> </del> |
|                | Time to hatch /<br># hatched             |              |              |                                                  |                                                  | <u> </u>     |                                                  |                                                  |              | ļ            | <u> </u>     |              |
| 12548 C        | # Males<br>emerged                       |              | -            | -                                                |                                                  |              |                                                  |                                                  |              | }            |              |              |
|                | Male Time to<br>Mortality<br>(days)      | 50,46        |              |                                                  |                                                  |              |                                                  |                                                  |              | OL           |              |              |
|                | # Females<br>emerged                     |              |              |                                                  |                                                  |              |                                                  |                                                  |              | OP           |              |              |
|                | Females Time to Mortality                |              |              | <del> </del>                                     | <del> </del>                                     | -            | +                                                | <del>                                     </del> |              | im           | <del> </del> |              |
|                | (days)                                   |              |              | 1                                                |                                                  | 1            | ļ                                                |                                                  |              |              |              | ļ            |
|                | Cumulative<br>number                     |              |              | 1                                                |                                                  |              |                                                  | [                                                | ĺ            | 1319         | 1            |              |
|                | emerged                                  |              |              | <del> </del>                                     | <del></del>                                      |              | -}                                               | ļ                                                | <b></b>      | <del> </del> | <del>}</del> | <del> </del> |
|                | # Pairings                               |              |              |                                                  | ]                                                |              |                                                  |                                                  |              |              |              |              |
|                | # Egg Case                               |              |              |                                                  |                                                  |              |                                                  |                                                  |              |              |              |              |
|                | # Eggs /                                 | <del> </del> |              | <del> </del>                                     | +                                                | <del> </del> | <del> </del>                                     | <del> </del>                                     | +            | +            | +            | +            |
|                | Time to hatch /<br># hatched             |              |              |                                                  |                                                  |              |                                                  |                                                  |              |              |              |              |
|                | Init./Date<br>(1999)                     | 12/h         | 12/2         | 12/3                                             | 12/4                                             | 12/5         | 12/6                                             | 12/7                                             | 12/8         | 12/9         | 12/10        | 12/11        |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are no surviving. P = pupa

Review: Date: 12/21/49
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays3<del>2-42</del> 43-53

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99 Sample / Repl. Response 48 43 44 45 46 47 49 50 51 52 53 # Males 12548 D emerged Male Time to Mortality (days) OL Females Time to Mortality (days) Cumulative 1219 number emerged m # Pairings # Egg Case # Eggs / # hatched # Males 12548 E emerged Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / # hatched # Males 12548 F emerged Male Time to Mortality (days) # Females 01 emerged Females 21 14 Time to Mortality (days) Cumulative number emerged 1m wyd Ch # Pairings ٥ الا # Egg Case 1,789 # Eggs / 6 unh 12/19 1 unh. 12/10 Time to hatch / # hatched 17/m 12/5 12/6 12/7 12/11 Init./Date 12/1 1,21/3 12/4 12/8 12/9 (1999)

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: \_\_\_\_ Date: |\(\overline{\lambda}\lambda \text{l} \(\overline{\lambda}\text{l} \(\overline{\lambda}\text{l} \(\overline{\lambda}\text{g}\)
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

C(C() 3377

|                         | l B                                      |                     |       | <del></del> | T         |             |              |              | T         | T          | T                                                |          |
|-------------------------|------------------------------------------|---------------------|-------|-------------|-----------|-------------|--------------|--------------|-----------|------------|--------------------------------------------------|----------|
| ample / Repl.           | Response                                 | 43                  | 44    | 45          | 46        | 47          | 48           | 49           | 50        | 51         | 52                                               | 53       |
| 12548 G                 | # Males<br>emerged                       |                     |       |             |           |             |              |              |           |            |                                                  |          |
|                         | Male Time to<br>Mortality<br>(days)      |                     |       |             |           |             |              |              |           |            |                                                  |          |
|                         | # Females<br>emerged                     |                     |       |             |           |             |              |              |           | OL         |                                                  |          |
|                         | Females<br>Time to Mortality<br>(days)   |                     |       |             |           |             |              |              |           | OP         |                                                  |          |
|                         | Cumulative<br>number<br>emerged          |                     |       |             |           |             |              |              |           | 1219       |                                                  |          |
|                         | # Parrings                               |                     |       |             |           |             |              |              |           | m          |                                                  |          |
|                         | # Egg Case                               |                     |       |             |           |             | <del> </del> |              |           |            |                                                  |          |
|                         | # Eggs /<br>Time to hatch /<br># hatched |                     |       |             |           |             |              |              |           |            |                                                  | ļ        |
| 12548 H                 | # Males<br>emerged                       | 1                   |       |             |           |             |              |              |           |            |                                                  |          |
|                         | Male Time to<br>Mortality<br>(days)      | 80 <sub>13</sub> 19 |       |             |           |             |              |              |           | 11         |                                                  |          |
|                         | # Females<br>emerged                     |                     |       |             |           |             |              |              |           | 19         |                                                  |          |
|                         | Females Time to Mortality (days)         |                     |       |             |           |             |              |              |           | 12/9       |                                                  |          |
|                         | Cumulative<br>number<br>emerged          |                     |       |             |           |             |              |              |           | 1111       |                                                  |          |
|                         | # Pairings                               |                     |       |             |           |             |              |              |           |            |                                                  |          |
|                         | # Egg Case                               |                     |       |             |           |             |              |              |           |            |                                                  |          |
|                         | # Eggs /<br>Time to hatch /<br># hatched |                     |       |             |           |             |              |              |           |            | <del>                                     </del> |          |
| <del></del>             | Init./Date<br>(1999)                     | 12/1                | 12/2  | 12/3        | 12/4      | 12/5        | 12/6         | 12/7         | 12/8      | 12/9<br>1m | 12/10                                            | 12/11    |
|                         | ring: Record                             |                     | pae w | nich die    | (D) befor | re emer     | gence. [     | ) = dead     | for flies |            | merge b                                          | ut are   |
| viving. P = p<br>nents: | oupa                                     | <del></del>         |       |             |           |             | ·            |              |           |            |                                                  |          |
| _                       |                                          |                     |       |             |           |             |              |              |           |            |                                                  |          |
| - V- J                  |                                          | <u>-</u>            |       |             |           |             |              |              |           |            |                                                  |          |
|                         |                                          |                     |       |             |           |             |              |              |           |            |                                                  |          |
|                         |                                          |                     |       |             |           | <del></del> | <del> </del> | <del> </del> |           |            |                                                  | <u> </u> |

| Review:               | Date:    | 12/21    | 199                         |    |
|-----------------------|----------|----------|-----------------------------|----|
| Laboratory: Aquatec B | iologica | I Scienc | es, South Burlington, Vermo | nt |

ctdays3242 43-530 000031

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99

| Sample / Repl. | Response                  | 21             | 22            | 23            | 24                                               | 25           | 26           | 27           | 28           | 29           | 30           | 31             |
|----------------|---------------------------|----------------|---------------|---------------|--------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|
| 12550 A        | # Males<br>emerged        |                |               | 1             |                                                  |              |              | 1            |              |              |              |                |
|                | Male Time to              |                |               | <del></del>   | +                                                | +            | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del></del>  | <del> </del> - |
|                | Mortality                 | i              | 1             | ľ             | Ì                                                | 1            |              | İ            | 1            |              | 1            | }              |
|                | (days)<br># Females       | <del> </del> - |               | <del>- </del> | <del></del>                                      | -}           | <del> </del> | <del> </del> | <del> </del> | <del>}</del> | <del> </del> | <del> </del>   |
|                | emerged                   |                |               |               |                                                  |              |              |              |              |              |              |                |
|                | Females                   | ┼              | <del></del> - |               | <del> </del>                                     | +            | <del> </del> | +            | <del> </del> | <del> </del> | <del> </del> | <del> </del>   |
|                | Time to Mortality         | 1              |               |               | ļ.                                               |              |              |              | 1            | }            | 1            | 1              |
|                | (days)<br>Cumulative      | <del></del>    | <del></del>   |               | <del> </del>                                     | <del></del>  | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del> </del>   |
|                | number                    | ļ              | 1             | 1             | Í                                                | 1            | į            |              |              | 1            | 1            | 1              |
|                | emerged                   |                |               |               | <del> </del>                                     | <del> </del> | <del> </del> | <del> </del> | <b>}</b>     | <del> </del> | <del></del>  | <del> </del>   |
|                | # Pairings                |                |               |               |                                                  |              |              |              |              |              |              |                |
|                | # Egg Case                |                |               |               |                                                  |              |              |              |              |              |              |                |
|                | # Eggs /                  |                | <del></del>   | +             | <del> </del>                                     | <del> </del> | <del> </del> | <del></del>  | <del> </del> | <del> </del> | <del> </del> | <del> </del>   |
|                | Time to hatch /           | Ì              | }             | 1             |                                                  | 1            | <b>\</b>     |              | [            |              |              |                |
| 10000          | # hatched<br># Males      |                |               |               |                                                  | <del> </del> | <del> </del> | <del></del>  | <del></del>  | <del></del>  | <del></del>  | <del> </del>   |
| 12550 B        | emerged                   |                |               |               |                                                  |              |              |              |              |              |              |                |
|                | Male Time to              |                |               | 1             |                                                  | 1            |              | 1            |              | T            | 1            |                |
|                | Mortality<br>(days)       | }              | 1             | ļ             | }                                                | }            | }            | ļ            | }            | }            | 1            |                |
|                | # Females                 |                |               | +             | <del> </del>                                     | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del> </del>   |
|                | emerged                   |                |               | i             |                                                  |              | }            | }            |              |              | }            |                |
|                | Females                   |                | +             | +             | <del> </del>                                     | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del> </del>   |
|                | Time to Mortality         |                | j             | 1             | j                                                |              | j            | j            | {            | j            | }            | }              |
|                | (days)                    |                | <del></del>   | <del></del>   | <del></del>                                      | <del></del>  | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del> </del>   |
|                | Cumulative<br>number      |                | ]             | 1             |                                                  | 1            | 1            |              | Į.           | 1            | 1            |                |
|                | emerged                   |                | <del></del>   | <u> </u>      | <del> </del>                                     | <u> </u>     | ļ            | ļ            | ļ            | <u> </u>     | <u> </u>     | <del> </del>   |
|                | # Pairings                |                |               |               |                                                  |              |              |              |              |              |              |                |
|                | # Egg Case                |                |               |               |                                                  |              |              |              |              |              |              |                |
|                | # Eggs /                  |                | <del></del>   | <b></b>       | <del> </del>                                     | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del> </del> |              | <del> </del>   |
|                | Time to hatch /           |                | į.            | j             | }                                                | }            | }            | }            | ļ            | į            | j            | İ              |
|                | # hatched                 |                |               | .]            | 1                                                | ]            | J            |              |              |              |              | 1              |
| 12550 C        | # Males                   |                |               | }             | 1                                                |              |              | }            |              |              |              | }              |
| 12000 0        | emerged                   |                | 1             | )             | 1                                                | ]            | }            |              | }            | }            | )            | }              |
|                | Male Time to<br>Mortality |                |               | 1             |                                                  |              |              |              |              | <del> </del> | 1            |                |
|                | (days)                    |                |               |               | l                                                | 1            |              | L            |              | 1            |              | 1              |
|                | # Females<br>emerged      |                |               |               |                                                  |              |              |              |              |              |              |                |
|                | Females                   |                | <del></del>   | <del> </del>  | <del> </del>                                     | <del> </del> | <del> </del> | <del>}</del> | <del> </del> | <del> </del> | <del></del>  | <del> </del>   |
|                | Time to Mortality (days)  |                | 1             | }             |                                                  |              |              |              |              |              | }            |                |
|                | Cumulative                |                | +             | <del> </del>  | <del>                                     </del> | +            | <del> </del> | +            | <del> </del> | <del> </del> | <del> </del> | <del> </del>   |
|                | number<br>emerged         |                | }             |               |                                                  | 1            |              |              |              |              |              |                |
|                | # Pairings                |                | 1             |               |                                                  |              |              |              |              |              |              |                |
|                |                           |                | +             | <del> </del>  | <del> </del>                                     | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del> </del> - |
|                | # Egg Case                |                |               |               |                                                  | }            |              |              |              |              |              |                |
|                | # Eggs /                  |                | +             | +             |                                                  | <del> </del> |              | <del> </del> |              | <del> </del> | <del> </del> | <del> </del>   |
|                | Time to hatch / # hatched |                |               |               |                                                  | <u> </u>     |              |              |              |              | 1            |                |
|                |                           | 11/9           | 11/10         | 11/11         | 11/12                                            | 11/13        | 11/14        | 11/15        | 11/16        | 11/17        | 11/18        | 11/19          |
|                | (1999)                    |                |               | 1             | 1                                                | 1            | 1            | 1            | 1            | 1            | 1            | 1              |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: \_\_\_\_\_ Date: 12/21/99 Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99

| Sample / Repl. | Response                     | 21           | 22                                               | 23           | 24                                               | 25                                               | 26           | 27                                               | 28           | 29                                               | 30             | 31           |
|----------------|------------------------------|--------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------|--------------------------------------------------|----------------|--------------|
| 12550 D        | # Males<br>emerged           |              |                                                  |              | <del> </del>                                     |                                                  |              |                                                  |              |                                                  |                |              |
|                | Male Time to                 | <del> </del> | +                                                | +            | <del></del>                                      | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del> | <del>                                     </del> | ├              | <del>∤</del> |
|                | Mortality                    | 1            |                                                  |              |                                                  |                                                  | 1            | İ                                                | 1            |                                                  |                |              |
|                | (days)                       | <u> </u>     | <del></del>                                      | <del></del>  | <del> </del>                                     | ļ                                                | <b> </b>     | <del> </del>                                     |              | <u> </u>                                         | <u> </u>       | <b>!</b>     |
|                | # Females<br>emerged         |              |                                                  |              |                                                  |                                                  |              |                                                  | İ            |                                                  |                |              |
|                | differgod                    |              | 1                                                |              | }                                                |                                                  |              |                                                  | ł            |                                                  |                | 1            |
|                | Females                      |              |                                                  |              |                                                  |                                                  |              |                                                  |              |                                                  |                |              |
|                | Time to Mortality<br>(days)  |              | 1                                                |              | 1                                                |                                                  | 1            |                                                  | 1            |                                                  |                | ŀ            |
|                | Cumulative                   | <del></del>  |                                                  | <del> </del> | +                                                | ┼                                                | <del> </del> | <del> </del>                                     | <del> </del> |                                                  | <del> </del>   | <del> </del> |
|                | number                       |              | 1                                                |              |                                                  |                                                  |              |                                                  | i            |                                                  |                |              |
|                | emerged                      | <b> </b>     | <del>- </del>                                    | ┦            | <del> </del>                                     | <b>↓</b>                                         | ↓            | <del> </del>                                     | <b>└</b>     | ļ                                                | <del> </del>   | ↓            |
|                | # Pairings                   |              |                                                  |              |                                                  | -                                                |              |                                                  |              |                                                  |                |              |
|                | # Egg Case                   |              | <del>                                     </del> | <u> </u>     | <del>                                     </del> |                                                  |              |                                                  |              | <u> </u>                                         |                |              |
|                | #5/                          |              | ļ                                                | ļ            | ļ                                                | <u> </u>                                         | ļ            | ļ                                                | <u> </u>     | ļ                                                | ļ              |              |
|                | # Eggs /<br>Time to hatch /  |              |                                                  |              | j                                                |                                                  | )            | 1                                                |              |                                                  |                |              |
|                | # hatched                    |              | <u> </u>                                         |              | <u> </u>                                         | <u> </u>                                         |              | 1                                                |              | <u> </u>                                         |                | İ            |
| 12550 E        | # Males<br>emerged           |              |                                                  |              |                                                  |                                                  |              |                                                  |              |                                                  |                |              |
|                | Male Time to                 |              | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del> -                                   | <del> </del> | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del>   | <del> </del> |
|                | Mortality                    |              | 1                                                | 1            | }                                                | 1                                                | 1            | 1                                                | ļ            | j                                                |                |              |
|                | (days)                       |              | <del></del>                                      | <u> </u>     | ļ                                                | ļ                                                | <del> </del> | ļ                                                | <u> </u>     | <u> </u>                                         | <del> </del>   | <u> </u>     |
|                | # Females<br>emerged         |              |                                                  |              |                                                  |                                                  |              |                                                  | }            |                                                  |                |              |
|                | Females                      |              | <del>                                     </del> | <del> </del> | <del> </del>                                     | <del> </del>                                     | <del> </del> | +                                                | <del> </del> | <del> </del>                                     | <del> </del> - | <del> </del> |
|                | Time to Mortality            |              | 1                                                | 1            | ļ                                                | 1                                                | }            | 1                                                | ļ            |                                                  | ]              | ļ            |
|                | (days)                       |              |                                                  | <del> </del> | ļ                                                | <u> </u>                                         | <del> </del> | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del>   | <del> </del> |
|                | Cumulative<br>number         | •            |                                                  |              |                                                  | 1                                                | {            | 1                                                |              | -                                                | Į.             | 1            |
|                | emerged                      |              | L                                                | <u> </u>     | l                                                |                                                  |              | <u> </u>                                         |              |                                                  | <u> </u>       | <u> </u>     |
|                | # Pairings                   |              |                                                  |              |                                                  |                                                  |              |                                                  | }            |                                                  |                |              |
|                | # Egg Case                   |              |                                                  |              |                                                  |                                                  |              |                                                  |              |                                                  |                |              |
|                | # Eggs /                     |              | <del> </del>                                     | <del> </del> |                                                  | ļ                                                | <del> </del> | <del> </del>                                     | <del> </del> |                                                  | ┼              |              |
|                | Time to hatch /              |              | 1                                                | ł            | 1                                                | {                                                | 1            | 1                                                | }            | {                                                | 1              | ł            |
|                | # hatched                    |              |                                                  | <u> </u>     |                                                  | ļ                                                | <u> </u>     |                                                  |              |                                                  | <u> </u>       |              |
| 12550 F        | # Maies<br>emerged           |              |                                                  | }            |                                                  |                                                  |              |                                                  |              |                                                  |                |              |
|                | Male Time to                 |              | <del> </del>                                     | <del> </del> | +                                                | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del>   | <del> </del> |
| ,              | Mortality                    |              |                                                  | 1            |                                                  |                                                  | 1            |                                                  | 1            |                                                  |                |              |
|                | (days)<br># Females          |              | <del> </del>                                     | <del> </del> | <del></del>                                      | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del>   | <del> </del> |
|                | emerged                      |              |                                                  | 1            |                                                  |                                                  |              | 1                                                |              | ļ                                                | ļ              |              |
|                | Females<br>Time to Mortality | — <u>——</u>  |                                                  | <u> </u>     |                                                  |                                                  |              | <del>                                     </del> | <del> </del> |                                                  |                |              |
|                | (days)                       |              |                                                  | <u> </u>     | <u> </u>                                         |                                                  |              | <u></u>                                          | <u> </u>     | <u> </u>                                         |                |              |
|                | Cumulative                   |              | 1                                                |              |                                                  |                                                  |              |                                                  |              | ]                                                |                |              |
|                | number<br>emerged            |              |                                                  | 1            |                                                  | 1                                                |              |                                                  | 1            |                                                  | 1              | 1            |
|                | # Pairings                   |              |                                                  |              |                                                  |                                                  |              |                                                  |              |                                                  |                |              |
|                | # Egg Case                   |              | <del> </del> -                                   |              |                                                  | <del>                                     </del> | <del> </del> | -                                                | <del> </del> |                                                  | <del> </del>   |              |
|                | + ⊏ûû ∪ase                   |              | }                                                |              |                                                  |                                                  |              |                                                  |              |                                                  |                |              |
|                | # Eggs /                     |              | T                                                | 1            | 1                                                | <b>†</b>                                         | 1            | 1                                                |              | <del>                                     </del> | <del> </del>   | 1            |
|                | Time to hatch /<br># hatched |              |                                                  |              |                                                  |                                                  |              |                                                  |              |                                                  |                |              |
|                | Init./Date                   | 11/9         | 11/10                                            | 11/11        | 11/12                                            | 11/13                                            | 11/14        | 11/15                                            | 11/16        | 11/17                                            | 11/18          | 11/19        |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are no' surviving. P = pupa

|             |       | , 1    | ^ - |             |         |
|-------------|-------|--------|-----|-------------|---------|
| Review:     | Date: | 12/21/ | 99  |             |         |
| Laboratory: | <br>- | , .    | . , | Burlington. | Vermont |

| ·                                        |                                          |         |              |           |          |          |         |             |              |          |          |                                                  |
|------------------------------------------|------------------------------------------|---------|--------------|-----------|----------|----------|---------|-------------|--------------|----------|----------|--------------------------------------------------|
| Sample / Repl.                           | Response                                 | 21      | 22           | 23        | 24       | 25       | 26      | 27          | 28           | 29       | 30       | 31                                               |
| 12550 G                                  | # Males<br>emerged                       |         |              |           |          |          |         |             |              |          |          |                                                  |
|                                          | Male Time to<br>Mortality<br>(days)      |         |              |           |          |          |         |             |              |          |          |                                                  |
|                                          | # Females<br>emerged                     |         |              |           |          |          |         | -           |              | 1        |          |                                                  |
|                                          | Females Time to Mortality (days)         |         |              |           |          |          | 64/20   |             |              | ***      |          |                                                  |
|                                          | Cumulative<br>number<br>emerged          |         |              |           |          |          |         |             |              | 0        | 1        |                                                  |
|                                          | # Pairings                               |         |              |           |          |          |         |             |              |          |          |                                                  |
|                                          | # Egg Case                               |         |              |           |          |          |         |             |              |          |          |                                                  |
|                                          | # Eggs /<br>Time to hatch /<br># hatched |         |              |           |          |          | †       |             |              |          |          |                                                  |
| 12550 H                                  | # Males<br>emerged                       |         |              |           |          |          |         |             |              |          |          |                                                  |
|                                          | Male Time to<br>Mortality<br>(days)      |         | 1            |           |          |          |         |             |              |          |          |                                                  |
|                                          | # Females<br>emerged                     |         |              |           |          |          |         |             |              |          |          |                                                  |
|                                          | Females<br>Time to Mortality<br>(days)   |         |              |           |          |          |         |             |              |          |          |                                                  |
|                                          | Cumulative<br>number<br>emerged          |         |              |           |          |          |         |             |              |          |          |                                                  |
|                                          | # Pairings                               |         |              |           |          |          |         |             |              |          |          |                                                  |
|                                          | # Egg Case                               |         |              |           |          |          |         |             |              |          |          |                                                  |
|                                          | # Eggs /<br>Time to hatch /<br># hatched |         | <del> </del> |           |          | <u> </u> |         |             | <del> </del> |          |          | <del>                                     </del> |
|                                          | Init./Date<br>(1999)                     | 11/9    | 11/10        | 11/11     | 11/12    | 11/13    | 1,1114  | 11/15       | 11/16        | 11/17    | 11/18    | 11/19                                            |
| nergence scor<br>viving. P = p<br>nents: | ing: Record                              | d any p | upae wh      | ich die ( | D) befor | e emerg  | ence. D | = dead      | for flies    | which er | nerge bu | ıt are ı                                         |
|                                          |                                          |         |              |           |          |          |         |             |              |          |          |                                                  |
|                                          |                                          |         |              |           |          |          |         |             |              |          |          |                                                  |
|                                          |                                          |         |              |           |          |          |         | <del></del> |              |          |          |                                                  |
|                                          |                                          |         |              |           |          |          |         |             |              |          | ·        |                                                  |
|                                          |                                          |         |              |           |          |          |         |             |              |          |          |                                                  |

Review: Date: 12/21/94
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/20/99

| Sample / Repl. | Response                                 | 32    | 33       | 34    | 35    | 36    | 37    | 38       | 39    | 40    | 41    | 42    |
|----------------|------------------------------------------|-------|----------|-------|-------|-------|-------|----------|-------|-------|-------|-------|
| 12550 A        | # Males<br>emerged                       |       |          |       |       |       |       |          |       |       | -     |       |
|                | Male Time to<br>Mortality<br>(days)      |       |          |       |       |       |       |          |       |       |       |       |
|                | # Females<br>emerged                     |       |          |       |       |       |       |          |       |       |       |       |
|                | Females<br>Time to Mortality<br>(days)   |       |          |       |       |       |       |          |       |       | OL    |       |
|                | Cumulative<br>number<br>emerged          |       |          |       |       |       |       |          |       |       | OP    |       |
|                | # Parnngs                                |       |          |       |       |       |       |          |       |       | 11137 |       |
|                | # Egg Case                               | -     |          |       |       |       |       |          |       |       |       |       |
| _              | # Eggs /<br>Time to hatch /<br># hatched |       |          |       |       |       |       |          |       |       |       |       |
| 12550 B        | # Maies<br>emerged                       |       |          |       |       |       |       |          |       |       |       |       |
|                | Male Time to<br>Moriality<br>(days)      |       |          |       |       |       |       |          |       |       |       |       |
|                | # Females<br>emerged                     |       |          |       |       |       |       |          |       |       | OL    |       |
|                | Females Time to Monality (days)          |       |          |       |       |       |       |          |       |       | OP    |       |
|                | Cumulative<br>number<br>emerged          |       |          |       |       |       |       |          |       |       | 11/29 |       |
|                | # Pairings                               |       |          |       |       |       |       |          |       |       |       |       |
|                | # Egg Case                               |       |          |       |       |       |       |          |       |       |       | }     |
|                | # Eggs /<br>Time to hatch /<br># hatched |       |          |       |       |       |       |          |       |       |       |       |
| 12550 C        | # Males<br>emerged                       |       |          |       |       |       |       |          |       |       |       |       |
|                | Male Time to<br>Mortality<br>(days)      |       |          |       |       |       |       |          |       |       |       |       |
|                | # Females<br>emerged                     |       |          |       |       |       |       |          |       |       | OL    |       |
|                | Females Time to Mortality (days)         |       |          |       |       |       |       |          |       |       | OP    |       |
|                | Cumulative<br>numbe:<br>emerged          |       |          |       |       |       |       |          |       |       | 11/29 |       |
|                | # Pairings                               |       |          |       |       |       |       |          |       |       |       |       |
|                | # Egg Case                               |       |          |       |       |       |       |          |       |       |       |       |
|                | # Eggs /<br>Time to hatch /<br># hatched |       | <u> </u> |       |       |       |       | <u> </u> |       |       |       |       |
|                |                                          | 11/20 | 11/21    | 11/22 | 11/23 | 11/24 | 11/25 | 11/26    | 11/27 | 11/28 | 11/29 | 11/30 |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa (300)

Review: \_\_\_\_\_ Date: 12/21/49
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

BTR: 3615 / 3622 Project: 99033 M-C Dead Creek Test Start: 10/19/99

| Sample / Repl. | Response                                 | 35          | <b>22</b> 733 | 23           | 24                                               | 25                                               | <b>26</b>    | 378          | <b>28</b>    | <del>29</del><br>40 | <del>30</del><br>41                              | <del>31</del>                                    |
|----------------|------------------------------------------|-------------|---------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------|--------------|---------------------|--------------------------------------------------|--------------------------------------------------|
| 12550 D        | # Males<br>emerged                       |             |               |              | -                                                | 1                                                |              |              |              |                     |                                                  |                                                  |
|                | Male Time to                             |             | <del> </del>  | <del> </del> |                                                  | <del> </del>                                     |              | <del> </del> |              |                     |                                                  |                                                  |
|                | Mortality                                |             |               |              |                                                  |                                                  |              |              | 1            | ł                   | İ                                                |                                                  |
|                | (days)                                   |             | <u> </u>      |              | ļ                                                | ļ                                                |              | ļ            |              | ļ                   | ļ                                                |                                                  |
|                | # Females<br>emerged                     |             |               |              |                                                  |                                                  |              |              |              | ļ                   | OL                                               |                                                  |
|                | Females Time to Mortality                |             |               |              |                                                  | <del>                                     </del> |              |              |              |                     | <del>                                     </del> |                                                  |
|                | (days)  Cumulative                       |             |               |              | ļ                                                |                                                  | ļ            |              |              |                     | OP                                               |                                                  |
|                | number                                   |             |               |              |                                                  |                                                  | 1            |              |              |                     | 1/29                                             |                                                  |
|                | emerged                                  | _           |               |              |                                                  |                                                  |              | ļ            | ļ            |                     | uthi                                             |                                                  |
|                | # Pairings                               |             |               |              |                                                  |                                                  |              |              |              |                     |                                                  |                                                  |
|                | # Egg Case                               |             |               |              |                                                  |                                                  |              |              |              |                     |                                                  |                                                  |
|                | # Eggs /<br>Time to hatch /<br># hatched |             |               |              |                                                  |                                                  |              |              |              |                     |                                                  |                                                  |
| 12550 E        | # Males<br>emerged                       |             |               |              |                                                  |                                                  |              |              |              |                     |                                                  |                                                  |
|                | Male Time to<br>Mortality                | <del></del> |               |              |                                                  |                                                  |              |              |              |                     |                                                  |                                                  |
|                | (days)<br># Females                      | <del></del> | <u> </u>      | <del> </del> | -                                                |                                                  |              | <del> </del> |              | <del> </del>        | <del>                                     </del> |                                                  |
|                | emerged                                  |             |               |              | ]                                                |                                                  | ]            |              |              | ]                   | OL                                               |                                                  |
|                | Females                                  |             |               |              |                                                  |                                                  |              |              | <del> </del> | <del> </del>        | 1                                                |                                                  |
|                | Time to Mortality                        |             |               |              |                                                  |                                                  |              |              |              | ŀ                   | OP                                               |                                                  |
|                | (days)                                   |             |               |              | -                                                |                                                  |              | ļ            |              |                     | <del></del>                                      |                                                  |
|                | Cumulative<br>number                     |             | İ             |              |                                                  |                                                  |              | ì            |              | }                   | 11/29                                            |                                                  |
|                | emerged                                  |             |               |              |                                                  |                                                  |              |              |              |                     | 17-1                                             | -                                                |
|                | # Pairings                               |             |               |              |                                                  |                                                  |              |              |              |                     |                                                  |                                                  |
|                | # Egg Case                               |             | _             |              |                                                  |                                                  |              |              |              |                     |                                                  |                                                  |
|                | # Eggs /                                 |             | _             | <del>-</del> | <del> </del>                                     | <del> </del>                                     |              | <del> </del> | -            |                     | <del> </del>                                     |                                                  |
|                | Time to hatch /                          |             |               |              |                                                  | l                                                |              |              |              |                     |                                                  | 1                                                |
|                | # halched                                |             |               | ļ            |                                                  |                                                  |              |              | <u> </u>     |                     |                                                  |                                                  |
| 12550 F        | # Males<br>emerged                       |             |               |              |                                                  |                                                  |              |              |              | }                   |                                                  |                                                  |
|                | Male Time to<br>Mortality                |             |               |              |                                                  |                                                  |              |              |              |                     |                                                  |                                                  |
|                | (days)                                   |             |               |              |                                                  |                                                  |              |              |              |                     |                                                  |                                                  |
|                | # Females<br>emerged                     |             |               |              |                                                  |                                                  |              |              |              |                     | 01                                               |                                                  |
|                | Esmale-                                  |             |               |              |                                                  |                                                  | <del></del>  |              | 1            | <del> </del>        | <u> </u>                                         | <del> </del>                                     |
|                | Females Time to Mortality (days)         |             |               |              |                                                  |                                                  |              |              |              |                     | OP                                               |                                                  |
|                | Cumulative                               |             | -             | <del> </del> | <del>                                     </del> | <del> </del>                                     | <del> </del> | <del> </del> |              | <del> </del>        | 11159                                            | <del>                                     </del> |
|                | number<br>emerged                        |             |               |              |                                                  | ļ.                                               |              |              |              |                     | 1126                                             | 1                                                |
|                |                                          |             |               | 1            |                                                  |                                                  |              |              |              |                     |                                                  | 1                                                |
|                | # Pairings                               | <u>.</u>    |               | ļ            |                                                  |                                                  |              |              |              |                     | ļ                                                |                                                  |
|                | # Egg Case                               |             |               |              |                                                  |                                                  |              |              |              |                     |                                                  |                                                  |
|                | # Eggs /<br>Time to hatch /<br># hatched |             |               |              |                                                  |                                                  |              |              |              |                     |                                                  |                                                  |
|                |                                          | 11/20       | 11/21         | 11/22        | 11/23                                            | 11/24                                            | 11/25        | 11/26        | 11/27        | 11/28               | 11/29                                            | 11/30                                            |
|                |                                          |             | · ··-·        |              | 111120                                           | 1 1/2                                            |              | 1 1120       | 1 1121       | , ,,,,              | 11120                                            | 1 1100                                           |

BTR: 3615 / 3622 Test Start: 10/19/99 Project: 99033 M-C Dead Creek Sample / Repl. Response 26 # Males 12550 G emerged Male Time to Mortality (days) OL emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12550 H emerged Male Time to Mortality (days) # Females OP emerged Females Time to Mortality (days) number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched 11/21 /m Init./Date | 11/20 11/22 11/23 11/24 11/25 11/26 11/27 11/28 11/29 11/30 (1999)Emergence scoring: Record any purae which die (D) before emergence. D = dead for flies which emerge but are not L=121-12 surviving. P = pupa Comments: Test day corrector Julgo /59

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99

| Sample / Repl. | Response                     | 21                                               | 22                                               | 23                                               | 24                                               | 25               | 26                             | 27                                               | 28                                               | 29             | 30                                               | 31                                               |
|----------------|------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------|--------------------------------|--------------------------------------------------|--------------------------------------------------|----------------|--------------------------------------------------|--------------------------------------------------|
| 12551 A        | # Males<br>emerged           |                                                  |                                                  |                                                  | 1                                                |                  |                                |                                                  |                                                  |                |                                                  |                                                  |
|                | Male Time to                 |                                                  |                                                  |                                                  | 41 4.                                            | ,                |                                |                                                  |                                                  | †              | T                                                |                                                  |
|                | Mortality<br>(days)          |                                                  | 1                                                |                                                  | 50,117                                           | 1                | ĺ                              | ĺ                                                | Ì                                                | ĺ              | ĺ                                                |                                                  |
|                | # Females                    |                                                  | <del> </del>                                     | <del> </del>                                     |                                                  | 4 1              |                                | <del> </del>                                     | <u> </u>                                         | <del> </del>   | <del> </del>                                     | <del>                                     </del> |
|                | emerged                      |                                                  |                                                  |                                                  |                                                  | 1 1              |                                |                                                  |                                                  |                | 1                                                |                                                  |
|                | Females                      |                                                  | †                                                | 1                                                | <del> </del>                                     | nt od            |                                |                                                  |                                                  |                | <del>                                     </del> | <u> </u>                                         |
|                | Time to Mortality<br>(days)  | İ                                                |                                                  |                                                  |                                                  | AL 2d            |                                |                                                  |                                                  |                |                                                  |                                                  |
|                | Cumulative                   |                                                  |                                                  | +                                                | +                                                |                  |                                |                                                  | <del>                                     </del> | <del> </del> - | <del> </del>                                     |                                                  |
|                | number                       |                                                  |                                                  |                                                  |                                                  | 113              |                                |                                                  |                                                  |                | 1                                                |                                                  |
|                | emerged                      | <del>                                     </del> | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     |                  | <del> </del>                   | <del>                                     </del> | <del> </del>                                     | ļ              | <del> </del>                                     | <del> </del>                                     |
|                | # Pairings                   |                                                  |                                                  |                                                  |                                                  | 1/551            |                                |                                                  |                                                  |                |                                                  |                                                  |
|                | # Egg Case                   |                                                  |                                                  |                                                  |                                                  |                  | ا ا <sup>°</sup> و ا<br>ار 254 | (                                                |                                                  |                |                                                  |                                                  |
|                | # Eggs /                     |                                                  |                                                  |                                                  | 1                                                |                  | 12 unhate                      | ied                                              |                                                  |                |                                                  |                                                  |
|                | Time to hatch /<br># hatched |                                                  |                                                  | 1                                                |                                                  |                  | 12 unhate<br>100%<br>11/21     |                                                  |                                                  |                |                                                  | ļ                                                |
| 12551 B        | # Males<br>emerged           |                                                  |                                                  |                                                  |                                                  |                  | .,,,,                          |                                                  |                                                  |                |                                                  |                                                  |
|                | Male Time to                 |                                                  | -                                                | <del>                                     </del> | <del>                                     </del> |                  |                                |                                                  |                                                  |                | <del>                                     </del> |                                                  |
|                | Mortality<br>(days)          |                                                  |                                                  |                                                  |                                                  |                  | }                              |                                                  |                                                  |                | Į.                                               |                                                  |
|                | # Females                    |                                                  | <del> </del>                                     | <u> </u>                                         |                                                  |                  | <u> </u>                       |                                                  |                                                  |                | <del> </del> -                                   | <del></del>                                      |
|                | emerged                      |                                                  |                                                  |                                                  |                                                  |                  |                                |                                                  |                                                  |                |                                                  |                                                  |
|                | Females                      |                                                  |                                                  |                                                  |                                                  |                  |                                | <del></del>                                      | <del>                                     </del> | <del> </del>   | <del>                                     </del> |                                                  |
|                | Time to Mortality            |                                                  |                                                  | 1                                                |                                                  |                  |                                |                                                  | ļ                                                |                | ì                                                | 1                                                |
|                | (days)<br>Cumulative         |                                                  | <del>                                     </del> | -                                                | <del> </del>                                     | ļ                |                                | <del></del>                                      | <del>                                     </del> | <del> </del>   | <del> </del>                                     | <del> </del>                                     |
|                | number                       |                                                  | }                                                | }                                                | 1                                                |                  |                                |                                                  | l                                                |                |                                                  |                                                  |
|                | emerged                      |                                                  | ļ                                                | <u> </u>                                         | <u> </u>                                         |                  |                                |                                                  |                                                  | <del> </del>   | <del> </del>                                     |                                                  |
|                | # Pairings                   |                                                  |                                                  |                                                  |                                                  |                  |                                | ļ                                                |                                                  |                |                                                  |                                                  |
|                | # Egg Case                   |                                                  |                                                  |                                                  |                                                  |                  |                                |                                                  |                                                  |                |                                                  |                                                  |
|                | # Eggs /                     |                                                  | <del>                                     </del> |                                                  |                                                  |                  |                                |                                                  | <del>                                     </del> | <del> </del> - | <del> </del>                                     | <del> </del>                                     |
|                | Time to hatch / # hatched    |                                                  |                                                  |                                                  | ļ                                                |                  |                                |                                                  |                                                  |                |                                                  | }                                                |
| 40554.0        | # Males                      |                                                  |                                                  |                                                  | <del></del>                                      |                  |                                |                                                  |                                                  |                |                                                  | -                                                |
| 12551 C        | emerged                      |                                                  |                                                  |                                                  |                                                  |                  |                                |                                                  |                                                  |                |                                                  |                                                  |
|                | Male Time to                 |                                                  |                                                  |                                                  | <del> </del>                                     |                  |                                |                                                  | <del> </del>                                     |                | <del>                                     </del> |                                                  |
|                | Mortality                    |                                                  |                                                  | ]                                                |                                                  |                  |                                | ]                                                | }                                                | }              | ļ                                                |                                                  |
|                | (days)<br># Females          |                                                  | <del>                                     </del> |                                                  | <del> </del>                                     |                  | <del></del>                    | <del> </del>                                     |                                                  | <del> </del>   | <del></del>                                      |                                                  |
|                | emerged                      |                                                  |                                                  |                                                  |                                                  |                  |                                |                                                  |                                                  |                | l                                                |                                                  |
|                | Females                      |                                                  | <del>                                     </del> | <del> </del>                                     | ļ                                                |                  |                                | <del></del>                                      |                                                  |                |                                                  |                                                  |
|                | Time to Mortality            |                                                  | ļ                                                | ]                                                | ļ                                                | Į                | ļ                              | Į                                                |                                                  | j -            | 1                                                |                                                  |
|                | (days)<br>Cumulative         |                                                  |                                                  | ļ                                                | ļ                                                | <del> </del>     |                                |                                                  | <del> </del>                                     | <del> </del>   | <del>                                     </del> | ļ                                                |
|                | number                       |                                                  |                                                  | 1                                                |                                                  |                  |                                |                                                  | <u> </u>                                         | 1              | 1                                                | ł                                                |
|                | emerged                      |                                                  |                                                  | <u> </u>                                         | <u> </u>                                         | ļ                |                                | <u> </u>                                         | <u> </u>                                         | <u> </u>       | <del></del>                                      | ļ                                                |
|                | # Pairings                   |                                                  |                                                  |                                                  |                                                  |                  |                                |                                                  |                                                  |                |                                                  |                                                  |
|                | # Egg Case                   |                                                  |                                                  |                                                  |                                                  |                  |                                |                                                  |                                                  |                |                                                  |                                                  |
|                | # Eggs /<br>Time to hatch /  |                                                  | <del>                                     </del> | <del>                                     </del> | <del> </del>                                     | <del>  -</del> - |                                |                                                  | <del>                                     </del> |                | <del> </del>                                     |                                                  |
|                | # hatched                    |                                                  |                                                  |                                                  | <u> </u>                                         | ]                | <u></u>                        |                                                  | <u></u>                                          | <u> </u>       |                                                  |                                                  |
|                | Init./Date                   | 11/9                                             | 11/10                                            | 11/11                                            | 11/12                                            | 11/13            | 11/14                          | 11/15                                            | 11/16                                            | 11/17<br>-1/17 | 11/18                                            | 11/19                                            |
|                | (1999)                       | 1 5                                              | 1                                                | 1                                                |                                                  | 147              | I. 'Y'                         | ノグバ                                              | 1                                                | 1 1/2          | 1                                                | 10                                               |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: Date: 12/21/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99

| Sample / Repl. | Response                                 | 21           | 22             | 23             | 24                                               | 25           | 26                                               | 27           | 28           | 29                                               | 30           | 31                                               |
|----------------|------------------------------------------|--------------|----------------|----------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------|--------------|--------------------------------------------------|--------------|--------------------------------------------------|
| 12551 D        | # Maies<br>emerged                       |              |                |                |                                                  |              |                                                  |              |              |                                                  |              |                                                  |
|                | Male Time to<br>Mortality                |              | <del> </del>   |                | <del>                                     </del> |              |                                                  | <del> </del> |              |                                                  |              |                                                  |
|                | (days)                                   | ļ            | <del> </del>   | <del> </del>   | <del> </del>                                     |              | ļ                                                | <u> </u>     | <b>!</b>     |                                                  |              | ļ                                                |
|                | # Females<br>emerged                     |              |                |                | 1                                                |              |                                                  | ļ            |              |                                                  |              |                                                  |
|                | Females<br>Time to Mortality             |              |                |                |                                                  |              | <del>                                     </del> |              |              |                                                  |              |                                                  |
|                | (days)<br>Cumulative                     | <del> </del> | <del> </del> - | <del> </del> - | <del> </del>                                     | <del> </del> | <del> </del> -                                   | <del> </del> | <del> </del> | <del> </del> -                                   | <del> </del> | <del> </del>                                     |
|                | riumber<br>emerged                       |              |                |                |                                                  |              |                                                  |              | <u> </u>     | <u> </u>                                         |              |                                                  |
|                | # Pairings                               |              |                |                |                                                  |              |                                                  |              |              |                                                  | (            |                                                  |
|                | # Egg Case                               |              |                |                |                                                  |              |                                                  |              |              |                                                  |              |                                                  |
|                | # Eggs /<br>Time to hatch /              |              |                | <del> </del>   | <del>                                     </del> | <u> </u>     |                                                  |              |              | <del>                                     </del> |              |                                                  |
| 12551 E        | # hatched<br># Males<br>emerged          |              |                |                |                                                  |              |                                                  | <u> </u>     |              |                                                  |              | <u> </u>                                         |
|                | Male Time to                             | <u> </u>     |                |                | <del> </del>                                     | ļ            | <del> </del>                                     | }            |              | <u> </u>                                         | <del> </del> | ·<br>نــــــــــــــــــــــــــــــــــــ       |
|                | Mortainy<br>(days)                       | <u> </u>     | <b></b>        | <u> </u>       | ļ                                                |              | <u> </u>                                         |              | <b></b>      | <b></b>                                          | <u></u>      |                                                  |
|                | # Females<br>emerged                     |              |                |                |                                                  |              |                                                  |              |              |                                                  |              |                                                  |
|                | Females<br>Time to Mortality<br>(days)   |              |                |                |                                                  |              |                                                  |              |              |                                                  |              |                                                  |
|                | Cumulative<br>number<br>emerged          |              |                |                | <del>                                     </del> |              |                                                  |              |              |                                                  |              |                                                  |
|                | # Pairings                               |              |                |                |                                                  |              |                                                  |              |              |                                                  |              |                                                  |
|                | # Egg Case                               |              |                |                |                                                  |              |                                                  |              |              | }                                                |              |                                                  |
|                | # Eggs /<br>Time to hatch /<br># hatched |              |                |                |                                                  |              |                                                  |              |              |                                                  |              |                                                  |
| 12551 F        | # Males<br>emerged                       |              |                |                |                                                  |              |                                                  |              |              |                                                  |              |                                                  |
|                | Male Time to<br>Mortality                |              |                |                | <del> </del>                                     |              |                                                  |              |              |                                                  |              |                                                  |
|                | (days)<br># Females<br>emerged           |              | <u> </u>       |                | <del> </del> -                                   | <del> </del> |                                                  |              |              |                                                  |              | -                                                |
|                | Females<br>Time to Mortality             |              | <del> </del>   |                | <del> </del>                                     |              |                                                  | <del> </del> |              | <u> </u>                                         |              | <del> </del>                                     |
|                | (days)<br>Cumulative<br>number           |              | <del> </del>   |                |                                                  |              | -                                                | -            |              |                                                  | <del> </del> | <del>                                     </del> |
|                | emerged                                  |              | <del> </del>   |                | 1                                                | ļ            |                                                  | -            | -            | <del> </del>                                     |              |                                                  |
|                | # Pairings                               |              |                |                | ļ                                                |              |                                                  |              |              |                                                  |              | <u> </u>                                         |
|                | # Egg Case                               | 1            |                |                |                                                  |              |                                                  |              |              |                                                  |              |                                                  |
|                | # Eggs /<br>Time to hatch /              |              |                |                |                                                  |              |                                                  | <del> </del> |              | <del> </del>                                     |              | -                                                |
|                | # hatched Init./Date                     | 11/9         | 11/10          | 11/11          | 11/12                                            | 111/12       | 11/14                                            | 11/15        | 11/16        | 11/17                                            | 11/18        | 11/19                                            |
|                | (1999)                                   | 11/9         | 11/10          | 11/11          | 111/12                                           | 11/13        | 11/14                                            | 11/15        | 111/10       | 11/17                                            | 11110        | 11113                                            |

Emergence scoring: Record any pupae which die (C) before emergence. D = dead for flies which emerge but are no' surviving. P = pupa

| Review:               | Date: 12/21/99                              |    |
|-----------------------|---------------------------------------------|----|
| Laboratory: Aquatec E | iological Sciences, South Burlington, Vermo | nt |

| Sample / Repl.                 | Response                                 | 21                                               | 22          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24             | 25            | 26                                               | 27      | 28    | 29          | 30           | 31              |
|--------------------------------|------------------------------------------|--------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|--------------------------------------------------|---------|-------|-------------|--------------|-----------------|
| 12551 G                        | # Males<br>emerged                       | <del>                                     </del> | +           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>-  </del> | المعنة        |                                                  | 111     | 1     | 1           |              |                 |
|                                | Male Time to<br>Mortality                | <del> </del>                                     | +           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | -             |                                                  | 1 52 5d | 40-   | 6d<br>11/23 | <del> </del> | <del> </del>    |
|                                | (days)<br># Females<br>emerged           |                                                  |             | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del> </del>   | <del> </del>  |                                                  | 40 "    | 4/3/  | 1423        | 1,           | <del> </del>    |
|                                | Females<br>Time to Mortality             |                                                  | -           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | +             | <del>                                     </del> | ]       |       | -           | 20/20        | ļ               |
|                                | (days) Cumulative number emerged         |                                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |                                                  | 4       | 5     | 6           | 7            |                 |
|                                | # Pairings                               |                                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |                                                  |         |       |             | WISSIG       | }               |
|                                | # Egg Case                               |                                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |                                                  |         |       |             |              | 11°2,0          |
|                                | # Eggs /<br>Time to hatch /<br># hatched |                                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |                                                  |         |       |             |              | 2-3171<br>2-200 |
| 12551 H                        | # Males<br>emerged                       |                                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |                                                  |         |       |             |              |                 |
|                                | Male Time to Mortality (days) # Females  |                                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |                                                  |         |       |             |              |                 |
|                                | emerged                                  |                                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |                                                  |         |       |             |              |                 |
|                                | Females Time to Mortality (days)         |                                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |                                                  |         |       |             |              |                 |
|                                | Cumulative<br>number<br>emerged          |                                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |                                                  |         |       |             |              |                 |
|                                | # Pairings                               |                                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |                                                  |         | !     |             |              |                 |
|                                | # Egg Case                               |                                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |                                                  |         |       |             | 1            |                 |
|                                | # Eggs /<br>Time to hatch /<br># hatched |                                                  |             | <del>                  _     _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _</del> |                |               |                                                  |         | ,     |             |              |                 |
|                                | Init./Date<br>(1999)                     | 11/9                                             | 11/10       | 11/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11/12          | 11/13         | 11/14                                            | 11/15   | 11/16 | 些           | 3/18         | 11/18           |
| nergence sco<br>rviving. P = p | ring: Recor<br>upa                       | d any p                                          | upae wh     | ich die (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D) befor       |               |                                                  |         |       |             |              |                 |
| ments:                         |                                          |                                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |                                                  |         |       |             |              |                 |
|                                |                                          |                                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |                                                  |         |       |             |              |                 |
|                                |                                          |                                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |                                                  |         |       |             |              |                 |
|                                |                                          |                                                  | <del></del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | . <del></del> |                                                  |         |       |             |              |                 |
|                                |                                          |                                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |                                                  |         |       |             |              |                 |

Review: Date: 12/2/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/20/99

| Sample / Repl. | Response                    | 32    | 33             | 34           | 35             | 36           | 37             | 38           | 39                                               | 40             | 41             | 42                                               |
|----------------|-----------------------------|-------|----------------|--------------|----------------|--------------|----------------|--------------|--------------------------------------------------|----------------|----------------|--------------------------------------------------|
| 12551 A        | # Males<br>emerged          |       |                |              | -              |              |                |              |                                                  |                | -              |                                                  |
|                | L                           |       |                | <u> </u>     |                |              | <u> </u>       |              |                                                  | <u> </u>       | <u> </u>       |                                                  |
|                | Male Time to<br>Mortality   |       |                |              |                |              |                | [            |                                                  |                |                | [                                                |
|                | (days)                      |       | ]              | }            | }              | 1            | }              | 1            | }                                                | )              | Ì              | 1                                                |
|                | # Females                   |       |                | 1            |                |              |                |              |                                                  |                |                |                                                  |
|                | emerged                     |       | 1              | }            | 1              | 1            | 1              |              | ļ                                                |                | 111            | ]                                                |
|                | Females                     |       |                | <del> </del> | <del> </del>   | <del> </del> | <del> </del>   |              |                                                  |                | 0              |                                                  |
|                | Time to Mortality           | ı     |                | j            | 1              |              | Ì              | ł            | }                                                | }              | O              | }                                                |
|                | (days)<br>Cumulative        |       |                | <del> </del> | <del> </del>   | <del> </del> |                | <del> </del> |                                                  | <del> </del>   | 11/19          | <del> </del>                                     |
|                | number                      |       | 3              |              |                | {            |                | [            | ĺ                                                | ĺ              |                |                                                  |
|                | emerged                     |       | <del> </del> _ | <del> </del> | ļ              | ļ            |                | ļ            | ļ                                                |                | 700            | ļ                                                |
|                | # Pairings                  |       |                | }            |                |              | }              | }            | }                                                |                |                |                                                  |
|                | # Egg Case                  |       |                |              |                |              |                |              |                                                  |                |                |                                                  |
|                | # Eggs /                    |       | <del> </del>   |              | <del> </del>   | <del> </del> |                | <u> </u>     | ļ                                                |                | <del> </del>   | ļ                                                |
|                | Time to hatch /             |       |                | 1            |                | Ì            | [              | {            | {                                                | (              |                | [                                                |
|                | # hatched                   |       | <u> </u>       | <u> </u>     | <u> </u>       |              |                | ļ            |                                                  |                |                |                                                  |
| 12551 B        | # Males<br>emerged          |       |                |              |                |              |                |              |                                                  |                | ł              |                                                  |
|                | Male Time to                |       | <del> </del>   | -            | <del> </del>   |              | <del> </del>   | <del> </del> | <del>                                     </del> |                | <del> </del>   |                                                  |
| •              | Mortality                   |       |                |              |                | !<br>        |                |              | 1                                                |                |                | {                                                |
|                | (days)_<br># Females        |       | ļ              | <del> </del> | <del>}</del>   |              | ļ              | <del> </del> | <del> </del>                                     | <del> </del> - | <del> </del> - | <del>}</del>                                     |
|                | emerged                     |       |                |              |                |              |                | ľ            |                                                  | 1              | OL             | ļ                                                |
|                | Females                     |       | <del> </del> - | <u> </u>     | <del> </del>   | <del></del>  | <del> </del> - |              | ļ                                                | <del></del>    | 00             | <u> </u>                                         |
|                | Time to Monality            |       | }              | }            |                | <b>[</b>     | ļ              | [            | [                                                |                | OP             | }                                                |
|                | (days)                      |       | <u> </u>       |              | ļ              |              |                |              |                                                  |                |                | ļ                                                |
|                | Cumulative<br>number        |       | 1              | }            |                | ļ            | ļ              | 1            | ļ                                                | [              | 11/29          | 1                                                |
|                | emerged                     |       | <u> </u>       |              |                |              |                | <u> </u>     |                                                  | <u> </u>       | 11/29          |                                                  |
|                | # Pairings                  |       |                |              |                | -            |                |              |                                                  |                |                |                                                  |
|                | # Egg Case                  |       |                |              |                |              |                |              |                                                  |                |                |                                                  |
|                | <del> </del>                |       | <b> </b>       | ļ            | <u> </u>       | <u> </u>     |                | <u> </u>     | ļ                                                | <u> </u>       |                | <u> </u>                                         |
|                | # Eggs /<br>Time to hatch / |       | 1<br>          |              |                | ĺ            | ĺ              | ĺ            | ł                                                | ĺ              | ĺ              | ĺ                                                |
|                | # hatched                   |       |                |              | ļ              |              | j              |              |                                                  |                | <u> </u>       |                                                  |
| 12551 C        | # Males                     |       |                |              |                |              |                |              |                                                  |                |                |                                                  |
| 120010         | emerged                     |       | ł              | Ì            | l              | }            | ì              | }            | l                                                | }              | 1              | ł                                                |
|                | Male Time to                |       |                |              | <u> </u>       |              |                |              | <u> </u>                                         |                |                |                                                  |
|                | Mortality<br>(days)         |       | ,              | <u> </u>     |                | {            | 1              |              | İ                                                | 1              | ļ              | İ                                                |
|                | # Females                   |       | <del> </del>   | <del></del>  | <del> </del> - | <del> </del> | <del> </del>   | <del> </del> | <del> </del>                                     | <del> </del>   | <del> </del>   | <del>                                     </del> |
|                | emerged                     |       | ļ              | }            | Ì              | ]            | )              |              | }                                                | }              | OL             | }                                                |
|                | Females                     |       |                | <del></del>  | <del> </del>   | <del> </del> | <del> </del>   | <del> </del> | <del> </del> -                                   | <del> </del>   |                | <del> </del>                                     |
|                | Time to Mortality           |       |                | 1            | ļ              |              | İ              | ļ            | ļ                                                | 1              | OF             | 1                                                |
|                | (days)<br>Cumulative        |       | <del> </del>   | <b> </b>     | <del> </del>   | <del></del>  | ļ              | <del> </del> | <del> </del>                                     | <del> </del>   | <del></del>    | <del> </del> -                                   |
|                | number                      |       | Į              | ļ            |                | }            | }              | }            | }                                                | ,              | 11/29          | <b>[</b>                                         |
|                | emerged                     |       | L              | <u> </u>     |                | ļ            | <u> </u>       |              |                                                  |                | 177            | <b> </b>                                         |
|                | # Pairings                  |       |                |              |                |              |                |              | i                                                |                |                |                                                  |
|                | # Egg Case                  |       |                |              |                |              |                |              |                                                  |                |                |                                                  |
|                |                             |       |                | <u> </u>     | L              |              |                |              |                                                  | <u> </u>       |                | <u> </u>                                         |
|                | # Eggs /<br>Time to hatch / |       |                | {            |                |              |                |              |                                                  |                |                |                                                  |
|                | # hatched                   |       | 1              |              |                |              |                |              |                                                  |                |                |                                                  |
|                | # hatched Init./Date        | 11/20 | 11/21          | 11/22        | 11/23          | 11/24        | 11/25          | 11/26        | 11/27                                            | 11/28          | 11/29          | 11/30                                            |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa  $\angle = \sqrt{3110}$ 

Review: \_\_\_\_\_ Date: 12/21/49
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99

| ample / Repl. | Response             | 232   | 22           | 23-          | 35           | 25                                               | <b>26</b> 37 | 38           | 28             | 29           | - <del>30</del><br>+1 | -34<br>42    |
|---------------|----------------------|-------|--------------|--------------|--------------|--------------------------------------------------|--------------|--------------|----------------|--------------|-----------------------|--------------|
| 12551 D       | # Males<br>emerged   |       |              |              |              |                                                  |              |              |                |              |                       |              |
|               | Male Time to         |       | <del> </del> | <del> </del> | <del> </del> | <del>                                     </del> | <del> </del> | <del> </del> | <del> </del>   | <del> </del> | ├                     | <del> </del> |
|               | Mortality            |       |              | [            | [            | 1                                                | 1            | (            | ĺ              | ĺ            | ľ                     |              |
|               | (days)               |       |              | ļ            |              | <u> </u>                                         | ļ            |              |                |              | <u> </u>              | <u> </u>     |
|               | # Females<br>emerged |       |              | 1            | [            | ļ                                                | }            | j            | ]              | 1            | ſ                     | Í            |
|               |                      |       |              |              |              |                                                  | l            | l            | l              | l            |                       |              |
|               | Females              |       |              |              |              |                                                  |              | T            |                |              | ~ .                   |              |
|               | Time to Mortality    |       |              |              |              | 1                                                | ļ            | 1            | }              | 1            | 101.                  | }            |
|               | (days)<br>Cumulative |       |              | <del> </del> | <del> </del> | <del> </del>                                     | <del> </del> | <del> </del> | <del> </del> - |              | 120                   |              |
|               | number               |       |              |              |              | Ĭ                                                | ĺ            | l            |                | ļ            | (C){                  |              |
|               | emerged              |       |              | <del> </del> | ļ            | ļ                                                |              | <b>├</b> ──  |                |              | <u> </u>              |              |
|               | # Pairings           |       |              |              |              |                                                  | Ì            | 1            | ļ              | İ            | 11/29                 | <u> </u>     |
|               | # 1 GHINGS           |       |              |              |              | ļ                                                |              | <u> </u>     | ļ              |              | 11/29<br>Tm           |              |
|               | # Egg Case           |       |              |              | 1            |                                                  |              |              |                |              |                       |              |
|               | # Eggs /             |       |              | <del> </del> | <del> </del> | <del> </del>                                     | <del> </del> | <del> </del> | <del> </del>   | <del> </del> | <del> </del>          |              |
|               | Time to hatch /      |       |              |              |              |                                                  |              |              |                |              |                       |              |
|               | # hatched            |       |              | <del> </del> |              |                                                  | -            | <del> </del> | <u> </u>       |              |                       |              |
| 12551 E       | # Maies<br>emerged   |       |              | 1            |              |                                                  | -            |              |                |              |                       |              |
|               | Male Time to         |       |              |              |              |                                                  |              |              |                |              |                       |              |
|               | Mortality<br>(days)  |       |              |              |              |                                                  |              | Ì            | İ              | ĺ            | İ                     |              |
|               | # Females            |       |              |              |              | <del></del>                                      | <del></del>  | <del></del>  | <del></del>    | <del></del>  | 211                   |              |
|               | emerged              | j     |              | ]            |              |                                                  |              | ]            | ]              | )            | UL-                   |              |
|               | Females              |       |              | <del> </del> |              | <u> </u>                                         |              | <del> </del> |                |              | 100                   |              |
|               | Time to Mortality    |       |              |              |              |                                                  | İ            |              | <b>\</b>       | ļ            | 101                   | l            |
|               | (days)               |       |              |              |              | <u> </u>                                         |              | <u> </u>     |                |              | 1.1.                  |              |
|               | Cumulative           |       |              |              |              |                                                  |              |              |                |              | 111124_               |              |
|               | number               | İ     |              | 1            |              | }                                                |              |              | ]              | ļ            | 133                   |              |
|               | # Pairings           |       |              |              |              |                                                  |              |              |                |              |                       |              |
|               | # Egg Case           |       |              |              |              |                                                  |              |              |                |              |                       |              |
|               | # Eggs /             |       |              |              |              | <u> </u>                                         |              |              | <u> </u>       |              |                       |              |
|               | Time to hatch /      |       |              |              |              | [                                                |              | 1            | j              |              |                       | į            |
|               | # hatched            |       |              | ļ            |              |                                                  |              | <del> </del> |                |              |                       |              |
| 12551 F       | # Maies<br>emerged   |       |              | }            |              | }                                                |              | ļ            |                | 1            |                       |              |
|               |                      |       |              |              |              |                                                  |              |              | 1              | <u> </u>     | <u></u>               |              |
|               | Male Time to         |       |              |              |              |                                                  |              | 1            |                | İ            | 0.7                   |              |
|               | Mortality<br>(days)  | 1     |              | 1            |              | Į                                                |              | 1            | l              |              | 106                   | }            |
|               | # Females            |       |              |              |              |                                                  |              |              |                |              | T                     |              |
|               | emerged              |       |              |              |              |                                                  | Į.           |              | ]              |              | OP                    | ł            |
|               | Females              |       |              | <del> </del> | <del></del>  | <del> </del>                                     | <del> </del> | <del>}</del> | <del> </del>   | <del> </del> | <del>1</del>          | <del> </del> |
|               | Time to Mortality    | }     |              |              |              |                                                  | 1            | 1            | 1              |              | 11/29/                |              |
|               | (days)               |       |              |              |              | <u> </u>                                         | <u> </u>     | 1            | <u> </u>       | ļ            |                       | Ľ            |
|               | Cumulative<br>number | 1     |              | (            |              |                                                  |              | 1            | }              |              |                       |              |
|               | emerged              |       |              |              |              |                                                  |              | 1            |                |              |                       | Ì            |
|               |                      |       |              | <u> </u>     |              | - · · · · ·                                      |              |              |                |              | T                     |              |
|               | # Pairings           |       |              |              |              |                                                  | ļ            | -            |                |              | -                     | <del> </del> |
|               | # Egg Case           |       |              |              |              |                                                  |              |              | }              |              |                       |              |
|               | # Eggs /             |       |              | <del> </del> |              | <del> </del>                                     | -            | <del> </del> |                | <del> </del> | <del> </del>          |              |
|               | Time to hatch /      | }     |              | j            | l            | j                                                | 1            | ì            | }              | 1            | i                     | 1            |
|               | # hatched            |       |              | 1            | 1            | 1                                                | ĺ            |              |                | 1            | 1                     |              |
| <del></del> _ | # hatched            | 11/20 | 11/21        | 11/22        | 11/23        | 11/24                                            | 11/25        | 11/26        | 11/27          | 11/28        | 11/29                 | 11/30        |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa (= | 34-y a

Review: Date: 144/96
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| Sample / Repl.                | Response                                 | 32          | 22/33        | 25<br>74   | 24        | 25       | 35      | 238    | 38            | <del>29</del> | - <del>30</del> | <del>31</del><br><del>4</del> 2 |
|-------------------------------|------------------------------------------|-------------|--------------|------------|-----------|----------|---------|--------|---------------|---------------|-----------------|---------------------------------|
| 12551 G                       | # Males<br>emerged                       | 1.32        | 33           | 1 2 7      | 23        | 1 00     | 1 2 /   | 1 70   | 3/            | 70            | 77              | 72                              |
|                               | Male Time to<br>Mortality<br>(days)      |             | \            |            |           |          |         |        |               |               |                 |                                 |
|                               | # Females<br>emerged                     |             |              |            |           |          |         | 1      |               |               | 100             |                                 |
|                               | Females Time to Mortality (days)         |             | Ţ            |            |           |          |         |        |               |               | OP              |                                 |
|                               | Cumulative<br>number<br>emerged          |             | 7            |            |           |          |         |        |               |               | 11/294          |                                 |
|                               | # Pairings                               |             |              |            |           |          |         |        |               |               |                 |                                 |
|                               | # Egg Case                               |             |              |            |           | <u>!</u> |         |        |               |               |                 |                                 |
|                               | # Eggs /<br>Time to hatch /<br># hatched |             |              |            |           |          |         |        |               |               |                 |                                 |
| 12551 H                       | ≓ Males<br>emerged                       |             |              |            |           |          |         |        |               |               |                 |                                 |
|                               | Male Time to<br>Mortality<br>(days)      |             |              |            |           |          |         |        |               |               |                 |                                 |
|                               | # Females<br>emerged                     |             |              |            |           |          |         |        |               |               | OL              |                                 |
|                               | Females<br>Time to Mortality<br>(days)   |             |              |            |           |          |         |        |               |               | OP              |                                 |
|                               | Cumulative<br>number<br>emerged          |             |              |            |           |          |         |        |               |               | 11/2/2          | 5                               |
|                               | # Pairings                               |             |              |            |           |          |         |        |               |               |                 |                                 |
|                               | # Egg Case                               |             |              |            |           |          |         |        |               |               |                 |                                 |
|                               | # Eggs /<br>Time to hatch /<br># hatched |             |              |            |           |          |         |        |               |               |                 |                                 |
|                               | Init./Date<br>(1999)                     | 11/20       | 11/21<br>1/M | 11/22      | 11/23     | 11/24    | 11/25   | 11/26  | 11/27         | 11/28         | 11/29           | 11/30                           |
| nergence sco<br>viving. P = p | ring: Record                             | any pu      | ipae whi     | ich die (l | D) before | e emerge | ence. D | = dead | for flies     | which er      | nerge bi        | ut are n                        |
| ments:                        |                                          |             |              |            |           |          |         |        |               |               | <del></del>     |                                 |
|                               | O Tes                                    | 5 di        | 2y C         | orrec      | nan       |          | 11/     | 24/9   | 7             |               |                 |                                 |
|                               |                                          | <del></del> |              |            |           |          |         |        |               |               |                 |                                 |
|                               |                                          |             |              |            |           |          |         |        | <del>.,</del> |               |                 |                                 |
|                               |                                          |             |              |            |           |          |         |        |               |               |                 |                                 |
|                               |                                          |             |              |            |           |          |         |        | <del></del>   |               |                 |                                 |

Review: Date: 12/2/ /99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99

| Sample / Repl. | Response                                 | 21           | 22            | 23               | 24           | 25           | 26           | 27             | 28                                               | 29          | 30           | 31     |
|----------------|------------------------------------------|--------------|---------------|------------------|--------------|--------------|--------------|----------------|--------------------------------------------------|-------------|--------------|--------|
| 12552 A        | # Males<br>emerged                       |              |               | 2[17]            |              | 1 crushed    |              |                | 1                                                | <del></del> |              |        |
|                | Male Time to<br>Mortality                |              | 5415          | 606d             |              | 00/1/13      |              |                | 74/13                                            |             |              |        |
|                | (days)<br># Females                      |              | 1-111.        | 1111111111111111 | <del>}</del> | <u> </u>     | <del> </del> | <del>  .</del> | 765                                              |             | <del> </del> |        |
|                | emerged                                  |              |               |                  |              |              |              |                |                                                  |             | 1.           |        |
|                | Females Time to Mortality (days)         |              |               |                  |              |              | Wecode       | ADNA           | -                                                |             | ACTIP        | -      |
|                | Cumulative number                        |              | i i           | 3                |              | 14           |              | (-             | 7                                                |             | 8            |        |
|                | emerged                                  | _            |               | <del></del>      | ļ            | 1 1          |              | 6              |                                                  |             | <del></del>  |        |
|                | # Pairings                               | <del>-</del> |               |                  |              |              | W/552E       | W/552F         |                                                  |             | WSE TIE      |        |
|                | # Egg Case                               |              |               |                  |              |              | }            |                | !<br>                                            |             | (1/2) IM     |        |
|                | # Eggs /<br>Time to hatch /<br># hatched |              |               |                  |              |              |              |                |                                                  |             |              |        |
| 12552 B        | # Maies<br>emerged                       |              | 2(ii)         |                  | 1.           |              |              |                |                                                  |             |              |        |
|                | Male Time to                             |              | 6d 6d         |                  | ,            |              |              |                |                                                  |             |              |        |
|                | Mortality<br>(days)                      |              | אווי מונוי    |                  | 600,118      |              | {            | [              | [ [                                              |             |              |        |
|                | # Females<br>emerged                     | -            | 3,            |                  |              | Al IB        |              |                |                                                  | <del></del> | 1            |        |
|                | Females                                  |              | 1             |                  |              | 21 1         | [            | <del></del>    |                                                  |             | 1.           |        |
|                | Time to Mortality (days)                 |              |               |                  |              | 31 12        | k            |                |                                                  |             | 40,130       |        |
|                | Cumulative                               |              | 1             |                  |              | / 11         | ·            |                | 80tml                                            |             | 1 ~          |        |
|                | number<br>emerged                        |              | 2             |                  |              | V7 13        | X170         |                | 80 m/<br>>552c€                                  |             | 6            |        |
|                | emargeo                                  |              | -~-           |                  |              | 111/-28      | 6            | <del></del> -  | 11/12                                            |             | <del></del>  |        |
|                | # Pairings                               |              |               |                  |              | W/5524       |              | <u> </u>       | ,,-                                              |             | NEEDE        |        |
|                | # Egg Case                               |              |               |                  |              |              |              |                |                                                  |             |              |        |
|                | # Eggs /<br>Time to hatch /<br># hatched |              |               |                  |              |              |              |                |                                                  |             |              |        |
| 12552 C        | # Males<br>emerged                       |              |               |                  | 1            | 1 1          |              |                |                                                  |             |              |        |
|                | Male Time to<br>Mortality<br>(days)      |              |               |                  | Odales       | 3d 3d        |              |                |                                                  |             |              |        |
|                | # Females<br>emerged                     |              |               |                  | <br>         | 11/10 11/11  |              |                |                                                  |             |              |        |
|                | Females Time to Mortality                |              |               |                  | <del></del>  |              |              |                |                                                  | <del></del> |              |        |
|                | (days)<br>Cumulative                     |              | <del>  </del> |                  |              | <del> </del> | ļ            | <u> </u>       | <del>                                     </del> |             | <del> </del> |        |
|                | number<br>emerged                        |              |               |                  |              | 3            |              |                |                                                  |             |              |        |
|                | # Pairings                               |              |               |                  |              |              |              |                |                                                  | <u> </u>    |              |        |
|                | # Egg Case                               |              |               |                  |              |              |              |                |                                                  |             |              |        |
|                | # Eggs /<br>Time to hatch /<br># hatched |              |               |                  |              |              |              |                |                                                  |             |              |        |
|                | Init./Date<br>(1999)                     | 11/9         | 11/10         | 13/11            | 1442         | 11/13        | 11/14        | 17/15          | 11/16                                            | 11/17       | 11/18        | 11//12 |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: \_\_\_\_\_ Date: 121/99 Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek Test Start: 10/19/99 BTR: 3615 / 3622 Sample / Repl. Response 22 23 30 21 24 25 26 27 28 29 31 12552 D emerged Male Time to 80/19 50,118 Mortality (days) # Females emerged 14 Time to Mortality 11/1 (days) Cumulative number emerged # Pairings 10 Est. # Egg Case ~12 unlythed 5 miles hed # Eggs / Time to hatch / 11/19 60% # hatched # Males OM. 12552 E emerged Male Time to dolla 50,10 Mortality (days) # Females emerged lid" 15 Females 3,40 Time to Mortality (days) Cumulative number 10 emerged W/5526 # Pairings # Egg Case # Eggs / Time to hatch / # hatched 12552 F 11/30 Male Time to नाम स्टे Mortality (days) # Females Females 90 Time to Mortality (days) Cumulative 2 number emerged WSTLA 1 # Pairings 1/1160 470 # Egg Case I ami! 121312 100% Tunhatched 1/24 # Eggs / Time to hatch / 1421 # hatched 11/10 12/11 1,1/12 Init./Date 11/9 11/16 11/17 (1999)Emergence scoring: Record any pupa'e which die (D) before emergence. D = dead for flies which emerge but are not

surviving. P = pupa

Review: \_\_\_\_\_ Date: / \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{\mu} \) \( \bar{

Ocorrection 5

000045

| Sample / Repl.   | Response                               | 21           | 22                                               | 23           | 24           | 25                                               | 26                                               | 27             | 28           | 29           | 30                                               | 31           |
|------------------|----------------------------------------|--------------|--------------------------------------------------|--------------|--------------|--------------------------------------------------|--------------------------------------------------|----------------|--------------|--------------|--------------------------------------------------|--------------|
| 12552 G          | # Males<br>emerged                     |              | 10                                               | 2(1)         |              |                                                  |                                                  |                | 1.           | 1            |                                                  |              |
|                  | Male Time to                           | <del> </del> |                                                  |              | <del> </del> | <del>                                     </del> | <del>                                     </del> | †              | 111          | 70           | <del> </del>                                     | +            |
|                  | Mortality<br>(days)                    |              | 01/                                              | 51 6         | Ha .         |                                                  |                                                  | ļ              | 4420         | 6d<br>11/23  | }                                                |              |
|                  | # Females                              | +            | <del> </del>                                     | 14/10 21     | h-1          | <del> </del>                                     | +                                                | <del> </del>   | 1-00         | 11/42        | <del> </del>                                     | +            |
|                  | emerged                                | 1            |                                                  |              |              |                                                  | 1 1.                                             |                |              | 1 '          | 1                                                |              |
|                  | Females                                | <del> </del> |                                                  | <del></del>  | <del> </del> | <del></del>                                      | 1/5-12                                           | <del> </del>   | +            | <del></del>  | +                                                | ┼            |
|                  | Time to Mortality                      | 1            |                                                  |              | 1            |                                                  | 49 19                                            | d              | }            |              | 1                                                |              |
|                  | (days)<br>Cumulative                   | <del> </del> | _}                                               | <del></del>  | <del>}</del> | <del></del>                                      | 11/18 11/1                                       | <del></del>    | <del> </del> | <del></del>  | <del> </del>                                     | <del> </del> |
|                  | unuper                                 | 1            |                                                  | 3            |              | }                                                | 15                                               |                | G            | 1            | [                                                |              |
|                  | emerged                                | <u> </u>     |                                                  | 12           |              |                                                  | WU_                                              | <u> </u>       | 10           | 14           | 1                                                | <u> </u>     |
|                  | # Pairings                             |              |                                                  |              |              |                                                  | W/552<br>183                                     |                |              | '            |                                                  |              |
|                  | # Egg Case                             | <del> </del> |                                                  |              |              |                                                  | THE                                              | 510            |              | <del></del>  | † <del></del>                                    |              |
|                  | •                                      | ļ            |                                                  | 1            | )            |                                                  |                                                  | 902            | 1.           |              | Ì                                                | 1            |
|                  | # Eggs /                               | <del></del>  | <del> </del>                                     | <del> </del> | <del> </del> | +                                                | +                                                |                | JOHN STATE   | <del> </del> | <del></del> -                                    | <del> </del> |
|                  | Time to hatch /<br># hatched           | ļ            | ĺ                                                |              |              |                                                  | 1                                                | 202110         | atched       | .1124        | 1                                                |              |
| 4055011          | # Males                                | <del> </del> | <del></del>                                      | +            | <del> </del> |                                                  | <del></del>                                      | 902 WI         | arcoun       | +            | <del> </del>                                     |              |
| 12552 H          | ernerged                               |              |                                                  | <u> </u>     |              |                                                  |                                                  |                |              | ļ            |                                                  |              |
|                  | Male Time to<br>Mortality<br>(days)    | 1            |                                                  |              |              |                                                  |                                                  | ļ              |              | }            |                                                  |              |
|                  | # Females<br>emerged                   |              |                                                  | 1            |              |                                                  |                                                  |                |              |              |                                                  | 1            |
|                  | Females<br>Time to Mortality<br>(days) |              | <del>-  </del>                                   | Sdille       |              |                                                  | 1                                                | <del> </del>   |              |              |                                                  | 13,          |
|                  | Cumulative<br>number                   |              | <del> </del>                                     |              |              |                                                  | 1                                                | †              | <del> </del> |              | <del>                                     </del> | 13           |
|                  | # Pairings                             |              | <del>                                     </del> | 1 W 552 6 A  |              | <del> </del>                                     | +                                                | <del> </del> - | <del> </del> | <del> </del> | <del>                                     </del> | 1/2          |
|                  |                                        |              |                                                  | 225 G.W      | -            | -                                                | 10                                               | -              | <del> </del> | <del> </del> | <del> </del>                                     | <del> </del> |
|                  | # Egg Case                             |              | _                                                |              | 1            |                                                  | 1,508                                            |                |              |              |                                                  |              |
|                  | # Eggs /                               |              |                                                  | 1            |              |                                                  | 0% 42                                            | tda            |              |              |                                                  |              |
|                  | Time to hatch / # hatched              | }            | 1                                                |              | l            | 1                                                | 0% has                                           | 1              | 1            |              | 1                                                | }            |
|                  | Init./Date                             | 11/9         | 13/10                                            | 1444         | 11/12        | 11/13                                            | 11/14                                            | 11/15          | 13/18        | 1117         | 11/18                                            | 1944         |
|                  | (1999)                                 | <u> </u>     | 1 NV                                             | 1 1/11       |              | <u> </u>                                         | トノブ                                              | 1710           | 1 // / /     |              | 1                                                | 100          |
| nergence sco     | ring: Recor                            | d any p      | oupae wh                                         | ich die ([   | D) befor     | e emerg                                          | ence. D                                          | = dead         | for flies    | which er     | nerge bi                                         | ut are       |
| rviving. $P = p$ | upa                                    |              |                                                  |              |              |                                                  |                                                  |                |              |              |                                                  |              |
| ments:           |                                        |              |                                                  |              |              |                                                  |                                                  |                |              |              |                                                  |              |
| <del></del> -    | · ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~    |              | ····                                             |              |              |                                                  |                                                  |                |              |              |                                                  |              |
|                  |                                        |              |                                                  |              |              |                                                  |                                                  |                |              |              |                                                  |              |
|                  |                                        |              |                                                  |              |              |                                                  |                                                  |                |              |              |                                                  |              |
| <del></del>      |                                        |              |                                                  |              |              |                                                  |                                                  |                |              |              |                                                  |              |
|                  |                                        |              |                                                  |              |              |                                                  |                                                  |                |              |              |                                                  |              |
|                  |                                        |              |                                                  |              |              |                                                  |                                                  |                |              |              |                                                  |              |
|                  |                                        |              |                                                  |              |              |                                                  |                                                  | ···            |              |              |                                                  |              |
|                  |                                        |              |                                                  |              |              |                                                  |                                                  |                |              |              |                                                  |              |

Review: \_\_\_\_\_\_ Date: 12/21/69
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Test Start: 10/20/99 Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Sample / Repl. Response 32 33 42 34 35 36 37 38 39 40 41 # Males 12552 A emerged Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative 8 number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12552 B emerged Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative number (e emerged # Pairings # Egg Case D 516 0% hatch # Eggs / Time to hatch / # hatched # Males Ozhatch 11128

12552 C emerged Male Time to 90125 Monality (days) emerged Females Time to Mortality (days) Cumulative number emerged # Egg Case

Emergence scoring: Record any purpae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

11/24

11/25

11/23

11/22

11/26 11/27

11/28

11/29

| Review:       |           | Date:    | 12/   | 21/  | 90  | ĵ     |          |       |         |
|---------------|-----------|----------|-------|------|-----|-------|----------|-------|---------|
| Laboratory: A | Aquatec B | iologica | l Sci | ienò | es, | South | Burlingt | on, ۱ | /ermont |

Time to hatch / # hatched

(1999)

Init./Date |11/20

ctdays32-42

11/30

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99

| ### 12552 D ####################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample / Repl. | Response          | 232          | 237          | 23-                                              | 35                                               | 256          | 35                                               | 琴8                                               | -28-         | 29<br>40                                         | 30-                                              | 34                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|--------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| Mortally (days)   Emped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12552 D        |                   |              |              |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |                                                  |                                                  |
| Mortally (days)   Emped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | Maie Time to      | <del> </del> | ļ            | ┼──                                              | <del> </del>                                     | <del> </del> |                                                  | <del> </del>                                     |              | <del> </del> -                                   |                                                  | <del> </del>                                     |
| Clays    Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Femal   |                |                   | 1            | 1            | }                                                | }                                                | ł            | }                                                | Ì                                                | ł            | }                                                | }                                                | {                                                |
| ### ##################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | (days)            |              | <u> </u>     | <u> </u>                                         | <u> </u>                                         |              |                                                  |                                                  |              | L                                                | l                                                |                                                  |
| The following state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat |                |                   |              |              |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |                                                  |                                                  |
| Time to Mortality (Glays)  Cuminality emerged  # Egg Case  # Egg Case  # Egg Case    Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Females   Females     Fem |                | emerged           | 1            | }            |                                                  |                                                  |              |                                                  |                                                  |              |                                                  | 1                                                | l                                                |
| Comulative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | Females           |              | <del> </del> /del>                                     | <del> </del> | <del>                                     </del> |                                                  |              |                                                  | <del></del>                                      |                                                  |
| Cumulative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                   | 1            |              |                                                  | ļ                                                |              |                                                  | İ                                                |              |                                                  | į.                                               |                                                  |
| # Egg Case  # Egg Case  # Egg A Time to harch / # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antiched # Antic |                |                   |              | <del> </del> | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del>                                     </del> | <del> </del>                                     | -                                                |
| # Parings  # Egg ase  # Eggs / Time to hater / # hatchard    Male Time to hater / # hatchard   Male Time to Mortally (1099)   # ameriged   Time to Mortally (1099)   # ameriged   Time to Mortally (1099)   # Parings   # Egg Case   Time to Mortally (1099)   # Egg Case   Time to Mortally (1099)   # Egg Case   Time to Mortally (1099)   # Egg Case   Time to Mortally (1099)   # Familias     # Male Time to Mortally (1099)   # Familias     Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   # Familias     Time to Mortally (1099)   Time to Mortally (1099)   Time to Mortally (1099)   Time to Mortally (1099)   Time to Mortally (1099)   Time to Mortally (1099)   Time to Mortally (1099)   Time to Mortally (1099)   Time to Mortally (1099)   Time to Mortally (1099)   Time to Mortally (1099)   Time to Mortally (1099)   Time to Mortally (1099)   Time to Mortally (1099)   Time to Mortally (1099)   Time to Mortally (1 |                |                   |              | 5            |                                                  | 1                                                |              | 1                                                |                                                  |              |                                                  | 1                                                |                                                  |
| # Eggs / # Eggs / # Eggs / # Eggs / # Eggs / # Eggs / # Eggs / # Eggs / # Eggs / # Eggs / # # Male Time to Mortality    # Egg Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | emerged           |              | J            |                                                  | <u> </u>                                         | <u> </u>     |                                                  | <u> </u>                                         |              |                                                  |                                                  |                                                  |
| # Eggs / # Eggs / # Eggs / # Eggs / # Eggs / # Eggs / # Eggs / # Eggs / # Eggs / # Eggs / # # Male Time to Mortality    # Egg Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | # Deining         |              |              |                                                  |                                                  |              | ]                                                | }                                                |              | 1                                                |                                                  | İ                                                |
| # Eggs / Time to harbrid # # # # # # # # # # # # # # # # # # #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | # Pairings        |              |              |                                                  |                                                  |              |                                                  |                                                  |              | ļ                                                |                                                  |                                                  |
| Time to ratch / # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched  |                | # Egg Case        |              |              |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |                                                  |                                                  |
| Time to hatch / # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched   # hatched      |                | # Eggs /          | <del></del>  | <del> </del> | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del> -                                   | <del>                                     </del> | <del> </del>                                     |
| 12552 E  # Males                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | Time to hatch /   |              |              |                                                  |                                                  |              |                                                  |                                                  |              | 1                                                |                                                  |                                                  |
| Male Time to Mortality (days)  # Females Time to Mortality (days)  Cumulative number emerged  # Egg Case  # Egg Case  # Egg S/ Time to hatch / # hatched  Male Time to Mortality (days)  # Egg Case  # Egg Case  # Eggs / Time to hatch / # hatched  Male Time to Mortality (days)  # Females emerged  Females Time to Mortality Cumulative number emerged  # Parings  # Egg Case  # Egg Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                   |              |              |                                                  |                                                  | <u> </u>     | <u> </u>                                         |                                                  | <del> </del> |                                                  | <u> </u>                                         | <u> </u>                                         |
| Mortality (days) # Females Time to Mortality (days) Cumulative number emerged # Pairings  # Egg Case  # Egg Ase    Males Time to Mortality (days) # Females # Emales emerged   Males Time to Mortality (days) # Females   Females   Females   Females   Females   Time to Mortality   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative    | 12552 E        |                   |              | }            |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |                                                  |                                                  |
| Mortality (days) # Females Time to Mortality (days) Cumulative number emerged # Pairings  # Egg Case  # Egg Ase    Males Time to Mortality (days) # Females # Emales emerged   Males Time to Mortality (days) # Females   Females   Females   Females   Females   Time to Mortality   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative   Cumulative    |                | Male Time to      |              |              |                                                  | <del>├</del> ─                                   | <del> </del> | <u> </u>                                         | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del></del>                                      | <del>                                     </del> |
| # Females emerged  Females Time to Mortality (days)  Cumulative number emerged  # Eggs / # Egg Case  # Eggs / I'me to hatch / # hatched  Males emerged  Males Time to Mortality (days)  # # Females emerged  Females Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Egg Case  # Egg Case  # Egg Case  # Egg Case  # Egg Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                   |              |              | )                                                |                                                  |              |                                                  | 1                                                |              |                                                  |                                                  |                                                  |
| ### Eggs / Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Femal |                |                   |              |              | <u> </u>                                         |                                                  | <u> </u>     | ļ                                                |                                                  | <b></b>      | <u> </u>                                         | ļ                                                | <del> </del>                                     |
| Time to Monality (days)   Cumulative number emerged   (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                   |              |              |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |                                                  |                                                  |
| Time to Mortality   (days)   Cumulative   number   emerged   # Eggs / Time to hatch / # halched   # Females   emerged   # Females   # Females   # Females   # Females   Time to Mortality (days)   Cumulative   number   emerged   # Pairings   # Eggs / Time to Mortality (days)   Cumulative   number   emerged   # Pairings   # Egg Case   # Eggs / Time to Matched   # Egg Case   # Egg Case   # Egg Case   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Egg / Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Eggs / Time to hatch / # hatched   # Egg / Eggs / Time to hatch / # hatched   # Egg / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / Eggs / E   |                | Females           |              |              | <del> </del>                                     | 1                                                | <del> </del> |                                                  | <del>                                     </del> | <del> </del> |                                                  | ┼                                                | <del> </del> -                                   |
| Cumulative number emerged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | Time to Mortality |              | İ            |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |                                                  | ĺ                                                |
| Number emerged   Number emerged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |              |              |                                                  |                                                  |              |                                                  |                                                  | <u> </u>     |                                                  | <u> </u>                                         |                                                  |
| # Eggs / Time to hatch / # hatched  12552 F  # Eggs / Time to hatch / # hatched  12552 F  # Male Time to Mortality (days) (days) # Females Time to Mortality (days) Cumulative number emerged # Egg Case  # Egg / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                   |              | 10           |                                                  |                                                  |              |                                                  |                                                  |              | 1                                                |                                                  |                                                  |
| # Egg Case  # Egg S / Time to hatch / # hatched  12552 F  Male Time to Mortality (days) # Females emerged  Females Time to Mortality (days)  Cumulative number emerged  # Egg Case  # Egg Case  # Egg Case  # Egg Case  # Egg Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                   |              | (O           | }                                                |                                                  |              |                                                  | i                                                |              | 1                                                | 1                                                |                                                  |
| # Egg Case  # Egg / Time to hatch / # hatched  12552 F # Males emerged  Male Time to Mortality (days) # Females emerged  Females Time to Mortality (days) Cumulative number emerged  # Parrings  # Egg Case  # Egg Case  # Egg Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                   |              |              | <del>                                     </del> | <u> </u>                                         | į – –        |                                                  |                                                  |              | 1                                                |                                                  |                                                  |
| # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | # Pairings        |              |              |                                                  |                                                  | <del> </del> | 1                                                |                                                  |              |                                                  | -                                                | ļ                                                |
| Time to hatch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | # Egg Case        |              |              |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |                                                  |                                                  |
| Time to hatch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | # Eggs /          |              |              |                                                  | <del>                                     </del> | <del> </del> | <del>                                     </del> | <del> </del>                                     | <del></del>  | <del>                                     </del> | 1                                                | <del> </del>                                     |
| # Egg Case  # Males emerged  Male Time to Mortality (days)  # Females emerged  Time to Mortality (days)  Cumulative number emerged  # Egg Case  # Egg / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | Time to hatch /   |              |              |                                                  | l                                                |              |                                                  | 1                                                |              | 1                                                |                                                  | 1                                                |
| Male Time to Mortality (days)  # Females emerged  Females Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Egg 7 Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                   |              |              | <u> </u>                                         |                                                  | <u> </u>     | <u> </u>                                         |                                                  |              | <u> </u>                                         |                                                  |                                                  |
| Male Time to Mortality (days)  # Females emerged  Females Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Egg 7 Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12552 F        |                   |              |              | ļ                                                |                                                  |              |                                                  |                                                  |              |                                                  |                                                  |                                                  |
| Mortality (days)  # Females emerged  Females Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Egg S / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | emerged           |              |              | L                                                |                                                  |              |                                                  |                                                  |              |                                                  |                                                  |                                                  |
| # Females emerged  Females Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Egg S / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | Mortality         |              |              |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |                                                  |                                                  |
| Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | # Females         |              |              |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |                                                  |                                                  |
| number emerged  # Pairings  # Egg Case  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | Time to Mortality |              |              |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |                                                  |                                                  |
| # Egg Case  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                   |              |              |                                                  | 1                                                |              |                                                  |                                                  |              |                                                  |                                                  | 1                                                |
| # Egg Case  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                   |              | 10           | Į                                                | 1                                                |              | 1                                                |                                                  | 1            | 1                                                | )                                                | }                                                |
| # Egg Case  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | emerged           |              |              | <del>                                     </del> | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del>                                     </del> | <del> </del>                                     | <del> </del>                                     |
| # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | # Pairings        |              |              |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |                                                  |                                                  |
| Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | # Egg Case        |              |              |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |                                                  |                                                  |
| Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | WE                |              |              |                                                  |                                                  |              |                                                  | -                                                | <u> </u>     |                                                  |                                                  | <u> </u>                                         |
| # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                   |              |              |                                                  |                                                  |              |                                                  |                                                  | ]            |                                                  |                                                  | Į.                                               |
| Init/Date   11/20   11/21   11/22   11/23   11/24   11/25   11/26   11/27   11/28   11/29   11/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | # halched         |              |              |                                                  | ł                                                |              | 1                                                | <u> </u>                                         | <u> </u>     | 1                                                | 1                                                |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Init./Date        | 11/20        | 1///1        | 11/22                                            | 11/23                                            | 11/24        | 11/25                                            | 11/26                                            | 11/27        | 11/28                                            | 11/29                                            | 11/30                                            |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

| 7          |           |               |          |          | CLAIV            |       |
|------------|-----------|---------------|----------|----------|------------------|-------|
|            |           |               |          | 10       | -11/20/60        |       |
| Review:    |           | _ Date:       | 12/2     | 1/99     |                  |       |
| Laboratory | : Aquatec | _<br>Biologic | al Scien | ces. Sou | th Burlington, \ | /ermo |

Test Start: 10/19/99

BTR: 3615 / 3622

| Sample / Repl.           | Response                                 | 3/2      | - 22-                   | 234        | 24           | 25%    | 35          | 27<br>38 | 势         | 29-<br>40    | 30           | -31/2      |
|--------------------------|------------------------------------------|----------|-------------------------|------------|--------------|--------|-------------|----------|-----------|--------------|--------------|------------|
| 12552 G                  | # Males<br>emerged                       |          |                         |            |              |        |             |          |           |              |              |            |
|                          | Male Time to<br>Mortality<br>(days)      |          |                         |            |              |        |             |          |           |              |              |            |
|                          | # Females<br>emerged                     |          |                         |            |              |        |             |          |           |              | <del> </del> |            |
|                          | Females<br>Time to Mortality<br>(days)   |          |                         |            |              |        |             |          |           |              |              |            |
|                          | Cumulative<br>number<br>emerged          |          | 7                       |            |              |        |             |          |           |              |              |            |
|                          | # Pairings                               |          |                         |            |              |        |             |          |           |              |              |            |
|                          | # Egg Case                               |          |                         |            |              |        |             | ,        |           |              |              |            |
| ·                        | # Eggs /<br>Time.to hatch /<br># hatched |          |                         |            |              |        |             |          |           |              |              |            |
| 12552 H                  | # Males<br>emerged                       |          |                         |            |              |        |             |          |           |              |              |            |
|                          | Male Time to<br>Mortality<br>(days)      |          |                         | Other      |              |        |             |          |           |              |              |            |
|                          | # Females<br>emerged                     |          |                         | 13         |              |        |             |          |           |              |              |            |
|                          | Females<br>Time to Mortality<br>(days)   |          |                         | 00         |              |        |             |          |           |              |              |            |
|                          | Cumulative<br>number<br>emerged          |          | 2                       | B          |              |        |             |          |           | ļ            |              |            |
|                          | # Pairings                               |          |                         |            |              |        |             |          |           |              |              |            |
|                          | # Egg Case                               |          |                         |            |              |        |             |          |           |              |              |            |
|                          | # Eggs /<br>Time to hatch /<br># hatched |          |                         |            |              |        |             |          |           |              |              |            |
|                          | Init./Date<br>(1999)                     | 11/20    | 11/21                   | 11/22      | 11/23        | 11/24  | 11/25       | 11/26    | 11/27     | 11/28        | 11/29        | 11/30      |
| nergence scor            | ing: Recor                               | d any pu |                         | ich die (l |              | emerg  | ence. D     | = dead   | for flies | which er     | nerge bi     | ut are not |
| rviving. P = p<br>ments: | upa                                      |          | $\frac{\alpha}{\alpha}$ | e 10 1     | h<br>Irina O | 1616   | Im III      |          |           |              | <del></del>  |            |
|                          |                                          |          | <u> </u>                |            | 7119 7       | 4      |             | 22       |           | <del>,</del> |              |            |
| <del></del>              |                                          |          | (2)/                    | -55 2      | By C         | correc | Nou         |          | 1/30/9    | 14           |              |            |
|                          |                                          |          |                         |            |              |        |             |          |           |              |              |            |
|                          |                                          |          | •••                     |            |              |        | <del></del> |          |           |              | <del></del>  |            |
|                          |                                          |          | <del></del>             |            | <del></del>  |        |             |          |           |              |              |            |
|                          |                                          |          |                         |            |              |        |             |          |           |              |              |            |
|                          |                                          |          |                         |            |              |        |             |          |           |              |              |            |

Review: Date: 12/21/99 Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99 Sample / Repl. Response 43 51 44 45 46 47 48 49 50 52 53 # Males 12552 A emerged Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12552 B Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12552 C emerged Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched 12/3 Init./Date 12/1 12/2 12/4 12/5 12/6 12/7 12/8 12/9 12/10 12/11 (1999)

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: \_\_\_\_\_\_ Date: | 2/21/99 Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays3<del>2-42</del> 43-53

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99

| Sample / Repl. | Response                                 | 43   | 44   | 45   | 46   | 47           | 48           | 49   | 50   | 51   | 52                                               | 53    |
|----------------|------------------------------------------|------|------|------|------|--------------|--------------|------|------|------|--------------------------------------------------|-------|
| 12552 D        | # Males<br>emerged                       |      |      |      |      | <del> </del> |              |      |      |      |                                                  |       |
|                | Male Time to<br>Mortality<br>(days)      |      |      | 106  | -    |              |              |      |      |      |                                                  |       |
|                | # Females<br>emerged                     |      |      | OP   |      |              |              |      |      |      | <del>                                     </del> |       |
|                | Females<br>Time to Mortality<br>(days)   |      |      |      |      |              |              |      |      |      |                                                  |       |
|                | Cumulative<br>number<br>emerged          |      |      |      |      |              |              |      |      |      |                                                  |       |
|                | # Pairings                               |      |      |      |      |              |              |      |      |      |                                                  |       |
|                | # Egg Case                               |      |      |      |      |              |              |      |      |      |                                                  |       |
|                | # Eggs /<br>Time to hatch /<br># hatched |      |      |      |      |              |              |      |      |      |                                                  |       |
| 12552 E        | # Males<br>emerged                       |      |      |      |      |              |              |      |      |      |                                                  |       |
|                | Male Time to<br>Mortality<br>(days)      |      |      | OL   |      |              |              |      |      |      |                                                  |       |
|                | # Females<br>emerged                     |      |      | OP   |      |              |              |      |      |      |                                                  |       |
|                | Females<br>Time to Mortality<br>(days)   |      |      |      |      |              |              |      |      |      |                                                  |       |
|                | Cumulative<br>number<br>emerged          |      |      |      |      |              |              |      |      |      |                                                  |       |
|                | # Pairings                               |      |      |      |      |              |              |      |      |      |                                                  |       |
|                | ≠ Egg Case                               |      |      |      |      |              |              |      |      |      |                                                  |       |
|                | # Éggs /<br>Time to hatch /<br># hatched |      |      |      |      |              | <del> </del> |      |      |      |                                                  |       |
| 12552 F        | # Maies<br>emerged                       |      |      |      |      |              |              |      |      |      |                                                  |       |
|                | Male Time to<br>Mortality<br>(days)      |      |      | OL   |      |              |              |      |      |      |                                                  |       |
|                | # Females<br>emerged                     |      |      | DP   |      |              |              |      |      |      |                                                  |       |
|                | Females<br>Time to Mortality<br>(days)   |      |      |      |      |              |              |      |      |      |                                                  |       |
|                | Cumulative<br>number<br>emerged          |      |      |      |      |              |              |      |      |      |                                                  |       |
|                | # Pairings                               |      |      |      |      |              |              |      |      |      |                                                  |       |
|                | # Egg Case                               |      |      |      |      |              |              |      |      |      |                                                  |       |
|                | # Eggs /<br>Time to hatch /<br># hatched |      |      |      |      |              |              |      |      |      |                                                  |       |
| <del></del>    |                                          | 12/1 | 12/2 | 12/3 | 12/4 | 12/5         | 12/6         | 12/7 | 12/8 | 12/9 | 12/10                                            | 12/11 |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: Date: 121/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays3<del>2-42</del> +3-53

| ect: 99033 M                            | -C Deau Cr                               | - CCK   | БІ      | R: 3615    | 3022     |          |          | 1e       | or oran      | : 10/19/ | J J      |        |
|-----------------------------------------|------------------------------------------|---------|---------|------------|----------|----------|----------|----------|--------------|----------|----------|--------|
| Sample / Repl.                          | Response                                 | 43      | 44      | 45         | 46       | 47       | 48       | 49       | 50           | 51       | 52       | 53     |
| 12552 G                                 | # Males<br>emerged                       |         |         |            |          |          |          |          | 1            |          |          |        |
|                                         | Male Time to<br>Mortality<br>(days)      |         |         | DL         |          |          |          |          |              |          |          |        |
|                                         | # Females<br>emerged                     |         |         | MP         |          |          |          |          |              |          |          |        |
|                                         | Females Time to Mortality (days)         |         |         |            |          |          |          |          |              |          |          |        |
|                                         | Cumulative<br>number<br>emerged          |         |         |            |          |          |          |          |              |          |          |        |
|                                         | # Pairings                               |         |         |            |          |          |          |          |              |          |          |        |
|                                         | # Egg Case                               |         |         |            |          |          |          |          |              |          |          |        |
|                                         | # Eggs /<br>Time to hatch /<br># hatched |         |         |            |          |          |          |          |              |          |          |        |
| 12552 H                                 | # Males<br>emerged                       |         |         |            |          |          |          |          |              |          |          |        |
|                                         | Male Time to<br>Mortality<br>(days)      |         |         | OL         |          |          |          |          |              |          |          |        |
|                                         | # Females<br>emerged                     |         |         | OP         |          |          |          |          |              |          |          |        |
|                                         | Females<br>Time to Mortality<br>(days)   |         |         |            |          |          |          |          |              |          |          |        |
|                                         | Cumulative<br>number<br>emerged          |         |         |            |          |          |          |          |              |          |          |        |
|                                         | # Pairings                               |         |         |            |          |          |          |          |              |          |          |        |
|                                         | # Egg Case                               |         |         |            |          |          |          |          |              |          |          |        |
|                                         | # Eggs /<br>Time to hatch /<br># hatched |         |         |            |          |          |          |          |              |          |          |        |
|                                         | Init./Date<br>(1999)                     | 12/1    | 12/2    | 12/3       | 12/4     | 12/5     | 12/6     | 12/7     | 12/8         | 12/9     | 12/10    | 12/1   |
| nergence sco<br>viving. P = p<br>ments: | ring: Record                             | d any p | upae wh | nich die ( | D) befoi | re emerg | gence. [ | ) = dead | for flies    | which e  | merge bi | ut are |
|                                         |                                          |         |         |            |          |          |          |          |              |          |          |        |
|                                         |                                          |         |         |            |          |          |          |          | -            |          |          |        |
|                                         |                                          |         |         |            |          |          |          |          |              |          |          |        |
|                                         |                                          |         |         |            |          |          |          |          | <del>-</del> |          |          |        |
|                                         |                                          |         |         |            |          |          |          |          |              |          |          |        |
|                                         |                                          |         |         |            |          |          |          |          |              |          |          |        |

Review: \_\_\_\_\_ Date. 12/21/29
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

cidays3<del>2-42</del> +73 -5-3

BTR: 3615 / 3622 Test Start: 10/19/99 Project: 99033 M-C Dead Creek Sample / Repl. Response 21 22 23 24 25 26 27 28 29 30 31 # Males 12592 A emerged Male Time to Sd 1/1/24 Mortality (days) # Females emerged Females 14,1/95 30,119 Time to Mortality (days) Cumulative 3 emerged W1592E # Pairings # Egg Case 153 unharched 1175 50 unharched 11726 # Eggs / Time to hatch / # hatched 12592 B Male Time to 3d,115 Mortality (days) # Females ) clead emerged Females 00/1/2 Time to Mortality (days) Cumulative number emerged W126 # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12592 C emerged Male Time to 3d:1115 Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative 3 number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched Init./Date 11/9 11/10 11/11 11/12 11/13 1,1/16 (1999)Emergence scoring: Record any pupae which die (1) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: \_\_\_\_\_ Date: 17/21/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99 Sample / Repl. Response 21 23 24 25 26 27 29 22 28 30 31 VI # Males 12592 D emerged Bead Male Time to 34 04/1/9 Mortality 11/18 (days) # Females emerged Females 13d Time to Mortality (days) Cumulative number emerged ₩/592**E** # Pairings 1G # Egg Case # Eggs / Time to hatch / # hatched # Males 12592 E emerged Male Time to 5d,117 40 718 Mortality (days) # Females emerged Females lad 1115 Ad. Time to Mortality (days) Cumulative emerged 14/5°2C ×159287 # Pairings J11/12 21, €ST. 623 # Egg Case 1,020 6 mhatel ed 1009 181 # Eggs / Time to hatch / is unharched ≠ hatched # Males 12592 F emerged Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched 11/15 11/16 /// 11/10 11/18 Init./Date 11/9 111/11 11/13 (1999) Emergence scoring: Record any pupae which die (. ) before emergence. D dead for flies which emerge but are not su diving. P ≃ pupa 1) Det wire reneribed to new der Sheet (begins addays21-31

Day 32 observenions).

12/22/99000054 Review: \_\_\_\_\_ Date: 12/2/29
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| ct: 99033 M                  | -C Dead Creek   BTR: 3615 / 3622   Test Start: 10/19/99     Response   21   22   23   24   25   26   27   28   29   30   31 |         |                                                  |           |              |                                                  |             |          |               |              |          |                   |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------|-----------|--------------|--------------------------------------------------|-------------|----------|---------------|--------------|----------|-------------------|
| ample / Repl.                | Response                                                                                                                    | 21      | 22                                               | 23        | 24           | 25                                               | 26          | 27       | 28            | 29           | 30       | 31                |
| 12592 G                      | # Males<br>emerged                                                                                                          |         | <del>                                     </del> |           |              | <del>                                     </del> |             |          | 1.            |              |          | 1星                |
|                              | Male Time to<br>Mortality<br>(days)                                                                                         |         |                                                  |           | <del> </del> |                                                  |             |          | 30/1/9        |              |          | 30,102            |
|                              | # Females<br>emerged                                                                                                        |         |                                                  |           |              |                                                  |             |          |               |              | 1        | 1                 |
|                              | Females<br>Time to Mortality<br>(days)                                                                                      |         |                                                  |           |              |                                                  |             |          |               |              | 30 Jula  | 1411113<br>IG     |
|                              | Cumulative<br>number<br>emerged                                                                                             |         |                                                  |           | 1            |                                                  |             |          |               |              |          | 175               |
|                              | # Pairings                                                                                                                  |         |                                                  |           | <u> </u>     |                                                  |             |          |               |              |          | 1 51/R            |
|                              | # Egg Case                                                                                                                  |         |                                                  |           | :            |                                                  |             |          |               |              |          |                   |
|                              | # Eggs /<br>Time to hatch /<br># hatched                                                                                    |         |                                                  |           | i            |                                                  |             |          |               |              |          |                   |
| 2592 H                       | # Maies<br>emerged                                                                                                          |         |                                                  |           |              |                                                  |             |          |               |              | ID       | 11                |
|                              | Male Time to<br>Mortality<br>(days)                                                                                         |         |                                                  |           |              |                                                  |             |          |               |              | O'Ila    | HU COTALA         |
|                              | # Females<br>emergeo                                                                                                        |         |                                                  |           | i            |                                                  |             |          | ł             |              |          | 1                 |
|                              | Females Time to Monality (days)                                                                                             |         |                                                  |           | :            |                                                  |             |          | 20,118        |              |          | Dr. recorded      |
|                              | Cumulative<br>number<br>emerged                                                                                             |         |                                                  |           | :            |                                                  |             |          |               |              | ļ        | 14                |
|                              | # Pairings                                                                                                                  |         | <u> </u>                                         |           | <u> </u>     |                                                  |             | <u> </u> | عادان عائلا   |              |          |                   |
|                              | # Egg Case                                                                                                                  |         |                                                  |           | !            |                                                  |             |          |               |              |          |                   |
|                              | # Eggs /<br>Time to hatch /<br># hatched                                                                                    |         |                                                  |           | <del>!</del> |                                                  |             |          |               |              |          |                   |
|                              | Init./Date<br>(1999)                                                                                                        | 11/9    | 11/10                                            | 11/11     | 1/12         | 11/13                                            | 11/14       | 11/15    | 1,1/16<br>/// | 11/17        | 11/18    | 11/19             |
| ergence scor<br>iving. P = p | ing: Record                                                                                                                 | d any p | upae wh                                          | ich die ( | ) before     | e emerg                                          | ence. D     | = dead   | for flies     | which ei     | merge bu | ut <b>a</b> re no |
| ents:                        | <u> </u>                                                                                                                    |         |                                                  |           |              |                                                  |             |          |               | <del>-</del> |          |                   |
| <del></del>                  |                                                                                                                             |         |                                                  |           |              |                                                  | <del></del> |          |               |              |          |                   |
|                              |                                                                                                                             |         |                                                  |           |              |                                                  |             |          |               |              |          |                   |
|                              |                                                                                                                             |         |                                                  |           |              |                                                  |             |          |               |              |          |                   |
|                              |                                                                                                                             |         |                                                  |           |              |                                                  |             |          |               |              |          |                   |
|                              |                                                                                                                             |         |                                                  | ··        |              |                                                  | <del></del> |          | <del></del>   |              |          | <u></u>           |
|                              |                                                                                                                             |         |                                                  |           |              |                                                  |             |          |               |              |          |                   |

|                |                  | 12/21/      | a.C.             |         |
|----------------|------------------|-------------|------------------|---------|
| Review:        | Date:            | ,,,,,,,(    | 99               |         |
| Laboratory: Ar | guatec Biologica | al Sciences | South Burlington | Vermont |

Midge (Chironomus tentans) Chronic Toxicity Test Biological Monitoring Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/20/99 Sample / Repl. Response 32 33 34 35 36 37 38 39 40 41 42 # Males 12592 A emerged Male Time to (days) # Females emerged 13.1 60 M/L3 11/26 Females Time to Mortality (days) 15 g Cumulative number 6 M1289ECT emerged 11/20 9 # Pairings HEYS HE # Egg Case # Eggs / Time to hatch / # hatched 76 unhatched 62 unhatched # Males 12592 B emerged Male Time to Mortality (days) # Females D emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12592 C emerged Male Time to Mortality (days) # Females emerged Females 201/27 30,1120 Time to Mortality (days) Cumulative  $\bigcirc$ number emerged 11/3/2 K # Pairings

Init./Date 11/20 11/21 11/22 13/28 11/24 11/25 11/26 11/27 11/28 11/29 11/30 (1999)

Emergence scoring: Record any purae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

# Egg Case

# Eggs / Time to hatch / # hatched

ctdays32-42

700

v30 mh, 12/4

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99 278 Sample / Repl. Response # Males 12592 D emerged Male Time to Mortality 30/1/24 (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12592 E 1 emerged Male Time to 40 Mortality 11/29 (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged 川千字 # Pairings # Egg Case # Eggs / Time to hatch / 1,447 1200 Un. 11/27 # hatched # Males - 200 in 11/24 12592 F emerged Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged # Pairmos # Egg Case # Eggs / # hatched 11/23 11/22 Init./Date 11/20 11/24 11/25 11/26 11/27 11/28 11/29

Surviving. P = pupa

(I.) Jest Day Correction 1/30/gg

Review: Date: 1/21/90 ctdays32-42

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not

000057

| Sample / Repl.                             | Response                                 | 32      | <del>22</del>  | 23-           | 24                                     | 35         | 26<br>37 | 378    | <del>28</del><br><del>3</del> 9 | 29          | 30-      | 31    |
|--------------------------------------------|------------------------------------------|---------|----------------|---------------|----------------------------------------|------------|----------|--------|---------------------------------|-------------|----------|-------|
| 12592 G                                    | # Maies<br>emerged                       |         | 1              |               |                                        | 1/         |          | 1.     |                                 |             | 1        |       |
|                                            | Male Time to<br>Mortality<br>(days)      |         | 70,1/24        |               |                                        | 9 12/3     |          | 30,129 |                                 |             | 6212/5   |       |
|                                            | # Females<br>emerged                     |         |                | 1             | 1.                                     | ,.         | - '      |        | ,                               |             |          |       |
|                                            | Females<br>Time to Mortality<br>(days)   |         |                | 30,175        | 30/16                                  |            |          |        |                                 |             |          |       |
| 11/19 20 20 1/12                           | Cumulative<br>number<br>emerged          |         | 5              | ھا            | 7                                      | 8          |          | 9      |                                 |             | 10       |       |
| 11/19 20 2 00 111                          | # Pairings                               |         |                | W5928         | 4/592<br>1307                          |            |          |        |                                 |             |          |       |
| r                                          | # Egg Case                               |         |                |               |                                        |            |          |        |                                 |             |          |       |
|                                            | # Eggs /<br>Time to hatch /<br># hatched |         |                |               |                                        |            |          |        |                                 |             |          |       |
| 12592 H                                    | # Males<br>emerged                       | 1 +     |                |               |                                        |            |          |        |                                 |             |          |       |
|                                            | Male Time to<br>Mortality<br>(days)      | 54,2556 | <del>5</del> - |               |                                        |            |          |        |                                 |             |          |       |
|                                            | # Females<br>emerged                     | 1       |                | ID            |                                        |            |          |        |                                 |             |          |       |
|                                            | Females<br>Time to Mortality<br>(days)   | 40,1124 |                | Ogmas         |                                        |            |          |        |                                 |             |          |       |
|                                            | Cumulative<br>number<br>emerged          |         | 5              | (o_           | <u></u>                                |            |          |        |                                 |             |          |       |
|                                            | # Pairings                               | 113891  |                |               |                                        |            |          |        |                                 |             |          | ļ<br> |
|                                            | # Egg Case                               |         |                | 10            |                                        |            |          |        |                                 |             |          |       |
|                                            | # Eggs /<br>Time to hatch /<br># hatched |         |                | 5305m2        | riag<br>L                              |            |          |        |                                 |             |          |       |
|                                            | Init./Date<br>(1999)                     | 11/20   | 1/84           | 11/22<br>11/N | 11/23                                  | 14/24<br>m | 1/25     | 11/25  | 11/27                           | 11/28<br>TM | 1428     | 11/30 |
| nergence scor<br>rviving. P = pi<br>ments: | ing: Recor                               |         |                | of die (D     | ··                                     | emerge     |          |        |                                 |             | nerge bu | t are |
|                                            |                                          | TeST    | Da             | y Cu          | rre C                                  | DU         |          | 11/    | 30/9                            | 9           |          |       |
|                                            |                                          |         |                |               |                                        |            |          |        |                                 |             |          |       |
|                                            |                                          |         |                |               | ······································ |            |          |        |                                 |             |          |       |
|                                            |                                          |         |                |               | <del></del>                            |            |          |        |                                 |             |          |       |

Review: \_\_\_\_\_ Date: 12/21/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99

| Sample / Repl. | Response                     | 43           | 44                                               | 45             | 46                                               | 47                                               | 48                    | 49           | 50            | 51                                               | 52                                               | 53             |
|----------------|------------------------------|--------------|--------------------------------------------------|----------------|--------------------------------------------------|--------------------------------------------------|-----------------------|--------------|---------------|--------------------------------------------------|--------------------------------------------------|----------------|
| 12592 A        | # Males<br>emerged           |              | 1                                                |                | <del>                                     </del> | <del>                                     </del> | 1/20                  | ge L         | 1,            | -                                                | -                                                |                |
|                | Male Time to                 | <del> </del> | <del> </del> -                                   | <del></del>    | <del> </del>                                     | <del> </del>                                     | <del></del>           | F            | <del></del>   | <del> </del>                                     | <del> </del>                                     | <del> </del>   |
|                | Mortality                    |              | 1                                                | 1              | 1                                                | ł                                                | IOP                   | l            | -             | ļ                                                |                                                  | }              |
|                | (days)<br># Females          |              |                                                  | <del></del>    |                                                  | <del> </del>                                     | $\bot \lor \bot \bot$ | <b></b> -    | <del> </del>  | +                                                | <del> </del>                                     | <del> </del>   |
|                | emerged                      |              |                                                  | 1              | }                                                | 1                                                | 17/656                | }            |               |                                                  |                                                  |                |
|                | Females                      |              | 1                                                | <del> </del>   | <del> </del> -                                   | <del> </del>                                     |                       | 1            | †             | 1                                                | <del> </del>                                     | <del> </del>   |
|                | Time to Mortality<br>(days)  |              | }                                                | }              | ļ                                                | ļ                                                | ļ                     |              |               |                                                  | 1                                                | ļ              |
|                | Cumulative                   |              | <del>                                     </del> | <del> </del>   | <del> </del>                                     | <del> </del>                                     | <del> </del>          |              | <del> </del>  |                                                  |                                                  | f              |
|                | number<br>emerged            | l            |                                                  |                | 1                                                | İ                                                |                       | 1            | }             |                                                  |                                                  | 1              |
|                | # Pairings                   |              |                                                  |                |                                                  |                                                  |                       |              |               |                                                  |                                                  |                |
|                | # Egg Case                   |              |                                                  |                |                                                  |                                                  |                       |              |               |                                                  |                                                  |                |
|                | # Eggs /                     |              |                                                  |                | <del> </del> -                                   |                                                  | }                     |              | -             | <del> </del>                                     | <del> </del>                                     |                |
|                | Time to hatch /<br># hatched |              |                                                  |                |                                                  |                                                  |                       |              |               |                                                  |                                                  |                |
| 12592 B        | # Males<br>emerged           |              |                                                  |                |                                                  |                                                  |                       |              |               |                                                  |                                                  |                |
|                | Male Time to<br>Mortality    |              |                                                  |                |                                                  |                                                  |                       |              | <b>†</b>      |                                                  |                                                  |                |
|                | (days)<br># Females          |              | <del> </del>                                     | <del> </del>   | ļ                                                | <del></del>                                      | <del> </del>          | ļ            | <del>- </del> | <del> </del> -                                   | <del> </del>                                     | <del> </del>   |
|                | emerged                      |              |                                                  |                |                                                  |                                                  | 106                   | [            |               |                                                  |                                                  |                |
|                | Females                      | <del></del>  | <del> </del>                                     | <del> </del>   | <del> </del>                                     | +                                                | +                     | <del> </del> | <del> </del>  | <del> </del>                                     | +                                                | <del> </del>   |
|                | Time to Mortality<br>(days)  |              |                                                  | ļ              |                                                  |                                                  | OP                    |              | 1             | 1                                                |                                                  |                |
|                | Cumulative                   | l            | <del> </del>                                     | <del></del>    | <del> </del>                                     | <del> </del>                                     | 12/                   | <del> </del> | <del></del>   | <del>                                     </del> | <del>                                     </del> |                |
|                | number<br>emerged            |              |                                                  |                |                                                  |                                                  | 1261C                 |              |               |                                                  |                                                  |                |
|                | # Pairings                   |              |                                                  |                |                                                  |                                                  |                       |              |               |                                                  |                                                  |                |
|                | # Egg Case                   |              |                                                  |                |                                                  |                                                  |                       |              |               |                                                  |                                                  |                |
|                | # Eggs /                     |              | <del> </del>                                     | 1-3            |                                                  | <del> </del>                                     | <del> </del>          |              |               | <del> </del>                                     | <del> </del>                                     | <del> </del>   |
|                | Time to hatch / # hatched    |              | 1                                                | 1              |                                                  |                                                  |                       | 1            |               |                                                  |                                                  | ĺ              |
| 12592 C        | # Males                      |              |                                                  |                |                                                  |                                                  |                       |              |               |                                                  | <u> </u>                                         |                |
| 12002 0        | emerged                      |              |                                                  |                |                                                  |                                                  |                       | <u> </u>     |               |                                                  |                                                  |                |
|                | Male Time to<br>Mortality    |              |                                                  | }              |                                                  |                                                  | }                     | }            |               |                                                  | 1                                                |                |
|                | (days)                       |              |                                                  |                |                                                  | }                                                | }                     | j            | 1             |                                                  | 1                                                |                |
|                | # Females<br>emerged         |              |                                                  |                |                                                  |                                                  | OL                    |              |               |                                                  |                                                  |                |
|                |                              |              | ļ <u>.</u>                                       | ļ              | ļ                                                | J                                                | 00                    | ļ            | <del> </del>  | <u> </u>                                         | <del> </del>                                     | ļ              |
|                | Females<br>Time to Mortality | ,            |                                                  |                |                                                  |                                                  | 108                   |              |               |                                                  |                                                  |                |
|                | (days)                       |              | ļ                                                | <u> </u>       |                                                  |                                                  | 171                   | <u> </u>     | <u> </u>      |                                                  | <b></b>                                          | <u> </u>       |
|                | Cumulative<br>number         |              | {                                                | 1              |                                                  | }                                                | 117/10                | <u>_</u>     |               |                                                  | )                                                | }              |
|                | emerged                      |              | <u> </u>                                         | <del> </del>   | <del></del>                                      | 1                                                | 17/656                |              | <u> </u>      |                                                  |                                                  | <b></b>        |
|                | # Pairings                   |              |                                                  |                |                                                  |                                                  |                       |              |               |                                                  |                                                  |                |
|                | # Egg Case                   |              |                                                  |                |                                                  |                                                  | 1                     |              |               |                                                  |                                                  |                |
|                | # Eggs /                     |              | <del> </del>                                     | <del> </del> - | <del> </del>                                     | <del> </del>                                     | <del> </del>          | <del> </del> | +             | +                                                |                                                  | <del> </del> - |
|                | Time to hatch /<br># hatched |              |                                                  |                |                                                  |                                                  |                       |              |               |                                                  |                                                  |                |
|                | Init./Date                   | 12/1         | 12/2                                             | 12/3           | 12/4                                             | 12/5                                             | 12/6                  | 12/7         | 12/8          | 12/9                                             | 12/10                                            | 12/11          |
|                | (1999)                       |              | 1                                                | 1              | <u></u>                                          |                                                  |                       | <u> </u>     |               |                                                  |                                                  |                |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: \_\_\_\_\_ Date: 12/21/99
Laboratory: Advatec Biological Sciences, South Burlington, Vermont

ctdays3<del>242</del> 43-53

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99

| Mais Trate to (1,0%)   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   F  | Sample / Repl. | Response             | 43           | 44                                               | 45                                               | 46                                               | 47                                               | 48                      | 49   | 50                                               | 51                                               | 52           | 53                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------|------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|
| Morally (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Final (1974)   F Fi  | 12592 D        |                      |              |                                                  |                                                  |                                                  |                                                  |                         | -    |                                                  |                                                  |              |                                                  |
| Comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                      |              |                                                  | <del> </del>                                     | <del> </del> -                                   | <del> </del>                                     | <del> </del>            |      |                                                  | <del> </del>                                     | <del> </del> | <del> </del>                                     |
| # # Families   Families                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                      |              | }                                                | Ì                                                | }                                                |                                                  | }                       |      | 1                                                | 1                                                |              |                                                  |
| Temporal   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager   Time to Manager    |                |                      | <del> </del> | <del> </del> -                                   | <del> </del>                                     | <del>                                     </del> | <del>                                     </del> | \mathrew{\gamma}\lambda |      | <del> </del>                                     |                                                  | 1            |                                                  |
| Time to Mortality (Gays)  Fegg Case  # Egg Case  # Egg Case  # Egg Case    # Egg Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | emerged              |              |                                                  |                                                  |                                                  |                                                  | 06                      |      |                                                  |                                                  |              | Ì                                                |
| Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Com  |                | Females              |              |                                                  | 1                                                |                                                  | †                                                | NP.                     |      |                                                  |                                                  | <del></del>  |                                                  |
| Curusalive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | (days)               | 1            | 1                                                |                                                  |                                                  | 1                                                | $\mathcal{O}^{T}$       |      |                                                  | 1                                                |              | }                                                |
| # Egg Case # Egg Case # Egg Case # Egg Case # Relief                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | Cumulative           |              |                                                  |                                                  |                                                  | 1                                                | 2/                      |      |                                                  |                                                  |              |                                                  |
| # Eggs / Time to hatch / # hatched # # Eggs / Time to hatch / # hatched # # # # # # # # # # # # # # # # # # #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                      |              |                                                  |                                                  |                                                  |                                                  | 1161G                   | /    |                                                  | 1                                                |              |                                                  |
| # Eggs / Trime to Ination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | # Pairings           |              |                                                  |                                                  |                                                  |                                                  |                         |      |                                                  |                                                  |              |                                                  |
| Time to hatch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | # Egg Case           |              |                                                  |                                                  |                                                  |                                                  |                         |      |                                                  |                                                  |              |                                                  |
| Time to hatch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                      |              |                                                  | <u> </u>                                         |                                                  |                                                  |                         |      |                                                  |                                                  |              |                                                  |
| # hatched # Males emerged # # # # # # # # # # # # # # # # # # #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                      |              |                                                  |                                                  |                                                  |                                                  |                         |      |                                                  |                                                  |              |                                                  |
| Maie Time to   Mortality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                      |              | l                                                |                                                  | ]                                                |                                                  | ł ;                     |      |                                                  |                                                  |              | ļ                                                |
| Mortality (days)   Females                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12592 E        |                      |              |                                                  |                                                  |                                                  |                                                  |                         |      |                                                  |                                                  |              |                                                  |
| (days)  # Females emerged    C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                      |              | <del>                                     </del> | <del> </del>                                     | <del> </del>                                     | 1                                                |                         |      | <del> </del>                                     | <del> </del>                                     | <del> </del> |                                                  |
| # Females   Females   Females                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | Mortality<br>(days)  |              |                                                  | 1                                                |                                                  | 1                                                |                         |      | ļ                                                |                                                  |              | }                                                |
| Females Time to Montality (days) Curunidative number emerged  # Parings  # Eggs / Time to halch / # hatched  # Males emerged  Make Time to Montality (days)  # Females females females firme to Montality (days)  # Females firme to Montality Curunidative number emerged  # Parings  # Egg Case  # Egg Case    12/3   12/4   12/5   12/6   12/7   12/8   12/9   12/10   12/11     10/11/11/11/11/11/11/11/11/11/11/11/11/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | # Females            |              | <del></del>                                      | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     | <del>  </del>           |      | <del>                                     </del> | <del> </del>                                     | <del> </del> | † <i>-</i> -                                     |
| Time to Mortality (glays)   Cumulative number emerged   12/2/25   12/6   12/7   12/8   12/9   12/10   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   12/11   |                | emerged              |              |                                                  |                                                  |                                                  |                                                  | $\bigcirc$              |      |                                                  |                                                  | 1            |                                                  |
| Comulative number emerged   12/136   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156     |                |                      |              | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     |                                                  | 100                     |      | <del> </del>                                     | <del>                                     </del> | <del> </del> | <del> </del>                                     |
| Comulative number emerged   12/136   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156   12/156     |                |                      |              |                                                  | ĺ                                                |                                                  |                                                  | 10Y 1                   |      |                                                  | -                                                |              |                                                  |
| # Egg Case  # Egg Case  # Egg Case  # Egg Case  # Males emerged  Male Time to Notarily (days)  # Females Emerged  # Females Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case    12/6/6/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                      |              | <del> </del>                                     | <del>                                     </del> |                                                  | <del>                                     </del> | ·                       |      |                                                  | <del> </del>                                     | <del> </del> |                                                  |
| # Egg Case  # Egg Case  # Eggs / Time to halch / # hatched  # Males merged  Male Time to Mortality (days)  # Females emerged  Females Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Egg Case  # Egg Case    # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # Egg Case   # |                |                      |              |                                                  |                                                  |                                                  |                                                  | 1961                    | •    |                                                  | 1                                                |              |                                                  |
| # Eggs / Time to hatch / # hatched # Females                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | emerged              |              | <del> </del>                                     |                                                  | <del> </del> -                                   | <del> </del>                                     | 1 1000                  |      | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del> -                                   |
| # Eggs / Time to halch / # hatched  12592 F # Males emerged  Male Time to Mortality (days)  # Females Time to Mortality (days)  Cumulative rumber emerged  # Patrings  # Egg Case  # Egg Case  # Init / Date   12/1   12/2   12/3   12/4   12/5   12/6   12/7   12/8   12/9   12/10   12/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | # Pairings           |              |                                                  |                                                  |                                                  |                                                  |                         |      |                                                  | <u> </u>                                         |              |                                                  |
| Time to hatch / # hatched   # Males emerged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | # Egg Case           |              |                                                  |                                                  |                                                  |                                                  |                         |      |                                                  |                                                  |              |                                                  |
| # hatched # Males emerged  Male Time to Mortality (days)  # Females emerged  Females Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Egg Case  # Egg S / Time to hatch / # hatched  Init./Date 12/1 12/2 12/3 12/4 12/5 12/6 12/7 12/8 12/9 12/10 12/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | # Eggs /             |              |                                                  |                                                  | <del> </del>                                     | <del>                                     </del> | <del> </del> -          |      |                                                  | <del> </del>                                     | <del> </del> | <b></b>                                          |
| Make Time to   Mortality (days)   # Females                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                      |              |                                                  |                                                  | }                                                |                                                  |                         | i    |                                                  |                                                  |              |                                                  |
| Male Time to Montality (days) # Females emerged  Females Time to Montality (days) Cumulative number emerged # Pairings  # Eggs / Time to hatch / # hatched  Init./Date 12/1 12/2 12/3 12/4 12/5 12/6 12/7 12/8 12/9 12/10 12/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12502 E        |                      |              |                                                  | <del> </del>                                     | <del></del>                                      |                                                  | i i                     |      | <del>                                     </del> |                                                  | <del> </del> | <u> </u>                                         |
| Mortality (days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12332 1        | emerged              |              |                                                  |                                                  |                                                  |                                                  |                         |      |                                                  |                                                  |              | -                                                |
| # Females emerged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                      |              |                                                  |                                                  | i                                                | 1                                                |                         |      |                                                  | 1                                                |              | <b>†</b>                                         |
| # Females emerged  Females Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Egg Case  Init./Date 12/1 12/2 12/3 12/4 12/5 12/6 12/7 12/8 12/9 12/10 12/1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | (days)               |              |                                                  |                                                  |                                                  |                                                  |                         |      |                                                  |                                                  |              |                                                  |
| Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Egg Case    # Eggs / Time to hatch / # hatched   12/1   12/2   12/3   12/4   12/5   12/6   12/7   12/8   12/9   12/10   12/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | # Females            |              |                                                  |                                                  |                                                  |                                                  | 101                     |      |                                                  |                                                  |              |                                                  |
| Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Egg Case    # Eggs / Time to hatch / # hatched   12/1   12/2   12/3   12/4   12/5   12/6   12/7   12/8   12/9   12/10   12/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | Females              |              | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     | 100                     |      | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del>                                     |
| # Egg Case # Egg S / Time to hatch / # hatched   12/1   12/2   12/3   12/4   12/5   12/6   12/7   12/8   12/9   12/10   12/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | Time to Mortality    |              |                                                  |                                                  | 1                                                |                                                  | IUK                     |      |                                                  |                                                  |              |                                                  |
| # Egg Case  # Egg s / Time to hatch / # hatched  Init./Date   12/1   12/2   12/3   12/4   12/5   12/6   12/7   12/8   12/9   12/10   12/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                      |              | <del> </del>                                     |                                                  | <del> </del>                                     | <del> </del>                                     | +                       |      | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del>                                     |
| # Eggs / Time to hatch / # hatched Init./Date 12/1 12/2 12/3 12/4 12/5 12/6 12/7 12/8 12/9 12/10 12/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | number               |              | 1                                                | 1                                                | 1                                                |                                                  | 146-16                  | L    | 1                                                | 1                                                | 1            | 1                                                |
| # Egg Case  # Eggs / Time to hatch / # hatched  Init./Date   12/1   12/2   12/3   12/4   12/5   12/6   12/7   12/8   12/9   12/10   12/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | emerged              |              | <del></del>                                      |                                                  | <del> </del>                                     | 1                                                | 1.0g                    |      | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del> -                                   |
| # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | # Pairings           |              |                                                  |                                                  |                                                  |                                                  |                         |      |                                                  |                                                  |              |                                                  |
| Time to hatch / # natched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | # Egg Case           |              |                                                  |                                                  |                                                  |                                                  |                         |      |                                                  |                                                  |              |                                                  |
| # natched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | # Eggs /             |              | <del> </del>                                     |                                                  |                                                  |                                                  |                         |      | <del>                                     </del> |                                                  | <del> </del> | <del>                                     </del> |
| Init./Date   12/1   12/2   12/3   12/4   12/5   12/6   12/7   12/8   12/9   12/10   12/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | # hatched            |              | ļ <u>.</u> .                                     |                                                  |                                                  |                                                  | <u> </u>                |      |                                                  | ļ                                                |              | <u> </u>                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | Init./Date<br>(1999) | 12/1         | 12/2                                             | 12/3                                             | 12/4                                             | 12/5                                             | 12/6                    | 12/7 | 12/8                                             | 12/9                                             | 12/10        | 12/11                                            |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: Date:  $1 \sqrt{\mathcal{U}} \left( 99 \right)$  Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays32-42 42-53

| iample / Repl.  | Response                                 | 43         | 44               | 45           | 46                                               | 47                                     | 48       | 49            | 50           | 51           | 52             | 53           |
|-----------------|------------------------------------------|------------|------------------|--------------|--------------------------------------------------|----------------------------------------|----------|---------------|--------------|--------------|----------------|--------------|
| 12592 G         | # Males<br>emerged                       |            |                  | +            |                                                  |                                        | <u> </u> |               |              | <del> </del> |                | <del> </del> |
|                 | Male Time to                             |            | <del> </del>     | +            |                                                  | +                                      | +        | <del> </del>  | <del> </del> |              | <del></del>    | +            |
|                 | Mortality<br>(days)                      |            |                  |              |                                                  |                                        |          |               | ]            |              |                |              |
|                 | # Females<br>emerged                     |            |                  |              |                                                  |                                        | 61       |               |              | 1            | 1              |              |
|                 |                                          |            | <del></del>      |              | <u> </u>                                         | <u> </u>                               | 10L      | ļ             |              | <del> </del> | <u> </u>       | ļ            |
|                 | Females Time to Mortality                |            |                  |              |                                                  |                                        | OP       |               |              |              |                |              |
|                 | (days)<br>Cumulative                     |            | <del></del>      | +            | <del></del>                                      | <del></del>                            |          | <del> </del>  |              | +            |                | <del> </del> |
|                 | number<br>emerged                        |            |                  | ]            | 1                                                | ļ                                      | 19616    | +             | ]            |              |                |              |
|                 | # Pairings                               |            | 1                |              | 1                                                |                                        |          |               |              | 1            | <b>—</b>       |              |
|                 |                                          |            | <del> </del>     | +            |                                                  |                                        | -        |               | <u></u>      |              |                | <u> </u>     |
|                 | # Egg Case                               |            |                  |              |                                                  |                                        |          |               |              | }            | j              |              |
|                 | # Eggs /<br>Time to hatch /<br># hatched |            | <u> </u>         |              | <del>                                     </del> |                                        |          |               |              |              |                |              |
| 12592 H         | # Males<br>emerged                       |            |                  |              |                                                  |                                        |          |               |              | 1            |                |              |
|                 | Male Time to                             |            | <del> </del>     | <del> </del> | +                                                | <del></del>                            | +        |               | <del> </del> | <del> </del> | <del> </del> - | <del></del>  |
|                 | Mortality<br>(days)                      |            | }                |              | -                                                |                                        |          | $\mathcal{O}$ | <u></u>      | 1            | .              |              |
|                 | # Females<br>emerged                     |            |                  |              |                                                  |                                        | 13 Sm    | pul_          |              |              |                |              |
|                 | Females Time to Mortality                |            | <del> </del>     | <del> </del> | <del> </del>                                     | +                                      | OP       |               |              | <b>†</b>     | <b>†</b>       | <del> </del> |
|                 | (days)<br>Cumulative                     |            | <del></del>      |              |                                                  | <del>- </del>                          | 10,      | <del></del>   | <del></del>  |              |                | <del></del>  |
|                 | number                                   |            |                  | }            |                                                  | 1                                      |          |               | 1            | }            |                |              |
|                 | emerged                                  |            | <del> </del>     | <del> </del> |                                                  | +                                      | +        | <del> </del>  | <del> </del> | <del></del>  |                | <del> </del> |
|                 | # Pairings                               |            |                  | <u> </u>     |                                                  |                                        | <u> </u> |               |              |              | <u> </u>       | <u> </u>     |
|                 | # Egg Case                               |            |                  |              |                                                  |                                        |          |               |              |              |                |              |
|                 | # Eggs /<br>Time to hatch /<br># hatched |            |                  | -            |                                                  |                                        |          |               |              | <del> </del> |                |              |
| <u> </u>        |                                          | 12/1       | 12/2             | 12/3         | 12/4                                             | 12/5                                   | 1215     | 12/7          | 12/8         | 12/9         | 12/10          | 12/11        |
|                 | (1999)                                   |            | <u> </u>         | <u> </u>     |                                                  | ــــــــــــــــــــــــــــــــــــــ | ±12      | <u> </u>      |              |              |                | <u> </u>     |
| ergence sco     |                                          | any p      | upae wr          | nch die      | (D) before                                       | re emerg                               | jence. D | = dead        | for flies    | which e      | merge bi       | ut are n     |
| viving. $P = p$ | upa                                      |            |                  |              |                                                  |                                        | ·        |               |              |              |                |              |
| nents:          | (1) Laru                                 | ~ ~        | 10/10            | لمما         | N 60                                             | 10                                     |          | <u> </u>      |              |              |                |              |
|                 |                                          |            | believ           | ieve         | been                                             |                                        | 37       | $\overline{}$ | vepl.        | 773          |                |              |
|                 | 7he7                                     | - m        | <del>2</del> 2 1 | cvt          | שרנית                                            | <u>Depo</u>                            | SITTO    | 10            | reper        | (d) C        | 7583           |              |
| <del></del>     | NC &                                     | <i>y</i> ( |                  |              | <del></del>                                      |                                        |          |               |              |              |                |              |
|                 |                                          |            |                  |              |                                                  |                                        |          |               | <del></del>  |              |                |              |
|                 |                                          |            |                  | <del></del>  | <del></del>                                      |                                        |          | <del></del>   |              |              |                |              |
|                 |                                          |            | <del></del>      |              |                                                  |                                        |          | <del></del>   |              |              |                |              |
|                 |                                          |            |                  |              |                                                  |                                        |          |               |              |              |                |              |

Review: \_\_\_\_\_ Date: /2/21/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| Sample / Repl.             | Response                                 | 21           | 22               | 23                                               | 24                                           | 25                                           | 26           | 27                                               | 28                                                | 29                                               | 30             | 31            |
|----------------------------|------------------------------------------|--------------|------------------|--------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|----------------|---------------|
| 12593 A                    | # Males<br>emerged                       |              | <del> </del>     | -                                                |                                              | 1                                            |              | -                                                |                                                   |                                                  |                | 1             |
|                            | Male Time to                             | <del> </del> | <del></del>      | <del></del>                                      | <del> </del>                                 | -                                            | <del> </del> | <del>                                     </del> |                                                   | 1-1-                                             | <del> </del> - | 70            |
|                            | Mortality<br>(days)                      | ļ            |                  | 1                                                | 1                                            | 19" NA                                       | l            | 2d/117                                           |                                                   | 300                                              | į              | 7d            |
|                            | # Females<br>emerged                     |              | <del> </del> -   | <del>                                     </del> |                                              | 1                                            |              | 1                                                |                                                   | 1                                                |                | 141-20        |
|                            |                                          | <u> </u>     | <u> </u>         | ļ                                                | <u> </u>                                     |                                              |              | <b></b> _                                        |                                                   | <b></b>                                          | <u> </u>       |               |
|                            | Females Time to Mortality (days)         |              |                  |                                                  |                                              | 40117                                        | <b></b>      |                                                  |                                                   |                                                  |                |               |
|                            | Cumulative<br>number                     | ļ            |                  |                                                  |                                              | 2                                            | 11           | 2                                                |                                                   | 14                                               |                |               |
|                            | emerged                                  | <del> </del> | <del></del>      | <del> </del>                                     | <del> </del>                                 | 1                                            | Vistano      | <del> </del>                                     |                                                   | <del>                                     </del> | <del> </del>   | -C-           |
|                            | # Pairings                               |              |                  |                                                  |                                              | <u>                                     </u> | 8 11/1:3     |                                                  |                                                   |                                                  |                |               |
|                            | # Egg Case                               |              |                  |                                                  |                                              |                                              |              |                                                  |                                                   |                                                  | <u> </u>       |               |
|                            | # Eggs /<br>Time to hatch /<br># hatched |              |                  |                                                  |                                              |                                              |              |                                                  |                                                   |                                                  |                |               |
| 12593 B                    | # Males<br>emerged                       |              | ID               |                                                  | l                                            |                                              |              |                                                  |                                                   |                                                  |                |               |
|                            | Male Time to<br>Mortality<br>(days)      |              | 000              |                                                  | 1d,113                                       |                                              |              |                                                  |                                                   | 50,10                                            | <b>9</b> -     |               |
|                            | # Females<br>emerged                     |              |                  |                                                  |                                              |                                              | 1            |                                                  |                                                   |                                                  |                |               |
|                            | Females<br>Time to Mortality<br>(days)   |              |                  |                                                  |                                              |                                              | 49718        | 20117                                            |                                                   |                                                  |                |               |
|                            | Cumulative<br>number                     |              |                  |                                                  | $\overline{\gamma}$                          |                                              | 2            | 11                                               |                                                   | 5                                                | 1              |               |
| •                          | emerged                                  |              | <del>  '</del>   | ļ                                                | 0                                            | ļ                                            | <u> </u>     | 1                                                |                                                   | 1                                                | <u> </u>       |               |
|                            | # Pairings                               |              | <u> </u>         |                                                  |                                              | <u> </u>                                     | W/593E2      | 7593                                             |                                                   |                                                  |                |               |
|                            | # Egg Case                               |              |                  |                                                  |                                              |                                              | ,            |                                                  | *                                                 | 366                                              | io.            |               |
|                            | # Eggs /                                 |              |                  | <del>                                     </del> | -                                            |                                              |              |                                                  |                                                   | 1 24                                             |                | ta D          |
|                            | Time to hatch /<br># hatched             |              |                  |                                                  |                                              |                                              |              | <b> </b>                                         |                                                   | Ohate                                            | h 10% h        | atch          |
| 12593 C                    | # Males<br>emerged                       |              |                  | 1                                                |                                              | •                                            |              |                                                  |                                                   | 1423                                             | 1423           |               |
|                            | Male Time to                             |              |                  | 1                                                | <del> </del>                                 | <del> </del>                                 |              | <del> </del>                                     |                                                   | <del>                                     </del> |                |               |
|                            | Mortality<br>(days)                      |              | ł                | 30/1/8                                           |                                              | }                                            |              | 1                                                |                                                   |                                                  |                |               |
|                            | # Females<br>emerged                     |              |                  |                                                  | 1                                            | 1                                            | j            | ,                                                |                                                   |                                                  |                |               |
|                            | Females                                  |              | <del> </del>     |                                                  | 1                                            |                                              |              |                                                  |                                                   | ļ                                                |                |               |
|                            | Time to Mortality<br>(days)              |              |                  | <b>j</b>                                         | Ship                                         | 12,114                                       |              |                                                  |                                                   |                                                  |                |               |
|                            | Cumulative                               |              | <del> </del>     |                                                  | 1                                            | 2                                            |              | <del> </del> -                                   | <del> </del>                                      | <del>                                     </del> | <del> </del>   |               |
|                            | number<br>emerged                        |              | <u> </u>         | 1                                                | <u>                                     </u> | 10                                           |              |                                                  |                                                   |                                                  |                |               |
|                            | # Pairings                               |              |                  | ļ<br>!                                           | 607                                          | w/593€<br>017,3                              |              |                                                  |                                                   |                                                  |                |               |
| . [                        | # Egg Case                               |              |                  |                                                  |                                              | 1,060                                        |              |                                                  |                                                   |                                                  |                |               |
|                            | # Eggs /<br>Time to hatch /<br># hatched | <del></del>  |                  |                                                  |                                              | 5 min 200                                    | عدلا         |                                                  |                                                   |                                                  |                |               |
| <del></del>                | Init./Date<br>(1999)                     | 11/9         | 11/10            | 11/11                                            | 12/12                                        | 14/13                                        | 11414        | 11/15                                            |                                                   | 11/17<br>1/17                                    | 11/18          | 11419         |
| nergence scorviving. P = p | ring: Record                             | any p        | upae whi         | ch die (                                         | i) before                                    | emerge                                       | ence. D      | = dead                                           | or flies                                          | which en                                         | nerge bu       | t are not     |
| rviving. P = p             | upa                                      | •            |                  | •                                                | (32)                                         | ooth 1                                       | 417 0        | SLEW                                             | 1592                                              | B) 34.                                           | earea          | $\mathcal{C}$ |
| ·                          |                                          |              | ><br>iouth Burli |                                                  |                                              |                                              |              | - (                                              | , <del>, , , , , , , , , , , , , , , , , , </del> | 7                                                | 2 11/22        | , t(~         |

0000032

| Sample / Repl. | Response                                 | 21           | 22                                               | 23           | 24             | 25            | 26           | 27          | 28               | 29          | 30           | 31                  | 7         |
|----------------|------------------------------------------|--------------|--------------------------------------------------|--------------|----------------|---------------|--------------|-------------|------------------|-------------|--------------|---------------------|-----------|
| 12593 D        | # Males<br>emerged                       |              | +                                                | <del> </del> | <del></del>    | -             | 10           |             | -                |             |              | <del> </del>        | 1         |
|                | Male Time to                             | <del> </del> | +                                                | <del> </del> |                | <del> </del>  | 1 1          |             |                  |             | <del> </del> | <del> </del>        | 1         |
|                | Mortality<br>(days)                      | }            |                                                  | j            |                | )             | 302/A        | i           | ]                | }           |              | }                   | 1         |
|                | # Females<br>emerged                     |              |                                                  |              |                |               |              |             | 1                |             |              | 1 10                | Scap      |
|                | Females<br>Time to Mortality             |              | <del>                                     </del> |              |                |               |              |             | 4d1130           |             | ļ .          | 20,731              |           |
|                | (days)<br>Cumulative                     | <del> </del> |                                                  | <del></del>  |                | <del> </del>  | <del> </del> |             | 1111             | <del></del> | <del> </del> | 100                 | 1         |
|                | number<br>emerged                        |              |                                                  |              |                |               |              |             | 2                |             |              | 14                  | ļ.        |
|                | # Pairings                               |              |                                                  |              |                |               |              |             | W/593            |             |              | 4593A               |           |
|                | # Egg Case                               |              |                                                  |              |                |               |              |             |                  |             | 71052        | 1                   | \         |
|                |                                          |              |                                                  |              |                |               |              |             |                  |             | MASO         | <u> </u>            | 1.        |
|                | # Eggs / Time to hatch / # hatched       | ł            |                                                  |              |                |               | Be           |             |                  |             | na4 =        | bootinhat<br>tohing | Pre       |
| 12593 E        | # Males<br>emerged                       |              | (ID)                                             |              | imale, escaped | 1 1,00        | (a)          |             |                  |             |              |                     |           |
|                | Male Time to<br>Mortality                |              | ¥34 X                                            |              | <del>'</del>   | 7d,130        |              |             |                  |             |              | <u> </u>            | 1         |
|                | (days)<br># Females<br>emerged           |              | 11/13 00                                         |              |                | 2111          |              |             | <u> </u>         |             |              |                     | 1         |
|                | Females Time to Mortality                |              |                                                  |              |                |               |              |             | <del> </del>     |             | <del> </del> |                     | 40        |
|                | (days)<br>Cumulative                     |              | <del> </del>                                     |              |                | <u> </u>      |              |             | <b></b> _        |             | <del> </del> | <del></del>         | 4         |
| j              | number<br>emerged                        | ·            | 2                                                |              |                | 5             |              | ·           |                  |             |              |                     | <b>**</b> |
|                | # Pairings                               | ·            |                                                  |              |                | !             |              |             |                  |             |              |                     | W/3       |
|                | # Ego Case                               |              |                                                  |              |                |               |              |             |                  |             |              |                     |           |
|                | # Eggs /<br>Time to hatch /<br># hatched | ····         |                                                  |              |                |               |              |             |                  |             |              |                     | 1.        |
| 12593 F        | # Maies<br>emerged                       | <del></del>  |                                                  | escuped      |                | i             |              |             |                  | 1           |              |                     | 1         |
|                | Male Time to<br>Mortality                |              |                                                  |              |                | 1             | 40,118       | <del></del> | 50/1/24          | 604/23      | <del></del>  |                     |           |
|                | (days)<br># Females                      |              | <del> </del>                                     | !            |                | ·             | 1            |             | <del>- '''</del> | <u> </u>    | -            | <del> </del>        | 1         |
|                | emerged                                  |              | <u>}</u>                                         | <u> </u>     |                |               | 1            |             |                  |             |              |                     |           |
|                | Females Time to Mortality (days)         |              |                                                  |              |                | i             | 30,11        |             |                  |             |              |                     |           |
|                | Cumulative<br>number<br>emerged          |              |                                                  |              |                | :             | 3            |             | 4                | 5           |              |                     |           |
| -              | # Pairings                               |              |                                                  |              |                | <del></del> - | 1            |             |                  |             |              |                     | 1         |
|                | # Egg Case                               |              | <del>                                     </del> |              |                | <u></u><br>:  |              |             |                  |             |              | <del> </del>        | 1         |
|                | # Eggs /<br>Time to hatch /              |              |                                                  |              |                | <del></del> , |              |             |                  |             |              |                     | 1         |
|                | # hatched<br>Init./Date                  | 11/9         | 11/10                                            | 11/21        | 1/10           | 11/12         | 11/1/        | 11/15       | 11/16            | 11/17       | 11/10        | 11/10               | 1         |
|                | (1999)                                   | 1113         | 11/10                                            | : Yim        | 4              | 11/13         | 1-16         | 11/15       | 11/16            | 11/17       | 11/12        | 11/19               | 14/2      |

Review: \_\_\_\_\_ Date: | L / L | 49
Laboratory: Aquatec Biological Sciences, South Burlington, Variant

| Sample / Repl.          | Peancasa                                 | 04    | - 00         | 1 00             | <del></del>        | 25     | 26           | 1 27     | 20          | 1 20             |          | 24       |
|-------------------------|------------------------------------------|-------|--------------|------------------|--------------------|--------|--------------|----------|-------------|------------------|----------|----------|
| Sample / Repl.          | Response                                 | 21    | 22           | 23               | 24                 | 25     | 26           | 27       | 28          | 29               | 30       | 31       |
| 12593 G                 | # Males<br>emerged                       |       |              |                  | į <b>į</b>         |        | ]            |          |             |                  |          |          |
|                         | Male Time to<br>Mortality                |       |              | -                | 50 118<br>50 118   |        |              |          |             |                  |          | 50,124   |
|                         | # Females<br>emerged                     |       | <del> </del> | <del> </del>     | Ψ0-11 <sup>1</sup> |        | <del> </del> |          |             |                  | <u> </u> | - "'     |
|                         | Females Time to Mortality (days)         |       | -            | <del> </del>     |                    |        |              | Admin    |             | 20,1119          |          |          |
|                         | Cumulative<br>number<br>emerged          |       |              |                  | <del></del>        |        |              | 2        | 7           | 3                |          | 4        |
|                         | # Pairings                               |       |              |                  |                    |        |              | W/5/5/   |             | W/593A<br>811/17 | 1        |          |
|                         | # Egg Case                               |       |              |                  |                    |        |              |          |             | 80               | 2/2/088  |          |
|                         | # Eggs /<br>Time to hatch /<br># hatched |       |              |                  | . [                |        |              |          |             |                  | LGOO UNI | 1        |
| 12593 H                 | # Males<br>emerged                       |       |              | 1 Aine<br>1 Dead | 1                  |        |              |          |             |                  |          |          |
|                         | Male Time to<br>Mortality<br>(days)      |       |              | 190,1120         |                    |        |              | 50/1120  |             | 4/23/2           |          |          |
|                         | # Females<br>emerged                     |       |              |                  |                    |        |              |          | _           | 1                |          |          |
|                         | Females<br>Time to Mortality<br>(days)   |       |              |                  |                    |        |              |          |             | 601/23           |          |          |
|                         | Cumulative<br>number<br>emerged          |       |              | 2                |                    |        |              | 3        |             | 5                |          |          |
|                         | # Pairings                               |       | <u> </u>     |                  |                    |        |              |          |             | 1                |          |          |
|                         | # Egg Case                               |       |              |                  |                    |        |              |          | <del></del> |                  |          |          |
|                         | # Eggs /<br>Time to hatch /<br># hatched |       |              |                  |                    |        |              |          |             |                  |          |          |
|                         | Init./Date<br>(1999)                     | 11/9  | 11/10        | 13/11 -          | 13                 | 11/13  | 11/14        | 11/15    | 11/16       | 11/17            | 11/18    | 11/19    |
| ergence sco             | ing: Record                              | any p | upae wh      | ich die (.       | ore                | emerge | ence. D      | = dead f | or flies    | which en         | nerge bu | it ere n |
| viving. P = p<br>nents: | upa                                      |       |              |                  |                    |        |              |          |             |                  |          |          |
|                         |                                          |       | ·            |                  |                    |        |              |          |             |                  |          |          |
|                         |                                          |       |              |                  | <del></del>        |        |              |          |             |                  |          |          |
|                         |                                          |       | ·            |                  |                    |        |              |          |             |                  |          |          |
| <del></del>             |                                          |       |              |                  |                    |        |              |          |             |                  |          |          |
|                         |                                          |       |              |                  |                    |        |              |          |             |                  |          |          |
|                         |                                          |       |              |                  |                    |        |              |          |             |                  |          |          |

|                |                  | alad     |                  |         |
|----------------|------------------|----------|------------------|---------|
| Review:        | Date:            | 14211    | 99               |         |
| l aboratory: A | Mater Biological | Sciences | South Burlington | Vermont |

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/20/99 Sample / Repl. Response 32 33 34 35 37 38 39 40 41 42 36 # Males 12593 A emerged Male Time to 50/1/28 Mortality (days) # Females emerged Females sd<sub>ill</sub>ad Time to Mortality (days) Cumulative number emerged 11/199 11/5930 # Pairings 10/827 # Egg Case # Eggs / Time to hatch / # hatched # Males 12593 B emerged Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged 111262 wis9300 1127 # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12593 C emerged Male Time to Mortality (days) # Females emerged Females 50,130 Time to Mortality (days) Cumulative number 0 emerged 593(9W25 w|593 |11/1/23 # Pairings 7015436 WIDY # Egg Case 1.01660 21254 194 Mnh. 12/1 # Eggs / ~150 miliatched Time to hatch / 123 unh 12/2 · How 82 # hatched 11/25 M 11/26. Init./Date 11/20 11/22 11/27 11/29 11/30 (1999)Emergence scoring: Record any purae which die (D) before emergence. D = dead for flies which emerge but are not

> Couldn't ac day 7 (curt on lati jun egg case discardéd 11130

(-D) y 6 Ove ores)

surviving. P = pupa

\_ Date: 12 21 99

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

000005

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99 27<sub>38</sub> Sample / Repl. Response 24 35 25 28 38/ 26 28 40 # Males 12593 D emerged Male Time to Mortality (days) # Females emerged Females 60 11/27 Time to Mortality (days) Cumulative 5 number emerged w3635.131 # Pairings # Egg Case ¥, 0 1,526 354nh 1128 1, 33 4nh 1124 # Eggs / 2400 Time to hatch / ~100 # hatched # Males 11/27 Hunhatched 4/28 12593 E emerged Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12593 F emerged Male Time to 4 d 13/8 40/25 Mortality (days) # Females emerged Females 54/130 Time to Mortality (days) Cumulative 7 number emerged W/593H # Pairings 11/19 130941 # Egg Case 75 my atched 12/4 # Eggs / Time to hatch / # hatched 11/20 11/23 Init./Date 11/24 11/26 11/29 (1999)Emergence scoring: Record any pupale which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa Correction Julisotos

Review: Date: 12/21/94
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

000066

| 12593 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38                                                              | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39                                 | 31,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mortality (days)   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Females   Femal   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| # Females emerged  # Pairings  # Egg Case  # Face Time to Mortality (days)  # Egg Case  # Pairings  # Face Time to Mortality (days)  # Face Time to Mortality (days)  # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females  | rtality   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sdulah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40,212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time to Mortality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | emales    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| # Egg Case  # Egg Case  # Egg Sase  # Egg Case  # Egg Case    1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mortality |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.50 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30/1/38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| # Eggs / Time to hatch / # hatched   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, 430   1, | mber      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (o \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ئار                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | airings   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A POCO PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W/5934<br>11/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| # hatched # Males Females # Females # Females # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males  | g Case    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| # Males emerged    Male Time to Mortality (days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o hatch / |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mortality (days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Males     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ···                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| # Females emerged  Females Time to Morbitly (days)  Cumulative number emerged  # Pairings  # Eggs / Time to hatch / # hatched  Init./Date (1999)  Init./Date (1999)  mergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not reviving. P = pupa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rtality   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50,1135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time to Mortality (days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | males     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| # Egg Case  # Egg S/ Time to hatch/ # hatched  Init./Date (1999)  Inergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not polying. P = pupa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mortainty |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| #Egg Case  #Egg S / Time to hatch / # hatched  Init./Date (1999)  Init./Date (1999)  Marked Init./Date (1999)  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Init./Date (1/20 11/21 11/22 11/23 11/24 11/25 11/26 11/27 11/28 11/29 11/30  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Init./Date (1/20 11/24 11/25 11/25 11/26 11/27 11/28 11/29 11/30  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Init./Date (1/20 11/24 11/25 11/25 11/26 11/27 11/28 11/29 11/30  #Init./Date (1/20 11/24 11/25 11/26 11/27 11/28 11/29 11/30  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Egg Case  #Init./Date (1/20 11/24 11/25 11/25 11/25 11/26 11/27 11/28 11/29 11/30 11/30 11/25 11/26 11/27 11/28 11/29 11/30 11/30 11/25 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/26 11/27 11/28 11/29 11/30 11/29 11/30 11/29 11/30 11/29 11/30 11/29 11/30 11/29 11/30 11/29 11/30 11/29 11/30 11/29 11/30 11/29 11/29 11/30 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29 11/29  | mber      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| # Eggs / Time to hatch / # hatched   11/20   11/21   11/22   11/23   11/24   11/25   11/26   11/27   11/28   11/29   11/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | airings   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Init./Date 11/20 11/21 11/22 11/23 11/24 11/25 11/26 11/27 11/28 11/29 11/30 (1999)  mergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not projected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | g Case    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | hatch /   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 1/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1//32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>11/24</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11/25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/26                                                           | 11/27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1//28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/29                              | 11/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ments: (i) CONRECTION JUN 11/22  (c.) Test day correction Tu/30/89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Record    | any pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pae whi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | emerg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ence. D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = dead                                                          | for flies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nerge bu                           | it are not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C) Test day corrector July                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oreci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nan 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 73422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5- 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tarre 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ヘカル                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -11/-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10/09                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | males o Mortality days) nulative imber verged dairings grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase grase | males o Mortality days) nulative imber recred dairings  g Case  ggs / to hatch / atched Males recred  Time to males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred males recred | males o Mortality days) nulative imber verged  ggs / to hatch / atched  Time to males or Mortality days) emales erged males erged males erged males erged males erged males erged males o Mortality days) emales erged airings g Case  ggs / to hatch / atched  All the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the males are the male | males o Mortality days) nulative imber verged ggs / to hatch / atched  Time to to traitity days) semales erged males erged males erged males g Case  175 unh males g Case  185 unh males grape males grape males grape males grape males grape males grape males grape males grape males grape males grape males grape males grape males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males m | males o Mortality days) nulative imber verged ggs / to hatch / atched  Time to males erged males erged males erged males grant from the to days) grants from the to males erged males grants from the to days) grants from the to days) grants from the to days from the to days from the to days from the to days from the to days from the to days from the to days from the to days from the to days from the to days from the to days from the to days from the to days from the to days from the to days from the to days from the to days from the to days from the to days from the to days from the to days from the to days from the to days from the to days from the total to days from the total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total total | males o Mortality days) nulative imber verged ggs / to hatch / atched  Time to males erged males erged males erged males males erged males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males males | males o Mortality days) nutative miber lerged  Pairings  Page 1 | males o Mortality lays)  Indicate to males with the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion of the motion | males o Mortality says)  agroup of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of t | males o Montality lays) lays) lays | males of Mortality (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) (ask) |

Review: Date: (2/21/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99

| Sample / Repl. | Response                                 | 43   | 44   | 45   | 46   | 47   | 48           | 49 | 50   | 51       | 52    | 53   |
|----------------|------------------------------------------|------|------|------|------|------|--------------|----|------|----------|-------|------|
| 12593 A        | # Males<br>emerged                       |      |      |      |      |      |              |    |      |          |       |      |
|                | Male Time to<br>Mortality<br>(days)      |      |      |      |      |      |              | OL |      |          |       |      |
|                | # Females<br>emerged                     |      |      |      |      |      |              | OP |      |          |       |      |
|                | Females<br>Time to Mortality<br>(days)   |      | 1.   | 1    |      | 1    | <del> </del> |    |      |          |       |      |
|                | Cumulative<br>number<br>emerged          |      |      | 1    |      |      |              |    |      |          |       |      |
|                | # Pairings                               |      |      |      |      |      |              | -  |      |          |       |      |
|                | # Egg Case                               |      |      |      |      |      |              |    |      |          |       |      |
|                | # Eggs /<br>Time to hatch /<br># hatched |      |      |      |      |      |              |    |      |          |       |      |
| 12593 B        | # Males<br>emerged                       |      |      |      |      |      |              |    |      |          |       |      |
|                | Male Time to<br>Mortality<br>(days)      |      |      |      |      |      |              | OL |      |          |       |      |
|                | # Females<br>emerged                     |      |      |      |      |      |              | OP |      |          |       |      |
|                | Females<br>Time to Mortality<br>(days)   |      |      |      |      |      |              |    |      |          |       |      |
|                | Cumulative<br>number<br>emerged          |      |      |      |      |      |              |    |      |          |       |      |
|                | # Pairings                               |      |      |      |      |      |              |    |      | <u> </u> |       |      |
|                | # Egg Case                               |      |      |      |      |      |              |    |      |          |       |      |
|                | # Eggs /<br>Time to hatch /<br># hatched |      |      |      |      |      |              |    |      |          | 1     |      |
| 12593 C        | # Males<br>emerged                       |      |      |      |      |      |              |    |      |          |       |      |
|                | Male Time to<br>Mortality<br>(days)      |      |      |      |      |      |              | OL |      |          |       |      |
|                | # Females<br>emerged                     |      |      |      |      |      |              | OP |      |          |       |      |
|                | Females<br>Time to Mortality<br>(days)   |      |      |      |      |      |              |    |      |          |       |      |
|                | Cumulative<br>number<br>emerged          |      |      |      |      |      |              |    |      |          |       |      |
|                | # Pairings                               |      |      |      |      |      |              |    |      |          |       | 1    |
|                | # Egg Case                               |      |      |      |      |      |              |    |      |          |       |      |
|                | # Eggs /<br>Time to hatch /<br># hatched |      |      |      |      |      |              |    |      |          |       |      |
| <del> </del>   | Init./Date<br>(1999)                     | 12/1 | 12/2 | 12/3 | 12/4 | 12/5 | 12/6         | 睽  | 12/8 | 12/9     | 12/10 | 12/1 |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: Date: 1 2/2/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays3<del>2-42</del> +3-53

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99

| Sample / Repl. | Response                                 | 43   | 44           | 45   | 46       | 47   | 48       | 49   | 50   | 51   | 52    | 53    |
|----------------|------------------------------------------|------|--------------|------|----------|------|----------|------|------|------|-------|-------|
| 12593 D        | # Males<br>emerged                       |      |              |      |          |      |          |      |      |      |       |       |
|                | Male Time to<br>Mortality<br>(days)      |      |              |      |          |      |          | OL   |      |      |       |       |
|                | # Females<br>emerged                     |      |              |      |          |      |          | SP   |      |      |       |       |
|                | Females<br>Time to Mortality<br>(days)   |      |              |      |          |      |          |      |      |      |       |       |
|                | Cumulative<br>number<br>emerged          |      |              |      |          |      |          |      |      |      |       |       |
|                | # Pairings                               |      |              |      |          |      |          |      |      |      |       |       |
|                | # Egg Case                               |      |              |      |          |      |          |      |      |      |       |       |
|                | # Eggs /<br>Time to hatch /<br># hatched |      |              |      |          |      |          |      |      |      |       |       |
| 12593 E        | # Males<br>emerged                       |      |              |      |          |      |          |      |      |      |       |       |
|                | Male Time to<br>Mortality<br>(days)      |      |              |      |          |      |          | 0    |      |      |       |       |
|                | # Females<br>emerged                     |      |              |      |          |      |          | OP   |      |      |       |       |
|                | Females<br>Time to Mortality<br>(days)   |      |              |      |          |      |          |      |      |      |       |       |
|                | Cumulative<br>number<br>emerged          | -    |              |      |          |      |          |      |      |      |       |       |
|                | # Pairings                               |      |              |      |          |      |          |      |      |      |       |       |
|                | # Egg Case                               |      |              |      |          |      |          |      |      |      |       |       |
|                | # Eggs /<br>Time to hatch /<br># hatched |      |              |      |          |      |          |      |      |      |       |       |
| 12593 F        | # Males<br>emerged                       |      |              |      |          |      |          |      |      |      |       |       |
|                | Male Time to<br>Mortality                |      |              |      | <u> </u> |      | <u> </u> | 0    |      |      |       |       |
|                | (days)<br># Females<br>emerged           |      | <del> </del> |      |          |      |          | 3P   |      |      |       |       |
|                | Females Time to Mortality (days)         |      |              |      |          |      |          |      |      |      |       |       |
|                | Cumulative<br>number<br>emerged          |      |              |      |          |      |          |      |      |      |       |       |
|                | # Pairings                               |      |              |      |          |      |          |      |      |      |       |       |
|                | # Egg Case                               |      |              |      |          |      |          |      |      |      |       |       |
|                | # Eggs /<br>Time to hatch /<br># hatched |      |              |      |          |      |          |      |      |      |       |       |
|                | Init./Date<br>(1999)                     | 12/1 | 12/2         | 12/3 | 12/4     | 12/5 | 12/6     | 12/2 | 12/8 | 12/9 | 12/10 | 12/11 |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: Date: 12/2/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays32-42 43-53

| Sample / Repl.           | Response                                 | 43      | 44            | 45       | 46          | 47          | 48                | 49                                               | 50        | 51          | 52                                               | 53          |
|--------------------------|------------------------------------------|---------|---------------|----------|-------------|-------------|-------------------|--------------------------------------------------|-----------|-------------|--------------------------------------------------|-------------|
| 12593 G                  | # Males<br>emerged                       |         |               |          |             |             |                   | <del>                                     </del> |           |             | <del> </del>                                     |             |
|                          | Male Time to<br>Mortality<br>(days)      |         |               |          | <del></del> |             |                   | RZ                                               | -         |             | -                                                |             |
|                          | # Females<br>emerged                     |         |               |          | <del></del> |             |                   | 06                                               | •         |             |                                                  |             |
|                          | Females<br>Time to Mortality<br>(days)   | ,       |               |          |             |             |                   |                                                  |           |             |                                                  |             |
|                          | Cumulative<br>number<br>emerged          |         |               |          |             |             |                   |                                                  |           |             |                                                  |             |
|                          | # Pairings                               |         |               |          |             |             |                   |                                                  |           |             |                                                  |             |
|                          | # Egg Case                               |         |               |          |             |             |                   |                                                  |           |             |                                                  |             |
|                          | # Eggs /<br>Time to hatch /<br># hatched |         |               |          |             |             |                   |                                                  |           |             |                                                  |             |
| 12593 H                  | # Males<br>emerged                       |         |               |          |             |             |                   |                                                  |           |             |                                                  |             |
|                          | Male Time to<br>Mortality<br>(days)      |         |               |          |             |             |                   | ()]_                                             |           |             |                                                  |             |
|                          | # Females<br>emerged                     |         |               |          |             |             |                   | OP                                               |           |             |                                                  |             |
|                          | Females<br>Time to Mortality<br>(days)   |         |               |          |             |             |                   |                                                  |           |             |                                                  |             |
|                          | Cumulative<br>number<br>emerged          |         |               |          |             |             |                   |                                                  |           |             |                                                  |             |
|                          | # Pairings                               |         |               |          |             |             |                   |                                                  |           |             |                                                  |             |
|                          | # Egg Case                               |         |               |          |             | :           |                   |                                                  |           |             |                                                  |             |
|                          | # Eggs /<br>Time to hatch /<br># hatched |         | 1             |          |             |             | <u> </u>          | 1                                                |           |             | <del>                                     </del> |             |
|                          | Init./Date<br>(1999)                     | 12/1    | 12/2          | 12/3     | 12/4        | 12/5        | 12/6              | 12/10                                            | 12/8      | 12/9        | 12/10                                            | 12/1        |
| nergence sco             | ring: Recor                              | d any p | oupae wh      | nich die | (D) befor   | e emerg     | ence. [           | = dead                                           | for flies | which e     | merge bi                                         | ut are      |
| rviving. P = p<br>ments: | oupa                                     |         | <del></del> - |          |             | <del></del> |                   | <del>-</del>                                     |           |             |                                                  | <del></del> |
|                          |                                          |         |               |          |             |             |                   |                                                  |           |             |                                                  |             |
|                          |                                          |         |               |          |             |             | ·                 |                                                  |           |             |                                                  |             |
|                          |                                          |         |               |          |             |             |                   |                                                  |           |             |                                                  |             |
|                          |                                          |         |               |          |             |             |                   |                                                  |           | <del></del> |                                                  |             |
|                          |                                          |         |               |          |             |             | <del> — — —</del> |                                                  |           |             | - <del></del>                                    | <del></del> |
|                          |                                          |         |               |          |             |             |                   |                                                  |           |             |                                                  |             |

Review: \_\_\_\_\_\_ Date: 12/2( [99 Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays3<del>2-42</del>

000070

Test Start: 10/19/99 Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Sample / Repl. 26 27 23 24 25 28 29 30 31 Response 21 22 # Males 12609 A Male Time to 10,117 Mortality (days) Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12609 B emerged Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12609 C emerged Male Time to 741/23 Mortality (days) # Females Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched 1.1/16 MM 11/9 11/10 Init./Date 11/12 11/13 11/14 11/15 Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

12/21/94

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Date:

000071

BTR: 3615 / 3622 Project: 99033 M-C Dead Creek Test Start: 10/19/99 Sample / Repl. Response 24 21 23 25 26 31 22 27 28 29 30 # Males 12609 D emerged Male Time to (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12609 E emerged Male Time to 64 5 6d 50 Mortality (days) # Females emerged Sa Females Time to Mortality 11/13 (days) number emerged WKOAF # Pairings 96 # Egg Case # Eggs / 11252 1752 mod 1/25 Time to hatch / # hatched # Males 12609 F emerged Male Time to Adilia 69/125 Mortality (days) emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case Time to hatch / # hatched\_ 11/12 Init./Date 11/9 11/10 11/11 11/13 11/15 11/17 (1999)

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: \_\_\_\_\_ Date: \( \frac{1}{2} \seta\_1 \) \( \frac{1}{9} \)
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| Sample / Repl.                           | Response                                 | 21      | 22       | 23         | 24                                               | 25      | 26         | 27     | 28        | 29       | 30                   | 31       |
|------------------------------------------|------------------------------------------|---------|----------|------------|--------------------------------------------------|---------|------------|--------|-----------|----------|----------------------|----------|
| 12609 G                                  | # Males<br>emerged                       |         |          | ,          | <del>                                     </del> |         |            |        | -         |          |                      |          |
|                                          | Male Time to<br>Mortality<br>(days)      |         |          |            |                                                  |         |            |        |           |          |                      |          |
|                                          | # Females<br>emerged                     |         |          |            |                                                  |         |            |        |           |          |                      |          |
|                                          | Females<br>Time to Mortality<br>(days)   |         |          |            |                                                  |         |            |        |           |          |                      |          |
|                                          | Cumulative<br>number<br>emerged          |         |          |            |                                                  |         |            |        |           |          |                      |          |
|                                          | # Pairings                               |         |          |            |                                                  |         |            |        |           |          |                      |          |
|                                          | # Egg Case                               |         |          |            |                                                  |         |            |        |           |          |                      |          |
|                                          | # Eggs /<br>Time to hatch /<br># hatched |         |          |            |                                                  |         |            |        |           |          |                      |          |
| 12609 H                                  | # Males<br>emerged                       |         |          |            |                                                  |         |            |        |           |          |                      |          |
|                                          | Male Time to<br>Mortality<br>(days)      |         |          |            |                                                  |         |            |        |           |          |                      |          |
|                                          | # Females<br>emerged                     |         |          |            |                                                  |         |            |        |           |          | <u> </u>             |          |
|                                          | Females Time to Mortality (days)         |         |          |            |                                                  |         |            |        |           | ļ        |                      |          |
|                                          | Cumulative<br>number<br>emerged          |         | ļ        |            | ļ                                                |         | ļ <u>.</u> |        |           |          |                      |          |
|                                          | # Pairings                               |         | <u> </u> |            |                                                  |         |            |        |           |          |                      |          |
|                                          | # Egg Case                               |         |          |            |                                                  |         |            |        |           |          | }                    |          |
|                                          | # Eggs /<br>Time to hatch /<br># hatched |         |          |            |                                                  |         |            |        |           |          |                      |          |
|                                          | Init./Date<br>(1999)                     | 11/9    | 11/10    | 11/11      | 11/12                                            | 11/13   | 11/14      | 11/15  | 11/16     | 11/17    | 11/18                | 11/19    |
| nergence sco<br>rviving. P = p<br>ments: |                                          | d any p | upae wh  | ich die (I | D) before                                        | e emerg | ence. D    | = dead | for flies | which en | ner <del>ge</del> bu | it are r |
|                                          |                                          |         |          |            |                                                  |         |            |        |           |          |                      |          |
|                                          |                                          |         |          |            |                                                  |         |            |        |           |          |                      |          |
|                                          |                                          |         |          |            |                                                  |         |            |        |           |          |                      |          |
|                                          | ·····                                    |         |          |            |                                                  |         |            |        |           |          |                      |          |

Review: \_\_\_\_\_ Date: 12/2/29
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/20/99 Sample / Repl. Response 32 33 36 34 35 37 38 39 40 41 42 # Males 12609 A emerged Male Time to 401/27 Mortality (days) # Females Females 34/26 Time to Mortality (days) Cumulative 4  $\langle O \rangle$ number emerged # Pairings # Egg Case 1,053 Ornated disingulated 11/29 # Eggs / Time to hatch / # hatched except 12609 B # Males emerged Male Time to Mortality (days) emerged Marit 3g/3 Females 6d 1130 Time to Mortality (days) 3 Cumulative number emerged WOO'NET 4/601F W609D # Pairings 0 11/29 # Egg Case 1,921 whatched O'shatch 12/4 a samp drug # Eggs / Time to hatch / # hatched 55 unnatohed 1/24 # Males 12609 C emerged Male Time to 20/33 Mortality (days) # Females emerged 42/3 Females نطهار 80,1/30 Time to Mortality (days) Cumulative 5 0 number emerged WKOJF Who !! # Pairings # Egg Case # Eggs / Time to hatch / # hatched 11/21/11/22 1,1/28 11/20 Init./Date 11/23 11/26 11/27 (1999)Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Surviving. P = pupa

Review: \_\_\_\_\_ Date: 12/21/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Couldn't do duy 7 (cun't of hatching egg (ase ctdays32-42)

Clis Carded 11/30

Midge (Chironomus tentans) Chronic Toxicity Test Biological Monitoring Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99 Sample / Repl. Response 22-**23** 25/3C 27 24 26 28 29 40 # Males 12609 D emerged Male Time to 19/38 Montality 13d,2/2 (days) # Females emerged Females (days) Cumulative 3  $\mathcal{A}$ number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12609 E emerged 30/2 Male Time to Mortality (days) # Females emerged Females 50,130 Time to Mortality (csvs) Cumulative W16090 60 50 50 P emerged # Pairings # Egg Case  $c_{j}$ 142 864 jaunhatched 11/20 # Eggs / n 186 untatched 175 untatched Time to hatch / # hatched 7 unhatored 11/2 # Males 12609 F emerged Male Time to 30/3/2 68 12/3 Mortality (pays) # Females emerged Females 40,1725 Time to Mortality (days) unwpet emerged w/609/123 # Pairings # Egg Case 1635 # Eggs / 207 W.H. 121, Time to hatch / no unh. 12/2 # hatched Init./Date 11/20 11/23 11/24 11/25 W 11/23-1/28 11/29 11/30 (1999)Emergence scoring: Record any pupee which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Date: 12/2/199

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

23 11/24 11/25 11/26 11/27 11/28 11/29 11/30
efore emergence. D = dead for flies which emerge but are not ing. P = pupa

Deg Correction (1/30/2)

ctdays32-42

| Sample / Repl.               | Response                                 | 21-37     | 22          | 23-        | 24<br>35  | 25           | -25<br>-37   | 27     | 28          | 29<br>40     | 30           | -31<br>4 |
|------------------------------|------------------------------------------|-----------|-------------|------------|-----------|--------------|--------------|--------|-------------|--------------|--------------|----------|
| 12609 G                      | # Males<br>emerged                       |           |             |            |           |              |              |        |             |              | -            |          |
|                              | Male Time to<br>Mortality<br>(days)      |           |             | 1          |           |              |              |        |             |              |              |          |
|                              | # Females<br>emerged                     |           |             |            |           |              |              |        |             |              |              |          |
|                              | Females<br>Time to Monality<br>(days)    |           |             |            |           |              |              |        |             |              |              |          |
|                              | Cumulative<br>number<br>emerged          |           |             |            |           |              |              |        |             |              |              |          |
|                              | # Pairings                               |           |             |            |           |              |              |        |             |              |              |          |
|                              | # Egg Case                               |           |             |            |           |              |              |        |             |              |              |          |
|                              | # Eggs /<br>Time to hatch /<br># hatched |           |             | +          | +         | <del> </del> |              |        |             |              | <del> </del> |          |
| 12609 H                      | # Males<br>emerged                       |           |             |            |           |              |              |        |             |              |              |          |
|                              | Male Time to<br>Mortality<br>(days)      |           |             |            |           |              |              |        |             |              |              |          |
|                              | # Females<br>emerged                     |           |             |            |           |              |              |        |             |              |              |          |
|                              | Females Time to Mortality (days)         |           |             |            |           |              |              |        |             |              |              |          |
|                              | Cumulative<br>number<br>emerged          |           |             |            |           |              |              |        |             |              |              |          |
|                              | # Pairings                               |           |             |            |           |              |              |        |             | ļ            |              |          |
|                              | # Egg Case                               |           | }           |            |           |              |              |        |             |              |              |          |
|                              | # Eggs /<br>Time to hatch /<br># hatched | L <u></u> |             |            |           | <del> </del> | <del> </del> |        |             | <del> </del> |              |          |
|                              | Init./Date<br>(1999)                     | 11/20     | 11/21<br>JM | 11/22      | 11/23     | 11/24        | 11/25        | 11/26  | 11/27       | 11/28        | 11/29        | 11/30    |
| ergence sco<br>viving. P = p | ring: Record                             | any pu    |             | ich die (l | D) before | e emerg      | ence. D      | = dead | for flies   | which er     | nerge bı     | ut are n |
| nents:                       |                                          | 07-       | 55          | D24        | Con       | 1007         | on (         | T11/3  | 0/99        |              |              |          |
|                              |                                          |           |             |            |           |              |              |        | <del></del> | <del></del>  |              |          |
|                              |                                          |           |             |            |           |              |              |        |             |              |              |          |
|                              |                                          |           |             |            |           |              |              |        |             |              |              |          |
|                              |                                          |           |             |            |           |              |              |        |             |              |              |          |
|                              |                                          |           |             |            |           |              |              |        |             |              |              |          |

Review: Date: 12/2/ (99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3615 / 3622 Test Start: 10/19/99

| Sample / Repl. | Response                                 | 43       | 44   | 45   | 46   | 47   | 48   | 49       | 50   | 51       | 52    | 53             |
|----------------|------------------------------------------|----------|------|------|------|------|------|----------|------|----------|-------|----------------|
| 12609 A        | # Males<br>emerged                       |          |      |      |      |      |      |          |      |          |       | 0              |
|                | Male Time to<br>Mortality<br>(days)      |          |      |      |      |      |      |          |      |          |       | 06             |
|                | # Females<br>emerged                     |          |      |      |      |      |      |          |      |          |       | OP             |
|                | Females<br>Time to Mortality<br>(days)   |          |      |      |      |      |      |          |      |          |       | 1236           |
|                | Cumulative<br>number<br>emerged          |          |      |      |      |      |      |          |      |          |       |                |
|                | # Pairings                               |          |      |      |      |      |      |          |      |          |       |                |
|                | ≠ Egg Case                               |          |      |      |      |      |      |          |      |          |       |                |
|                | # Eggs /<br>Time to hatch /<br># hatched |          |      |      |      |      |      |          |      |          |       |                |
| 12609 B        | # Males<br>emerged                       |          |      |      |      |      |      |          |      |          |       |                |
|                | Male Time to<br>Mortality<br>(days)      |          |      |      |      |      |      |          |      |          |       | 00             |
|                | # Females<br>emerged                     |          |      |      |      |      |      |          |      |          |       | OP             |
|                | Females<br>Time to Mortality<br>(days)   |          |      |      |      |      | ļ    | <u> </u> |      |          |       | 12/13<br>13/13 |
|                | Cumulative<br>number<br>emerged          |          |      |      |      |      |      |          |      | <u> </u> |       |                |
|                | # Pairings                               |          |      |      |      |      |      |          |      |          |       |                |
|                | # Egg Case                               |          |      |      |      |      |      |          |      |          |       |                |
|                | # Eggs /<br>Time to hatch /<br># hatched | <u>.</u> |      |      |      |      |      |          |      |          |       |                |
| 12609 C        | # Males<br>emerged                       |          |      |      |      | }    |      |          |      |          |       |                |
|                | Male Time to<br>Mortality<br>(days)      |          |      |      |      |      |      |          |      |          |       | OL             |
|                | # Females<br>emerged                     |          |      |      |      |      |      |          |      |          |       | CP             |
|                | Females<br>Time to Mortality<br>(days)   |          |      |      |      |      |      |          |      |          |       | 17/36          |
|                | Cumulative<br>number<br>emerged          |          |      |      |      |      |      |          |      |          |       |                |
|                | # Pairings                               |          |      |      |      |      |      |          |      |          |       |                |
|                | # Egg Case                               |          |      |      |      |      |      |          |      |          |       |                |
|                | # Eggs /<br>Time to hatch /<br># hatched |          |      |      |      |      |      |          |      |          |       |                |
|                | Init./Date<br>(1999)                     | 12/1     | 12/2 | 12/3 | 12/4 | 12/5 | 12/6 | 12/7     | 12/8 | 12/9     | 12/10 | 12/11          |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa t = 0.000

Review: Date: 12/21/29
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays 82-42 43-53

| Sample / Repl. | Response                                 | 43                   | 44                 | 45           | 46          | 47   | 48      | 49                                      | 50   | 51      | 52           | 185   |
|----------------|------------------------------------------|----------------------|--------------------|--------------|-------------|------|---------|-----------------------------------------|------|---------|--------------|-------|
| 12609 D        | # Males<br>emerged                       |                      | 1                  |              |             |      | -       |                                         | ·    |         | <del> </del> | #     |
|                | Male Time to<br>Mortality                |                      | 4126               |              | <del></del> |      |         |                                         |      |         |              |       |
|                | (days)<br># Females<br>emerged           | 1                    |                    | <del> </del> |             |      |         |                                         |      |         |              | 07    |
|                | Females Time to Mortality (days)         | (ad <sub>(2)</sub> 7 |                    |              |             |      |         |                                         |      |         |              | 12/   |
|                | Cumulative<br>number<br>emerged          |                      |                    |              |             |      |         |                                         |      |         |              |       |
|                | # Pairings                               | m/6090               |                    |              |             |      |         |                                         |      |         |              |       |
|                | # Egg Case                               |                      | 12 1102<br>13 unb. | 12/4         |             |      |         |                                         |      |         |              |       |
|                | # Eggs /<br>Time to hatch /<br># hatched |                      | 10 unh             | 149          |             |      |         |                                         |      |         |              |       |
| 12609 E        | # Males<br>emerged                       |                      |                    |              |             |      |         |                                         |      |         |              |       |
|                | Male Time to<br>Mortality<br>(days)      |                      |                    |              |             |      |         |                                         |      |         |              | 01    |
|                | # Females<br>emerged                     |                      |                    |              |             |      |         |                                         |      |         |              | Oi    |
|                | Females Time to Mortality (days)         |                      |                    |              |             |      |         |                                         |      |         |              | 13/13 |
|                | Cumulative<br>number<br>emerged          | <u> </u>             |                    |              |             |      |         |                                         |      | <u></u> | ļ            |       |
|                | # Pairings                               |                      |                    |              |             |      |         |                                         |      |         |              |       |
|                | # Egg Case                               |                      |                    |              |             |      |         | <br>                                    |      |         |              |       |
|                | # Eggs /<br>Time to hatch /<br># hatched |                      |                    |              |             |      |         |                                         |      |         |              |       |
| 12609 F        | # Males<br>emerged                       |                      |                    |              |             |      |         |                                         |      |         |              |       |
|                | Male Time to<br>Mortality<br>(days)      |                      |                    |              |             |      |         |                                         |      |         |              | OL    |
|                | # Females<br>emerged                     |                      | <b>h</b> .         |              | 1           |      | 1       |                                         |      |         |              | 08    |
|                | Females<br>Time to Monality<br>(days)    |                      | 41146              |              | 50,29       |      | 38 1319 |                                         |      |         |              | 1313  |
|                | Cumulative<br>number<br>emerged          |                      | 7                  |              | 8           |      | 9       |                                         |      |         |              |       |
|                | # Pairings                               |                      | 13/5<br>N/001      |              | 18142       |      | 2142    | 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8    |         |              |       |
|                | # Egg Case                               |                      |                    | 1723         |             |      |         | 12/392                                  |      |         |              |       |
|                | # Eggs /<br>Time to hatch /<br># hatched |                      |                    | 30 unh       | 12/9        |      |         | Sunta                                   |      |         |              |       |
|                | Init./Date<br>(1999)                     | 12/1                 | 12/2               | 12/3.        | 12/1        | 12/5 | 12/6    | 12/7                                    | 12/8 | 17/9    | 12/10        | 12/1  |

Review: \_\_\_\_\_ Date: 12/2/49

Review: \_\_\_\_ Date: 12/2/49

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

000078

| ect: 99033 M                             | -C Dead Cr                                  | eek                                   | ВТ      | R: 3615    | / 3622        |          |         | Te           | st Start  | 10/19/       | 99            | <del></del> |
|------------------------------------------|---------------------------------------------|---------------------------------------|---------|------------|---------------|----------|---------|--------------|-----------|--------------|---------------|-------------|
| Sample / Repl.                           | Response                                    | 43                                    | 44      | 45         | 46            | 47       | 48      | 49           | 50        | 51           | 52            | 53          |
| 12609 G                                  | # Males<br>emerged                          |                                       |         | -          |               |          |         |              |           |              | 1             | 33          |
|                                          | Male Time to<br>Mortality<br>(days)         |                                       |         |            | 7             |          |         | <b> </b>     | †         |              |               | OL          |
|                                          | # Females<br>emerged                        |                                       |         |            |               |          |         |              | 1         |              | <del> </del>  | QP          |
|                                          | Females Time to Mortality (days)            |                                       |         |            |               |          |         |              | <u> </u>  |              |               | 10/3/5      |
|                                          | Cumulative<br>number<br>emerged             |                                       |         |            |               |          |         |              |           |              |               |             |
|                                          | # Painings                                  |                                       |         |            |               | <u> </u> |         |              |           |              |               |             |
|                                          | # Egg Case                                  |                                       |         |            |               |          |         |              |           | ļ            |               |             |
|                                          | # Eggs /<br>Time to hatch /<br># hatched    |                                       |         |            |               | <u> </u> |         | <del> </del> |           | <del> </del> |               |             |
| 12609 H                                  | # Males<br>emerged                          |                                       |         |            |               |          |         |              |           |              |               |             |
|                                          | Male Time to<br>Mortality<br>(days)         |                                       |         |            |               |          |         |              |           |              |               | OL          |
|                                          | # Females<br>emerged                        |                                       |         |            |               |          |         |              |           |              |               | 0,0         |
|                                          | Females Time to Mortality (days) Cumulative |                                       |         |            |               |          |         |              |           |              |               | 17/13       |
|                                          | number<br>emerged                           |                                       | -       |            |               | ļ        | ļ       |              |           |              |               |             |
|                                          | # Pairings                                  |                                       |         |            |               |          |         |              |           |              |               |             |
|                                          | # Egg Case                                  | j                                     |         |            |               |          |         |              |           |              |               |             |
| ·                                        | # Eggs /<br>Time to hatch /<br># hatched    |                                       |         |            |               |          |         |              |           |              |               |             |
|                                          | (1999)                                      | 12/1                                  | 12/2    | 12/3       | 12/4          | 12/5     | 12/6    | 12/7         | 12/8      | 12/9         | 12/10         | 12/11       |
| nergence sco<br>rviving. P = p<br>ments: | ring: Recor<br>upa (=                       | d any p                               | upae wh | nich die ( | D) befor      | e emerg  | ence. [ | e dead       | for flies | which e      | merge bi      | ut are no   |
|                                          |                                             |                                       |         |            |               |          |         |              |           |              |               |             |
|                                          |                                             |                                       |         |            |               |          |         |              |           |              |               |             |
|                                          |                                             |                                       |         |            |               |          |         |              |           |              |               |             |
|                                          |                                             | · · · · · · · · · · · · · · · · · · · |         |            | - <del></del> |          | ·       |              |           |              | <del></del> . |             |
|                                          |                                             |                                       |         |            |               |          |         |              |           |              |               |             |

Review: \_\_\_\_\_ Date: 12/21/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays3<del>2 42</del> 43-53 000079

# Collection of Chironomus tentans Egg Cases for Chronic Toxicity Tests

| Egg Case       | Deposit Da                 | ate: /0//6       | No. of Egg Cas           |              |             |           |
|----------------|----------------------------|------------------|--------------------------|--------------|-------------|-----------|
| Date<br>(1999) | # Days<br>Post-<br>Deposit | Temperature (°C) | Feeding<br>(Selenastrum) | Observations | Test<br>Use |           |
| 10/16          | 0                          | 19.2°C           | ~                        |              | \$          |           |
| 10/17          | 1                          | 19,300           |                          |              |             |           |
| 10/18          | 2                          | 226              |                          | + Color TIP  |             |           |
| 10/19          | 3                          |                  |                          |              | 10/19       | r. chonic |
| 10/20          | 4                          | , 6.7            |                          |              | 10/20 C.    | t.chronic |
|                | 5                          |                  |                          |              |             |           |
|                |                            |                  |                          |              |             |           |

Source: Aquare cultures

## Collection of Chironomus tentans Egg Cases for Chronic Toxicity Tests

| Egg Case    | Deposit Da                 | ate: 10/15       | No. of Egg Cas           | es 7         | 1           |                                            |
|-------------|----------------------------|------------------|--------------------------|--------------|-------------|--------------------------------------------|
| Date (1999) | # Days<br>Post-<br>Deposit | Temperature (°C) | Feeding<br>(Selenastrum) | Observations | Test<br>Use |                                            |
| 10/15/99    | 0                          | 119.0°C          |                          | 7cases       |             |                                            |
| 10/16       | 1                          | 6                |                          |              |             |                                            |
| 16/17       | 2                          | 20,3             | JG<br>V 46-14.           |              |             |                                            |
| 10/18       | 3                          | 22.5             |                          | 1 Leg in     | led.        |                                            |
| 10/19       | 4                          |                  |                          | i -          | Ī           | C-T. 10/19                                 |
| 10/20       | 5                          |                  |                          |              | Apronic     | C.T. 10/19<br>START<br>C.T. 10/20<br>START |
| ,           |                            |                  |                          |              |             | START                                      |

Source: Aquarec cultures

### Collection of Chironomus tentans Egg Cases for Chronic Toxicity Tests

| Date<br>(1999) | # Days<br>Post-<br>Deposit | Temperature<br>(°C) | Feeding<br>(Selenastrum) | Observations | Test<br>Use |
|----------------|----------------------------|---------------------|--------------------------|--------------|-------------|
| 10/26          | 0                          |                     |                          |              |             |
| 10/27          | 1                          |                     |                          |              |             |
| 10/28          | 2                          |                     |                          |              |             |
| 10/29          | 3                          | 23.5                |                          | Herching     | Aux ma      |
|                | 4                          |                     |                          |              |             |
|                | 5                          |                     |                          |              |             |

Samples 12548, 12550, 12551, 12552, 12592, 12593, 12609 Auxil. Mele beevers (reps m. N. O, P)



|                      |                 |           |        |     |           |              |         |     |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |           |              |        |     |           | 62/01        | a) in fred                                                                      | 5012 cate.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | desp       |
|----------------------|-----------------|-----------|--------|-----|-----------|--------------|---------|-----|-----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|--------------|--------|-----|-----------|--------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 10/19/99             |                 | 10        | 2000   | 7.4 | 一大        | ×            | 33.5    | 45  | 4.6       | ×            | 28. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. 2. C. | 7.6 | 5.0       | ×            | 20.9 C | 7.6 | 5,8       | ×            | 10/29                                                                           | roup.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>\</b>   |
| - 1                  |                 | 6         | 428    |     | 4.9       | ×            | 0,62    |     | 7.8       | ×            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 4.7       | ×            |        |     | A.S       | ×            | 19/78                                                                           | this testing g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dore of    |
| 2 Test Start         | 1               | 8         | 4. cg  | 40  | <u>-</u>  | ×            | 100     | 76  | 8.2       | ×            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76  | 4.4       | ×            |        | 4.4 | 4.1       | ×            | 1987                                                                            | and end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (          |
| 35/9/3622            | 0               | 7         | 100 PE |     |           | 315          | 4500    |     |           | 335          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |           | 340          |        |     |           | 350          | 19/28                                                                           | Ne test a   20, 40,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| BTR: 3               | lysis           | 9         | 1.5%   | 75  | 5.5       | ×            | 3.4     | 7.6 | 5.4       | ×            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.6 | 5.5       | ×            |        | 7.6 | <u>و</u>  | ×            | 19/25                                                                           | iker placed Withip the tesoles on Days 0, 14, 20, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
|                      | Day of Analysis | r.        | 200    | 6 1 | 1         | ×            |         | 1 , | )         | ×            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   | )         | ×            |        |     | ١         | ×            | 10/24                                                                           | er placed<br>so on Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| يد                   | Day             | 4         | 120    | 81  | ١         | ×            |         | ١   | ١         | ×            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (   | ١         | ×            |        | \   | ١         | ×            | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | tative beak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| Dead Creek           |                 | 8         | 4.66   | 46  | 6.9       | ×            | 4.6.6.C | 7.7 | (p.2      | ×            | 73.4<br>4.80<br>6.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4   | 6.9       |              |        | 7.6 | 4,4       | ×            | 10/22<br>MM                                                                     | presentati<br>d hardnes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| 99033 De             |                 | 2         | 9.0°C  | 1   | 10        |              | 8.EE    | 1   | 43        | ×            | 93.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \   | 6,3       | ×            | 227    |     | \         | ×            | 1984<br>1984                                                                    | of a repuity, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| Project: 99          |                 | 1         | 21.6   | i   | 6.        | ×            | 21.5    |     | 6.7       | ×            | 12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 800       | ×            | 22.4   | }   | 4.6       | ×            | 19/20                                                                           | urement o<br>a, alkalinit<br>O. / pH<br>ermont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
|                      |                 | 0         | 4.55   | たっ  | <u>ئے</u> | 160h         | 223     | 29  | 82        | 3,0%         | B22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73  | 6.9       | 30%          | 2.20   | 7.6 | 1:3       | 420/0        | 10/19                                                                           | a measufe<br>ammonia, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| Cura & Associates    |                 | Parameter | T (°C) | Hd  | DO (mg/L) | Conductivity | T (°C)  | ЬН  | DO (mg/L) | Conductivity | T (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hd  | DO (mg/L) | Conductivity | (2°) T | Hd  | DO (mg/L) | Conductivity | Init./Date (1999):                                                              | asured temperature is tivity weekly. Collect Date: 12/21/6p ological Sciences, South Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| Project: Menzie-Cura |                 | Sample    | 12548  |     |           |              | 12550   |     |           |              | 12551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |           |              | 12552  |     |           |              |                                                                                 | Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this test.  Measure conductivity weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 40, and end of test.  Review: Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/pp Date: 12/21/p | <b>_</b> ′ |

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Project: Menzie-                       | Menzie-Cura & Associates                  | Pro         | Project: 99          | 99033 Dead Creek | ad Cree             | يدا                  |                      | BTR: 3   | 19/362    | 35/9/3622 Test Start |            | 10/19/99  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------|-------------|----------------------|------------------|---------------------|----------------------|----------------------|----------|-----------|----------------------|------------|-----------|
| Sample   Parameter   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                           |             |                      |                  |                     | Day                  | of Ana               | 1        | 6         |                      |            |           |
| 12592   T (°C)   323 31.9 33.7   7.7   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7        | Sample                                 | Parameter                                 | 0           | -                    | 2                | 3                   | 4                    | 5                    | 9        | 7         | ھ                    | 6          | 9         |
| Ph   24   7.8   7.7   7.3   7.7     DO (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12592                                  | T (°C)                                    | 723         | 21.9                 | 22.7             |                     | ١                    | 1                    |          |           |                      |            | 12. 4. C. |
| 12593   T (°C)   2/2   2/3 4 \( \triangle 2 \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | Hd                                        | 62          |                      | )                | 8.4                 | (                    | 1                    | 4.4      |           | 7.3                  |            | 4.16      |
| 12893   T (°C)   26.2   33.4   20.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | DO (mg/L)                                 | 3-7         | 43                   |                  | 0,0                 | (                    | 1                    | 0.0      |           | 3.3                  | 4.7        | 1C        |
| 12593   T (°C)   222 33.4 52.9   7.4   7.5   7.6   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7.7   7  |                                        | Conductivity                              | 370         | ×                    | 1                | ×                   | ×                    | ×                    | ×        | 340       | ×                    | ×          | ×         |
| DO (mg/L)   72   6.3   5.4   6.1     5.2   5.0   5.3   4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12593                                  | T (°C)                                    | 222         | 22.4                 |                  |                     |                      |                      |          |           |                      |            | 23.9      |
| 12609   T (°C)   3/4   33.5   33.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | Hd                                        | 82          | )                    | )                | 7.7                 | 1                    | \                    | 76       |           |                      |            | 7,6       |
| 12609   T (°C)   31/4   32.5   32.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | DO (mg/L)                                 | 12          | 6.8                  | 5.9              | 6                   |                      |                      | 5.2      |           | 5.0                  | 8          | 49        |
| 12609   T (°C)   3/4   33.5   33.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | Conductivity                              | 12/         |                      | ×                | ×                   | ×                    | ×                    | ×        | 340       | ×                    | ×          | ×         |
| DO (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12609                                  | T (°C)                                    | HK.         | 22.5                 |                  |                     |                      |                      |          |           |                      |            | 20.00     |
| DO (mg/L)   C.C   S.G   S.G   C   C   S.G   S.G   S.G   G   G   G   G   G   G   G   G   G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | Hd                                        |             | )                    | }                | 7.5                 | 1                    | 1                    | 7.5      |           | 7.6                  |            | #±        |
| T (°C)   PH   Ph   Ph   Ph   Ph   Ph   Ph   Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | DO (mg/L)                                 | 79          | 5.9                  | 5,5              | S.2                 | (                    | į                    | 5.5      |           | S/3                  | 5.6        | 141       |
| T (°C)  pH  DO (mg/L)  Conductivity  Comments: Measured temperature is a measurement of a representative beaker placed withing the test array for this testing ground may be a conductivity weekly. Collect ammonia, alkalinity, and hardness samples on Days 0,14, 20, 40, and end of test.  A Comments: Measure conductivity weekly. Collect ammonia, alkalinity, and hardness samples on Days 0,14, 20, 40, and end of test.  A Comments: Measure conductivity weekly. Collect ammonia, alkalinity, and hardness samples on Days 0,14, 20, 40, and end of test.  A Comments: Measure conductivity weekly. Collect ammonia, alkalinity, and hardness samples on Days 0,14, 20, 40, and end of test.  A Comments: Measure conductivity weekly. Collect ammonia, alkalinity, and hardness samples on Days 0,14, 20, 40, and end of test.  A Comments: Measure conductivity weekly. Collect ammonia, alkalinity, and hardness samples on Days 0,14, 20, 40, and end of test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | Conductivity                              | 3%,         | ×                    | ×                | ×                   | ×                    | ×                    | ×        | 350       | ×                    | ×          | ×         |
| DO (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | T (°C)                                    |             |                      |                  |                     |                      |                      |          |           | \                    |            |           |
| Conductivity X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | Hd                                        |             |                      |                  |                     |                      | \<br>                |          |           |                      |            | !         |
| Conductivity X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | DO (mg/L)                                 |             |                      | \                |                     |                      |                      |          |           |                      |            |           |
| Init./Date (1999): 10/19 19/20 10/24 19/23 19/24 19/25 19/26 19/29 19/29 19/29 19/29 19/29 19/29 19/29 19/29 19/29 19/29 19/29 19/29 19/29 19/29 19/29   19/29 19/29   19/29   19/29   19/29   19/29   19/29   19/29   19/29   19/29   19/29   19/29   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20   19/20  |                                        | Conductivity                              |             | *                    | ×                | ×                   | ×                    | ×                    | ×        |           | ×                    | ×          | ×         |
| Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing grou Measure conductivity weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 40, and end of test.    Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster   Poster |                                        | Init./Date (1999):                        | 10/19       | 19/20                | 1086             | 19/27               | 1 1                  | 1978                 |          | 1926      | 19837                | 19738      | 1989      |
| Date: 12/14/99 Aquatec Biological Sciences, South Burlington, Vermont.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comments: Meas                         | sured temperature is vity weekly. Collect | a meast     | ırement<br>a alkalir | of a repr        | ekentati<br>nardnes | ve beake<br>s sample | er placed<br>s on Da | Within t | he test a | array for            | this testi | ng grou   |
| Aquatec Biological Sciences, South Burlington, Vermont.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sview: Da                              | ate: 12/4/99                              |             |                      |                  | 1                   | ).o.                 | H He                 | Lee Du   | 3 2 2 2   | enly                 | رسابهال    | ( M)      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | envchr.doc<br>shoratory: Aquatec Biolo | ogical Sciences. South Bu                 | rlinaton. V | ermont               |                  |                     |                      |                      |          |           |                      |            |           |

000034

| Project: Menzie-(   | Project: Menzie-Cura & Associates                                                                                                                    | Pro                                                                             | Project: 99 | 99033 Dea    | Dead Creek        | ٧            |                 | BTR: 35      | 354913622  | Z Test Start | 1        | 10/19/99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------|--------------|-------------------|--------------|-----------------|--------------|------------|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                                                                                                                                      |                                                                                 |             |              |                   | Day          | Day of Analysis | ysis         | P          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample              | Parameter                                                                                                                                            | 11                                                                              | 12          | 13           | 14                | 15           | 16              | 17           | 18         | 19           | 20       | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12548               | T (°C)                                                                                                                                               | 929                                                                             | 93.9        | 100          | 22.6              |              | 800             | 30,00        | 200        | 43.4         | 8,00     | 88/<br>19/16<br>17:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     | Н                                                                                                                                                    |                                                                                 | 51          | g <b>k</b> + |                   | 75           |                 | 755          |            | 2            | 7,6      | à de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l |
|                     | DO (mg/L)                                                                                                                                            | }                                                                               |             | 0,0          |                   | 0<br>0<br>0  |                 | 1857         |            |              | 50       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | Conductivity                                                                                                                                         | ×                                                                               | ×           | ×            | 320               | ×            | ×               | X,           | ×          | ×            | 338      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12550               | T (°C)                                                                                                                                               | 43.8                                                                            |             |              | 125.27<br>12.32.4 |              |                 |              |            |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | Н                                                                                                                                                    | 1                                                                               | ١           | 45           |                   | 44           |                 | 74           |            |              | 91t      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | DO (mg/L)                                                                                                                                            |                                                                                 | 1           | 5,4          |                   | N.8          |                 | 8.7          |            |              | 5,5      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | Conductivity                                                                                                                                         | ×                                                                               | ×           | ×            | 310               | ×            | ×               | ×            | ×          | ×            | 330      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12551               | T (°C)                                                                                                                                               | 23.8<br>7.8<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8 |             |              |                   |              |                 |              |            |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | Hd                                                                                                                                                   |                                                                                 | ١           | 45           |                   | 45           |                 | 75/          |            |              | 44       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | DO (mg/L)                                                                                                                                            | 1                                                                               | \           | 3            |                   | N<br>N       |                 |              |            |              | 6.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | Conductivity                                                                                                                                         | ×                                                                               | ×           | ×            | 320               | ×            | ×               | ×            | ×          | ×            | 330      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12552               | T (°C)                                                                                                                                               | 23.68<br>C. E.S.                                                                |             |              |                   |              |                 |              |            |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | Hd                                                                                                                                                   |                                                                                 | 7           | 26           |                   | 46           |                 | 7.6          |            |              | 44       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | DO (mg/L)                                                                                                                                            | }                                                                               | 1           | 4.9          |                   | <u>ر</u>     |                 | h 1          |            |              | 40       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | Conductivity                                                                                                                                         | ×                                                                               | ×           | ×            | 340               | ×            | ×               | ×            | ×          | ×            | 2000     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     | Init /Date (1999):                                                                                                                                   | 10/30                                                                           | 1983        | 36           | 14gn              | 133          | 11/4            | 11/6         | 11/18      | 14.6         | 11/8     | 4FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Comments: Measured  | Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group                       | rement of                                                                       | a represe   | ntative bea  | aker place        | d within the | e test arra     | y for this t | esting gro | o66.         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Measure D.O. and nH | Messure D. and pH.3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 40, and end of test | ivity once                                                                      | Weekly C    | offect amn   | nonia alka        | dinity and   | hardness        | samulas      | O Sys O    | 14 20 4      | Dand pag | of test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 40, and end of test.

Date: 12/2/99

Review:
ctenvchr.doc
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| Project Menzie-    | Project: Menzie-Cura & Associates           | Pro                                                                | Project: 99 | 99033 De                                                                    | Dead Creek   | <u></u>     |            | BTR. 2       | 25/0/2622  | Toet Ctar | - 1              | 40/40/00 |
|--------------------|---------------------------------------------|--------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------|--------------|-------------|------------|--------------|------------|-----------|------------------|----------|
|                    |                                             |                                                                    |             |                                                                             |              | Day         | of Ana     | .            | 0          |           | 1                |          |
| Sample             | Parameter                                   | 44                                                                 | 12          | 13                                                                          | 14           | 15          | 16         | 17           | 18         | 19        | 20               | 21       |
| 12592              | T (°C)                                      | 33.19                                                              |             |                                                                             |              |             |            |              |            |           |                  |          |
|                    | На                                          |                                                                    | 1           | 大井                                                                          |              | 44          |            | 7.(          |            |           | 57               |          |
|                    | DO (mg/L)                                   |                                                                    | 1           | 0                                                                           |              | 5,3         |            | 10           |            |           | 6,3              |          |
|                    | Conductivity                                | ×                                                                  | ×           | ×                                                                           | 335          | ×           | ×          | ×            | ×          | ×         | 3/2              | ×        |
| 12593              | T (°C)                                      | 33.1                                                               |             |                                                                             |              |             |            |              |            |           |                  |          |
|                    | Hd                                          |                                                                    | 1           | 215                                                                         |              | 79.         |            | 72           |            |           | 7,8              |          |
|                    | DO (mg/L)                                   |                                                                    | \           | 5.4                                                                         |              | 49          |            | 5            |            |           | t e              |          |
|                    | Conductivity                                | ×                                                                  | ×           | ×                                                                           | 335          | ×           | ×          | ×            | ×          | ×         | 340              | ×        |
| 12609              | T (°C)                                      | 18<br>10<br>10                                                     |             |                                                                             |              |             |            |              |            |           |                  |          |
|                    | Hd                                          |                                                                    | 1           | 7,4                                                                         |              | 73          |            | 78           |            |           | 4,5              |          |
|                    | DO (mg/L)                                   |                                                                    | \           | 4,6                                                                         |              | 474         |            | 2,5          |            |           | )<br>-<br>-<br>- |          |
|                    | Conductivity                                | ×                                                                  | ×           | ×                                                                           | 340          | ×           | ×          | ×            | ×          | ×         | 1 m              | ×        |
|                    | (°C)                                        |                                                                    |             |                                                                             |              |             |            |              | <br> <br>  |           |                  |          |
|                    | Hd                                          | }                                                                  | l           |                                                                             |              |             |            |              |            |           |                  |          |
|                    | DO (mg/L)                                   |                                                                    | \           |                                                                             |              |             |            |              |            |           |                  |          |
|                    | Conductivity                                | ×                                                                  | ×           | ×                                                                           |              | ×           | ×          | ×            | ×          | ×         |                  | ×        |
|                    | Init./Date (1999):                          | 200<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800 | Tella T     | 芸の                                                                          | 13/2<br>13/2 | 治           | 11/4       | 1173         | 11/6       | <b>F</b>  | 11/8             | 128      |
| Comments: Measured | Comments: Measured femberature is a measure | rement of                                                          | a represe   | a representative beaker placed within the test array for this testing grown | aker place   | d within th | e Jest arr | v for this t | esting aro | Ę         |                  |          |

Comments: Measured temperature is a measurement of a representative beaker placed within the lest array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 40, and end of test.

Date: 12/21/99

Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

| Sample Parameter 22 23 24 25 26 27 28 29 30 31 32 12548 T (°C) 22.22.23 24 25 26 27 28 29 30 31 32 32 12548 T (°C) 22.22.22.22.23.24.25.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.2.23.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25.24.25. | Project: Menzie-(  | Project: Menzie-Cura & Associates | Pro       | Project: 99 | 99033 De   | Dead Creek | <b>Y</b>    |             | BTR: 36       | 315 / 22   | 3615 / 22 Test Start 10/19/99 | art 10/1          | 66/6    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------|-----------|-------------|------------|------------|-------------|-------------|---------------|------------|-------------------------------|-------------------|---------|
| 22 23 24 25 26 27 28 29 30 31 228, (25, 25, 25, 25, 25, 25, 25, 25, 25, 25,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                   |           |             |            |            | Day         | of Anal     | ysis          |            |                               |                   |         |
| 22.8.1.39.2.3.2.3.2.3.1.3.1.33.2.2.2.1.3.1.3.2.2.2.1.3.1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample             | Parameter                         | 22        | 23          | 24         | 25         | 26          | 27          | 28            | 29         | 8                             | 31                | 32      |
| 7.5 $7.7$ $7.7$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$    | 12548              | T (°C)                            | 22.8/     |             | E          |            | R / U       | 23.33       | 22.2          | Ser Ser    | 37.6                          | Take              | I \ _ \ |
| 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | Hd                                | 7.5       |             |            | <b>P</b>   |             | 17          | -             |            |                               | 7                 |         |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | DO (mg/L)                         | 4.        |             | 6.4        |            |             | 6.1         | 5.5           |            |                               | 7                 |         |
| 7.5 $7.6$ $6.4$ $7.5$ $7.9$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$    |                    | Conductivity                      | ×         | ×           | ×          | ×          | ×           | ×           | 725           | ×          | ×                             | ×                 | ×       |
| 7.5 7.4 7.5 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12550              | T (°C)                            |           |             |            |            |             |             |               |            |                               |                   |         |
| $\frac{4.2}{x}$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | Hd                                | 7.5       |             | 4,6        |            |             | 7,5         | 7.5           |            |                               | 75                |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | DO (mg/L)                         | 4.2       |             | 519        |            |             | Sie         | 16.0          | 14         |                               | 3                 |         |
| 7.5 $7.6$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$    |                    | Conductivity                      | ×         | ×           | ×          | ×          | ×           | ×           | 1,00%         | ×          | ×                             | ×                 | ×       |
| 7.5 $7.6$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$ $7.5$    | 12551              | T (°C)                            |           |             |            |            |             |             |               |            |                               |                   |         |
| S.0 $G_1I$ $G_1G_2G_2G_2G_2G_2G_2G_2G_2G_2G_2G_2G_2G_2G$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | Hd                                | 7.5       |             | 7.6        |            |             | 45          | 7,5           |            |                               | 7.5               |         |
| $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | DO (mg/L)                         | 5.0       |             | 0          |            |             | 6.9         | 651           |            |                               | ~ /               |         |
| 7.5 7.6 7.6 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Conductivity                      | ×         | ×           | ×          | ×          | ×           | ×           | Sy.           | ×          | ×                             | ×                 | ×       |
| 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12552              | T (°C)                            |           |             |            |            |             |             |               |            |                               |                   |         |
| 4.6       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | Hd                                | 7.5       |             | 4,6        |            |             | 7,6         | 9%            |            |                               | 1/2               |         |
| 11/19 11/13 11/12 11/13 11/14 11/15 11/16 11/17 11/18 11/19 11/19 ement of a representative beaker placed within the test array for this testing group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | DO (mg/L)                         | 4.6       |             | 50         |            |             | 8.9         | 7,4           |            |                               | 66                |         |
| Fig. 11/14 11/12 11/13 11/14 11/15 11/16 11/17 11/18 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | Conductivity                      | ×         | ×           | ×          | ×          | ×           | ×           | Ser           | ×          | ×                             | ×                 | ×       |
| Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Init./Date (1999):                | 11/18     | 114         | 1963       | 1148       | 13/1/4      | 13/15       | 11/16         | 11/17      | 11/18                         | $\frac{11/19}{G}$ | 478     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comments: Measured | I temperature is a measu          | rement of | a represer  | tative bea | aker place | d Within th | e test arra | / for this to | esting gro | g                             | \<br>\<br>\       |         |

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, then weekly.

سرمعر سم معروب

Review: Date: 177 clenvchr.doc Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

| 29 30 31<br>X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project: Menzie- | Project: Menzie-Cura & Associates | Project: |        | 99033 Dea | Dead Creek | عدا   |                | BTR: 3  | 515 / 22 | 3615 / 22 Test Start |       | 10/19/99 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------|----------|--------|-----------|------------|-------|----------------|---------|----------|----------------------|-------|----------|
| Parameter   22   23   24   25   26   27   28   29   30   31     T (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                   |          |        |           |            | Day   | of Anal        | ysis    |          |                      |       |          |
| DO (mg/L)  PH  7.6  T(°C)  DO (mg/L)  PH  7.6  T(°C)  PH  7.6  PH  7.6  PH  7.6  PH  7.6  PH  7.6  PH  7.6  PH  7.6  PH  7.6  PH  7.7  PH  7.6  PH  7.7  PH  PO (mg/L)  PH  DO (mg/L)  PH  DO (mg/L)  PH  DO (mg/L)  PH  DO (mg/L)  PH  DO (mg/L)  PH  DO (mg/L)  PH  DO (mg/L)  PH  DO (mg/L)  PH  DO (mg/L)  PH  DO (mg/L)  PH  DO (mg/L)  PH  DO (mg/L)  PH  DO (mg/L)  PH  DO (mg/L)  PH  DO (mg/L)  PH  DO (mg/L)  PH  DO (mg/L)  T(°C)  PH  DO (mg/L)  T(°C)  PH  DO (mg/L)  T(°C)  PH  DO (mg/L)  T(°C)  PH  DO (mg/L)  T(°C)  PH  DO (mg/L)  T(°C)  PH  DO (mg/L)  T(°C)  PH  DO (mg/L)  T(°C)  PH  DO (mg/L)  T(°C)  PH  DO (mg/L)  T(°C)  PH  DO (mg/L)  T(°C)  PH  DO (mg/L)  T(°C)  PH  DO (mg/L)  T(°C)  PH  DO (mg/L)  T(°C)  PH  DO (mg/L)  T(°C)  PH  DO (mg/L)  T(°C)  T(°C)  PH  DO (mg/L)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C)  T(°C | Sample           | Parameter                         | 22       | 23     | 24        | 25         | 26    | 27             | 28      | 29       | 30                   | 31    | 32       |
| DO (mg/L) 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12592            | T (°C)                            |          |        |           |            |       |                |         |          |                      |       |          |
| DO (mg/L) 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Hd                                | 2.6      |        | 44        |            |       | 7.4            |         |          |                      | 15    |          |
| Conductivity X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | DO (mg/L)                         | 3.7      |        | 6,3       |            |       | 613            | 25      |          |                      | 63    |          |
| T(°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Conductivity                      | ×        | ×      | ×         | ×          | ×     | ×              | agr     | ×        | ×                    | ×     | ×        |
| DO (mg/L) 3.8 (c,6 5.6 (c,2 x x x x x x x x x x x x x x x x x x x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12593            | T (°C)                            |          |        |           |            |       |                |         |          |                      |       |          |
| DO (mg/L) 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Hd                                | 7.6      |        | 77        |            |       | 4              | 7       |          |                      | 76    |          |
| Conductivity X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | DO (mg/L)                         | 3.8      |        | 0,0       |            |       | 5.6            | \<br>\? | ,        |                      |       |          |
| T (°C)  PH 7.5 7-16 7-16 7-16 7-16 7-16 7-16 7-16 7-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | Conductivity                      | ×        | ×      | ×         | ×          | ×     | ×              | 200     | ×        | ×                    | ×     | ×        |
| 7.5 7.6 7.6 7.6 7.5 × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12609            | T (°C)                            |          |        |           |            |       |                |         | ,        |                      |       |          |
| 4.6 6.3 × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Н                                 | 7.5      |        | 7,6       |            |       | _              | 7.5     |          | /                    | 77    |          |
| X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | DO (mg/L)                         | 4.6      |        | 6.3       |            |       | 5.5            | 20      |          |                      | 7.5   |          |
| 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Conductivity                      | ×        | ×      | ×         | ×          | ×     | ×              | 380     | ×        | ×                    | ×     | ×        |
| 11/19 11/17 11/18 11/18 11/16 11/19 11/19 11/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | T (°C)                            |          |        |           |            |       |                |         |          |                      |       |          |
| 11/19 11/17 11/18 11/18 11/16 11/19 11/19 11/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Hd                                |          |        |           |            |       |                |         |          |                      | -     |          |
| 11/19 11/11 11/12 11/13 11/14 11/15 11/16 11/19 11/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | DO (mg/L)                         |          |        |           |            |       |                |         |          |                      |       |          |
| 11/19 11/11 11/12 11/13 11/14 11/15 11/16 11/17 11/18 11/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | Conductivity                      | ×        | ×      | ×         | ×          | ×     | ×              |         | ×        | ×                    | ×     | ×<br>-   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Init./Date (1999):                | 多門       | 13//11 | 11/12     | 1-77       | 19/JE | 12/22<br>12/22 | 11/16   | 11/17    | 11/1/8               | 11/19 | 11/20    |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, then weekly

Date: 12/21/99

Review. 12/2:/29 ctenychr.doc Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

|                                                                                                                                | Project: Menzie-(  | Project: Menzie-Cura & Associates | Pro                     | Project: 99 | 99033 Dea   | Dead Creek |             |             | BTR: 3        | 3615 / 22   | Test Start | 1     | 10/19/99 |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------|-------------------------|-------------|-------------|------------|-------------|-------------|---------------|-------------|------------|-------|----------|
|                                                                                                                                |                    |                                   |                         |             |             |            | Day         | of Anal     | ysis          |             |            |       |          |
|                                                                                                                                | Sample             | Parameter                         | 33                      | 34          | 35          | 36         | 37          | 38          | 39            | 40          | 41         | 42    | 43       |
|                                                                                                                                | 12548              | T (°C)                            | 7, 22<br>1, 62<br>13.62 | rifu        | 4-/0        | k ン        | ١ ٨         | トヶ          | (2)<br>(2)    | 0.50        | 1/2        | 197   | 22       |
|                                                                                                                                |                    | Hd                                |                         | 7.6         | 8           |            |             | 150         | 8             | 3           | 70/10      | 4.3   | 4.4      |
|                                                                                                                                |                    | DO (mg/L)                         |                         | 5,2         | 8.9         | 15 po      |             | 2           |               |             | 5.5        | 4-    | 37       |
|                                                                                                                                |                    | Conductivity                      | ×                       | ×           | 1/0/2       | ×          | ×           | ×           | ×             | ×           | ×          | 56/   | ×        |
|                                                                                                                                | 12550              | (°C)                              |                         |             | •           |            |             |             |               |             |            | (     |          |
|                                                                                                                                |                    | Hd                                |                         | 45          |             | 2.6        |             | 27          |               |             | 4.5        | 1     | 1        |
|                                                                                                                                |                    | DO (mg/L)                         |                         | 4,4         | 572         | 4.8        |             | 30          |               |             | 5,7        | 1     | (        |
|                                                                                                                                | _                  | Conductivity                      | ×                       | ×           | 1/000       | ×          | ×           | ×           | ×             | ×           | 336×       | )     | ×        |
|                                                                                                                                | 12551              | T (°C)                            |                         |             | A           |            |             |             |               |             |            | (     | <u> </u> |
|                                                                                                                                |                    | Hd                                |                         | 7.6         |             | 7,6        |             | 75/         |               |             | 4.5        | (     | 1        |
|                                                                                                                                |                    | DO (mg/L)                         |                         | 5.3         | 4.7         | 47         |             | /; 9        |               |             | 6.0        | 1.    | }        |
|                                                                                                                                |                    | Conductivity                      | ×                       | ×           | 15 C        | ×          | ×           | ×           | ×             | ×           | XEXE       | -     | ×        |
|                                                                                                                                | 12552              | T (9C)                            |                         |             |             |            |             |             |               |             |            |       |          |
|                                                                                                                                |                    | Hd                                |                         | 7.6         |             | 79.        |             | 7.4         |               |             | 14<br>N    | 7.4   | 4.4      |
|                                                                                                                                |                    | DO (mg/L)                         |                         | 6.7         | 7.          | <i>ن</i>   |             | 4.0)        |               |             | 4.9        | 5.4   | 1:5      |
|                                                                                                                                |                    | Conductivity                      | ×                       | ×           | 1/1/0/24    | ×          |             | ×           | ×             | ×           | ×          | 330   | ×        |
|                                                                                                                                |                    | Init./Date (1999):                | W/ki                    | <b>2</b>    | pred/Li     | 11/24      | V28/11      | 11/26       | 11/85         | 13/28       | 1100       | 11/30 | uffer    |
| Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group | Comments: Measured | temperature is a measu            |                         | a represer  | ntative bea | aker place | d within th | e test arra | ny for this t | testing gro | up.        |       |          |

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, tben weekly.

000033

|        |                       |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Day   | Day of Analysis | lysis |       |       |              |                                                                                             |
|--------|-----------------------|-------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|-------|-------|-------|--------------|---------------------------------------------------------------------------------------------|
| Sample | Parameter             | 33    | 34    | 35    | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37    | 38              | 39    | 40    | 41    | 42           | 43                                                                                          |
| 12592  | T (°C)                |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |       |       |       |              |                                                                                             |
|        | Hd                    |       | カチ    | 7     | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z Z   | 1.5             |       |       | 4.5   | 45           | 4.4                                                                                         |
|        | DO (mg/L)             |       | 63    |       | 5.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 5.7             |       |       | b.9   | ·   -        | 4                                                                                           |
|        | Conductivity A+H/Amm. | ×     | ×     | 360   | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×     | ×               | ×     | ×     |       | 350          | )<br> <br>                                                                                  |
| 12593  | T (°¢)                |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |       |       |       | À            |                                                                                             |
|        | Hd                    |       | 44    |       | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 3.2             |       |       | 7.6   | 7.5          | 7.4                                                                                         |
|        | DO (mg/L)             |       | 6.0   | 6.    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 20)             |       |       | 70    | 49           | 4                                                                                           |
|        | Conductivity          | ×     | ×     | 102   | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×     | ×               | ×     | ×     |       | 350          | × /                                                                                         |
| 12609  | T (°¢)                |       |       | )     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |       |       |       |              |                                                                                             |
|        | Hd                    |       | 5     |       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 5/2             |       |       | 7.4   | 4.3          | 7.3                                                                                         |
|        | DO (mg/L)             |       | 5.0   | 7     | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |       | 20              |       |       | 6.    | 4.4          | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ |
|        | Conductivity          | ×     | ×     | 1/25  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×     | ×               | ×     | ×     | 1     | 335          | ×                                                                                           |
|        | (၁ <sub>၇</sub> ) ၂   |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |       |       |       |              |                                                                                             |
|        | Hd                    |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |       |       |       |              |                                                                                             |
|        | DO (mg/L)             |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |       |       |       |              |                                                                                             |
|        | Conductivity          | ×     | ×     |       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×     | ×               | ×     | ×     | ×     | ,            | ×                                                                                           |
|        | Init./Date (1999):    | 11/21 | 14/23 | 11/23 | 11/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13/25 | 11/26           | 11/27 | 11/28 | 17.00 | <i>34436</i> | 12/17<br>12/17                                                                              |

Comments: Measured temperature is a measurement or a representative useasor process.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, then weekly.

And a second phone weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, then weekly.

Review: Date: 12/24/59
ctenvchr.doc
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

|        |                    |                                                  |                                         |          |       | Day   | Day of Analysis | ysis       |         |       |       |       |
|--------|--------------------|--------------------------------------------------|-----------------------------------------|----------|-------|-------|-----------------|------------|---------|-------|-------|-------|
| Sample | Parameter          | 44                                               | 45                                      | 46       | 47    | 48    | 49              | 20         | 51      | 52    | 53    | 54    |
| 12548  | T (°C)             | 12 C. 15. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10 | 1.68<br>2.68<br>1/4                     | 34       | 4.50  | 1.22  | 23.6/           | 10.00      | 42.66   |       |       |       |
|        | Hd                 |                                                  | 75                                      | <b>i</b> |       | 4'£   |                 | 44         | 4,4     |       |       |       |
|        | DO (mg/L)          |                                                  | 2,0                                     |          |       | 3.7   |                 | 2.4        | 2.4.3.6 |       |       |       |
|        | Conductivity       | ×                                                | ×                                       |          | ×     | ×     | ×               | ×          | 358     | ×     |       | ×     |
| 12550  | (°C)               |                                                  | -                                       |          |       |       |                 | <br> -<br> |         |       |       |       |
|        | Hd                 |                                                  |                                         |          |       |       |                 |            |         |       |       |       |
|        | DO (mg/L)          |                                                  |                                         |          |       |       |                 |            |         |       |       |       |
|        | Conductivity       | ×                                                | ×                                       |          | ×     | ×     | ×               | ×          | ×       | ×     |       | ×     |
| 12551  | T (°C)             |                                                  |                                         |          |       |       |                 |            |         |       |       |       |
|        | Hď                 |                                                  |                                         |          |       |       |                 |            |         |       |       |       |
|        | DO (mg/L)          |                                                  |                                         |          |       |       |                 |            |         |       |       |       |
|        | Conductivity       | ×                                                | ×                                       |          | ×     | ×     | ×               | ×          | ×       | ×     |       | ×     |
| 12552  | T (°C)             |                                                  |                                         |          | į     |       |                 |            |         |       |       |       |
|        | Hd                 |                                                  | 43                                      |          |       |       |                 |            |         |       |       |       |
|        | DO (mg/L)          |                                                  | 44                                      |          |       |       |                 |            |         |       |       |       |
|        | Conductivity       | ×                                                | ×'\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'\ |          | ×     | ×     | ×               | ×          | ×       | ×     |       | ×     |
|        | Init./Date (1999): | <del>13</del> %                                  | 12/2                                    | 12/4     | 12.55 | 12/6n | 139m            | 17/8       | 13%     | 12/10 | 12/11 | 12/12 |

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness at end of test for any samples. (\*) bid an extra manival renewal 69:30 1218 Am 13:30 JM 178 Review: Date: 12/2(1997) Ctenychr.doc Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

000031

Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

|        |                         |      |       |      |       | Day | Day of Analysis | ysis  |      |       |          |       |                      |
|--------|-------------------------|------|-------|------|-------|-----|-----------------|-------|------|-------|----------|-------|----------------------|
| Sample | Parameter               | 44   | 45    | 46   | 47    | 48  | 49              | 20    | 51   | 52    | 53       | 54    |                      |
| 12592  | T (°C)                  |      |       |      |       |     |                 |       |      |       |          |       |                      |
|        | Hd                      |      | 7.3   |      |       | 7.4 |                 |       |      |       |          |       |                      |
|        | DO (mg/L)               |      | 49    |      |       | 3.9 |                 |       |      |       |          |       |                      |
|        | Conductivity Aww. / P+H | ×    | ×     |      | ×     | 38  | ×               | ×     | ×    | ×     |          | ×     |                      |
| 12593  | T (°C)                  |      |       |      |       |     | <u> </u><br>    |       |      |       |          |       |                      |
|        | Hd                      |      | 7.3   |      |       | 7.4 | 4               |       |      |       |          |       |                      |
|        | DO (mg/L)               |      | 7,0   |      |       | 4   |                 |       |      |       |          |       |                      |
|        | Conductivity            | ×    | ×     |      | ×     | ×   |                 | ×     | ×    | ×     |          | ×     |                      |
| 12609  | τ (°C)                  |      |       |      |       |     |                 |       |      | 22.7  | 227325   |       | <u>-</u>             |
|        | Hd                      |      | 43    |      |       | 7.4 |                 | 44    |      | 7.3   | <b>├</b> |       | 1                    |
|        | DO (mg/L)               |      | 0,    |      |       | 4   |                 | 6.5   |      | 4.6   |          |       | $\omega_{\tilde{j}}$ |
|        | Conductivity            | ×    | ×     |      | ×     | ×   | ×               | ×     | ×    | ×     | 38       | *     | 360                  |
|        | T (°C)                  |      |       |      |       |     |                 |       |      |       |          |       | A THAN               |
|        | Нф                      |      |       |      |       |     |                 |       |      |       |          |       | •                    |
|        | DO (mg/L)               |      |       |      |       |     |                 |       |      |       |          |       |                      |
|        | Conductivity            | ×    | ×     |      | ×     | ×   | ×               | ×     | ×    | ×     |          | ×     |                      |
|        | Init./Date (1999):      | 12/2 | 13/3- | 42/4 | 12,53 | 12% | 13/A            | 17,78 | 12/8 | 12/19 | 12/12/2  | 12/12 | 13/13 JG             |

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness at end of test for any samples.

Date. 14/21/99

Review: Date: 17/21/59 clenvchr.doc Date: 18/21/59 Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

# Midge (Chironomus tentans) Chronic Toxicity Test Day 20 Survival and Dry Weight Data

Client: Menzie-Cura & Assoc. Project: 99033 Dead Creek BTR: 3529 Test Start: October 20, 1999 Day 20: November 9, 1999 Ashed Larvae Ashed Pan and 11/8/99 Pan Wt. Ashed preserve Crucible Initial # d? Ashed + Larval Larval Sample Repl. Larvae # Alive Init. # Y/N Weighed Pan Wt. Wt. Dry Wt. 12611 OP OL 12 M Υ 12 J OPOL TmK 12 OPOL X TM 12 L OPOL 1 Tm 10P OL 12612 12 TM J 12 m OP OL OP OL K 12 7M 12 12613 12 TmJ 12 TM 12 K OP OL TM 12 M 12614 12 OPOL TM 12 m OP OL K OP 3L 12 2251.81 2,238,97 TM2,240,30 L 12 M 196L 12622 12 2 7m 211297 2,139,9012,123,57 12 J TM Y 2,396,642,387,54 1P3L 3 12 Y K aP5L TM 2, 286.58 2,303,402,289.39 4 12 13,313,25 2,322,182,315,19 L apail TM

| Date / Time / Init. Larvae in oven: 11/26 16,45 | Date / Time / Init. Larvae out of oven: 11/27 15:00 -16 |
|-------------------------------------------------|---------------------------------------------------------|
| Date / Time / Init. Larvae in furnace: 11/27 13 | Date / Time / Init. Larvae out of furnace:              |
| Balance QC: Initial (20 mg = 2coc, 0 4) F       | Final (20 mg = \$100.06 ) Balance Asset #:              |
| Date/time In 11/26 √ Temp(°C) So Init. ≤        | Date/time out 11/27; Jemp(°C) 90° Init.                 |
| / \t'.                                          |                                                         |
| Comments                                        |                                                         |

Comments:

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3629 Test Start: 10/20/99 Sample / Repl. Response 21 22 23 24 25 26 27 28 29 31 30 # Males 12611 A emerged Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12611 B emerged Male Time to Mortality (days) # Females Females Time to Mortality (days) Cumulative number emerged # Egg Case # Eggs / Time to hatch / # hatched 12611 C Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

11/14

11/15

11/16

11/17

11/18

11/19

11/13

Review: Date: 12/21/95
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

11/10

11/11

11/12

Init./Date

(1999)

ctdays21-31

11/20

Project: 99033 M-C Dead Creek BTR: 3629 Test Start: 10/20/99

| Sample / Repl. | Response                    | 21           | 22                                               | 23             | 24                                               | 25             | 26                                               | 27           | 28           | 29           | 30           | 31             |
|----------------|-----------------------------|--------------|--------------------------------------------------|----------------|--------------------------------------------------|----------------|--------------------------------------------------|--------------|--------------|--------------|--------------|----------------|
| 12611 D        | # Males<br>emerged          |              |                                                  | <del> </del>   |                                                  |                | <del> </del>                                     |              |              |              |              |                |
|                |                             | <u> </u>     | <del> </del>                                     | <del></del>    | <b> </b>                                         | <del> </del>   | ļ                                                | ļ            | <b>!</b>     | <b></b>      | ļ            | ļ              |
|                | Male Time to<br>Mortality   | i            | 1                                                |                |                                                  | 1              | 1                                                |              |              |              | 1            |                |
|                | (days)                      |              |                                                  | <u> </u>       |                                                  | <u> </u>       |                                                  |              | <u> </u>     |              |              |                |
|                | # Females                   |              | ]                                                | ]              | 1                                                |                |                                                  |              | ]            |              |              |                |
|                | emerged                     | )            | }                                                | 1              | }                                                |                | ļ                                                | 1            | ŀ            |              | }            | ł              |
|                | Females                     |              |                                                  | <del> </del>   | <del> </del>                                     | <b></b>        | <del>                                     </del> |              | <del></del>  |              |              |                |
|                | Time to Mortality           |              |                                                  | 1              | Í                                                | [              |                                                  | 1            | İ            | l            | Ì            |                |
|                | (days)<br>Cumulative        | <del> </del> | <del></del>                                      | <del></del>    | <del> </del>                                     | <del> </del>   | <del> </del>                                     |              | <del> </del> | <del> </del> | <del> </del> | <del> </del>   |
|                | number                      | }            | Ì                                                | İ              | }                                                | 1              |                                                  | }            |              | }            | }            |                |
|                | emerged                     |              | ļ                                                |                | <u> </u>                                         | <u> </u>       | <u> </u>                                         | <u> </u>     | <u> </u>     | <u> </u>     |              | ļ              |
|                | # Pairings                  |              |                                                  |                |                                                  |                |                                                  | }            |              |              |              |                |
|                | # Egg Case                  |              |                                                  | <del> </del>   |                                                  | 1              |                                                  |              |              |              |              |                |
|                |                             |              |                                                  |                |                                                  |                |                                                  |              |              |              |              |                |
|                | # Eggs /<br>Time to hatch / |              | 1                                                | 1              | ĺ                                                | 1              | l                                                |              | 1            |              |              | l              |
|                | # hatched                   |              | 1                                                | ļ              | •                                                |                | 1                                                |              | ļ            |              | İ            | 1              |
| 12611 E        | # Males<br>emerged          |              |                                                  |                |                                                  |                |                                                  |              |              |              |              |                |
|                | Male Time to                |              | <del> </del>                                     | <del> </del>   | <del> </del>                                     | <del> </del>   | <del> </del>                                     | <del> </del> | <del> </del> | <u> </u>     |              |                |
|                | Mortality                   |              | l                                                | 1              | {                                                | ł              | l                                                | <u> </u>     |              |              | ļ            |                |
|                | (days)<br># Females         |              | <del> </del>                                     | <del> </del>   | <del> </del>                                     | <del>}</del> - | <del></del>                                      | <del> </del> | ļ            | <del> </del> | ļ            | <del> </del>   |
|                | # remales<br>emerged        |              |                                                  |                |                                                  | }              |                                                  | }            | }            |              |              | }              |
|                | Females                     |              | <del>                                     </del> | 1              | <del>                                     </del> | <u> </u>       |                                                  |              |              |              |              |                |
|                | Time to Mortality (days)    |              | }                                                | }              |                                                  | ļ              | }                                                | ]            | j            | ]            | )            | }              |
|                | Cumulative                  |              | <del> </del>                                     | <del> </del>   | <del> </del>                                     | <del> </del>   | <del> </del>                                     | <del> </del> | }            | <del> </del> | <del> </del> | <del> </del>   |
|                | number<br>emerged           |              |                                                  |                |                                                  |                |                                                  |              |              |              |              |                |
|                | # Pairings                  |              |                                                  |                |                                                  |                |                                                  |              |              | j            |              |                |
|                | # Egg Case                  | <del></del>  |                                                  |                |                                                  |                |                                                  |              |              |              |              |                |
|                | <del></del>                 |              | <del> </del>                                     | ļ              |                                                  | ļ              | ļ                                                |              | <b> </b>     |              |              |                |
|                | # Eggs /<br>Time to hatch / |              |                                                  | 1              | ĺ                                                | İ              |                                                  | l            |              | i            | ł            |                |
|                | # hatched                   |              |                                                  | }              | Ì                                                | ł              |                                                  |              | ŀ            |              | ł            | }              |
| 12611 F        | # Males                     |              |                                                  |                |                                                  |                |                                                  |              |              |              |              |                |
| 120117         | emerged                     |              |                                                  |                | j                                                |                | l                                                |              | ļ            |              |              | 1              |
|                | Male Time to                |              | <del> </del>                                     | <del> </del> - | <del> </del>                                     | <del> </del>   |                                                  | <del> </del> | <del> </del> |              |              | <del> </del>   |
|                | Mortality (                 |              | ĺ                                                | -              | l                                                | İ              | 1                                                | 1            | }            |              | <b>!</b>     | 1              |
|                | (days)                      |              | <del> </del>                                     | ļ              | ļ                                                | <del> </del>   | <del> </del>                                     | <del> </del> | <b> </b>     | ļ            | <b></b>      | <u> </u>       |
|                | # Females<br>emerged        |              |                                                  | }              |                                                  | }              |                                                  |              |              |              |              | i              |
|                | Females                     |              | <del> </del>                                     | <del> </del>   | <del>}</del>                                     | <del> </del>   | <del> </del>                                     | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del> </del> - |
|                | Time to Mortality           |              | ł                                                | ł              | ļ                                                |                |                                                  | ]            |              | }            | }            |                |
|                | (days)                      |              | <del>  </del>                                    | <del> </del>   | <del> </del>                                     | <del> </del>   | <del> </del>                                     | <del> </del> | <del> </del> | <b></b>      | <u> </u>     | <b></b> -      |
|                | Cumulative<br>number        |              | }                                                |                |                                                  | 1              |                                                  |              |              | [            | {            |                |
|                | emerged                     |              |                                                  |                | [                                                | L              |                                                  |              | L            |              |              |                |
|                | # Pairings                  |              |                                                  |                |                                                  |                |                                                  |              |              |              |              |                |
|                | # Egg Case                  |              |                                                  |                |                                                  |                |                                                  |              |              |              |              |                |
|                | # Eggs /<br>Time to hatch / |              | <del> </del>                                     |                | <del> </del>                                     | <del> </del>   | <del> </del>                                     | <del> </del> | <del> </del> |              | <del> </del> |                |
| Ţ              | Time to hatch /             |              |                                                  | 1              | 1                                                | }              | }                                                | }            | 1            | 1            | ł            |                |
|                | # hatched                   |              |                                                  |                | <u></u> _                                        | <u> </u>       |                                                  | 1            | <u> </u>     | 1            |              |                |
|                |                             | 11/10        | 11/11                                            | 11/12          | 11/13                                            | 11/14          | 11/15                                            | 11/16        | 11/17        | 11/18        | 11/19        | 11/20          |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: Date: 12/21/99 Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3629 Test Start: 10/20/99

| Sample / Repl. | Response                                 | 21             | 22    | 23    | 24           | 25    | 26           | 27           | 28           | 29           | 30    | 31           |
|----------------|------------------------------------------|----------------|-------|-------|--------------|-------|--------------|--------------|--------------|--------------|-------|--------------|
| 12611 G        | # Males<br>emerged                       |                |       | -     | 1            |       | <del> </del> | <del> </del> | <del> </del> |              |       |              |
|                | Male Time to<br>Mortality<br>(days)      |                |       |       |              |       |              |              | 1            |              |       | <del> </del> |
|                | # Females<br>emerged                     |                |       |       |              |       |              |              |              |              |       |              |
|                | Females Time to Mortality (days)         |                |       |       |              |       |              |              |              |              |       |              |
|                | Cumulative<br>number<br>emerged          |                |       |       |              |       |              |              |              |              |       |              |
|                | # Pairings                               |                |       |       |              |       |              |              |              |              |       |              |
|                | # Egg Case                               |                |       |       |              |       |              |              |              |              |       |              |
|                | # Eggs /<br>Time to hatch /<br># hatched |                |       |       |              |       |              |              | <del> </del> | <del> </del> |       |              |
| 12611 H        | # Males<br>emerged                       |                |       |       |              |       |              |              |              |              |       |              |
|                | Male Time to<br>Mortality<br>(days)      | - <del>-</del> |       |       |              |       |              |              | <del> </del> |              |       |              |
|                | # Females<br>emerged                     |                |       |       |              |       |              |              |              |              |       |              |
|                | Females<br>Time to Mortality<br>(days)   |                |       |       |              |       |              |              |              |              |       |              |
|                | Cumulative<br>number<br>emerged          |                |       |       |              |       |              |              |              |              |       |              |
|                | # Pairings                               |                |       |       |              |       |              |              |              |              |       |              |
|                | # Egg Case                               |                |       |       |              |       |              |              |              |              |       |              |
|                | # Eggs /<br>Time to hatch /<br># hatched |                |       |       | <del> </del> |       |              |              | <del> </del> |              |       |              |
|                | init./Date<br>(1999)                     | 11/10          | 11/11 | 11/12 | 11/13        | 11/14 | 11/15        | 11/16        | 11/17        | 11/18        | 11/19 | 11/2         |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

| Comments: |      |          |
|-----------|------|----------|
|           |      |          |
|           |      | <br>     |
|           | <br> | <br>     |
|           | <br> | <br>···· |
|           | <br> | <br>     |
|           |      | <br>     |
|           | <br> |          |
|           | <br> |          |
|           |      |          |
|           |      |          |
|           |      |          |

Review: \_\_\_\_\_ Date: /2/2//99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

 Project: 99033 M-C Dead Creek
 BTR: 3629
 Test Start: 10/20/99

 Sample / Repl.
 Response
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42

| Sample / Repl. | Response                    | 32          | 33           | 34                                                 | 35                                               | 36           | 37                                               | 38                                      | 39             | 40                                               | 41                                               | 42           |
|----------------|-----------------------------|-------------|--------------|----------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|-----------------------------------------|----------------|--------------------------------------------------|--------------------------------------------------|--------------|
| 12611 A        | # Males<br>emerged          |             |              |                                                    |                                                  |              |                                                  |                                         | <del> </del>   |                                                  | -                                                |              |
| ه میں          | Male Time to                |             | +            | +                                                  | +                                                | <del> </del> | <del> </del>                                     | <del> </del>                            | <del> </del>   | <del> </del> -                                   | <del> </del>                                     | <del> </del> |
|                | Mortality                   |             |              | ļ                                                  | -                                                |              |                                                  | {                                       | İ              |                                                  | ł                                                |              |
|                | (days)<br># Females         |             | <del> </del> | -                                                  | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del></del>                             | <del> </del> - | <del> </del>                                     |                                                  | ļ            |
|                | emerged                     |             |              |                                                    | }                                                |              | }                                                |                                         |                | 1                                                |                                                  | }            |
|                | Females                     |             | <del> </del> | <del>†                                      </del> | +                                                | <del> </del> | <del> </del>                                     | <del> </del>                            |                | <del>                                     </del> |                                                  | <del> </del> |
|                | Time to Mortality           | l           |              |                                                    | ĺ                                                |              |                                                  |                                         | 1              |                                                  |                                                  |              |
|                | (days)<br>Cumulative        |             | <del> </del> |                                                    | <del></del>                                      | <del> </del> | <del></del>                                      | <del> </del>                            | <del> </del>   | <del> </del>                                     | ļ                                                |              |
|                | number                      |             | -            |                                                    |                                                  | 1            | İ                                                | ł                                       |                |                                                  |                                                  | 1            |
|                | emerged                     | <del></del> | <del> </del> |                                                    | <del> </del>                                     |              | <del> </del>                                     | ļ                                       | <del> </del>   |                                                  | 1                                                |              |
|                | # Pairings                  |             |              |                                                    |                                                  |              |                                                  |                                         |                |                                                  |                                                  |              |
|                | # Egg Case                  |             |              |                                                    |                                                  |              |                                                  |                                         |                |                                                  |                                                  |              |
|                | # Eggs /                    |             | <del> </del> | <del></del>                                        | <del></del>                                      | <del> </del> | }                                                | <del></del>                             | <del>}</del>   | <del> </del>                                     | <del> </del>                                     | <del> </del> |
|                | Time to hatch /             |             |              |                                                    | 1                                                |              |                                                  |                                         |                |                                                  | İ                                                | İ            |
|                | # hatched                   |             |              |                                                    | 1                                                | <u> </u>     |                                                  |                                         | <u> </u>       | <u> </u>                                         |                                                  |              |
| 12611 B        | # Males<br>emerged          |             |              |                                                    |                                                  |              |                                                  |                                         |                |                                                  |                                                  | }            |
|                | Male Time to                |             | Ť T          | 1                                                  | 1                                                |              | 1                                                | † — — — — — — — — — — — — — — — — — — — |                |                                                  | <del>                                     </del> |              |
|                | Mortality<br>(days)         |             |              |                                                    |                                                  |              | ĺ                                                | 1                                       | 1              | 1                                                |                                                  |              |
|                | # Females                   |             | <del>†</del> | <del> </del>                                       | <del> </del>                                     | <del> </del> | <del>                                     </del> | <del> </del> -                          | <del> </del>   | <del> </del>                                     | <del>                                     </del> | <del> </del> |
|                | emerged                     |             |              |                                                    |                                                  |              |                                                  |                                         |                |                                                  | i<br>I                                           |              |
|                | Females                     |             | <del> </del> | <del> </del>                                       | <del> </del>                                     | -            | <del> </del>                                     | <del> </del>                            | <u> </u>       | <del> </del>                                     | <del> </del>                                     |              |
|                | Time to Monality            |             |              |                                                    | 1                                                | ŀ            |                                                  |                                         | 1              | ľ                                                |                                                  | 1            |
|                | (days)<br>Cumulative        |             | <del> </del> | <del> </del>                                       | <del> </del>                                     | <del>}</del> | 1                                                | <del> </del>                            | <del> </del>   | <del> </del>                                     | <u> </u>                                         | 1            |
|                | number                      |             |              |                                                    | 1                                                |              |                                                  |                                         |                | 1                                                |                                                  | ł            |
|                | emerged                     |             | ļ            | ļ                                                  |                                                  | ļ            | <u> </u>                                         |                                         | ļ              | ļ                                                |                                                  |              |
|                | # Pairings                  |             |              |                                                    |                                                  |              |                                                  |                                         |                |                                                  |                                                  |              |
|                | # Egg Case                  |             |              |                                                    |                                                  |              |                                                  |                                         |                |                                                  |                                                  |              |
|                | # Eggs /                    |             | <del> </del> | <del> </del> -                                     | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del></del>                             | <del> </del> - | <del> </del>                                     | <del> </del>                                     | <del> </del> |
|                | Time to hatch /             |             | İ            |                                                    |                                                  |              |                                                  | -                                       |                |                                                  |                                                  |              |
|                | # hatched                   |             | -            | <del> </del>                                       | <del> </del>                                     | <del> </del> | <del>                                     </del> |                                         |                |                                                  | <u> </u>                                         | <u> </u>     |
| 12611 C        | # Males<br>emerged          |             | \            |                                                    |                                                  | }            | }                                                | Í                                       | }              | 1                                                | 1                                                | 1            |
|                | <u> </u>                    |             | ļ            |                                                    | ļ                                                | ļ            | ļ                                                | <u> </u>                                |                | ļ                                                | <u> </u>                                         |              |
|                | Maie Time to<br>Mortality   |             | 1            |                                                    |                                                  | 1            | 1                                                | 1                                       |                |                                                  |                                                  | 1            |
|                | (days)                      |             |              |                                                    |                                                  | ŀ            | 1                                                | ł                                       |                |                                                  |                                                  | İ            |
|                | # Females<br>emerged        |             |              |                                                    |                                                  |              |                                                  |                                         |                |                                                  |                                                  |              |
|                | Females                     |             | <del></del>  | <del> </del>                                       | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del>                            | <del> </del>   | <del></del>                                      | -                                                | <u> </u>     |
|                | Time to Mortality           |             | 1            |                                                    |                                                  |              |                                                  | i                                       |                |                                                  |                                                  |              |
|                | (days)                      |             |              |                                                    | <u> </u>                                         |              | 1                                                | <u> </u>                                | 1              | <u> </u>                                         |                                                  |              |
|                | Cumulative                  |             |              |                                                    |                                                  |              |                                                  |                                         |                |                                                  |                                                  |              |
|                | number<br>emerged           |             | 1            | 1                                                  |                                                  | 1            |                                                  | Ĭ                                       | 1              |                                                  |                                                  | 1            |
|                | # Pairings                  |             |              |                                                    | †                                                |              | 1                                                | <del> </del>                            |                |                                                  |                                                  |              |
|                | # Canaligs                  |             |              | ļ                                                  | <u> </u>                                         | ļ            | <u> </u>                                         |                                         | <u> </u>       | <u> </u>                                         | <u> </u>                                         | <u> </u>     |
|                | # Egg Case                  |             |              |                                                    |                                                  |              |                                                  |                                         |                |                                                  |                                                  |              |
|                | # Eggs /<br>Time to hatch / |             |              |                                                    | <del>                                     </del> |              |                                                  |                                         |                |                                                  |                                                  |              |
|                | # hatched                   |             |              |                                                    | <u> </u>                                         |              |                                                  |                                         |                |                                                  |                                                  |              |
|                |                             |             |              |                                                    |                                                  |              |                                                  |                                         |                | 1                                                | 1                                                | 1            |
|                | Init./Date                  | 11/21       | 11/22        | 11/23                                              | 11/24                                            | 11/25        | 11/26                                            | 11/27                                   | 11/28          | 11/29                                            | 11/30                                            | 12/1         |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

ctdays32-42

000937

Project: 99033 M-C Dead Creek BTR: 3629 Test Start: 10/20/99

| Sample / Repl. | Response                     | 252            | 233          | 234          | 24                                               | 25           | -28                                              | -233                                             | 28                                               | 29           | <del>30</del><br>41 | 李                                                |
|----------------|------------------------------|----------------|--------------|--------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|---------------------|--------------------------------------------------|
| 12611 D        | # Males<br>emerged           |                |              |              | ./2                                              |              |                                                  |                                                  |                                                  |              |                     |                                                  |
|                | Male Time to                 | <del> </del> - |              | <del> </del> | <del> </del>                                     | <del> </del> | <del> </del>                                     |                                                  |                                                  | <del></del>  | <del> </del> -      | <del> </del>                                     |
|                | Mortality                    | ļ              | 1            |              |                                                  |              | j                                                |                                                  | j                                                |              | <u> </u>            |                                                  |
|                | (days)                       |                |              |              | ļ <u>.</u>                                       | <u> </u>     |                                                  |                                                  | <u> </u>                                         |              |                     | <u> </u>                                         |
|                | # Females<br>emerged         |                |              |              |                                                  |              |                                                  |                                                  |                                                  |              |                     |                                                  |
|                | Females Time to Monality     |                |              |              |                                                  |              |                                                  | <del> </del>                                     |                                                  |              |                     |                                                  |
|                | (days)                       |                |              |              | ļ                                                | ļ            |                                                  |                                                  |                                                  | 1            |                     |                                                  |
|                | number                       | Ì              | ļ            |              | Ĭ                                                |              |                                                  |                                                  |                                                  |              | 1                   | 1                                                |
|                | emerged                      |                |              |              |                                                  |              | -                                                | -                                                | <u> </u>                                         |              |                     | -                                                |
|                | # Pairings                   |                |              |              |                                                  |              |                                                  |                                                  |                                                  |              |                     |                                                  |
|                | # Egg Case                   |                |              |              |                                                  |              |                                                  |                                                  |                                                  |              |                     |                                                  |
|                | # Eggs /                     |                | <del> </del> |              | <del> </del> -                                   | ļ            |                                                  | <del> </del>                                     | <u> </u>                                         |              |                     | <del> </del>                                     |
|                | Time to hatch /              |                |              |              | [                                                |              |                                                  |                                                  |                                                  |              | 1                   |                                                  |
|                | # hatched                    |                |              |              |                                                  |              | <del> </del>                                     | <u> </u>                                         |                                                  |              |                     | ļ                                                |
| 12611 E        | # Males<br>emerged           |                |              |              |                                                  |              |                                                  |                                                  |                                                  |              |                     |                                                  |
|                | Male Time to<br>Mortality    |                |              |              |                                                  |              |                                                  |                                                  |                                                  |              |                     |                                                  |
|                | (days)                       |                |              |              | l                                                |              | <u> </u>                                         |                                                  |                                                  |              |                     |                                                  |
|                | # Females<br>emerged         |                |              |              |                                                  | al .         |                                                  |                                                  |                                                  | }            |                     |                                                  |
|                | Females<br>Time to Mortality |                |              |              |                                                  |              | l                                                |                                                  | <u></u>                                          |              |                     |                                                  |
|                | (days)                       |                |              |              |                                                  |              | L                                                | ļ                                                | <u> </u>                                         |              |                     | <u> </u>                                         |
|                | Cumulative<br>number         |                |              |              |                                                  | 1            |                                                  |                                                  |                                                  |              |                     | T                                                |
|                | emerged                      |                |              |              |                                                  |              |                                                  |                                                  |                                                  |              |                     | <u> </u>                                         |
|                | # Pairings                   |                |              |              |                                                  |              |                                                  |                                                  |                                                  |              |                     |                                                  |
|                | # Egg Case                   |                |              |              |                                                  |              |                                                  |                                                  |                                                  |              |                     |                                                  |
|                | # Eggs /                     |                |              |              |                                                  |              | <del> </del> -                                   | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del>        | <del> </del>                                     |
|                | Time to hatch /              |                |              |              | 1                                                | [            |                                                  | ľ                                                |                                                  | 1            |                     | Ĭ                                                |
|                | # hatched                    |                |              |              |                                                  |              |                                                  |                                                  |                                                  |              | ļ                   | <u> </u>                                         |
| 12611 F        | # Males<br>emerged           |                |              | ,            | !                                                |              |                                                  |                                                  |                                                  | <u> </u><br> |                     |                                                  |
|                | Male Time to<br>Mortality    |                |              |              |                                                  |              |                                                  |                                                  |                                                  |              |                     | <del>                                     </del> |
|                | (days)                       |                |              |              |                                                  |              |                                                  |                                                  |                                                  |              |                     |                                                  |
|                | # Females<br>emerged         |                |              |              |                                                  |              |                                                  |                                                  | 1                                                |              |                     |                                                  |
|                | Females                      |                |              |              |                                                  | <u> </u>     |                                                  |                                                  | <u> </u>                                         |              | <del> </del>        | ļ                                                |
|                | Time to Mortality<br>(days)  |                |              |              |                                                  |              |                                                  |                                                  | l                                                |              |                     |                                                  |
|                | Cumulative                   |                |              |              | <del>                                     </del> | <del> </del> | <del></del>                                      | <del> </del>                                     | <del> </del>                                     | ·            | <del> </del>        | <del>                                     </del> |
|                | number                       |                |              | ĺ            | (                                                | İ            | 1                                                |                                                  | į                                                |              | (                   | 1                                                |
|                | emerged                      |                |              |              | <del>                                     </del> |              | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> | <del> </del> | <del> </del> -      | <del> </del>                                     |
|                | # Pairings                   |                |              |              |                                                  |              |                                                  |                                                  | _                                                |              |                     |                                                  |
|                | # Egg Case                   |                |              |              |                                                  |              |                                                  |                                                  |                                                  |              |                     |                                                  |
|                | # Eggs /                     | <del></del>    |              |              | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del>                                     | 1                                                | <del> </del> | <del> </del>        | <del> </del>                                     |
|                | Time to hatch /<br># hatched |                |              |              | -                                                |              |                                                  | [                                                |                                                  |              |                     |                                                  |
| <del></del>    | Init./Date<br>(1999)         | 11/21          | 11/22        | 11/23        | 11/24                                            | 11/25        | 11/26                                            | 11/27                                            | 11/28                                            | 11/29        | 11/30               | 12/1                                             |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Correction

Review: Date: 12/21/55

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays32-42

| Mai Mai Mai Mai Mai Mai Mai Mai Mai Mai | Males merged e Time to fortality (days) emales merged | 21 37  | 22<br>- 33                                       | -25<br>-34                                       | 24                                               | +            | 1                                                |                                                  |              |                |                                       |           |
|-----------------------------------------|-------------------------------------------------------|--------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------|----------------|---------------------------------------|-----------|
| Mai Mai Mai Mai Mai Mai Mai Mai Mai Mai | merged e Time to fortality (days) emales              |        | <u> </u>                                         | 1                                                |                                                  | 25<br>36     | 26<br>37                                         | 27<br>38                                         | 28<br>39     | 200            | 30                                    | 42        |
| #F                                      | tortality<br>(days)<br>emales                         |        |                                                  |                                                  |                                                  |              |                                                  |                                                  |              |                |                                       |           |
| #F                                      | (days)<br>emales                                      |        | 1                                                |                                                  |                                                  | 1            |                                                  |                                                  |              |                |                                       |           |
| e                                       |                                                       |        |                                                  |                                                  | <u> </u>                                         | <u> </u>     |                                                  |                                                  |              |                |                                       |           |
| F                                       |                                                       |        |                                                  |                                                  |                                                  |              |                                                  |                                                  |              |                |                                       |           |
| Time                                    | emales<br>to Mortality<br>(days)                      |        |                                                  |                                                  |                                                  |              |                                                  |                                                  |              |                |                                       |           |
| Cu                                      | mulative                                              |        | <del>                                     </del> | <del>                                     </del> | <del> </del>                                     | <del> </del> | <del>                                     </del> | <del>                                     </del> | <del> </del> | <del> </del>   |                                       | <b> </b>  |
|                                         | nerged<br>merged                                      |        | <u> </u>                                         | <u> </u>                                         | <u> </u>                                         | <u> </u>     | <u> </u>                                         |                                                  |              | ļ              | · · · · · · · · · · · · · · · · · · · |           |
| #                                       | Pairings                                              |        |                                                  |                                                  |                                                  | _            |                                                  |                                                  | }            |                |                                       |           |
| # E                                     | gg Case                                               |        |                                                  |                                                  |                                                  |              |                                                  |                                                  |              |                |                                       |           |
|                                         | Eggs /<br>to hatch /                                  |        |                                                  | <del>                                     </del> | <del>                                     </del> | <del> </del> |                                                  | · ·                                              |              |                |                                       |           |
| #1                                      | natched                                               |        |                                                  |                                                  |                                                  |              | <u> </u>                                         | <u> </u>                                         | Ĺ            | <u></u>        |                                       |           |
|                                         | Males<br>nerged                                       |        |                                                  |                                                  |                                                  |              |                                                  |                                                  |              |                | -                                     |           |
| M                                       | e Time to<br>lortality<br>(days)                      |        |                                                  |                                                  |                                                  |              |                                                  |                                                  |              |                |                                       |           |
| # F                                     | emales<br>nerged                                      |        |                                                  |                                                  |                                                  |              |                                                  |                                                  |              | 1              |                                       |           |
| Time                                    | emales<br>to Mortality<br>days)                       |        |                                                  |                                                  |                                                  |              |                                                  |                                                  |              | 5d12/4         |                                       |           |
| Cui                                     | mulative                                              |        | ļ                                                | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del>                                     | †                                                |              | <del> </del>   |                                       | 1         |
|                                         | nerged                                                |        | ļ                                                | <u></u>                                          | <del> </del>                                     | <del> </del> |                                                  | <b></b>                                          | ļ            | ļ              |                                       | <u> </u>  |
| # 1                                     | Pairings                                              |        |                                                  |                                                  |                                                  |              | <u> </u>                                         |                                                  |              |                |                                       |           |
| # E                                     | gg Case                                               |        |                                                  |                                                  |                                                  |              |                                                  |                                                  |              |                |                                       |           |
|                                         | Eggs /<br>to hatch /                                  |        | <del> </del>                                     |                                                  | <u> </u>                                         | -            |                                                  | <del> </del>                                     |              | <del> </del> - |                                       |           |
| # h                                     | natched                                               |        |                                                  |                                                  |                                                  |              | <u> </u>                                         |                                                  |              |                |                                       |           |
|                                         | /Date<br>999)                                         | 1/21   | 11/22                                            | 11/23                                            | 11/24                                            | 11/25        | 11/26                                            | 11/27                                            | 11/28        | 17/29          | 11/30                                 | 12/1      |
| nergence scoring:                       | Record                                                | any pu | ipae wh                                          | ich die (                                        | D) before                                        | e emera      | ence. D                                          | = dead                                           | for flies    |                | nerge bu                              | it are no |

Review: \_\_\_\_\_ Date: 12/21/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays32-42

Midge (Chironomus tentans) Chronic Toxicity Test Biological Monitoring BTR: 3629 Project: 99033 M-C Dead Creek Test Start: 10/20/99 Sample / Repl. Response 43 44 45 46 47 48 49 53 50 51 52 # Males 12611 A emergea Male Time to Mortality (days) # Females 0 L emerged Females Time to Mortality (days) Cumulative emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12611 B emerged Male Time to Mortality (days) ΟL emerged Females Time to Mortality (days) 126 Cumulative number emergeo # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12611 C emerged Male Time to Mortality (days) OL

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

12/5

08

n676

12/6

12/7

12/8

12/9

12/10

Review: Date.

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

12/3

12/4

emerged Females

Time to Mortality (days) Cumulative

number emerged # Pairings

# Egg Case

# Eggs / Time to hatch /

Init./Date |12/2

ctdays43-53

12/12

12/11

Project: 99033 M-C Dead Creek BTR: 3629 Test Start: 10/20/99

| Sample / Repl. | Response                                 | 43   | 44             | 45           | 46           | 47           | 48           | 49                                               | 50                                               | 51                                                 | 52           | 53                                               |
|----------------|------------------------------------------|------|----------------|--------------|--------------|--------------|--------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------|--------------------------------------------------|
| 12611 D        | # Males<br>emerged                       |      |                |              | -            |              |              |                                                  |                                                  |                                                    |              |                                                  |
|                | Male Time to<br>Mortality<br>(days)      |      |                |              | <del> </del> |              |              |                                                  |                                                  |                                                    |              |                                                  |
|                | # Females                                |      | <del> </del>   | <del></del>  | <del> </del> |              |              | <del> </del>                                     | <del> </del>                                     | <del>                                     </del>   |              | <del> </del>                                     |
|                | emerged                                  |      |                |              |              | 06           |              |                                                  |                                                  |                                                    |              |                                                  |
|                | Females<br>Time to Mortality<br>(days)   |      |                |              |              | OP           |              |                                                  |                                                  |                                                    |              |                                                  |
|                | Cumulative                               |      |                |              |              | 12/1         |              | <u> </u>                                         | <del>                                     </del> | <del> </del>                                       |              |                                                  |
|                | number<br>emerged                        |      |                |              |              | 12/6-5       |              |                                                  | <u> </u>                                         |                                                    |              |                                                  |
|                | # Pairings                               |      |                |              |              |              |              |                                                  |                                                  |                                                    |              |                                                  |
|                | # Egg Case                               |      |                |              |              |              |              |                                                  |                                                  |                                                    |              |                                                  |
|                | # Eggs /<br>Time to hatch /<br># hatched |      |                |              |              |              |              |                                                  |                                                  |                                                    |              |                                                  |
| 12611 E        | # Males<br>emerged                       |      |                |              |              |              |              |                                                  |                                                  |                                                    |              |                                                  |
|                | Male Time to<br>Mortality                |      |                |              |              | <del> </del> |              |                                                  |                                                  |                                                    |              |                                                  |
|                | (days)<br># Females                      |      | <del> </del> - | <del> </del> | <del></del>  | <del> </del> | <del> </del> | <del>                                     </del> | <del> </del>                                     | <del> </del>                                       | <del> </del> | <del> </del>                                     |
|                | emerged                                  |      |                |              |              | OL           | <u> </u>     |                                                  |                                                  |                                                    |              |                                                  |
|                | Females                                  |      |                |              |              | 4 70         |              |                                                  |                                                  |                                                    |              |                                                  |
|                | Time to Mortality (days)                 |      |                |              |              | DT           | ļ            |                                                  |                                                  |                                                    | 1            |                                                  |
|                | Cumulative                               |      |                |              |              | 1            | i            | 1                                                |                                                  | Ī                                                  |              |                                                  |
|                | number<br>emerged                        |      |                |              |              | 176JG        | +            |                                                  |                                                  |                                                    |              |                                                  |
|                | # Pairings                               |      |                |              |              | 1 1 9 3      | <u> </u>     |                                                  |                                                  |                                                    |              |                                                  |
|                | # Egg Case                               |      |                |              |              |              |              |                                                  |                                                  |                                                    |              |                                                  |
|                |                                          |      | <u> </u>       | ļ            |              |              | ļ            |                                                  | <u> </u>                                         | <del> </del>                                       |              | <del>}</del>                                     |
|                | # Eggs /<br>Time to hatch /              |      |                |              |              |              |              |                                                  |                                                  |                                                    | }            |                                                  |
|                | # hatched                                |      |                | <u> </u>     |              |              |              |                                                  |                                                  |                                                    |              | <u> </u>                                         |
| 12611 F        | # Males<br>emerged                       |      |                |              |              |              |              |                                                  | -                                                |                                                    |              |                                                  |
|                | Male Time to<br>Mortality                |      |                |              |              | 1.           |              |                                                  |                                                  |                                                    |              |                                                  |
|                | (days)<br># Femaies                      |      | <del> </del> - | <del> </del> |              | la i         |              |                                                  | <del> </del>                                     | <del> </del>                                       |              | ļ                                                |
|                | emerged                                  |      |                |              |              | 7            |              |                                                  |                                                  |                                                    |              |                                                  |
|                | Females<br>Time to Monality<br>(days)    |      |                |              |              | OP           |              |                                                  |                                                  |                                                    |              |                                                  |
|                | Cumulative                               |      | <u> </u>       | +            | †            | 1-1,         | <del> </del> | <del>                                     </del> | +                                                | <del>†                                      </del> | <del> </del> | <del>                                     </del> |
|                | number<br>emerged                        |      | <u> </u>       | <u> </u>     | ļ            | 12/646       | <u> </u>     | <u> </u>                                         |                                                  |                                                    | ļ            |                                                  |
|                | # Pairings                               |      |                |              |              |              |              |                                                  |                                                  |                                                    |              |                                                  |
|                | # Egg Case                               |      |                |              |              |              |              |                                                  |                                                  |                                                    |              |                                                  |
|                | # Eggs /<br>Time to hatch /              |      |                |              | 1            |              |              | -                                                |                                                  |                                                    |              |                                                  |
|                | # hatched                                | 10/0 | 10/0           | 10/4         | 140/5        | 100          | 4077         | 14010                                            | 140'0                                            | 140/40                                             | 10/11        | 4014                                             |
|                | Init./Date<br>(1999)                     | 12/2 | 12/3           | 12/4         | 12/5         | 12/6         | 12/7         | 12/8                                             | 12/9                                             | 12/10                                              | 12/11        | 12/1                                             |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa = Q

Review: \_\_\_\_\_ Date: 1 V u / 99 Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays43-53

| ect: 99033 M                             | -C Dead Cr                               | еек             | ВІ       | R: 3629    | ··-      | <del></del> | ·                                                | 16:      | st Start: | 10/20/9  | 99       |        |
|------------------------------------------|------------------------------------------|-----------------|----------|------------|----------|-------------|--------------------------------------------------|----------|-----------|----------|----------|--------|
| Sample / Repl.                           | Response                                 | 43              | 44       | 45         | 46       | 47          | 48                                               | 49       | 50        | 51       | 52       | 53     |
| 12611 G                                  | # Males<br>emerged                       |                 |          |            |          |             | <del>                                     </del> |          |           |          |          |        |
|                                          | Male Time to<br>Mortality<br>(days)      |                 |          |            |          |             |                                                  |          |           |          |          |        |
|                                          | # Females<br>emerged                     |                 |          |            |          | 06          |                                                  |          |           |          |          |        |
|                                          | Females Time to Mortality (days)         |                 |          |            |          | OP          |                                                  |          |           |          |          |        |
|                                          | Cumulative<br>number<br>emerged          |                 |          |            |          | 1264G       |                                                  |          |           |          |          |        |
|                                          | # Pairings                               |                 |          |            |          |             |                                                  |          |           |          |          |        |
|                                          | # Egg Case                               |                 |          |            |          |             |                                                  |          |           |          |          |        |
|                                          | # Eggs /<br>Time to hatch /<br># hatched |                 |          |            |          |             |                                                  |          | -         |          |          |        |
| 12611 H                                  | # Males<br>emerged                       |                 |          |            |          |             |                                                  |          |           |          |          |        |
|                                          | Male Time to<br>Mortality<br>(days)      |                 |          |            |          |             |                                                  |          | <b>†</b>  |          |          |        |
|                                          | # Females<br>emerged                     |                 |          |            |          | 106         |                                                  |          |           |          |          |        |
|                                          | Females<br>Time to Mortality<br>(days)   |                 |          |            |          | OP          |                                                  |          |           |          |          |        |
|                                          | Cumulative<br>number<br>emerged          |                 |          | <u> </u>   | ļ        | 12 6 96     |                                                  |          |           |          |          |        |
|                                          | # Pairings                               |                 | <u> </u> |            |          |             |                                                  |          |           |          |          |        |
|                                          | # Egg Case                               |                 |          |            |          |             |                                                  |          |           |          |          |        |
|                                          | # Eggs / Time to hatch / # hatched       |                 |          |            |          |             |                                                  |          |           |          |          |        |
|                                          | Init./Date<br>(1999)                     | 12/2            | 12/3     | 12/4       | 12/5     | 12/6        | 12/7                                             | 12/8     | 12/9      | 12/10    | 12/11    | 12/1   |
| nergence sco<br>rviving. P = p<br>ments: | ring: Record                             | d any p<br>(V®) | upae wł  | nich die ( | D) befor | e emerg     | ence. [                                          | ) = dead | for flies | which er | merge bi | ut are |
|                                          |                                          |                 |          |            |          |             |                                                  |          |           |          |          |        |
|                                          |                                          |                 |          |            |          |             |                                                  |          |           |          |          |        |
|                                          |                                          |                 |          |            |          |             |                                                  |          |           |          |          |        |
|                                          |                                          |                 |          |            |          |             |                                                  |          |           |          |          |        |
|                                          |                                          |                 |          |            |          |             |                                                  |          |           |          |          |        |

Review: Date: VI (99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays43-53

Project: 99033 M-C Dead Creek BTR: 3629 Test Start: 10/20/99

| Sample / Repl. | Response                     | 21          | 22             | 23                                               | 24                                                | 25             | 26           | 27           | 28             | 29                                               | 30                                               | 31                                               |
|----------------|------------------------------|-------------|----------------|--------------------------------------------------|---------------------------------------------------|----------------|--------------|--------------|----------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| 12612 A        | # Maies<br>emerged           |             |                |                                                  |                                                   |                |              |              |                |                                                  |                                                  |                                                  |
|                | Male Time to                 | <u> </u>    |                | <del> </del>                                     | <del> </del>                                      | <del> </del>   | <del> </del> |              | †              | <del> </del>                                     | <del>                                     </del> | <del> </del>                                     |
|                | Mortality<br>(days)          | 1           | Ĭ              | İ                                                |                                                   |                | ĺ            | ļ            |                | ŀ                                                |                                                  |                                                  |
|                | # Females                    | <del></del> | <del> </del>   | <del>\</del>                                     |                                                   | <del> </del>   |              | <del> </del> | <u> </u>       |                                                  | <del> </del>                                     | <del> </del>                                     |
|                | emerged                      | }           |                |                                                  | 1                                                 | ]              | ]            | }            |                |                                                  | }                                                |                                                  |
|                | Females                      |             | <del> </del>   | +                                                | <del>                                     </del>  | <del> </del>   | <del> </del> | <del> </del> | <u> </u>       | <del> </del>                                     |                                                  | <del> </del>                                     |
|                | Time to Mortality            |             |                |                                                  |                                                   | 1              | ļ            | Í            | Í              | ĺ                                                | 1                                                | Į.                                               |
|                | (days)<br>Cumulative         |             | <del></del>    | +                                                | <del> </del>                                      | <del>├</del>   | ļ. ———       | <del> </del> |                | <del> </del>                                     | <del> </del>                                     | <del> </del> -                                   |
| <del> </del>   | number                       |             | 1              | 1                                                |                                                   |                | ļ            |              |                |                                                  | }                                                | )                                                |
|                | emerged                      |             | <del> </del>   | <del> </del>                                     | <del>                                     </del>  | <u> </u>       | <del> </del> | <b> </b> -   |                | <del> </del>                                     | <u> </u>                                         | <del> </del>                                     |
|                | # Pairings                   |             |                |                                                  |                                                   |                |              |              |                |                                                  |                                                  |                                                  |
|                | # Egg Case                   |             |                |                                                  |                                                   |                |              |              |                |                                                  |                                                  |                                                  |
|                | # Foos /                     |             | <del> </del>   | <del>                                     </del> | <del> </del>                                      | <del> </del> - | ļ.———·       | <del>}</del> | <del> </del>   |                                                  | <del> </del>                                     | ┼                                                |
|                | # Eggs /<br>Time to hatch /  |             |                | 1                                                |                                                   |                | [            |              |                | 1                                                | 1                                                |                                                  |
|                | # hatched                    |             |                |                                                  |                                                   |                | <u></u>      |              |                |                                                  |                                                  | Ĺ                                                |
| 12612 B        | # Maies<br>emerged           |             |                |                                                  |                                                   |                |              |              |                |                                                  |                                                  |                                                  |
|                | Male Time to                 |             |                |                                                  | <del>                                     </del>  |                |              |              |                | 1                                                |                                                  |                                                  |
|                | Mortality<br>(days)          |             | 1              | 1                                                | ]                                                 | ļ              |              |              | }              |                                                  | }                                                |                                                  |
|                | # Females                    |             | <del> </del>   | <del>                                     </del> | <del> </del>                                      | <del> </del>   |              |              | <del> </del>   | <del>                                     </del> | <u> </u>                                         | <del>                                     </del> |
|                | emerged                      |             |                |                                                  |                                                   | •              | 1            | l            |                |                                                  | 1                                                |                                                  |
|                | Females                      |             | <del> </del>   | <del> </del>                                     | <del>                                      </del> | <del> </del>   |              |              | <del>}</del> _ | <del> </del>                                     | <del> </del> -                                   | <del></del>                                      |
|                | Time to Mortality            |             |                |                                                  |                                                   | 1              |              | ]            |                | j                                                | }                                                | }                                                |
|                | (days)<br>Cumulative         |             | <del> </del>   |                                                  | <del> </del>                                      | <del> </del>   | <del></del>  |              | <del> </del>   | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     |
|                | number                       |             | 1              | ĺ                                                | ĺ                                                 |                | ĺ            | Ì            |                | Í                                                | 1                                                | Ì                                                |
|                | emerged                      |             | <del> </del>   | <del> </del>                                     | <del> </del>                                      | <b></b> _      |              | ļ            | <del> </del>   |                                                  | <del> </del>                                     | <del> </del>                                     |
|                | # Pairings                   |             |                |                                                  |                                                   | }              |              |              |                |                                                  |                                                  |                                                  |
|                | # Egg Case                   |             |                |                                                  |                                                   |                |              |              |                |                                                  |                                                  |                                                  |
|                |                              |             |                |                                                  |                                                   | ļ              |              |              |                |                                                  | ļ <u>.</u>                                       | <u> </u>                                         |
|                | # Eggs /<br>Time to hatch /  |             |                |                                                  |                                                   |                | 1            | [            |                | ĺ                                                |                                                  | 1                                                |
|                | # hatched                    |             | ļ              |                                                  |                                                   |                |              |              |                |                                                  | L                                                | <u> </u>                                         |
| 12612 C        | # Males                      |             |                |                                                  |                                                   |                |              | ļ            |                |                                                  |                                                  |                                                  |
| .20.20         | emerged                      |             | l              |                                                  | <u></u>                                           | j              |              | İ            | j              |                                                  | l                                                | <u> </u>                                         |
|                | Male Time to                 |             |                |                                                  |                                                   |                |              |              |                |                                                  |                                                  |                                                  |
|                | Mortality<br>(davs)          |             | 1              |                                                  | 1                                                 |                |              |              |                | ļ                                                |                                                  | <b>\</b>                                         |
|                | # Females<br>emerged         |             |                |                                                  |                                                   |                |              |              |                |                                                  |                                                  |                                                  |
|                | Females                      |             | <del> </del>   |                                                  |                                                   |                |              | <del> </del> |                | -                                                | <del> </del>                                     | <del> </del>                                     |
|                | Time to Mortality            |             |                | ĺ                                                |                                                   |                |              |              | ļ              |                                                  | i                                                | ļ                                                |
|                | (days)<br>Cumulative         |             | <del></del>    | <del> </del>                                     | <del> </del>                                      | <u> </u>       | <del> </del> | <del></del>  | <del> </del>   | <del></del>                                      | <del> </del>                                     | <del> </del>                                     |
|                | number                       |             | 1              | ļ                                                | i                                                 | ļ              | 1            | 1            |                | ]                                                | }                                                | ]                                                |
|                | emerged                      |             | <del> </del> - |                                                  |                                                   | <del> </del>   |              | <del> </del> | <del> </del>   |                                                  | <del> </del>                                     | <del> </del>                                     |
|                | # Pairings                   |             |                |                                                  | ļ                                                 | _              |              |              |                |                                                  |                                                  |                                                  |
|                | # Egg Case                   |             |                |                                                  |                                                   |                |              |              |                |                                                  |                                                  |                                                  |
|                | # Eggs /                     |             | -              |                                                  |                                                   |                |              | <del> </del> | <del> </del>   |                                                  | <del> </del>                                     |                                                  |
|                | Time to hatch /<br># hatched |             |                |                                                  |                                                   |                |              |              |                | <u> </u>                                         | <u> </u>                                         |                                                  |
|                | Init./Date                   | 11/10       | 11/11          | 11/12                                            | 11/13                                             | 11/14          | 11/15        | 11/16        | 11/17          | 11/18                                            | 11/19                                            | 11/20                                            |
|                | (1999)                       |             | l .            | <b>\</b>                                         | l .                                               | 1              |              | }            | i              | 1                                                | ļ                                                | 1                                                |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: \_\_\_\_\_ Date: | \( \bigcup \) | 2\( \lambda \) | 4\( \text{A} \) Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3629 Test Start: 10/20/99

| Sample / Repl. | Response                                 | 21          | 22                                               | 23                                               | 24                                               | 25             | 26           | 27             | 28             | 29                                               | 30           | 31                                               |
|----------------|------------------------------------------|-------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------|--------------|----------------|----------------|--------------------------------------------------|--------------|--------------------------------------------------|
| 12612 D        | # Males                                  |             | +                                                |                                                  |                                                  | <u> </u>       |              |                |                |                                                  | <u> </u>     |                                                  |
|                | emerged                                  | <u> </u>    | <del> </del>                                     |                                                  | <del> </del>                                     | <u> </u>       | <del> </del> | ļ              | ļ              | <u> </u>                                         | <u> </u>     | ļ                                                |
|                | Male Time to<br>Mortality<br>(days)      |             | }                                                |                                                  |                                                  |                |              |                |                |                                                  |              |                                                  |
|                | # Females<br>emerged                     |             |                                                  |                                                  |                                                  |                |              |                |                |                                                  |              |                                                  |
|                | Females<br>Time to Mortality             |             | <del>                                     </del> | <del>                                     </del> |                                                  | <del> </del>   | <del></del>  | <del> </del>   |                |                                                  |              | <del>                                     </del> |
|                | (days)<br>Cumulative                     | <del></del> | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     | <b>_</b>       | <del> </del> | <del> </del>   | <del> </del> - | <del> </del>                                     | <del> </del> | <del></del>                                      |
|                | number<br>emerged                        |             |                                                  |                                                  |                                                  |                |              |                |                |                                                  |              |                                                  |
|                | # Pairings                               |             |                                                  |                                                  |                                                  |                |              |                |                |                                                  |              |                                                  |
|                | # Egg Case                               |             |                                                  |                                                  |                                                  |                |              |                |                |                                                  |              |                                                  |
|                | #Eggs /<br>Time to hatch /               |             |                                                  |                                                  |                                                  | <del> </del>   |              | -              |                |                                                  |              | 1                                                |
| 12612 E        | # hatched<br># Males<br>emerged          |             | ļ                                                |                                                  | }                                                | <u> </u>       |              | <del> </del>   |                |                                                  |              | <del> </del>                                     |
|                | Male Time to<br>Mortality                | <u> </u>    | <del> </del>                                     |                                                  |                                                  | <del> </del> - | <del> </del> | <del> </del> - |                | <del> </del>                                     | <del> </del> | <del> </del> -                                   |
|                | (days)<br># Females                      |             | <del> </del>                                     |                                                  | <del> </del>                                     |                | <del> </del> | <del> </del>   | <del> </del>   | <del> </del>                                     |              | <del> </del>                                     |
|                | emerged                                  |             | <u> </u>                                         |                                                  | ļ <u></u>                                        | ļ              | ļ            | ļ              | ļ              |                                                  | ļ            | ļ                                                |
|                | Females Time to Mortality (days)         |             |                                                  |                                                  |                                                  |                |              |                |                |                                                  |              |                                                  |
|                | Cumulative<br>number<br>emerged          |             |                                                  |                                                  |                                                  |                |              |                |                |                                                  |              |                                                  |
|                | # Pairings                               |             |                                                  |                                                  |                                                  |                |              |                |                |                                                  |              |                                                  |
|                | # Egg Case                               |             |                                                  |                                                  |                                                  |                |              |                |                |                                                  |              |                                                  |
|                | # Eggs /<br>Time to hatch /<br># hatched |             |                                                  |                                                  |                                                  |                |              |                |                |                                                  |              |                                                  |
| 12612 F        | # Males<br>emerged                       |             |                                                  |                                                  |                                                  |                |              |                |                |                                                  |              |                                                  |
|                | Male Time to<br>Mortality                |             |                                                  |                                                  |                                                  |                |              |                |                |                                                  |              |                                                  |
|                | # Females<br>emerged                     |             | <del>                                     </del> |                                                  | <del>                                     </del> |                |              | <u> </u>       |                | <del>                                     </del> |              | <del> </del>                                     |
|                | Females Time to Mortality (days)         |             |                                                  |                                                  |                                                  |                |              | <del> </del>   |                |                                                  |              |                                                  |
|                | Cumulative<br>number<br>emerged          |             |                                                  |                                                  |                                                  |                |              |                |                |                                                  |              |                                                  |
|                | # Pairings                               |             |                                                  |                                                  |                                                  |                |              |                |                |                                                  |              |                                                  |
|                | # Egg Case                               |             |                                                  |                                                  |                                                  |                |              |                |                |                                                  |              |                                                  |
|                | # Eggs /<br>Time to hatch /<br># hatched |             |                                                  |                                                  |                                                  |                |              |                |                |                                                  |              |                                                  |
| 74             | المنافعة المستحدث                        | 11/10       | 11/11                                            | 11/12                                            | 11/13                                            | 11/14          | 11/15        | 11/16          | 11/17          | 11/18                                            | 11/19        | 11/20                                            |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: Date: 12 11 | 49
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| Sample / Repl. | 1 5                              | <del></del>    |              |              |              | <del></del>    |              |                |              |              | <del></del>  |                                                  |
|----------------|----------------------------------|----------------|--------------|--------------|--------------|----------------|--------------|----------------|--------------|--------------|--------------|--------------------------------------------------|
|                | Response                         | 21             | 22           | 23           | 24           | 25             | 26           | 27             | 28           | 29           | 30           | 31                                               |
| 12612 G        | # Males<br>emerged               |                |              |              |              |                |              |                |              |              |              |                                                  |
|                | Male Time to                     | <del> </del>   | +            | ┪            | <del></del>  | <del> </del> - | <del> </del> | <del></del>    | <del> </del> |              | <del> </del> | <del> </del>                                     |
|                | Mortality                        | 1              | 1            |              | i .          | }              |              | 1              | 1            | l            | 1            |                                                  |
|                | (days)<br># Females              | <del> </del> - | <del> </del> | <del></del>  | <del> </del> | <del> </del>   | <del> </del> | <del> </del> - | <del> </del> | <del> </del> | <del> </del> | <del> </del> -                                   |
|                | emerged                          |                |              |              |              | -              |              |                | }            |              |              |                                                  |
|                | Females Time to Mortality        |                |              | -            | T            |                |              |                |              |              |              |                                                  |
|                | (days)                           |                | <u> L</u>    |              |              | <u> </u>       | <u> </u>     |                | <u> </u>     |              |              | J                                                |
|                | Cumulative<br>number             | }              |              | 1            |              | _              |              |                |              |              |              |                                                  |
|                | emerged                          | <u> </u>       | <u> </u>     | J            | <u> </u>     |                | 1            |                | <u> </u>     | <u> </u>     |              | <u> </u>                                         |
|                | # Pairings                       |                |              |              |              |                |              |                |              |              |              |                                                  |
|                | # Egg Case                       |                |              |              | <del></del>  | <del></del>    |              |                |              |              |              |                                                  |
|                | # Eggs /                         | <u> </u>       | <u> </u>     | <u> </u>     | <u> </u>     |                |              |                |              | ļ            | ļ            | <b> </b>                                         |
|                | Time to hatch /<br># natched     |                |              |              |              |                |              |                |              | }            |              | 1                                                |
| 12612 H        | # Males<br>emerged               |                |              |              |              |                | 1            |                |              |              |              | 11                                               |
|                | Male Time to                     |                |              |              | 11           | <del> </del>   | 1.1          |                | <del> </del> |              | <del> </del> | 128                                              |
|                | Mortality<br>(days)              | 1              | 1            | 1            | 50/1/18      | 1              | (00,121      |                |              | ĺ            | 1            | 11/26                                            |
|                | (days)<br># Females              | <del> </del>   |              | <del> </del> | +            | <del> </del>   | 1.10         |                | adead        | <del></del>  | <del> </del> | 1-/                                              |
|                | emerged                          |                |              | <u> </u>     |              |                |              |                | ۱ م          |              |              |                                                  |
|                | Females Time to Mortality (days) | }              |              | }            |              | }              |              | }              | 00 00 m      | )            |              |                                                  |
|                | Cumulative                       |                |              | 1            | 1            |                |              |                | 1            | i ———        | 1            |                                                  |
|                | number<br>emerged                |                | 1            |              | '            | ,              | 1 4          |                | 17           |              |              |                                                  |
|                | # Pairings                       |                |              |              |              |                |              |                |              |              |              |                                                  |
|                | # Egg Case                       |                |              | <del> </del> |              |                |              |                |              |              | <del> </del> | <del>                                     </del> |
|                | # Eggs /                         |                |              | <del> </del> |              | ļ              |              |                |              |              | <del> </del> | -                                                |
|                | Time to hatch /<br># hatched     |                |              |              |              |                | <u> </u>     | i<br>          | 1            |              |              |                                                  |
|                |                                  |                | 11/11        | 11/12        | 11413        | 11/14          | 11/25        | 44/40          | 146          | 11/18        | 11/19        | 11/20                                            |

| Review:           | Date:        | 12/21      | 199            |                |
|-------------------|--------------|------------|----------------|----------------|
| Laboratory: Aqual | ec Biologica | al Science | s. South Burli | naton. Vermoni |



Project: 99033 M-C Dead Creek BTR: 3629 Test Start: 10/20/99

| Sample / Repl. | Response                                 | 32           | 33                                               | 34                                               | 35           | 36           | 37             | 38             | 39           | 40           | 41           | 42             |
|----------------|------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------|----------------|----------------|--------------|--------------|--------------|----------------|
| 12612 A        | # Males<br>emerged                       |              | <del>                                     </del> |                                                  |              |              |                |                |              |              |              |                |
|                | Male Time to                             |              | <del></del>                                      | <del> </del>                                     | <del> </del> | <del> </del> |                | <del> </del> - | <del></del>  | <del></del>  |              | <del> </del>   |
|                | Mortality                                |              | 1                                                | 1                                                |              |              | )<br>          |                | i            | 1            |              |                |
|                | (days)                                   |              | <del> </del>                                     | ļ                                                | <del> </del> |              | <del></del> -  |                |              | <del> </del> |              | <b> </b>       |
|                | # Females<br>emerged                     |              |                                                  |                                                  |              | 1            |                | ł              |              | 1            |              | }              |
|                | Females                                  |              | <del></del>                                      |                                                  | -            | <del> </del> |                | <del> </del>   |              | <del></del>  | <del></del>  | <del> </del>   |
|                | Time to Mortality                        |              | 1                                                |                                                  |              |              |                |                | 1            | OL           |              | 1              |
|                | (days)<br>Cumulative                     |              | <del></del>                                      | <del>                                     </del> | <del> </del> | ļ            | <del> </del>   | <del> </del>   |              | 100          | <b></b>      | <del> </del>   |
|                | number                                   |              |                                                  | 1                                                | 1            |              |                | }              |              | OP           | ł            | ł              |
|                | emerged                                  |              | ļ <u> </u>                                       | <u> </u>                                         | ļ            |              |                | ļ              |              |              |              |                |
|                | # Pairings                               |              |                                                  |                                                  |              | İ            |                |                |              | 11/29m       |              |                |
|                | # Egg Case                               |              |                                                  |                                                  |              |              |                |                |              |              |              |                |
|                | # Eggs /                                 |              | 1                                                |                                                  |              |              |                |                |              | ļ            |              |                |
|                | Time to hatch /                          |              |                                                  |                                                  |              |              |                | }              |              |              |              |                |
|                | # hatched                                |              | <del></del>                                      |                                                  | -            |              | ļ              | <del> </del>   |              | <del> </del> |              | <del>}</del>   |
| 12612 B        | # Males<br>emerged                       |              |                                                  |                                                  |              | <u> </u><br> |                |                |              |              |              |                |
|                | Male Time to                             |              | <del>                                     </del> | <del> </del>                                     |              |              | <del> </del> - | <del> </del> - |              | <del> </del> |              | <del> </del>   |
|                | Mortality                                |              |                                                  |                                                  |              |              |                |                |              |              |              | ļ              |
|                | (days)<br># Females                      |              | <del> </del>                                     | ļ                                                | <del> </del> |              | <del> </del>   | <del> </del> - | ļ            | <del> </del> | ļ            | <del> </del>   |
|                | emerged                                  |              |                                                  |                                                  |              |              |                |                |              | ÔL           | İ            |                |
|                | Females                                  |              | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del> | <del> </del>   | <del> </del>   | <del> </del> | 100          | <del> </del> | <del> </del> - |
|                | Time to Mortality                        |              | 1                                                | į                                                |              |              | į              |                |              | 178          |              | 1              |
|                | (days)                                   |              | <del> </del>                                     | <del> </del>                                     | ļ            | <u> </u>     | ļ              | <del> </del> - |              | 101          |              | ļ              |
|                | Cumulative<br>number                     |              | 1                                                | }                                                | ļ            | }            | j              |                | ļ            | 11/292       | ]            | }              |
|                | emerged                                  |              |                                                  |                                                  | ļ            | <u> </u>     |                |                |              | 1,1212       |              | ļ              |
|                | # Pairings                               |              |                                                  |                                                  |              |              |                |                |              |              |              |                |
|                | # Egg Case                               |              |                                                  |                                                  |              |              |                |                |              |              |              |                |
|                | # Eggs /<br>Time to hatch /<br># hatched |              |                                                  |                                                  |              |              |                |                |              | -            |              |                |
| 40040.0        | # Males                                  |              | <u> </u>                                         | <del> </del>                                     | <del> </del> |              | <del> </del>   |                | <u></u>      | <del> </del> | <del> </del> |                |
| 12612 C        | emerged                                  |              |                                                  |                                                  |              |              |                | }              | ļ            |              | }            |                |
|                | Male Time to<br>Montality<br>(days)      |              |                                                  |                                                  |              |              |                |                |              |              |              |                |
|                | # Females<br>emerged                     |              |                                                  |                                                  |              |              |                |                |              | OL           |              |                |
|                | Females                                  |              | <del> </del>                                     |                                                  | <del> </del> | <del></del>  | <del> </del>   | <del> </del>   | <del> </del> |              | -            |                |
|                | Time to Mortality                        |              |                                                  |                                                  |              |              |                |                |              | OP           |              |                |
|                | (days)<br>Cumulative                     |              | <del> </del>                                     | <del> </del>                                     |              | <del> </del> | <del> </del>   | <del> </del>   | <del> </del> |              |              |                |
|                | number                                   |              |                                                  |                                                  |              | 1            | 1              |                |              | 11/39        | 1            |                |
|                | emerged                                  |              | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del> | <del> </del>   | <del> </del>   | <del> </del> | 1111         | <del>}</del> | <del> </del> - |
|                | # Pairings                               |              |                                                  |                                                  |              |              |                | 1              |              |              |              | ł              |
|                | # Egg Case                               |              |                                                  |                                                  |              |              |                |                |              |              |              |                |
|                | # Eggs /                                 | <del> </del> | <del> </del>                                     | <del> </del>                                     | ļ <u>-</u>   | <del> </del> | <del> </del>   | <del> </del>   | <del> </del> | +            | <del> </del> |                |
|                | Time to hatch /<br># hatched             |              |                                                  |                                                  |              |              |                |                |              |              |              |                |
|                |                                          | 11/21        | 11/22                                            | 11/23                                            | 11/24        | 11/25        | 11/26          | 11/27          | 11/28        | 11/29        | 11/30        | 12/1           |
|                | (1999)                                   |              | 1                                                | 1                                                | 1            | }            | [              | 1              | 1            | 1            | 1            | İ              |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa  $\int z \left( \frac{2}{2} \right) dz$ 

Review: Date: 12/21/49
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays32-42

Project: 99033 M-C Dead Creek BTR: 3629 Test Start: 10/20/99

| Sample / Repl. | Response                                 | 21/32  | 227   | 234   | 24                                    | 25    | <del>26</del><br><del>37</del> | 27           | 28          | 20       | 30       | 都            |
|----------------|------------------------------------------|--------|-------|-------|---------------------------------------|-------|--------------------------------|--------------|-------------|----------|----------|--------------|
| 40040.5        | # Males                                  | - 52   | 13    | 34    | 35                                    | 136   | 31                             | 133          | 57          | 40       | TI       | 40           |
| 12612 D        | # Males<br>emerged                       |        |       |       |                                       |       | -                              |              |             |          |          | }            |
|                | Male Time to                             |        |       |       |                                       | ·     | f                              | 1            | <del></del> |          |          | <del> </del> |
|                | Mortality<br>(days)                      |        |       |       |                                       |       | ļ                              | İ            |             | 1        |          | ļ            |
|                | # Females                                |        |       |       |                                       |       | <u> </u>                       |              |             | (-1      |          |              |
|                | emerged                                  |        |       |       |                                       |       |                                |              |             | 0,0      |          |              |
| •              | Females Time to Mortality                |        |       |       |                                       |       |                                |              |             | 7        |          |              |
|                | (days)                                   |        |       |       |                                       |       | İ                              |              |             | 01,9     |          | <u> </u>     |
|                | Cumulative<br>number                     |        | `     |       |                                       |       | {                              |              |             | 17       |          |              |
|                | emerged                                  |        |       |       |                                       |       |                                |              |             | 19       |          | ļ            |
|                | # Pairings                               | İ      |       |       |                                       | }     | }                              |              |             |          |          |              |
|                | # Egg Case                               |        |       |       |                                       |       |                                |              |             |          |          |              |
|                | # Eggs /                                 |        |       |       |                                       |       |                                | ļ            |             |          |          |              |
|                | Time to hatch / # hatched                |        |       |       |                                       |       | ĺ                              |              |             |          |          | 1            |
| 12612 E        | # Males                                  |        | ·     |       |                                       |       |                                |              |             |          |          | 1            |
| 12012          | emerged                                  |        |       |       |                                       |       |                                |              |             |          |          | <u> </u>     |
|                | Male Time to<br>Mortality                |        |       |       |                                       |       |                                |              |             |          |          |              |
|                | (days)                                   |        |       |       |                                       |       |                                |              |             |          |          |              |
|                | # Females<br>emerged                     |        |       |       |                                       |       |                                |              | _           | 01       |          |              |
|                | Females                                  |        |       |       |                                       |       |                                | <del> </del> |             | 00       |          | <del> </del> |
|                | Time to Mortality<br>(days)              |        |       |       |                                       |       |                                |              |             | IOP 1    |          |              |
|                | Cumulative                               |        |       |       |                                       |       |                                | 1            |             | 1129     |          |              |
|                | number<br>emerged                        |        |       |       |                                       |       |                                |              |             | 1129     |          | _            |
|                | # Pairings                               |        |       |       | 1                                     |       |                                |              |             |          |          |              |
|                | # Egg Case                               |        |       |       |                                       |       |                                |              |             |          |          |              |
|                | # Eggs /                                 |        |       |       |                                       |       |                                |              |             |          |          | <del> </del> |
|                | Time to hatch /<br># hatched             | i<br>i |       |       |                                       | :     |                                |              |             | 1        |          |              |
| 12612 F        | # Males<br>emerged                       |        |       |       | · · · · · · · · · · · · · · · · · · · |       |                                |              |             |          |          |              |
|                | Male Time to                             |        |       |       |                                       |       |                                | ļ            |             | <u> </u> |          | ļ            |
|                | Mortality<br>(days)                      | }      |       |       |                                       |       |                                |              |             |          |          |              |
|                | # Females                                |        |       |       |                                       |       |                                |              |             | Δ.       |          | 1            |
|                | emerged                                  |        |       |       |                                       |       | {                              |              |             | IUL 1    |          |              |
|                | Females<br>Time to Mortality             |        |       |       |                                       | -     |                                |              |             | 00       |          |              |
|                | (days)                                   |        |       |       |                                       |       |                                | 1            |             | UL       |          | <u> </u>     |
| •              | Cumulative                               |        |       |       |                                       |       |                                |              |             | 11)29    |          |              |
|                | emerged                                  |        |       |       |                                       |       | <u> </u>                       | ļ            |             | 1.1.JW   | <u> </u> | <del> </del> |
|                | # Pairings                               | ļ      |       |       |                                       |       |                                |              |             |          |          |              |
|                | # Egg Case                               |        |       |       |                                       |       |                                |              |             |          |          |              |
|                | # Eggs /<br>Time to hatch /<br># hatched |        |       |       |                                       |       |                                |              |             |          |          |              |
|                | Init./Date<br>(1999)                     | 11/21  | 11/22 | 11/23 | 11/24                                 | 11/25 | 11/26                          | 11/27        | 11/28       | 11/29    | 11/30    | 12/1         |

|    |                                     | 1999]             | <u></u>            |                  |            |            |              | _i         |
|----|-------------------------------------|-------------------|--------------------|------------------|------------|------------|--------------|------------|
|    | Emergence scoring:                  | Record any p      |                    |                  |            |            | ich emerge b | ut are not |
|    | -                                   | _                 | S                  | urviving. P = pu | pa L= (200 | <b>'</b> S |              |            |
| Re | view: Da<br>boratory: Aquatec Biolo | te: $12/2/9$      | ) Test             | Day Co           | MECAU      | 071/3      | 3 / 29 ctd   | lays32-42  |
| La | boratory: Aquatec Biolo             | gical Sciences, S | outh Burlington, ' | Vermont          |            |            |              |            |

| Sample / Repl.            | Response                                 | 24          | <del></del> | - 22       | 7 24       | 25     | 20-                 | 27-    | 22          | 200           | 20-      | 2            |
|---------------------------|------------------------------------------|-------------|-------------|------------|------------|--------|---------------------|--------|-------------|---------------|----------|--------------|
|                           | response                                 | -432        | 37          | -23<br>-34 | 35         | 25     | <del>26</del><br>77 | 39     | 38          | <del>29</del> | 200      | -34<br>4     |
| 12612 G                   | # Males<br>emerged                       |             |             |            |            |        |                     |        |             |               | -        |              |
|                           | Male Time to<br>Mortality<br>(days)      | Ì           |             |            |            |        |                     |        |             |               |          |              |
|                           | # Females<br>emerged                     |             |             |            |            |        |                     |        |             | DE            |          |              |
|                           | Females<br>Time to Mortality<br>(days)   |             |             |            |            |        |                     |        |             | OY            |          |              |
|                           | Cumulative<br>number<br>emerged          |             |             |            |            |        |                     |        |             | 11/3          |          |              |
|                           | # Pairings                               |             |             |            |            |        |                     |        |             |               |          |              |
|                           | # Egg Case                               |             |             |            |            |        |                     |        |             |               |          |              |
|                           | # Eggs /<br>Time to hatch /<br># hatched |             |             |            |            |        |                     |        |             |               |          |              |
| 12612 H                   | # Males<br>emerged                       |             |             |            |            |        |                     |        |             |               |          |              |
|                           | Male Time to<br>Mortality<br>(days)      |             |             |            |            |        |                     |        |             |               |          |              |
|                           | # Females<br>emerged                     |             |             |            |            |        |                     |        |             | OL            |          |              |
|                           | Females<br>Time to Mortality<br>(days)   |             |             |            |            |        |                     |        |             | 109           |          |              |
|                           | Cumulative<br>number<br>emerged          |             |             |            |            |        |                     |        |             | 11/39         |          |              |
|                           | # Pairings                               |             |             |            |            |        |                     |        |             | 1             |          |              |
|                           | # Egg Case                               |             |             |            |            |        |                     |        |             |               |          |              |
|                           | # Eggs /<br>Time to hatch /<br># hatched |             |             |            |            |        |                     | -      |             |               |          | <del> </del> |
|                           |                                          | 11/21       | 11/22       | 11/23      | 11/24      | 11/25  | 11/26               | 11/27  | 11/28       | 11/29         | 11/30    | 12/1         |
| mergence sco              |                                          |             |             | ch die (l  | D) before  | emerge | ence. D             | = dead | for flies   | which er      | nerge bu | it are       |
| irviving. P≃ p<br>iments: | oupa (=                                  | 1 arva      | ·           |            |            |        |                     |        | <del></del> |               |          |              |
| monto.                    | (1:                                      | ) 7         | -55         | Der        | <i>C</i> 3 | reco   | 'ò~ (               | J. 11  | 156/9       | 7             |          |              |
|                           |                                          | <del></del> | <del></del> |            |            |        |                     | ·      |             |               |          |              |
|                           |                                          |             |             |            |            |        |                     |        |             |               |          |              |
|                           |                                          |             | <del></del> |            |            |        |                     |        |             |               |          |              |
|                           |                                          |             |             |            |            |        |                     |        |             |               |          |              |
|                           | <del></del>                              |             |             |            |            |        |                     |        |             |               |          |              |
|                           |                                          |             |             |            |            |        |                     |        |             |               |          |              |

Review: \_\_\_\_\_\_ Date: 12/2 / 9 Q
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays32-42

Project: 99033 M-C Dead Creek BTR: 3629 Test Start: 10/20/99 Sample / Repl. Response 21 22 23 24 25 26 27 28 29 30 31 # Males 12613 A emerged Male Time to (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12613 B emerged Male Time to 30/1/4 Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12613 C emerged 119<sup>11</sup>11 Male Time to 40,1/18 40,000,00 Mortality (days) # Females emerged Females Adulis 30/19 Time to Mortality (days) Cumulative number œ emerged Fa.1038 # Pairings **1**893 # Egg Case 43 unhutched # Eggs / Time to hatch / y5000 llaz # hatched 1414 1388 1145 11/26 11/12 11/13 Init./Date 1///19 (1999)Emergence scoring: Record any purpae which die (D) before emergence. D = dead for flies which emerge but are not @ Correction

surviving. P = pupa

Review: \_\_\_\_ Date: (2/2) (27)
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3629 Test Start: 10/20/99

| Sample / Repl. | Response                     | 21           | 22                                               | 23                                               | 24             | 25           | 26                                               | 27                                               | 28                                               | 29           | 30                                    | 31           |
|----------------|------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|----------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|---------------------------------------|--------------|
| 12613 D        | # Males<br>emerged           |              |                                                  |                                                  |                | -            | -                                                |                                                  |                                                  |              |                                       |              |
|                | Male Time to                 | <del> </del> | <del> </del>                                     | <del> </del>                                     | <del> </del>   | <del> </del> | <del> </del>                                     | <del> </del> -                                   | <del> </del>                                     | <del> </del> | <del> </del>                          | <del> </del> |
|                | Mortality<br>(days)          |              |                                                  |                                                  |                |              |                                                  | ļ                                                |                                                  |              | 1                                     |              |
|                | # Females                    |              | <del>                                     </del> | +                                                | <del> </del>   | <del> </del> | <del> </del>                                     | <del>                                     </del> | <del> </del>                                     | <del> </del> | <del> </del>                          | <del> </del> |
|                | emerged                      |              | 1                                                | }                                                |                | 1            |                                                  | }                                                | }                                                | }            |                                       | j            |
|                | Females Time to Mortality    |              |                                                  |                                                  |                | ļ            |                                                  | · · · · · ·                                      |                                                  |              |                                       |              |
|                | (days)                       |              |                                                  | Ļ                                                |                | Ĺ            | <u> </u>                                         |                                                  |                                                  |              |                                       | 1            |
|                | Cumulative<br>number         |              |                                                  |                                                  |                |              |                                                  |                                                  |                                                  |              |                                       |              |
|                | emerged                      |              |                                                  | <u> </u>                                         |                |              |                                                  | <u> </u>                                         |                                                  | <u> </u>     | <u> </u>                              | <u> </u>     |
|                | # Pairings                   |              |                                                  |                                                  | t .            |              |                                                  |                                                  | }                                                |              |                                       |              |
|                | # Egg Case                   |              |                                                  |                                                  |                |              | <del> </del>                                     |                                                  |                                                  |              | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |              |
|                | # Eggs /                     | ļ            | ļ                                                | <del> </del>                                     | <u> </u>       | <del> </del> | <del> </del>                                     | <u> </u>                                         |                                                  | ļ            |                                       | <u> </u>     |
|                | Time to hatch /              |              |                                                  |                                                  | ľ              |              |                                                  |                                                  |                                                  |              |                                       |              |
| 40040 E        | # hatched<br># Males         | -            | ┼                                                | <del> </del>                                     | <del> </del>   |              | <del> </del>                                     |                                                  |                                                  | <del> </del> |                                       |              |
| 12613 E        | emerged                      |              |                                                  |                                                  | ļ              | }            |                                                  |                                                  | ]                                                | j            |                                       |              |
|                | Male Time to                 |              | 1                                                | <del>                                     </del> | <del> </del>   | <del> </del> | <del>                                     </del> |                                                  | <u> </u>                                         |              |                                       | <del> </del> |
|                | Mortality<br>(days)          | ļ            |                                                  |                                                  |                | 1            |                                                  |                                                  |                                                  |              | [                                     |              |
|                | # Females                    |              |                                                  | T                                                | 1              |              |                                                  | <u> </u>                                         |                                                  | 1            |                                       | T            |
|                | emerged                      |              |                                                  | 1                                                |                | L            |                                                  | ļ                                                | 1                                                |              |                                       |              |
|                | Females<br>Time to Mortality |              |                                                  | T                                                |                |              |                                                  |                                                  |                                                  |              |                                       |              |
|                | (days)                       |              | <u> </u>                                         |                                                  |                | <u> </u>     |                                                  |                                                  | l                                                |              |                                       |              |
|                | Cumulative<br>number         |              |                                                  |                                                  |                |              |                                                  |                                                  |                                                  |              |                                       |              |
|                | emerged                      |              | <u> </u>                                         | ļ <u>.</u>                                       | ļ <u> </u>     | <u> </u>     | ļ                                                | <u> </u>                                         |                                                  | <u> </u>     |                                       | ļ            |
|                | # Pairings                   |              |                                                  |                                                  |                |              |                                                  |                                                  |                                                  |              |                                       |              |
|                | # Egg Case                   |              |                                                  |                                                  |                |              |                                                  |                                                  |                                                  |              |                                       |              |
|                | # Eggs /                     |              | <del> </del>                                     | <del> </del>                                     | <del> </del> - | <del> </del> | <del> </del> -                                   | <del> </del>                                     | <del>                                     </del> | <del> </del> | <del> </del>                          | -            |
|                | Time to hatch /<br># hatched |              |                                                  |                                                  |                |              |                                                  | <u> </u>                                         |                                                  |              | <u></u>                               |              |
| 12613 F        | # Males<br>emerged           |              |                                                  |                                                  |                | ]            |                                                  |                                                  | Ī                                                |              |                                       |              |
|                | Male Time to                 |              | <del>ļ.</del>                                    | ļ                                                | <b>}</b>       | <del> </del> | <del> </del>                                     | ļ                                                | <del>}</del>                                     | <del> </del> | }                                     |              |
|                | Mortality                    |              |                                                  |                                                  | 1              | ŀ            |                                                  |                                                  | ļ                                                |              |                                       |              |
|                | (days)<br># Females          |              | <del></del>                                      | <del> </del>                                     | <del> </del>   | <del> </del> | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del>                          |              |
|                | emerged                      |              | }                                                |                                                  | 1              |              |                                                  |                                                  | }                                                |              |                                       |              |
|                | Females                      |              | <del> </del>                                     | <del> </del>                                     | <del> </del>   |              | <del> </del> -                                   | <del> </del>                                     |                                                  |              |                                       | <del> </del> |
|                | Time to Mortality (days)     |              |                                                  |                                                  | İ              | ŀ            |                                                  |                                                  |                                                  |              | 1                                     |              |
|                | Cumulative                   |              |                                                  | <u> </u>                                         |                |              | <del>                                     </del> |                                                  | ļ                                                |              |                                       |              |
|                | number<br>emerged            |              | 1                                                |                                                  |                | 1            |                                                  |                                                  |                                                  |              |                                       |              |
|                | # Pairings                   |              |                                                  |                                                  |                |              |                                                  |                                                  |                                                  |              |                                       |              |
|                | # Egg Case                   |              |                                                  | <u> </u>                                         |                |              |                                                  |                                                  |                                                  | -            |                                       |              |
|                | # Eggs /                     |              | <del> </del>                                     | <del> </del>                                     | <del> </del>   | <del> </del> |                                                  |                                                  | <del> </del>                                     | <del> </del> | <del> </del>                          | <del> </del> |
|                | Time to hatch /<br># hatched |              |                                                  |                                                  |                |              |                                                  |                                                  |                                                  |              |                                       |              |
|                | Init./Date<br>(1999)         | 11/10        | 11/11                                            | 11/12                                            | 11/13          | 11/14        | 11/15                                            | 11/16                                            | 11/17                                            | 11/18        | 11/19                                 | 11/20        |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: \_\_\_\_\_ Date: 12/2/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| ect: 99033 M                              | -C Dead Cr                               | eek      | BTI     | R: 3629   | ·        |         |             | Tes      | st Start: | 10/20/9 | 99       |          |
|-------------------------------------------|------------------------------------------|----------|---------|-----------|----------|---------|-------------|----------|-----------|---------|----------|----------|
| Sample / Repl.                            | Response                                 | 21       | 22      | 23        | 24       | 25      | 26          | 27       | 28        | 29      | 30       | 31       |
| 12613 G                                   | # Males<br>emerged                       |          |         |           | -        |         |             |          |           |         | 1        |          |
|                                           | Male Time to<br>Mortality<br>(days)      |          |         |           |          |         |             |          |           |         |          |          |
|                                           | # Females<br>emerged                     |          |         |           |          |         |             |          |           |         |          |          |
|                                           | Females<br>Time to Mortality<br>(days)   |          |         |           |          |         |             |          |           |         |          |          |
|                                           | Cumulative<br>number<br>emerged          |          |         |           |          |         |             |          |           |         |          |          |
|                                           | # Pairings                               |          |         |           | <u> </u> |         |             |          |           |         |          |          |
|                                           | # Egg Case                               |          |         |           |          |         |             |          |           |         |          |          |
|                                           | # Eggs /<br>Time to hatch /<br># hatched |          |         |           |          |         |             |          |           |         |          |          |
| 12613 H                                   | # Males<br>emerged                       |          |         |           |          |         |             |          |           |         |          |          |
|                                           | Male Time to<br>Mortality<br>(days)      |          |         |           |          |         |             |          |           |         |          |          |
|                                           | # Females<br>emerged                     |          |         |           |          |         |             |          |           |         |          |          |
|                                           | Females<br>Time to Mortality<br>(days)   |          |         |           |          |         |             |          |           |         |          |          |
|                                           | Cumulative<br>number<br>emerged          |          |         |           | ļ        | ļ       | ļ           |          | ļ         |         | <u> </u> |          |
|                                           | # Pairings                               |          |         | <u> </u>  | ļ        |         |             |          |           |         | -        | <u> </u> |
|                                           | # Egg Case                               |          |         |           |          |         |             |          |           |         |          |          |
|                                           | # Eggs /<br>Time to hatch /<br># hatched |          |         |           |          |         |             |          |           |         |          |          |
|                                           | Init./Date<br>(1999)                     | 11/10    | 11/11   | 11/12     | 11/13    | 11/14   | 11/15       | 11/16    | 11/17     | 11/18   | 11/19    | 11/20    |
| nergence scor<br>rviving. P = p<br>ments: | ing: Record                              | d any po | upae wh | ich die ( | D) befor | e emerg | ence. D     | ) = dead | for flies | which e | merge bu | ut are n |
|                                           |                                          |          |         |           |          |         |             |          |           |         |          |          |
|                                           |                                          |          |         |           |          |         |             |          |           |         |          |          |
|                                           |                                          |          |         |           |          |         | <del></del> |          |           |         |          |          |

| ١                   |          |            |                |                |
|---------------------|----------|------------|----------------|----------------|
|                     |          | 12/21      | 100            |                |
| Review:             | Date:    | 10/21      | [77            |                |
| Laboratory: Aquated | Biologic | al Science | s, South Burli | ngton, Vermont |

Project: 99033 M-C Dead Creek BTR: 3629 Test Start: 10/20/99

| 12613 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample / Repl. | Response                    | 32    | 33           | 34           | 35           | 36           | 37             | 38                                               | 39                                               | 40                                               | 41                                               | 42                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|-------|--------------|--------------|--------------|--------------|----------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| Morality (0942)   Females   OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12613 A        |                             |       | 1            |              |              |              |                |                                                  |                                                  |                                                  |                                                  |                                                  |
| ( (ays)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                             |       | <del></del>  | †            | <del>:</del> | <del></del>  | <del> </del> - | <del></del>                                      | <del>                                     </del> | -                                                | <del>                                     </del> | +                                                |
| # Femiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                             |       |              |              | }            |              |                |                                                  |                                                  |                                                  | }                                                |                                                  |
| Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise   Temalise    |                | # Females                   |       | +            | 1            | <u> </u>     | <del> </del> |                | <del>                                     </del> |                                                  | <del> </del>                                     | <del> </del>                                     |                                                  |
| Time to Mortality   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commission   Commissio   |                |                             |       | <u> </u>     | <u> </u>     | <u></u>      |              |                |                                                  |                                                  | OL                                               |                                                  |                                                  |
| Cumulative member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member member mem   |                |                             |       |              |              |              |              |                |                                                  |                                                  | $\Delta p$                                       |                                                  |                                                  |
| ### ##################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | (days)                      |       | J            | 1            | <u> </u>     |              | <u> </u>       | L                                                |                                                  | UP                                               |                                                  |                                                  |
| # Parings  # Eggs / Time to hatch / # hatched  # Eggs / Time to hatch / # hatched  # Eggs / Time to hatch / # hatched  # Male Time to Morally (Gays)  # Eggs / Time to Morally (Gays)  # Eggs / Time to Morally (Gays)  # Egg Case  # Eggs / Time to Morally (Gays)  # Egg Case  # Eggs / Time to Morally (Gays)  # Egg Case  # Eggs / Time to Morally (Gays)  # Egg Case  # Eggs / Time to Morally (Gays)  # Egg Case  # Eggs / Time to Morally (Gays)  # Egg Case  # Eggs / Time to hatch / # hatched  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                             |       |              | Ì            |              |              |                | 1                                                |                                                  | 11/39                                            |                                                  |                                                  |
| # Eggs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                             |       | -            | ļ            |              |              | ļ              |                                                  |                                                  | 1,214                                            |                                                  | ļ                                                |
| # Eggs / Fine to hatch / # Fine to hatch / # Fine to hatch / # Fine to hatch / # Fine to hatch / # Fine to Morally (days) # Females emerged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | # Pairings                  |       |              |              |              |              |                |                                                  |                                                  |                                                  |                                                  |                                                  |
| Time to hatch/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | # Egg Case                  |       |              |              |              |              |                |                                                  |                                                  |                                                  |                                                  |                                                  |
| Time to hatch/ # statched  # Males emerged  Male Time to (days)  # Fernales emerged  Fernales (Time to Mortality (days)  # Egg Case  # Eggs / Time to hatch / # hatched  # Fernales emerged  # Parings  # Eggs / Time to hatch / # statched  # Fernales # Fernales  # Eggs /  # Eggs /  # Eggs /  # Eggs /  # Eggs /  # Fernales # Fernales # Fernales # Fernales # # Males # Males # Males # Males # Males # Males # Males # Males # Males # Males # Eggs /  # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fernales # Fer |                | # Eggs /                    |       | 1            |              | <u> </u>     | -            |                |                                                  | <u> </u>                                         |                                                  |                                                  | ┼                                                |
| 12613 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | Time to hatch /             |       |              |              |              |              |                |                                                  |                                                  |                                                  |                                                  |                                                  |
| Male Time to   Mortality   (days)   # Females   emerged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12613 B        | # Males                     |       | 1            |              | İ            |              |                |                                                  | <u> </u>                                         |                                                  |                                                  |                                                  |
| Mortality (days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                             |       |              | <u> </u>     | ·            |              |                |                                                  |                                                  |                                                  |                                                  | <u> </u>                                         |
| # Females   Females   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comment   Comm |                | Mortality                   |       |              |              |              |              |                |                                                  |                                                  |                                                  |                                                  |                                                  |
| Females Time to Mortality (clays)  Cumulative number emerged  # Eggs / Time to hatch / # hatched  12613 C  # Males emerged  Male Time to Mortality (clays)  # Females Time to Mortality (clays)  # Females Time to Mortality (clays)  # Cumulative number emerged  # Pairings  # Egg Case  # Egg Case  # Egg Case  # Egg Case  # Egg Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                             |       | <del> </del> |              | <u>;</u>     | <del> </del> | <del> </del>   | <del> </del>                                     | <del> </del>                                     | 101                                              | <del> </del>                                     | -                                                |
| Cumulative number emerged # Pairings # Eggs / Time to hatch / # hatched # Females emerged # Females Time to Mortality ((days) # Females emerged emerged emerged # Pairings # Eggs / Time to Mortality ((days) # Females Time to Mortality ((days) # Females Time to Mortality ((days) # Females Time to Mortality ((days) # Females Time to Mortality ((days) # Females Time to Mortality ((days) # Females Time to Mortality ((days) # Time to Mortality ((days) # Time to Mortality ((days) # Time to Mortality ((days) # Time to Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortality # Mortal |                | emerged                     |       | ]            | į            |              |              |                | 1                                                | 1                                                | 1UL                                              | 1                                                |                                                  |
| Cumulative number emerged # Parings # Egg Case # Egg Case # Egg Case # Egg Case # Egg Case # Egg Case # Eggs / Time to hatch / # hatched # Male Time to Mortality (days) # Females emerged # Emerged # Emerged # Emerged # Emerged # Emerged # Emerged # Emerged # Emerged # Emerged # Emerged # Emerged # Emerged # Emerged # Emerged # Emerged # Emerged # Eggs / Time to Mortality (days) # Egg Case # Egg Case # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # Egg / Time to hatch / # hatched # Egg / Time to hatch / # hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched # Egg / Time in hatched #  |                | Females                     |       |              | <del> </del> | <u> </u>     | <del> </del> | <del> </del>   |                                                  | <u> </u>                                         | 20                                               |                                                  |                                                  |
| # Egg Case  # Egg S / Time to hatch / # hatched  12613 C  # Males emerged  Male Time to Mortality (days)  # Females emerged  Females Time to Montality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Egg Case  * Egg Case  * Egg Case  * Egg Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                             |       | }            | i            | 1            |              |                |                                                  |                                                  | 101                                              | }                                                | 1                                                |
| # Egg Case  # Egg S / Time to hatch / # hatched  12613 C  # Males emerged  Male Time to Mortality (days)  # Females emerged  Females Time to Montality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Egg Case  * Egg Case  * Egg Case  * Egg Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | Cumulative                  |       |              | 1            | i            | i ·          |                | ļ                                                | <u> </u>                                         | Wea                                              |                                                  | <del> </del>                                     |
| # Egg Case  # Egg S / Time to hatch / # hatched  12613 C  # Males emerged  Male Time to Mortality (days)  # Females emerged  Females Time to Montality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Egg Case  * Egg Case  * Egg Case  * Egg Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                             |       |              |              | <u> </u>     |              |                |                                                  |                                                  | 11/1/1                                           |                                                  |                                                  |
| # Eggs / Time to hatch / # hatched # Pairings # Eggs / # Eggs / Time to hatch / # hatched # Eggs / Time to hatch / # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # hatched # |                | # Pairings                  |       |              |              |              |              |                |                                                  |                                                  |                                                  |                                                  |                                                  |
| Time to hatch / # hatched  12613 C # Males emerged  Male Time to Mortality (days)  # Females emerged  Females Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Egg Case  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | # Egg Case                  |       |              |              |              |              |                |                                                  |                                                  |                                                  |                                                  |                                                  |
| # Egg Case    Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | # Eggs /                    |       | <del> </del> | <del> </del> | <u> </u>     | <del> </del> | ļ              | <u> </u>                                         |                                                  | <del> </del>                                     | ļ                                                | ļ                                                |
| Male Time to Montality (days)  # Females emerged  Females Time to Montality (days)  Cumulative number emerged  # Pairings  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | Time to hatch /             | _     |              |              |              |              |                |                                                  |                                                  |                                                  | ·                                                |                                                  |
| Male Time to Montality (days)  # Females emerged  Females Time to Montality (days)  Cumulative number emerged  # Pairings  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12613 C        |                             |       |              |              |              |              |                |                                                  |                                                  |                                                  |                                                  |                                                  |
| Mortality (days)  # Females emerged  Females Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | L                           |       |              | <del> </del> | ļ            |              | ļ              |                                                  | ļ <u>.</u>                                       |                                                  | <del> </del>                                     | <del> </del>                                     |
| # Females emerged  Females Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Egg Case  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                             |       |              |              |              |              |                | }                                                |                                                  | 1                                                | ļ                                                |                                                  |
| Females Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                             |       | <u> </u>     | <u> </u>     | ļ <u> </u>   |              | ļ              | ļ                                                | ļ                                                |                                                  | ļ                                                | ļ                                                |
| Females Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                             |       |              |              | }            | }            |                |                                                  |                                                  | 1                                                | 1                                                |                                                  |
| # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                             |       |              | 1            |              |              |                |                                                  |                                                  | 1/11                                             |                                                  | <del>                                     </del> |
| # Egg Case  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | (days)                      |       |              |              |              |              |                |                                                  |                                                  | - '                                              |                                                  |                                                  |
| # Egg Case  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | Cumulative                  |       | 1            |              | ì            |              | 1              |                                                  | i                                                | 11124                                            |                                                  | <del> </del>                                     |
| # Egg Case  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                             |       |              |              | 1            |              |                |                                                  |                                                  | 1,11540                                          |                                                  |                                                  |
| # Egg Case  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                             |       |              |              |              | 1            | 1              | 1                                                |                                                  | <del>                                     </del> |                                                  | <b>†</b>                                         |
| # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | # railings                  |       |              |              |              |              |                |                                                  |                                                  |                                                  |                                                  |                                                  |
| Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | # Egg Case                  |       |              |              |              | }            |                |                                                  |                                                  |                                                  |                                                  |                                                  |
| # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | # Eggs /<br>Time to hatch / |       |              |              |              |              |                |                                                  |                                                  |                                                  | 1                                                |                                                  |
| Init./Date  11/21  11/22  11/23  11/24  11/25  11/26  11/27  11/28  11/29  11/30  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | # hatched                   |       |              |              |              |              | <u> </u>       | ļ                                                |                                                  |                                                  |                                                  | ļ                                                |
| (1999)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                             | 11/21 | 11/22        | 11/23        | 11/24        | 11/25        | 11/26          | 11/27                                            | 11/28                                            | 11/29                                            | 11/30                                            | 12/1                                             |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: \_\_\_\_\_ Date: 12/2/29 Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays32-42

Project: 99033 M-C Dead Creek BTR: 3629 Test Start: 10/20/99

| ample / Repl. | Response                                 | 21/32                                            | -22-<br>- 32                                     | -23<br>74    | -24                                              | 25<br>76                                         | 26<br>37       | 27                                               | 385                                          | 30                                                 | - <del>30</del>                                  | 31                                               |
|---------------|------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|----------------|--------------------------------------------------|----------------------------------------------|----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| 12613 D       | # Males<br>emerged                       |                                                  |                                                  |              |                                                  |                                                  |                |                                                  |                                              |                                                    |                                                  |                                                  |
|               | Male Time to                             | <del>                                     </del> |                                                  |              |                                                  | <del> </del>                                     |                | <del>                                     </del> | <u> </u>                                     | ├──                                                | <del> </del>                                     | <del>                                     </del> |
|               | Mortality                                | 1                                                |                                                  |              |                                                  |                                                  | ļ              |                                                  |                                              |                                                    | ŀ                                                |                                                  |
|               | (days)<br># Females                      | <del>                                     </del> | <del>                                     </del> | <del> </del> | <del>                                     </del> |                                                  | <del> </del> - | ļ                                                |                                              | <del> </del>                                       |                                                  | <del> </del>                                     |
|               | emerged                                  |                                                  |                                                  | ]            |                                                  |                                                  |                |                                                  |                                              | 102                                                |                                                  |                                                  |
|               | Females                                  | <u> </u>                                         | <del> </del>                                     | <u> </u>     | <b></b> -                                        | <u> </u>                                         |                |                                                  | <del> </del>                                 | 00                                                 | <del>                                     </del> | <del> </del>                                     |
|               | Time to Mortality<br>(days)              |                                                  | ļ                                                |              |                                                  |                                                  |                |                                                  |                                              | IUP                                                |                                                  | 1                                                |
|               | Cumulative                               |                                                  |                                                  |              |                                                  |                                                  | Ī              |                                                  |                                              | 100                                                |                                                  |                                                  |
|               | number<br>emerged                        |                                                  | ļ                                                |              |                                                  |                                                  |                |                                                  |                                              | 11/29                                              |                                                  |                                                  |
|               | # Pairings                               |                                                  |                                                  |              |                                                  |                                                  |                |                                                  |                                              | 1                                                  |                                                  |                                                  |
|               | # Egg Case                               |                                                  | <u></u>                                          |              |                                                  |                                                  |                |                                                  |                                              |                                                    |                                                  |                                                  |
|               | # Eggs /<br>Time to hatch /<br># hatched |                                                  |                                                  |              |                                                  |                                                  |                |                                                  |                                              |                                                    |                                                  |                                                  |
| 12613 E       | # Males<br>emerged                       |                                                  |                                                  |              |                                                  |                                                  |                |                                                  |                                              |                                                    |                                                  |                                                  |
|               | Male Time to<br>Mortality                |                                                  | -                                                |              |                                                  |                                                  |                |                                                  |                                              |                                                    |                                                  |                                                  |
|               | (days)<br># Females                      |                                                  |                                                  |              |                                                  |                                                  | <del> </del>   | <del> </del> -                                   | <u> </u>                                     | <del> / \                                   </del> | <del> </del>                                     | ļ <u>.</u>                                       |
|               | emerged                                  | 1                                                |                                                  |              |                                                  |                                                  | 1              | }                                                |                                              |                                                    | 1                                                | }                                                |
|               | Females                                  |                                                  |                                                  |              | l<br>                                            | <del> </del>                                     | <u> </u>       | <del> </del>                                     | 1                                            | <del>        -                              </del> | <del> </del>                                     |                                                  |
|               | Time to Mortality<br>(days)              | •                                                |                                                  |              |                                                  |                                                  |                |                                                  |                                              | 11/29                                              |                                                  |                                                  |
|               | Cumulative                               |                                                  |                                                  |              |                                                  | <del>                                     </del> |                |                                                  |                                              |                                                    |                                                  |                                                  |
|               | number<br>emerged                        |                                                  | !                                                |              |                                                  |                                                  |                |                                                  |                                              | 176                                                |                                                  |                                                  |
|               | # Pairings                               |                                                  |                                                  |              |                                                  |                                                  |                |                                                  |                                              |                                                    |                                                  |                                                  |
|               | # Egg Case                               |                                                  |                                                  |              |                                                  |                                                  |                |                                                  |                                              |                                                    |                                                  |                                                  |
|               | # Eggs /<br>Time to hatch /<br># hatched |                                                  |                                                  |              |                                                  |                                                  |                |                                                  |                                              |                                                    | <del></del>                                      |                                                  |
| 12613 F       | # Males                                  |                                                  |                                                  |              |                                                  |                                                  |                |                                                  |                                              |                                                    |                                                  |                                                  |
| 120101        | emerged                                  |                                                  |                                                  |              |                                                  |                                                  |                |                                                  | <u> </u>                                     | ]                                                  | l                                                |                                                  |
|               | Male Time to<br>Mortality<br>(days)      |                                                  |                                                  |              |                                                  |                                                  |                |                                                  |                                              |                                                    |                                                  |                                                  |
|               | # Females<br>emerged                     |                                                  |                                                  |              |                                                  |                                                  |                |                                                  |                                              | OV                                                 |                                                  |                                                  |
|               | Females                                  |                                                  |                                                  |              | <del></del>                                      | <del> </del>                                     | <del> </del>   | <del>                                     </del> | <u> </u>                                     | 1                                                  | <del> </del>                                     |                                                  |
|               | Time to Mortality<br>(days)              |                                                  |                                                  |              |                                                  |                                                  |                |                                                  |                                              | IOI                                                |                                                  |                                                  |
|               | Cumulative                               |                                                  |                                                  |              | <del></del>                                      | <del>                                     </del> |                | <del>                                     </del> | İ                                            | 11.0                                               | <del> </del>                                     | <del> </del>                                     |
|               | number                                   | [                                                |                                                  |              | ĺ                                                | 1                                                | 1              | 1                                                |                                              | 11/296                                             | -                                                | }                                                |
|               | emerged                                  |                                                  |                                                  |              |                                                  |                                                  | <del> </del>   | <del> </del>                                     | <u>.                                    </u> | 1170                                               | <del> </del>                                     | <del> </del>                                     |
|               | # Pairings                               |                                                  |                                                  |              |                                                  |                                                  |                |                                                  |                                              |                                                    |                                                  |                                                  |
|               | # Egg Case                               |                                                  |                                                  |              |                                                  |                                                  |                |                                                  |                                              |                                                    |                                                  |                                                  |
|               | # Eggs /<br>Time to hatch /<br># hatched |                                                  |                                                  |              |                                                  |                                                  |                |                                                  |                                              |                                                    |                                                  |                                                  |
|               | Init./Date<br>(1999)                     | 11/21                                            | 11/22                                            | 11/23        | 11/24                                            | 11/25                                            | 11/26          | 11/27                                            | 11/28                                        | 11/29                                              | 11/30                                            | 12/1                                             |

| Sample / Repl.                           | Response                                 | 21           | 22-33    | <del>23</del><br>34 | -24<br>35 | 25           | - <del>26</del><br>-77 | 27          | 28<br>39                                         | 29<br>40    | 3 <del>0</del> | 31                                               |
|------------------------------------------|------------------------------------------|--------------|----------|---------------------|-----------|--------------|------------------------|-------------|--------------------------------------------------|-------------|----------------|--------------------------------------------------|
| 12613 G                                  | # Males<br>emerged                       | 32           | - 32     | 3.1                 | 7.3       |              | -31                    |             | -                                                |             |                | -                                                |
|                                          | Male Time to<br>Mortality                |              |          | 1                   |           |              |                        |             | 1                                                | 1           |                |                                                  |
|                                          | (days)                                   | ļ            | <u> </u> | <del> </del>        | <u> </u>  | <u> </u>     | ļ. <u></u>             | ļ           | ļ                                                | <del></del> | ļ              | ļ                                                |
|                                          | # Females<br>emerged                     |              |          |                     |           |              |                        |             |                                                  | 06          |                |                                                  |
|                                          | Females Time to Mortality (days)         | <del> </del> |          |                     |           | <del> </del> | <del> </del> -         |             |                                                  | OP          |                |                                                  |
|                                          | Cumulative<br>number<br>emerged          |              |          |                     |           |              |                        |             |                                                  | 1111        |                |                                                  |
|                                          | # Pairings                               |              |          |                     |           |              |                        |             |                                                  | 3           |                |                                                  |
|                                          | # Egg Case                               |              |          |                     |           |              |                        |             |                                                  |             |                |                                                  |
|                                          | # Eggs /<br>Time to hatch /<br># hatched |              |          |                     |           |              |                        |             |                                                  |             |                |                                                  |
| 12613 H                                  | # Males<br>emerged                       |              |          |                     |           |              |                        |             |                                                  |             |                |                                                  |
|                                          | Male Time to<br>Mortality<br>(days)      |              |          | <del> </del>        |           |              |                        |             | <del>                                     </del> |             |                |                                                  |
|                                          | # Females<br>emerged                     |              | <b>†</b> |                     |           |              |                        |             |                                                  | OL          |                | <del>                                     </del> |
|                                          | Females Time to Mortality (days)         |              |          |                     |           |              |                        |             |                                                  | OF          |                |                                                  |
|                                          | Cumulative<br>number<br>emerged          |              |          |                     |           |              |                        |             |                                                  | 1/2/3       |                |                                                  |
|                                          | # Pairings                               |              | ļ        |                     |           | ļ <u>.</u>   | ļ                      |             | <u> </u>                                         | <u> </u>    |                | <u> </u>                                         |
|                                          | # Egg Case                               |              |          |                     |           |              |                        |             |                                                  |             |                |                                                  |
|                                          | # Eggs /<br>Time to hatch /<br># hatched | -            |          |                     |           |              |                        |             |                                                  |             |                |                                                  |
|                                          | Init./Date<br>(1999)                     | 11/21        | 11/22    | 11/23               | 11/24     | 11/25        | 11/26                  | 11/27       | 11/28                                            | 11/29       | 11/30          | 12/1                                             |
| nergence sco<br>rviving. P = p<br>ments: | upa [=                                   | 13x13        |          |                     |           |              | <del></del>            |             |                                                  | which er    | nerge bi       | at are                                           |
|                                          |                                          | Tos          | 55 D     | 24 (                | rurre     | CN V         | 1//                    | /30/9       | 77                                               |             |                |                                                  |
|                                          |                                          |              |          |                     |           |              |                        |             |                                                  |             |                |                                                  |
|                                          |                                          | - <u></u>    |          | _ <del></del>       |           |              | <del></del>            | <del></del> | <del></del>                                      | <del></del> |                |                                                  |
|                                          |                                          |              |          |                     |           |              |                        |             | · <del> · · ·</del>                              |             |                |                                                  |
|                                          |                                          |              |          |                     |           |              |                        |             |                                                  |             |                |                                                  |

Review: \_\_\_\_\_ Date: \2 \29 \64
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays32-42

Project: 99033 M-C Dead Creek BTR: 3629 Test Start: 10/20/99 Sample / Repl. Response 25 27 21 22 23 24 26 28 29 30 31 # Males dead 12614 A emerged Male Time to 30/17 60 7dillig Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12614 B emerged Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch # hatched # Males 12614 C emerged Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched Init./Date 11/13 11/11 11/12 11/15 11/16 11/20 (1999)Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not

Ocorrection. JG1/14 Also I dead pupal found near top of 12614A

surviving. P = pupa

Review: \_\_\_\_\_ Date: 12/2(/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

000115

Project: 99033 M-C Dead Creek BTR: 3629 Test Start: 10/20/99

| Sample / Repl. | Response                                 | 21    | 22           | 23    | 24    | 25    | 26           | 27    | 28    | 29    | 30    | 31           |
|----------------|------------------------------------------|-------|--------------|-------|-------|-------|--------------|-------|-------|-------|-------|--------------|
| 12614 D        | # Males<br>emerged                       |       |              |       |       |       | -            |       |       |       |       |              |
|                | Male Time to<br>Mortality<br>(days)      |       | <del> </del> |       |       |       |              |       |       |       |       |              |
|                | # Females<br>emerged                     |       | <del> </del> |       | 1     |       | <del> </del> |       |       |       |       |              |
|                | Females Time to Mortality (days)         |       | <del> </del> |       |       |       |              |       |       |       | -     | <del> </del> |
|                | Cumulative<br>number<br>emerged          |       |              |       |       |       |              |       |       |       |       |              |
|                | # Pairings                               |       |              |       |       |       |              |       |       |       |       |              |
|                | # Egg Case                               |       |              |       |       |       |              |       |       |       |       |              |
|                | # Eggs /<br>Time to hatch /<br># hatched |       |              |       |       |       |              |       |       |       |       |              |
| 12614 E        | # Males<br>emerged                       |       |              |       |       |       |              |       |       |       |       |              |
|                | Male Time to<br>Mortality<br>(days)      |       |              |       |       |       |              |       |       |       |       |              |
|                | # Females<br>emerged                     |       |              |       |       |       |              |       |       |       |       |              |
|                | Females<br>Time to Mortality<br>(days)   |       |              |       |       |       |              |       |       |       |       |              |
|                | Cumulative<br>number<br>emerged          |       |              |       |       |       |              |       |       |       |       |              |
|                | # Pairings                               |       |              | ļ     | ļ     |       |              |       |       |       |       |              |
|                | # Egg Case                               |       |              |       |       | ļ     |              |       |       |       |       |              |
|                | # Eggs /<br>Time to hatch /<br># hatched |       |              |       |       |       |              |       |       |       |       |              |
| 12614 F        | # Males<br>emerged                       |       |              |       |       |       |              |       |       |       |       |              |
|                | Male Time to<br>Mortality<br>(days)      |       |              |       |       |       |              |       |       |       |       |              |
|                | # Females<br>emerged                     |       |              |       |       |       |              |       |       |       |       |              |
|                | Females<br>Time to Mortality<br>(days)   |       |              |       |       |       |              |       |       |       |       |              |
|                | Cumulative<br>riumber<br>emerged         |       |              |       |       |       |              |       |       |       |       |              |
|                | # Pairings                               |       |              |       |       |       |              |       |       |       |       |              |
|                | # Egg Case                               |       |              |       |       |       |              |       |       |       |       |              |
|                | # Eggs /<br>Time to hatch /<br># hatched |       |              |       |       |       |              |       |       |       |       |              |
| ·              | Init./Date<br>(1999)                     | 11/10 | 11/11        | 11/12 | 11/13 | 11/14 | 11/15        | 11/16 | 11/17 | 11/18 | 11/19 | 11/20        |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: \_\_\_\_\_ Date: 12/21/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| Cumulative number emerged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CL. 55050 W   | -C Dead Cr          | eek   | BTI   | R: 3629  | <del></del> |       |       | Tes     | st Start:   | 10/20/9     | 9     |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------|-------|-------|----------|-------------|-------|-------|---------|-------------|-------------|-------|---------|
| Maile Time to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ample / Repl. | Response            | 21    | 22    | 23       | 24          | 25    | 26    | 27      | 28          | 29          | 30    | 31      |
| Mortality (days) # Females emerged  Fomales Time to Mortality (days) # Eggs / Time to hatch / # hatched  Male Time to Mortality (days) # Females # Eggs / Time to hatch / # hatched # Pairings  # Eggs / # Females # Males Time to Mortality (days) # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # Females # | 12614 G       |                     |       |       |          | -           |       |       |         | 1           |             |       |         |
| # Females energed  Fompies Time to Mortality (days)  Cumulative energed  # Parnings  # Egg Case  # Egg Case  Male Time to Mortality (days)  # Females energed  Females energed  Females energed  Females energed  # Parnings  # Females energed  # Females energed  # Females energed  # Females energed  # Females energed  # Females energed  # Females energed  # Females energed  # Females energed  # Females energed  # Females energed  # Females Time to Mortality (days)  # Females energed  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)  # Females Time to Mortality (days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Mortality           |       |       | <b> </b> | †           |       |       |         | 64          |             |       |         |
| Time to Mortality (days) Cumulative number emerged  # Pairings  # Egg Case  # Egg Sase  # Males emerged  Male Time to Mortality (days) # Females emerged  Females Time to Mortality (days)  # Females emerged  # Females Time to Mortality (days)  # Females emerged  # Females Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Egg Case  # Egg Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | # Females           |       |       |          | <b>†</b>    |       |       | Tocoped | \(\alpha \) | 1           |       |         |
| Cumulative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | Time to Mortality   |       |       |          |             |       |       |         |             | 20,00       |       | 40,1/24 |
| # Egg / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | Cumulative number   |       |       |          |             |       |       |         | 2           |             |       | 13      |
| # Egg / Time to hatch / # hatched # Hatched # Males emerged # Egg / Gays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | # Pairings          |       |       |          |             |       |       |         |             | 16/43/      |       | 811/146 |
| Time to hatch / # hatched   # Males   # Males   # Males   # Males   # Male Time to   Mortality   (days)   # Females   # Females   Time to Mortality   (days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | # Egg Case          |       |       |          |             |       |       |         |             |             |       |         |
| # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | Time to hatch /     |       |       |          |             |       | ļ     |         |             |             |       |         |
| Mortality (days) # Females emerged  Females Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12614 H       |                     |       |       |          |             |       |       |         |             |             |       |         |
| emerged  Females Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Mortality<br>(days) |       |       |          |             |       |       |         |             |             |       |         |
| Time to Mortality (days)  Cumulative number emerged  # Pairings  # Egg Case  # Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                     |       |       |          |             |       |       |         |             |             |       |         |
| # Egg / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | Time to Mortality   |       |       |          |             |       |       |         |             |             |       |         |
| #Egg Case  #Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | number              |       |       |          |             |       |       |         |             |             |       |         |
| #Eggs / Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | # Pairings          |       |       |          |             |       |       |         |             |             |       |         |
| Time to hatch / # hatched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | # Egg Case          |       |       |          |             |       |       |         |             |             |       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Time to hatch /     |       |       |          |             |       |       |         |             |             |       |         |
| Init./Date 11/10 11/11 11/12 11/13 11/14 11/15 11/16 11/17 11/18 11/19 11/20 (1999)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                     | 11/10 | 11/11 | 11/12    | 11/13       | 11/14 | 11/15 | 11/16   | 147         | 11/18<br>1m | 11/19 | 17/20   |

| ~ .       |           | Date:      | 17 /21 /   | 00         |            |            |
|-----------|-----------|------------|------------|------------|------------|------------|
| Review:   |           | Date:      | 141        | 7 <b>7</b> |            |            |
| Laborator | v. Ameste | c Biologic | al Science | : South    | Burlington | 3. Vermont |

Project: 99033 M-C Dead Creek BTR: 3629 Test Start: 10/20/99

| Sample / Repl. | Response                                 | 1 60 | 1 65 | 1 2 2      |                                         |    |    |    |          |    |       | T -=- |
|----------------|------------------------------------------|------|------|------------|-----------------------------------------|----|----|----|----------|----|-------|-------|
| Sample / Repl. | Response                                 | 32   | 33   | 34         | 35                                      | 36 | 37 | 38 | 39       | 40 | 41    | 42    |
| 12614 A        | # Males<br>emerged                       |      |      | 11         |                                         |    |    |    |          |    |       |       |
|                | Male Time to<br>Mortality<br>(days)      |      |      | 14/24/11/2 | }                                       |    |    |    |          |    |       |       |
|                | # Females<br>emerged                     |      |      |            |                                         |    |    |    |          |    |       |       |
|                | Females Time to Mortality (days)         |      |      |            |                                         |    |    |    |          |    | OL    |       |
|                | Cumulative<br>number<br>emerged          |      |      | 9          |                                         |    |    |    |          |    | OP_   |       |
|                | # Pairings                               |      |      |            |                                         |    |    |    |          |    | 1/30m |       |
|                | # Egg Case                               |      |      |            |                                         |    |    |    |          |    |       |       |
|                | # Eggs /<br>Time to hatch /<br># hatched |      |      |            |                                         |    |    |    |          |    |       |       |
| 12614 B        | # Males<br>emerged                       |      |      |            |                                         |    |    |    |          |    |       |       |
|                | Male Time to<br>Mortality<br>(days)      |      |      |            |                                         |    |    |    |          |    |       |       |
|                | # Females<br>emerged                     | _    |      |            |                                         |    |    |    |          |    | OL_   |       |
|                | Females Time to Mortality (days)         |      |      |            |                                         |    |    |    |          |    | OP    |       |
|                | Cumulative<br>number<br>emerged          |      |      |            |                                         |    |    |    |          |    | 11/30 |       |
|                | # Pairings                               |      |      |            |                                         |    |    |    | <u> </u> |    |       |       |
|                | # Egg Case                               |      |      |            |                                         |    |    |    |          |    |       |       |
|                | # Eggs /<br>Time to hatch /<br># hatched |      |      |            | . · · · · · · · · · · · · · · · · · · · |    |    |    |          |    |       |       |
| 12614 C        | # Males<br>emerged                       |      |      |            |                                         |    |    |    |          |    |       |       |
|                | Male Time to<br>Mortality<br>(days)      |      |      |            |                                         |    |    |    |          |    |       |       |
|                | # Females<br>emerged                     |      |      |            | ,                                       |    |    |    |          |    | OL    |       |
|                | Females<br>Time to Mortality<br>(days)   |      |      |            |                                         |    |    |    |          |    | OP    |       |
|                | Cumulative<br>number<br>emerged          |      |      |            |                                         |    |    |    |          |    | 1139m |       |
|                | # Pairings                               |      |      |            |                                         |    |    |    |          |    |       |       |
|                | # Egg Case                               |      |      |            |                                         |    |    |    |          |    |       |       |
|                | # Eggs /<br>Time to hatch /<br># hatched |      |      |            |                                         |    |    |    |          | -  | -     |       |
|                |                                          |      | 1    | L          |                                         | 1  | 1  | 1  | •        | 1  | J     |       |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: Date: 12/u /99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays32-42

Project: 99033 M-C Dead Creek BTR: 3629 Test Start: 10/20/99 Sample / Repl. <del>23</del> 34 Response <del>28</del> # Males 12614 D emerged Male Time to Mortality (days) # Females emerged Females OV Time to Mortality (days) Cumulative OP number emerged 11/30 # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12614 E emerged Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative 11/30 number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12614 F emerged Male Time to Mortairty (days) # Females OL emerged Females OP Time to Mortality (days) 11/30 number emerged IJM # Pairings # Egg Case # Eggs /

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

11/24

11/25

11/26

11/27

11/28

11/29

1185 Day Correction July30/89 Review: \_\_\_\_\_ Date: \_\_\_\_\_ Z | Z1 | gq Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

11/23

Time to hatch / # hatched

(1999)

Init./Date | 11/21

11/22

12/1

11/30

| ject: 99033 M                    | -C Dead Cr                               | еек               | BII         | R: 3629     |                                |         |                      | Tes     | t Start:  | 10/20/9      | 9                   |                 |
|----------------------------------|------------------------------------------|-------------------|-------------|-------------|--------------------------------|---------|----------------------|---------|-----------|--------------|---------------------|-----------------|
| Sample / Repl.                   | Response                                 | 21                | 22          | 23          | <del>24</del><br><del>35</del> | 25<br>X | <del>-26</del><br>37 | 378     | 38        | 29<br>40     | <del>30</del><br>41 | - <del>31</del> |
| 12614 G                          | # Males<br>emerged                       |                   |             |             |                                |         |                      |         |           | 7.0          |                     |                 |
|                                  | Male Time to<br>Mortality<br>(days)      | 1                 |             |             | 1                              |         |                      |         |           |              |                     |                 |
|                                  | # Females<br>emerged                     |                   |             |             | <del> </del>                   |         |                      |         |           |              | ())                 |                 |
| \\1                              | Females Time to Mortality (days)         |                   |             |             |                                |         |                      |         |           |              | OP                  |                 |
| ilzo grace of milit              | Cumulative<br>number<br>emerged          | ,                 |             |             |                                |         |                      |         |           |              | TIM                 |                 |
| 1/2/10/4 Kay /                   | # Pairings                               | 11 3000)          |             |             |                                |         |                      |         |           |              | 11/30               |                 |
| 11120                            | # Egg Case                               | 3.                |             |             |                                |         |                      |         |           |              |                     |                 |
|                                  | # Eggs /<br>Time to hatch /<br># hatched | 2,336<br>~490mh." | 127         |             |                                |         |                      |         |           |              |                     |                 |
| 12614 H                          | # Maies<br>emerged                       | 2-400 Uni         |             |             |                                |         |                      |         | 1         |              |                     |                 |
|                                  | Male Time to<br>Mortality<br>(days)      |                   |             |             |                                |         |                      |         |           |              |                     |                 |
|                                  | # Females<br>emerged                     |                   |             |             |                                |         | <u> </u>             |         |           |              | OL                  |                 |
|                                  | Females<br>Time to Mortality<br>(days)   |                   |             |             |                                |         |                      | <u></u> |           |              | OP                  |                 |
|                                  | Cumulative<br>number<br>emerged          |                   |             |             |                                |         |                      |         |           |              | 11/30               |                 |
|                                  | # Pairings                               | _                 |             |             |                                |         |                      |         |           |              | TJM                 |                 |
|                                  | # Egg Case                               |                   |             |             |                                |         |                      |         |           |              |                     |                 |
|                                  | # Eggs /<br>Time to hatch /<br># hatched |                   |             |             |                                |         |                      |         |           |              |                     |                 |
|                                  | Init./Date<br>(1999)                     | 11/21             | 11/22       | 11/23       | 11/24                          | 11/25   | 11/26                | 11/27   | 11/28     | 11/29        | 11/30               | 12/1            |
| mergence scor<br>urviving. P = p | ing: Record                              | any pu            | pae wh      | ich die (l  | D) before                      | emerg   | ence. D              | = dead  | for flies | which er     | nerge bu            | it are no       |
| nments:                          |                                          | (1.)              | Te.         | 57.         | DUG                            | Coll    | ectiv                | 20      | /-        |              |                     |                 |
| <del></del>                      | <del></del>                              |                   |             | <del></del> | <u> </u>                       |         | $-\mathcal{O}$       | 11/3    | 0/99      | <del>-</del> |                     | ***             |
|                                  |                                          |                   |             |             |                                |         |                      |         |           |              |                     |                 |
|                                  |                                          |                   |             |             |                                |         |                      |         | ·· —      |              |                     |                 |
|                                  |                                          |                   |             |             |                                |         |                      | -, ,    |           |              |                     |                 |
| <del></del>                      |                                          | - <del></del>     | <del></del> |             |                                |         |                      |         |           |              |                     |                 |
|                                  |                                          |                   |             |             |                                |         |                      |         |           |              |                     |                 |

Review: \_\_\_\_\_ Date: (2/21/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| Sample / Repl. | Response                                    | 21                                    | 22                                               | 23          | 24      | 25       | 26               | 27     | 28           | 29     | 30      | 31       |
|----------------|---------------------------------------------|---------------------------------------|--------------------------------------------------|-------------|---------|----------|------------------|--------|--------------|--------|---------|----------|
| 12622 A        | # Males<br>emerged                          | ·                                     | <del>                                     </del> | ا دا وجدعوم | ]       |          |                  |        |              | 1      | 1       | ŀ        |
|                | Male Time to<br>Mortality<br>(days)         |                                       |                                                  | 1 1.        | 5d 1/18 |          | Codifer          |        |              | 10,125 | ad, vas | 54,125   |
|                | # Females<br>emerged                        |                                       |                                                  |             | 1       | 1, 1.    |                  |        | 1            |        |         |          |
|                | Females<br>Time to Mortality<br>(days)      |                                       |                                                  |             | 2d.11.5 | 3511/1/2 |                  |        | 50,00        | •      |         |          |
|                | Cumulative<br>number<br>emerged             |                                       |                                                  |             | ~       | -4)6     | 7                | 2      |              |        | 10      | il       |
|                | # Pairings                                  |                                       |                                                  |             | 2 622 A | 25 36    | 12B              | 1/627C | 31/6224      | 3      | W/622AE |          |
|                | # Egg Case                                  |                                       |                                                  |             |         |          | 32A & JG         |        |              |        | ,       |          |
|                | # Eggs /<br>Time to hatch /<br># hatched    | <del> </del>                          |                                                  |             |         |          | 285<br>28 unhate | necl   |              |        |         |          |
| 12622 B        | # Males<br>emerged                          |                                       | 1                                                |             |         |          |                  |        |              |        |         |          |
|                | Male Time to<br>Mortality<br>(days)         |                                       | 5 d 11/16                                        |             |         |          |                  |        |              |        |         |          |
|                | # Females<br>emerged                        |                                       |                                                  | 1           |         | 1        |                  |        |              |        |         | 1        |
|                | Females Time to Mortality (days)            |                                       |                                                  | (od,1)8     |         | 3017     |                  |        |              |        |         | 10/12    |
|                | Cumulative<br>number<br>emerged             |                                       | 1                                                | 2           |         | 3        |                  |        |              |        |         | 4        |
|                | # Pairings                                  | · · · · · · · · · · · · · · · · · · · |                                                  | VH22A       | w/621cd | W/622F   |                  |        |              |        |         | W/612A   |
|                | # Egg Case                                  |                                       |                                                  |             |         |          |                  |        |              |        |         |          |
|                | # Eggs /<br>Time to hatch /<br># hatched    |                                       |                                                  |             |         |          |                  |        |              |        |         |          |
| 12622 C        | # Males<br>emerged                          |                                       | l                                                |             | 1       |          |                  |        |              |        |         |          |
|                | Male Time to<br>Mortality<br>(days)         | 34                                    | 7077                                             |             | 60/1/19 |          |                  |        |              |        |         |          |
|                | emerged                                     |                                       |                                                  |             |         | 1        |                  |        |              |        |         | ·        |
|                | Females Time to Mortality (days) Cumulative |                                       |                                                  | <br>        |         | 79/1/2/  |                  |        |              |        |         | <u> </u> |
|                | number                                      | 1                                     | 2                                                | <u></u>     | 3       | 4        | <b>\</b>         | ļ<br>  |              |        |         |          |
|                | # Pairings                                  |                                       |                                                  |             | <br>    | 14/3     | 114              |        | <del> </del> |        |         |          |
|                | # Egg Case                                  |                                       |                                                  |             |         |          | 10 .4            |        |              |        |         |          |
|                | # Eggs /<br>Time to hatch /<br># hatched    |                                       |                                                  |             |         |          | is unhated       | od     |              |        |         |          |
| nergence sco   | Init./Date<br>(1999)                        | 11/1/8                                | 13/11                                            | 11/12       | 11/13   | 11/14    | 11/15            | 11/16  | 1/1/7        | 11/18  | 11/19   | 11/28    |

Review: \_\_\_\_\_ Date: 12/2 / 49
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays21-31

Project: 99033 M-C Dead Creek BTR: 3629 Test Start: 10/20/99 Sample / Repl. Response 21 22 23 24 25 26 27 28 29 30 31 # Males 12622 D emerged Male Time to Mortality กไร (days) # Females emerged Females 2000 Time to Mortality (days) number emerged 11/622 11/623 # Pairings # Egg Case NICO mutatchina toped # Eggs / Time to hatch / # hatched # Males 12622 E 1 emerged 4d 1117 Male Time to 30/1/5px Mortality (days) emerged Females Nervalo 20 Time to Mortality (days) Cumulative 2 number emerged Holler 11,252 # Egg Case Bunhatchee # Eggs / Time to hatch / 11/22 # hatched # Males 12622 F ID emerged 611 Male Time to 48 11/20 zd 08/111 Mortality (days) # Females emerged 20,1/20 Females 6 dig Time to Mortality (days) Cumulative 2 number emerged Willera WILZIG W/ 662<u>A</u>3 # Pairings 11/18 Ι EST. # Egg Case 10,00 725 8 unhatelies/100 1/21 Grunhatched 1124 # Eggs / Time to hatch / 67 unharched 4/25

11/10 //// 11/16 11/16 M 11/11 11/17 m Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

11/13

11/12

Date: 12/4/99 Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

# hatched

Init./Date

ctdays21-31

11/20

|               |                                          |                                                  |                                                  |                                                  |                                                  |                  |            |                    | ,                                                                                    | ,           |                |               |
|---------------|------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------|------------|--------------------|--------------------------------------------------------------------------------------|-------------|----------------|---------------|
| ample / Repl. | Response                                 | 21                                               | 22                                               | 23                                               | 24                                               | 25               | 26         | 27                 | 28                                                                                   | 29          | 30             | 31            |
| 12622 G       | # Males<br>emerged                       |                                                  |                                                  |                                                  | 1                                                |                  |            | 1                  | 1                                                                                    |             |                |               |
|               | Male Time to                             | <del> </del>                                     | <del>                                     </del> | <del>                                     </del> | 1110                                             |                  |            | . 14. 4            |                                                                                      | <del></del> |                | <del> </del>  |
|               | Mortality<br>(days)                      |                                                  |                                                  |                                                  | 50,,/18                                          |                  |            | 10/1/22            | 400121                                                                               |             |                | <u> </u>      |
|               | # Females<br>emerged                     |                                                  |                                                  |                                                  |                                                  | 1_               | 11         |                    |                                                                                      |             |                |               |
|               | Females Time to Mortality (days)         |                                                  |                                                  |                                                  |                                                  | 79"/R            | 39/18/     |                    |                                                                                      |             |                |               |
|               | Cumulative                               | <del>                                     </del> | <del> </del>                                     | <del>                                     </del> |                                                  | 7                | W 4 W      |                    |                                                                                      |             | †              | <del></del> - |
|               | number<br>emerged                        | 1                                                |                                                  |                                                  | 1                                                | 2                | 7382A /    | 5                  | 1 Ce                                                                                 |             |                |               |
|               | # Pairings                               |                                                  |                                                  |                                                  |                                                  | W/622E27<br>1413 | 1/22 W/622 |                    | W/82368                                                                              |             |                |               |
|               |                                          | <del> </del>                                     | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> | 1                | - CW       |                    | 17/6                                                                                 | >           | >10            | Lake          |
|               | # Egg Case                               |                                                  |                                                  |                                                  |                                                  | _ \              |            | اد                 | (Posa)                                                                               | >11/kg      | 390 1          | gunhate       |
|               | # Eggs /<br>Time to hatch /<br># hatched |                                                  |                                                  |                                                  |                                                  |                  |            | 1,508<br>530000000 | 1/16<br>1/16<br>1/16<br>1/25<br>1/25<br>1/25<br>1/25<br>1/25<br>1/25<br>1/25<br>1/25 | nhatched    | 11124-<br>1125 |               |
| 2622 H        | # Males                                  |                                                  |                                                  |                                                  |                                                  |                  |            | 1                  |                                                                                      |             |                |               |
| 2022 11       | emerged  Male Time to                    | <del> </del>                                     |                                                  |                                                  | 1                                                |                  |            | 34.                |                                                                                      | <u> </u>    |                |               |
|               | Mortality<br>(days)                      |                                                  |                                                  |                                                  |                                                  |                  |            | 7d/23              | İ                                                                                    | ļ           |                |               |
|               | # Females<br>emerged                     |                                                  |                                                  |                                                  |                                                  |                  |            |                    |                                                                                      |             |                |               |
|               | Females Time to Mortality (days)         |                                                  |                                                  |                                                  |                                                  |                  |            |                    |                                                                                      |             |                |               |
|               | Cumulative                               | 1                                                |                                                  | <del> </del>                                     | †                                                |                  | ·          | 1                  |                                                                                      |             |                |               |
|               | emerged                                  | ļ                                                | 1                                                | <u> </u>                                         |                                                  |                  |            |                    |                                                                                      |             |                | L             |
|               | # Pairings                               |                                                  |                                                  |                                                  |                                                  |                  |            |                    |                                                                                      |             |                |               |
|               | # Egg Case                               |                                                  |                                                  |                                                  |                                                  |                  |            |                    |                                                                                      |             |                |               |
|               | # Eggs /                                 | <del>                                     </del> | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     |                  | <u> </u>   | ļ                  |                                                                                      | <del></del> |                |               |
|               | Time to hatch /<br># hatched             |                                                  |                                                  |                                                  |                                                  |                  | ĺ          | )                  | }                                                                                    |             |                |               |
|               | Init./Date                               | 11/10                                            | 11/11                                            | 11/12                                            | 11/13                                            | 12/4             | 11/15      | 11/16              | 1447                                                                                 | 11/18       | 11/19          | 11/20         |

Review: \_\_\_\_\_ Date: /2/21/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays21-31

| <br>                            |            |                      |
|---------------------------------|------------|----------------------|
| <br>oject: 99033 M-C Dead Creek | BTR: 3629  | Test Start: 10/20/99 |
| Sject, 33000 in-o bead ofeek    | D117. 3023 | Test Start. 10/20/35 |

|                |                              |              | سيد و سيدون                                      |                                                  |              |              | سوريا درسون                                      |              | <del></del>                                      | , , , , , , , , , , , , , , , , , , , , |              |              |
|----------------|------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------|--------------------------------------------------|--------------|--------------------------------------------------|-----------------------------------------|--------------|--------------|
| Sample / Repl. | Response                     | 32           | 33                                               | 34                                               | 35           | 36           | 37                                               | 38           | 39                                               | 40                                      | 41           | 42           |
| 12622 A        | # Males<br>emerged           |              |                                                  |                                                  |              |              |                                                  |              |                                                  |                                         |              |              |
|                | Male Time to                 | <del> </del> | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del> | <del> </del>                                     | <del>}</del> | <del> </del>                                     | <del> </del>                            | ļ            | <del> </del> |
|                | Mortality                    | }            | 1                                                |                                                  | 1            | ]            | }                                                | ]            | }                                                |                                         |              | 1            |
|                | (days)                       |              | <u> </u>                                         | ļ                                                | <del> </del> | ļ            | ļ                                                | ļ            | <b></b>                                          | ļ                                       | ļ            | <b></b>      |
|                | # Females<br>emerged         |              | 1                                                |                                                  |              | ł            | 1                                                |              |                                                  | }                                       |              |              |
|                | Females                      |              | <del> </del>                                     | <del> </del>                                     | <del> </del> | ļ            | <b>}</b>                                         | <del> </del> | <del> </del>                                     | ļ                                       | <del> </del> | <b></b>      |
|                | Time to Mortality            | ĺ            | 1                                                | 1                                                | 1            | 1            |                                                  |              | ]                                                | 1                                       | }            | }            |
|                | (days)<br>Cumulative         | <del></del>  | <del> </del>                                     | <del> </del>                                     | <del> </del> | ļ            | <del> </del>                                     | <del></del>  | <del> </del>                                     | <b></b>                                 | ļ            | <b>}</b>     |
|                | number                       |              | }                                                | {                                                | {            | }            | {                                                | 1            | İ                                                | 1                                       | l            | 1            |
|                | emerged                      |              | <del> </del>                                     | ļ                                                | <b>}</b>     | ļ            | <del> </del>                                     | <b>}</b>     | <b> </b>                                         | }                                       | <del> </del> | <b> </b>     |
|                | # Pairings                   |              |                                                  | ł                                                |              |              | 1                                                |              |                                                  | }                                       | }            | }            |
|                | # Egg Case                   |              |                                                  |                                                  |              |              |                                                  |              |                                                  |                                         |              |              |
|                | # Eggs /                     | <del></del>  | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del> | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del>                            | <del> </del> | <del> </del> |
|                | Time to hatch /<br># hatched |              |                                                  | ļ                                                |              | }            |                                                  | }            | }                                                | ĺ                                       | {            | {            |
| 12622 B        | # Males<br>emerged           |              |                                                  |                                                  |              |              |                                                  |              |                                                  |                                         |              |              |
|                | Male Time to                 |              | <del> </del>                                     | <del> </del>                                     |              |              |                                                  |              | ļ                                                | <del> </del>                            |              | ļ            |
|                | Mortality<br>(days)          |              | •                                                |                                                  | {            |              | 1                                                | }            |                                                  |                                         |              | }            |
|                | # Females                    |              | <del> </del>                                     |                                                  | <del> </del> |              | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del>                            | <del> </del> | <del> </del> |
|                | emerged                      |              |                                                  | 1                                                | ł            |              | 1                                                | ł            | 1                                                | 1                                       | l            | Ì            |
|                | Females                      |              | <del> </del>                                     | <del> </del>                                     | <del> </del> |              | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del>                            | <del> </del> | <del> </del> |
|                | Time to Mortality (days)     |              | <u> </u>                                         |                                                  | }            |              |                                                  | ]            | l                                                |                                         |              | }            |
|                | Cumulative<br>number         |              |                                                  |                                                  |              |              | ]                                                | 1            | ]                                                |                                         | ]            |              |
|                | emerged                      |              | <u> </u>                                         |                                                  | <u> </u>     |              |                                                  |              | <u> </u>                                         |                                         | <u> </u>     |              |
|                | # Pairings                   |              | 1                                                | <u>{</u>                                         |              |              |                                                  | }            | }                                                |                                         |              |              |
|                | # Egg Case                   |              |                                                  |                                                  |              |              |                                                  |              |                                                  |                                         |              |              |
|                | # Eggs /                     |              | t                                                |                                                  | <b> </b>     | <del></del>  | <del>                                     </del> |              | <b>†</b>                                         | <del> </del>                            | <del> </del> | <del> </del> |
|                | Time to hatch / # hatched    |              |                                                  | }                                                |              | }            |                                                  | }            |                                                  | }                                       | }            | 1            |
| 12622 C        | # Males                      |              | 1                                                | <b></b>                                          |              |              | 7                                                | }            |                                                  |                                         |              | <del> </del> |
| 12022 0        | emerged                      |              | }                                                | }                                                | }            | }            | 1                                                | 1            | 1                                                | 1                                       |              | 1            |
| :              | Male Time to<br>Mortality    |              |                                                  |                                                  |              |              |                                                  |              | 1                                                |                                         |              | }            |
| :              | (days)                       |              | ļ                                                |                                                  | ļ            | ļ            | <del> </del>                                     | ļ            | }                                                |                                         | ļ            | ļ            |
| ,              | # Females<br>emerged         |              | {                                                | {                                                |              |              |                                                  | 1            |                                                  |                                         |              | }            |
|                | Females                      |              | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del> | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del>                            | <del> </del> | <del> </del> |
|                | Time to Mortality<br>(days)  |              |                                                  | {                                                |              | }            |                                                  |              |                                                  |                                         |              | }            |
|                | Cumulative                   |              | <del>                                     </del> | <del>                                     </del> | <del> </del> | <del> </del> | 1                                                | 1            | <del>                                     </del> | 1                                       | 1            | <del> </del> |
|                | number<br>emerged            |              | <u> </u>                                         | 1                                                | <u></u>      | 1            | <u> </u>                                         |              |                                                  | <u> </u>                                |              |              |
|                | # Pairings                   |              |                                                  |                                                  |              |              |                                                  |              |                                                  |                                         |              |              |
|                | # Egg Case                   | <del></del>  |                                                  |                                                  |              |              |                                                  |              |                                                  |                                         |              |              |
|                | # Eggs /                     |              | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del> | <del> </del>                                     | <del> </del> | <del> </del>                                     |                                         | <del> </del> | <del> </del> |
|                | Time to hatch /<br># hatched |              |                                                  | <u> </u>                                         |              |              |                                                  |              |                                                  |                                         |              |              |
|                | Init./Date<br>(1999)         | 11/21        | 11/22                                            | 11/23                                            | 11/24        | 11/25        | 11/26                                            | 11/27        | 11/28                                            | 11/29                                   | 11/30        | 12/1         |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: \_\_\_\_\_ Date: 12/2/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays32-42

| Project: 99033 M-C Dead Creek | BTR: 3629     | Test Start: 10/20/99                  |
|-------------------------------|---------------|---------------------------------------|
|                               | · <del></del> | · · · · · · · · · · · · · · · · · · · |

| Sample / Repl. | Response                                 | 21                                               | 22           | 23<br>34                                         | -24      | 25                                               | - <del>26</del><br>37 | <del>-27</del> - | <del>28</del><br>35 | 29            | 30           | 31           |   |
|----------------|------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|----------|--------------------------------------------------|-----------------------|------------------|---------------------|---------------|--------------|--------------|---|
| 12622 D        | # Males<br>emerged                       |                                                  |              |                                                  |          |                                                  |                       |                  |                     |               |              |              |   |
|                | Male Time to                             | ļ                                                | ļ            | <del> </del>                                     | <u> </u> | <u> </u>                                         |                       |                  |                     |               |              | <del> </del> |   |
|                | Mortality                                |                                                  |              |                                                  | ĺ        | 1                                                |                       |                  |                     | Ì             | 1            |              |   |
|                | (days)<br># Females                      | <del>                                     </del> | <del> </del> | <del> </del>                                     |          | <del></del>                                      |                       |                  |                     | <del> </del>  |              | <del> </del> |   |
|                | emerged                                  |                                                  |              |                                                  |          | İ                                                |                       | 1                |                     |               |              |              |   |
|                | Females Time to Mortality (days)         |                                                  |              |                                                  |          |                                                  |                       |                  | <del></del>         |               |              |              |   |
|                | Cumulative<br>number<br>emerged          |                                                  |              |                                                  |          |                                                  |                       |                  |                     |               |              |              |   |
|                | # Pairings                               |                                                  |              |                                                  |          |                                                  |                       |                  |                     |               |              |              |   |
|                | # Egg Case                               |                                                  |              |                                                  |          |                                                  |                       |                  |                     |               |              |              |   |
|                | # Eggs /<br>Time to hatch /<br># hatched |                                                  |              |                                                  |          |                                                  |                       |                  |                     |               |              |              | ; |
| 12622 E        | # Males<br>emerged                       |                                                  |              |                                                  |          |                                                  |                       |                  |                     | <del></del> - |              |              |   |
|                | Male Time to<br>Mortality<br>(days)      |                                                  |              |                                                  |          |                                                  |                       |                  |                     |               |              |              |   |
|                | # Females<br>emerged                     |                                                  |              |                                                  |          |                                                  |                       |                  |                     |               |              |              |   |
|                | Females                                  |                                                  |              |                                                  |          |                                                  |                       | <del></del>      |                     |               |              |              |   |
|                | Time to Mortality<br>(days)              |                                                  |              |                                                  | 1        | 30,1/28                                          |                       | 1                |                     |               | 1            |              | ŀ |
| .1,9           | Cumulative                               |                                                  |              |                                                  |          |                                                  |                       |                  |                     |               |              |              |   |
| · ~ (1)        | number<br>emerged                        |                                                  |              | <u> </u>                                         |          |                                                  |                       |                  |                     | <u> </u>      |              | <u> </u>     | ` |
| karion         | # Pairings                               |                                                  |              |                                                  | }        | 10/10326                                         |                       |                  |                     |               |              |              |   |
|                | # Egg Case                               | 9                                                |              |                                                  |          |                                                  |                       |                  |                     |               |              |              |   |
|                | # Eggs /                                 | 810                                              | <b></b>      | <del> </del> -                                   |          | <del>                                     </del> |                       | <del> </del>     |                     | <del> </del>  | <del> </del> |              | ŀ |
|                | Time to hatch /<br># hatched             | 11/23 unh                                        |              | ľ                                                | }        |                                                  |                       | {                |                     |               | 1            |              |   |
| 12622 F        | # Males                                  | 810<br>0138 unh<br>11/27<br>26 unha              | tend         |                                                  |          |                                                  |                       |                  |                     |               |              |              |   |
| 12022 1        | emerged                                  | 11)2                                             |              | 1                                                |          |                                                  | -                     |                  | L                   |               |              | ļ <u>-</u>   |   |
|                | Male Time to<br>Mortality<br>(days)      |                                                  |              | 40                                               |          |                                                  |                       |                  |                     |               |              |              |   |
|                | # Females<br>emerged                     |                                                  | i            |                                                  |          |                                                  |                       |                  |                     |               |              |              | ŀ |
|                | Females Time to Mortality (days)         |                                                  |              |                                                  |          |                                                  |                       |                  |                     |               |              |              |   |
|                | Cumulative<br>number                     |                                                  | · <u>·</u>   | 9                                                |          |                                                  |                       |                  |                     |               |              |              |   |
|                | # Pairings                               |                                                  |              | <del>                                     </del> |          | <del>                                     </del> |                       |                  |                     |               | <del> </del> | <del> </del> |   |
|                | # Egg Case                               |                                                  |              |                                                  |          |                                                  |                       |                  |                     |               |              |              |   |
|                | # Eggs /<br>Time to hatch /              |                                                  |              | -                                                |          |                                                  |                       |                  |                     |               | -            |              |   |
|                | # hatched                                | 1415                                             | 4.455        | 4455                                             | 4415     | 1115-                                            | 44100                 | 1 4 4 15 5       | 1117                | 11:00         | 144/00       | 140/4        | l |
| _              | Init./Date<br>(1999)                     | 11/21                                            | 11/22        | 17/23                                            | 11/24    | 11/25<br>m                                       | 11/26                 | 11/27            | 11/28<br>TM         | 11/29         | 11/30        | 12/1         |   |

| mple / Pop!          | Pagazzas                                 | T 64     | 1       | <del></del> | <del></del> |         | I        | T ==     |             |             |                       | <del></del> |
|----------------------|------------------------------------------|----------|---------|-------------|-------------|---------|----------|----------|-------------|-------------|-----------------------|-------------|
| mple / Repl.         | Response                                 | 21       | 22      | 23          | 24<br>35    | 25      | 26-      | 27       | 28          | 29<br>70    | - <del>30</del><br>41 | 31          |
| 2622 G               | # Males<br>emerged                       |          |         |             |             |         |          |          |             |             |                       |             |
|                      | Male Time to<br>Mortality<br>(days)      |          |         |             |             |         |          |          |             |             |                       |             |
|                      | # Females<br>emerged                     |          |         |             |             |         |          |          |             |             |                       |             |
|                      | Females<br>Time to Mortality<br>(days)   |          |         |             |             |         |          |          |             |             |                       |             |
|                      | Cumulative<br>number<br>emerged          |          |         |             |             |         |          |          |             |             |                       |             |
|                      | # Pairings                               |          |         |             |             |         |          |          |             |             |                       |             |
|                      | # Egg Case                               |          |         |             |             |         |          |          |             |             |                       |             |
|                      | # Eggs /<br>Time to hatch /<br># hatched |          |         |             |             |         |          |          |             |             |                       |             |
| 2622 H               | # Maies<br>emerged                       |          |         |             |             |         |          |          |             |             |                       |             |
|                      | Male Time to<br>Mortality<br>(days)      |          |         |             |             |         |          |          |             |             |                       |             |
|                      | # Females<br>emerged                     |          |         |             |             |         |          |          |             |             |                       |             |
|                      | Females<br>Time to Mortality<br>(days)   |          |         |             |             |         |          |          |             |             |                       |             |
|                      | Cumulative<br>number<br>emerged          |          | }       | ļ           | <u> </u>    |         |          | <u> </u> |             |             | ļ                     |             |
|                      | # Pairings                               |          |         |             | ļ           |         |          |          |             |             |                       |             |
|                      | # Egg Case                               |          |         |             |             |         |          |          | ļ           |             |                       |             |
|                      | # Eggs /<br>Time to hatch /<br># hatched |          |         |             |             |         |          |          |             |             |                       |             |
|                      | Init./Date<br>(1999)                     | 11/21    | 11/22   | 11/23       | 11/24       | 11/25   | 11/26    | 11/27    | 11/28       | 11/29       | 11/30                 | 12/1        |
|                      | ring: Record                             | d any pi | upae wh | ich die (   | D) before   | e emerg | ence. D  | = dead   | for flies   | which er    | nerge bi              | it are n    |
| ving. P = p<br>ents: | шра                                      |          |         |             |             |         |          |          |             |             |                       |             |
|                      | <u> </u>                                 | -57      | Dag     | 7 6         | OFFR        | Nu      | <u> </u> |          | 11/30       | 192         |                       |             |
|                      |                                          |          |         |             | <del></del> |         |          |          |             |             |                       |             |
|                      |                                          |          |         |             |             |         |          |          |             |             |                       |             |
|                      |                                          |          |         |             |             |         |          |          | <del></del> | <del></del> |                       |             |
|                      |                                          |          |         |             |             |         |          |          |             |             |                       |             |
|                      |                                          |          |         |             |             |         |          |          |             |             |                       |             |

Review: Date: 12/21 999
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays32-42

| Sample / Repl.                        | Response                       | 43         | 44             | 45                                               | 46                                               | 47           | 48                                               | 49                                               | 50           | 51                                               | 52           | 53           |
|---------------------------------------|--------------------------------|------------|----------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------|--------------|
| 10000                                 | # Males                        |            | ' '            | 10                                               |                                                  | ļ. <u></u>   |                                                  | ļ                                                |              | ļ · · ·                                          |              |              |
| 12622 A                               | emerged                        |            |                |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |              |              |
|                                       | Male Time to<br>Mortality      | OL         |                |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |              |              |
|                                       | (davs)<br># Females            |            | <del> </del>   |                                                  | -                                                |              | <del> </del>                                     | -                                                |              |                                                  |              | <b></b>      |
|                                       | emerged<br>Females             | OP         |                | ļ                                                | ļ                                                | ļ <u>.</u> . | ļ.—-                                             | ļ                                                |              |                                                  |              | ļ            |
|                                       | Time to Mortality<br>(days)    | ,          |                |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |              | İ            |
|                                       | Cumulative number              |            |                |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |              |              |
|                                       | emerged                        |            |                |                                                  | -                                                | <del></del>  |                                                  | <del>                                     </del> | ļ            | <del> </del>                                     |              |              |
|                                       | # Pairings                     |            |                | <u> </u>                                         | ļ                                                | <u> </u>     | <del> </del>                                     | ļ                                                |              | ļ <u>.</u>                                       |              |              |
|                                       | # Egg Case                     |            |                |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |              |              |
|                                       | # Engs /                       |            |                |                                                  |                                                  | <del> </del> | <del> </del>                                     |                                                  | ļ            |                                                  |              |              |
| · · · · · · · · · · · · · · · · · · · | Time to hatch /<br># hatched   |            |                |                                                  | ļ                                                |              | ļ                                                | ļ                                                | ļ            |                                                  |              |              |
| 12622 B                               | # Males<br>emerged             |            |                |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |              | }            |
|                                       | Male Time to<br>Mortality      | $\Delta 1$ |                |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |              |              |
|                                       | # Females                      | 10         |                | <u> </u>                                         |                                                  | <del> </del> |                                                  |                                                  | <u> </u>     |                                                  |              |              |
|                                       | emerged<br>Females             | OP         | <u> </u>       | <u> </u>                                         | ļ                                                | <u> </u>     | <u> </u>                                         | ļ                                                | ļ            |                                                  |              | <u> </u>     |
|                                       | Time to Mortality<br>(days)    |            |                |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |              |              |
|                                       | Cumulative<br>number           |            |                |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |              |              |
|                                       | emerged<br># Painings          |            |                |                                                  | <del> </del>                                     |              | <del> </del>                                     | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del> | <del> </del> |
|                                       |                                |            | <del> </del> - |                                                  | <del> </del>                                     |              | <del>                                     </del> | <del>                                     </del> |              | <del> </del>                                     |              | <del> </del> |
|                                       | # Egg Case                     |            |                |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |              | Ì            |
|                                       | # Eggs /                       |            |                | <del> </del>                                     | <del>-</del>                                     |              |                                                  |                                                  |              |                                                  |              | -            |
|                                       | Time to hatch /<br># hatched   |            |                | ļ                                                | -                                                | ļ            | ļ                                                |                                                  |              |                                                  |              |              |
| 12622 C                               | # Males<br>emerged             |            |                |                                                  |                                                  | İ            |                                                  |                                                  |              |                                                  |              | -            |
|                                       | Male Time to<br>Mortality      | $\bigcap$  |                |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |              |              |
|                                       | (days)<br># Females<br>emerged |            |                |                                                  |                                                  |              | <del> </del>                                     |                                                  |              | <del> </del>                                     | <b></b>      | <del> </del> |
|                                       | Females                        | 06         |                |                                                  | <del> </del>                                     | ļ            | <del> </del> -                                   |                                                  |              |                                                  | ļ            | ļ <u> </u>   |
|                                       | Time to Mortality<br>(days)    |            |                |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |              |              |
|                                       | Cumulative<br>number           |            |                |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |              |              |
|                                       | emerged<br># Pairings          |            |                |                                                  | <del>                                     </del> |              | -                                                |                                                  | -            | <del>                                     </del> |              | <del> </del> |
|                                       |                                |            |                |                                                  | -                                                | -            | -                                                | -                                                | -            | <del> </del>                                     |              | ļ            |
|                                       | # Egg Case                     |            |                |                                                  |                                                  |              |                                                  |                                                  |              |                                                  |              |              |
|                                       | # Eggs /<br>Time to hatch /    |            |                | <del>                                     </del> | <del>                                     </del> | <del> </del> | <del>                                     </del> |                                                  |              | †                                                | <del> </del> | <del> </del> |
|                                       | # hatched                      | 40/0       | 10/0           | 140/1                                            | 4015                                             | 140/0        | 10.77                                            | 140'0                                            | 40.0         | 10/10                                            | 14044        | 140/46       |
|                                       | Init./Date<br>(1999)           | 12/2       | 12/3           | 12/4                                             | 12/5                                             | 12/6         | 12/7                                             | 12/8                                             | 12/9         | 12/10                                            | 12/11        | 12/12        |

Review: \_\_\_\_\_\_ Date: \(\frac{\lambda}{2}\) / 2 / 6 G

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

surviving. P = pupa

| Sample / Repl. | Response                                 | 43           | 44                                               | 45          | 46           | 47           | 48           | 49           | 50             | 51           | 52           | 53                                               |
|----------------|------------------------------------------|--------------|--------------------------------------------------|-------------|--------------|--------------|--------------|--------------|----------------|--------------|--------------|--------------------------------------------------|
| 40000 0        | # Males                                  |              | +                                                | -           | ļ            | <del> </del> | -            |              | <u> </u>       | -            |              | <u> </u>                                         |
| 12622 G        | emerged                                  |              |                                                  |             |              |              |              |              |                |              |              |                                                  |
|                | Male Time to<br>Mortality                | M            |                                                  |             |              |              |              |              |                |              |              |                                                  |
|                | (dars)<br># Females<br>emerbed           |              | 7                                                |             | <del> </del> |              | 1            | <del> </del> | <del> </del>   |              | <u> </u>     | <del> </del>                                     |
|                | Females                                  | HY           | <del> </del>                                     | <del></del> | <del>-</del> |              | <u> </u>     | ļ            | <u> </u>       |              | ļ            | <u> </u>                                         |
|                | Time to Mortality (days)                 |              |                                                  |             |              |              |              |              |                | 1            |              |                                                  |
|                | Cumulative<br>number                     |              |                                                  |             |              |              |              |              |                |              |              |                                                  |
|                | emerped                                  | <del> </del> | <del> </del>                                     | +           | <u> </u>     | <del> </del> | <del></del>  |              |                |              |              | <del> </del>                                     |
|                | # Pairings                               |              |                                                  |             |              |              |              |              |                |              |              |                                                  |
|                | # Egg Case                               |              |                                                  |             |              |              |              |              |                |              |              |                                                  |
|                | # Eggs /                                 | ļ            |                                                  |             |              |              |              |              |                |              |              | ļ                                                |
|                | Time to hatch /<br># hatched             |              |                                                  |             |              |              |              |              |                |              |              |                                                  |
| 12622 H        | # Males<br>emerged                       |              | <del>                                     </del> |             | 1            | 1            |              | <del></del>  |                |              |              |                                                  |
|                | Male Time to                             |              | <del> </del>                                     | +           | +            | +            | <del> </del> |              | <del></del>    | <del> </del> |              | <del> </del>                                     |
|                | Mortality<br>(days)                      | 01_          |                                                  |             |              |              |              |              |                |              |              |                                                  |
|                | # Females<br>emerged                     | 5D           |                                                  |             |              |              |              |              |                |              |              |                                                  |
|                | Females<br>Time to Mortality             |              | <del>                                     </del> |             |              |              |              |              | <del>  -</del> |              |              | <del>                                     </del> |
|                | (days)<br>Cumulative                     |              | <del> </del>                                     |             | <del> </del> |              |              | <u> </u>     | <del> </del>   |              | <del> </del> | <del> </del>                                     |
|                | numbe<br>emerge                          |              |                                                  |             |              |              |              |              |                |              |              |                                                  |
|                | # Pairings                               |              |                                                  |             |              |              |              |              |                |              |              |                                                  |
|                | # Egg Case                               |              | <del> </del>                                     | +           | <del> </del> | +            |              | <del> </del> | <del> </del>   | 1            |              | <del> </del>                                     |
|                | # Egg Case                               |              |                                                  |             |              |              |              |              |                |              |              |                                                  |
|                | # Eggs /<br>Time to hatch /<br># hatched |              | <u> </u>                                         |             |              | 1            |              |              |                |              | ļ            | T                                                |
|                |                                          | 13/3         | 12/3                                             | 12/4        | 12/5         | 12/6         | 12/7         | 12/8         | 12/9           | 12/10        | 12/11        | 12/12                                            |
| <del></del>    | Init./Date                               |              |                                                  |             |              |              |              | 112/0        | 12/3           | 112/10       | 114/11       |                                                  |

Review: Date: 12/2 ( / 99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays43-53

# Collection of Chironomus tentans Egg Cases for Chronic Toxicity Tests

| Egg Case       | Deposit Da                 | ate: /0//6          | No. of Egg Cas           | ies 781a     |             |           |
|----------------|----------------------------|---------------------|--------------------------|--------------|-------------|-----------|
| Date<br>(1999) | # Days<br>Post-<br>Deposit | Temperature<br>(°C) | Feeding<br>(Selenastrum) | Observations | Test<br>Use |           |
| 10/16          | 0                          | 19.2°C              | V                        |              |             |           |
| 10/17          | 1                          | 19,30               |                          |              |             |           |
| 10/18          | 2                          | 22.6                |                          | Franker HAP  |             |           |
| 10/19          | 3                          |                     |                          |              | (           | ri chonic |
| 10/20          | 4                          | 16.7                | /                        |              | 10/20 C.    | t-chronic |
|                | 5                          |                     |                          |              |             |           |
|                |                            |                     |                          |              |             |           |

SOURCE: Aquerec Culpures

- - - 4 - - 1

# Collection of Chironomus tentans Egg Cases for Chronic Toxicity Tests

| Egg Case       | Deposit Da                 | ate: 10/15          | No. of Egg Cas           | ses 7           | · · · · · · · · · · · · · · · · · · · |                                            |
|----------------|----------------------------|---------------------|--------------------------|-----------------|---------------------------------------|--------------------------------------------|
| Date<br>(1999) | # Days<br>Post-<br>Deposit | Temperature<br>(°C) | Feeding<br>(Selenastrum) | Observations    | Test<br>Use                           |                                            |
| 10/15/99       | 0                          | 119.00C             | V                        | 7 cases         |                                       |                                            |
| 10/16          | 1                          | 6                   | V                        |                 |                                       |                                            |
| 16/17          | 2                          | 20,3                | 15 JG                    |                 |                                       |                                            |
| 10/18          | 3                          | 22.5                |                          | ryg (ses -) con | la.                                   |                                            |
| 10/19          | 4                          |                     |                          |                 | Chonz                                 | T. 10/19                                   |
| 10/20          | 5                          |                     |                          |                 | Chronic                               | C.T. 10/19<br>START<br>C.T. 10/20<br>START |
|                |                            |                     |                          |                 |                                       | START                                      |

Source: Aquarec cultures

# Collection of Chironomus tentans Egg Cases for Chronic Toxicity Tests

| Egg Case       | Deposit Da                 | ate: 10/2/627       | No. of Egg Cas           | es 4         | · · · · · · · · · · · · · · · · · · · |             |
|----------------|----------------------------|---------------------|--------------------------|--------------|---------------------------------------|-------------|
| Date<br>(1999) | # Days<br>Post-<br>Deposit | Temperature<br>(°C) | Feeding<br>(Selenastrum) | Observations | Test<br>Use                           |             |
| 10/27          | 0                          |                     |                          |              |                                       |             |
| 10/28          | 1                          |                     |                          |              |                                       |             |
| 10/29          | 2                          | 23.5                |                          |              |                                       |             |
| 10/30          | 3                          | 23.2                | V                        | HATCHING     | AUX MAL                               | E<br>AV FRS |
|                | 4                          |                     |                          |              |                                       |             |
|                | 5                          |                     |                          |              |                                       |             |
| Source of      | egg cases:                 | Aguerec .           | rulines                  |              |                                       | ]           |

Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

|                                   | ī               | =         | 123.67.00                                         | 1        | T.        | <u> </u>     | 1/10                 | 1     | 1         | <del>                                     </del> | 73.                                                          | T . | T .       | Γ            | 70               | Đ . |           | 10/30<br>Dey 10 |                    |                                                                                                                               | - SSE -                                                                        |
|-----------------------------------|-----------------|-----------|---------------------------------------------------|----------|-----------|--------------|----------------------|-------|-----------|--------------------------------------------------|--------------------------------------------------------------|-----|-----------|--------------|------------------|-----|-----------|-----------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 66/0                              |                 | 10        | 12<br>18/3<br>18/3                                |          | 1-        | ×            | 18<br>18<br>18       | 1     | ]         | ×                                                | 1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00 | 9   |           | ×            | 77<br>8,5<br>8/6 |     | 1         | ×               | <b>%</b>           |                                                                                                                               | Collect ammonia alkalinity and hardness samples on Days 0 14 20 40 and of fast |
| 10/20/99                          |                 | 6         | 18.                                               | 7.(0     | 10        | ×            | 33.5                 | 4     | 5.7       | ×                                                | 22.2                                                         | 7.6 | 4.9       | ×            | 3                | 4.6 | 53        | ×               | <b>S</b> S         |                                                                                                                               | 0                                                                              |
| Test Start                        |                 | ∞         | 23.42.8 323.                                      |          |           | ×            | 0.6%                 |       |           | ×                                                |                                                              |     |           | ×            |                  |     |           | ×               | 19//ZB             | ,dn                                                                                                                           | 7 00 7                                                                         |
| 35629 Te                          |                 | 7         | 12 2 12 18 19 19 19 19 19 19 19 19 19 19 19 19 19 | 7.5      | رم<br>م   | 330          | 23.5                 | 4.4   | N<br>%    | 340                                              |                                                              | 46  | 4.8       | 330          |                  | 7.6 | S<br>S    | 365             | 18/87              | esting gro                                                                                                                    | 00000                                                                          |
| BTR: 3                            | lysis           | 9         | 32.7                                              |          |           | ×            | 23.4<br>4.54<br>4.54 |       |           | ×                                                |                                                              |     |           | ×            |                  |     |           | ×               | 19/26              | ly for this t                                                                                                                 | , adjument                                                                     |
|                                   | Day of Analysis | 5         | 18.18<br>8.18<br>12.                              | 54       | 5.7       | ×            | 05%                  | 7.7   | 0.0       | ×                                                |                                                              | 4.4 | کہ<br>ان  | ×            |                  | 7.6 | 5.0       | ×               | 19/25              | e destarra                                                                                                                    | hardage                                                                        |
| ٧                                 | Day             | 4         | 6 /2<br>10                                        | <u> </u> | 1         | ×            |                      | (     | (         | ×                                                |                                                              | (   |           | ×            |                  | 1   | \         | ×               | 1922               | d within th                                                                                                                   | Linit.                                                                         |
| Dead Creek                        |                 | 3         | Sall in                                           |          |           | ×            |                      |       |           | ×                                                |                                                              |     |           | ×            |                  |     |           | ×               | 1983<br>1983       | aker place                                                                                                                    | 1000                                                                           |
| 99033 Dea                         |                 | 2         | 12219                                             | <b>1</b> | 4         | ×            | 71.8                 | ዯ     | 4         | ×                                                |                                                              | A   | 1         | ×            |                  | 4   | 个         | ×               | 19/2R              | fative bea                                                                                                                    | مسوموالو                                                                       |
| Project: 99                       |                 | 1         |                                                   | 7.5-     | -8-9      | ×            |                      | -8·E  | 7.0-      | ×                                                |                                                              | -8t | - F       | ×            |                  | 78- | 4         | ×               | 1527<br>1527       | 02                                                                                                                            |                                                                                |
| Proj                              |                 | 0         | 23.3                                              | 7.6      | 5.8       | None         | 560                  | 2.8   | 6. (      | 370/5                                            | 23.6                                                         | 19  | (.2       | 31/1/5       | 23.5             | El  | 5.7       | MA              | 10/20              | rement of,                                                                                                                    |                                                                                |
| Project: Menzie-Cura & Associates |                 | Parameter | T (°C)                                            | Hd       | DO (mg/L) | Conductivity | 7 (0°) T             | Hd    | DO (mg/L) | Conductivity                                     | T (°C)                                                       | Н   | DO (mg/L) | Conductivity | T (°C)           | Hd  | DO (mg/L) | Conductivity    | Init./Date (1999): | Comments: Measured temperature is a measurement of A epresentative beaker placed within the tast array for this testing groun |                                                                                |
| Project: Menzie-(                 |                 | Sample    | 12611                                             |          |           |              | 12612                | 4.044 | 1.17      |                                                  | 12613                                                        |     |           |              | 12614            |     |           | <del> </del>    |                    | Comments: Measured                                                                                                            |                                                                                |

Review: Date: 12/21/99 ctenvoln.doc Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Dry 9 - Ser up Aux Mela Bezuers

Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

| Project: Menzie-   | Project: Menzie-Cura & Associates                                                                                                          | Pro       | Project: 99 | 99033 Dead Creek | ad Cree    | ¥           |                                       | BTR: 3       | 5629 Te    | st Start | 35629 Test Start 10/20/99 | 66       |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|------------------|------------|-------------|---------------------------------------|--------------|------------|----------|---------------------------|----------|
|                    |                                                                                                                                            |           |             |                  |            | Day         | Day of Analysis                       | ysis         |            |          |                           |          |
| Sample             | Parameter                                                                                                                                  | 0         | -           | 2                | 3          | 4           | 2                                     | 9            | 7          | 8        | 6                         | 9        |
| 12622              | T (°C)                                                                                                                                     | hão       |             |                  |            |             |                                       |              |            |          | 3 4 5 C                   | 80.00    |
|                    | Hd                                                                                                                                         | 7.0       | 73-         | 4                | }          | )           | 76                                    |              | 0.4.       |          | 7.6                       | 1        |
|                    | DO (mg/L)                                                                                                                                  | 138       | 6.9         | 个                |            |             | 6.1                                   |              | 0.0        |          | 5.5                       | }        |
|                    | Conductivity                                                                                                                               | 1/43      | ×           | ×                | ×          | ×           | ×                                     | ×            | 355        | ×        | ×                         | ×        |
|                    | T (°C)"                                                                                                                                    |           |             |                  |            |             |                                       |              |            |          |                           |          |
|                    | Hd                                                                                                                                         |           |             |                  |            |             |                                       |              |            |          |                           |          |
|                    | DO (mg/L)                                                                                                                                  |           |             |                  |            |             | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |              |            |          |                           |          |
|                    | Conductivity                                                                                                                               |           | ×           | ×                | ×          | × \         | X                                     | ×            |            | ×        | ×                         | ×        |
|                    | T (°C)                                                                                                                                     |           |             |                  |            |             |                                       |              |            |          |                           |          |
|                    | Hd                                                                                                                                         |           |             |                  |            |             |                                       |              |            |          |                           |          |
|                    | DO (mg/L)                                                                                                                                  |           |             |                  |            |             |                                       |              |            |          |                           |          |
|                    | Conductivity                                                                                                                               |           | ×           | ×                | ×          | ×           | ×                                     | ×            |            | ×        | ×                         | ×        |
|                    | T (°C)                                                                                                                                     |           |             |                  |            |             |                                       |              |            |          |                           |          |
|                    | Hd                                                                                                                                         |           |             |                  |            |             |                                       |              |            |          |                           |          |
|                    | DØ (mg/L)                                                                                                                                  |           |             |                  |            |             |                                       |              |            |          |                           |          |
|                    | Conductivity                                                                                                                               |           | ×           | ×                | ×          | ×           | ×                                     | ×            |            | ×        | ×                         | ×        |
|                    | Init./Date (1999):                                                                                                                         | 10/20     | 10/21       | 1977             | 19/23      | 19/23       | 19/25                                 | 1978°        | 19927      | 1998     | 1963                      | <u>2</u> |
| Comments: Measured | Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group             | rement of | a represe   | Hative bea       | sker place | d within th | e set arra                            | y for this t | ésting gro | H.       |                           |          |
| Ha bas O Company   | Manage O O and all 3 times weekly conductivity once weekly. Collect ammonia alkalinity and hardness samples on Days 0.14.20.40 and of test | vity once | weekly C    | ollect amn       | syle einor | alinity and | hardness                              | samples      | on Days 0  | 14 20 4  | O and and                 | of tact  |

Review: Date. 17/2/19
ctenvchr.doc
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

| Project: Menzie-C  | Project: Menzie-Cura & Associates          | Pro       | Project: 99 | 99033 Dea      | Dead Creek                                                                            |             |                 | BTR: 39                 | 3529 Tes                 | Test Start | 10/20/99          | 6              |
|--------------------|--------------------------------------------|-----------|-------------|----------------|---------------------------------------------------------------------------------------|-------------|-----------------|-------------------------|--------------------------|------------|-------------------|----------------|
|                    |                                            |           |             |                |                                                                                       | Day         | Day of Analysis | ysis (                  |                          |            |                   |                |
| Sample             | Parameter                                  | 11        | 12          | 13             | 14                                                                                    | 15          | 16              | 11                      | 18                       | 19         | 20                | 21             |
| 12611              | T (°C)                                     | 35,560    | 1:00        | 22.625         | 12.8<br>13.55                                                                         | 22/2        | 2018            | 25.CB<br>25.CF<br>25.CF | 6. ct. /                 | 13/2       | 22.52             | 8. 6.<br>8. 6. |
|                    | Hd                                         | >         | 19/2        |                | 9.4                                                                                   |             | N.              |                         |                          | 4          | 75                | 4.5            |
|                    | DO (mg/L)                                  |           | 88          |                | 5                                                                                     |             | 3               |                         |                          | 6.5        | 4.6               | 200            |
|                    | Conductivity                               | × no      | ×           | ×              | 360/                                                                                  | ×           | ×               | ×                       | ×                        | ×          | 360               | ×              |
| 12612              |                                            |           |             | 25.68<br>25.69 |                                                                                       |             |                 |                         | 22.58<br>25.66<br>7.7.7. |            | 4 CE              |                |
|                    | Н                                          |           | 35          |                | 46                                                                                    |             | 7.6             |                         |                          | 44         | 7.4               | 76             |
|                    | DO (mg/L)                                  |           | 63          |                | 5,2                                                                                   | و           | 45              |                         | `                        | 100 N      | -<br>  S          | 4.5            |
|                    | Conductivity                               | ×         | ×           | ×              | 350/                                                                                  | ×           | ×               | ×                       | ×                        | ×          | 380               | ×              |
| 12613              | T (°C)                                     |           |             |                |                                                                                       |             |                 |                         |                          |            |                   |                |
|                    | Hd                                         |           | 7.8         |                | 4.8                                                                                   |             | 11              |                         |                          | 4.4        | 78                | 76             |
|                    | DO (mg/L)                                  |           | 90          |                | 83                                                                                    | 3           | 4               |                         |                          | 6,0        | 5.7               | 44             |
|                    | Conductivity                               | ×         | ×           | ×              | 330                                                                                   | ×           | ×               | ×                       | ×                        | ×          | 8/                | ×              |
| 12614              | T (°C)                                     |           |             |                |                                                                                       |             |                 |                         |                          |            |                   |                |
|                    | Hd                                         |           | 7.6         |                | 44                                                                                    |             | 7.6             |                         |                          | 1, 1,      | 76                | 76             |
|                    | DO (mg/L)                                  |           | 6,5         |                | 79                                                                                    |             | tig             |                         |                          | 6,3        | 5.2               | N. P.          |
|                    | Conductivity                               | ×         | ×           | ×              | 360/                                                                                  | ×           | Xm 7            | ×                       | ×                        | ×          | 380               | ×              |
|                    | Init./Date (1999):                         | 42        | 138         | 11/6           | 11/3                                                                                  | 11/4        | 11/5            | 386                     | 11Ph                     | 11/8       | 1 <del>1</del> 18 | 01/4           |
| Comments: Measured | Comments: Measured temperature is a measur | rement of | a represer  | ntallive bea   | rement of a representative beaker placed within the test array for this testing group | 1 within th | e test arra     | y for this to           | esting gro               | ġ          |                   |                |

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 40, and end of test.

Review: Date: 12/21/49
ctenvchr.doc
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Midge (*Chironomus tentans*) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

| Project: Menzie-   | Project: Menzie-Cura & Associates                                                                                               | Proj                                    | Project: 99 | 99033 De   | Dead Creek                            | J           |                 | BTR: 3     | 3529 Tes    | Test Start | 10/20/99       | 6     |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------|------------|---------------------------------------|-------------|-----------------|------------|-------------|------------|----------------|-------|
|                    |                                                                                                                                 |                                         |             |            |                                       | Day         | Day of Analysis | 1          | 6           |            |                |       |
| Sample             | Parameter                                                                                                                       | 11                                      | 12          | 13         | 14                                    | 15          | 16              | 17         | 18          | 19         | 20             | 21    |
| 12622              | T (°C)                                                                                                                          |                                         |             |            |                                       |             |                 |            |             |            |                |       |
|                    | Hď                                                                                                                              |                                         | 7,8         |            | tt                                    |             | 7.5             |            |             |            | 4              | な、け   |
|                    | DO (mg/L)                                                                                                                       |                                         | 6,6         |            | \<br>\<br>\<br>\                      |             | 5.3             |            |             |            | 8              | N. 9. |
|                    | Conductivity                                                                                                                    | ×                                       | ×           | ×          | 25                                    | ×           | ×               | ×          | ×           | ×          | 380            | ×     |
|                    | T (°C)                                                                                                                          |                                         |             |            | ,                                     |             |                 |            |             |            |                |       |
|                    | Hd                                                                                                                              |                                         |             |            |                                       |             |                 |            |             |            |                |       |
|                    | DO (mg/L)                                                                                                                       |                                         |             |            |                                       |             |                 |            |             |            |                |       |
|                    | Conductivity                                                                                                                    | ×                                       | ×           | ×          |                                       | ×           | ×               | ×          | ×           | ×          |                | ×     |
|                    | T (°C)                                                                                                                          |                                         |             |            |                                       |             |                 |            |             |            |                |       |
|                    | Hd                                                                                                                              |                                         |             |            |                                       |             |                 |            |             |            |                |       |
|                    | DO (mg/L)                                                                                                                       |                                         |             |            |                                       |             |                 |            |             |            |                |       |
|                    | Conductivity                                                                                                                    | ×                                       | ×           | ×          |                                       | ×           | ×               | ×          | ×           | ×          |                | ×     |
|                    | (°C)                                                                                                                            |                                         |             |            |                                       |             |                 |            | ļ           |            | <u> </u>       |       |
|                    | Hd                                                                                                                              |                                         |             |            |                                       |             |                 |            |             |            |                |       |
|                    | DO (mg/L)                                                                                                                       |                                         |             |            |                                       |             |                 |            |             |            |                |       |
|                    | Conductivity                                                                                                                    | ×                                       | ×           | ×          |                                       | ×           | ×               | ×          | ×           | ×          |                | ×     |
|                    | Init./Date (1999):                                                                                                              | # P P P P P P P P P P P P P P P P P P P | 部           | 13//2v     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11/4<br>CJ  | 11/5            | 11/6       | <b>XX</b>   | 11/8       | 14.89<br>87.41 | 光。    |
| Comments: Measured | Comments. Measured temperature is a measurement of a representative beaker placed within the test array for this testing group. | rement of                               | a represer  | ntative be | aker place                            | d within th | e test arra     | y for this | testing gro | ďĎ.        |                |       |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 40, and end of test.

Date: 12/21/99

Review: Date: 12/11/FP clenvchr.doc Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Manage (Chironomus tentans) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

| Project: Menzie-Cura & Associates | Sura & Associates  | Pro     | Project: 99 | 033 Dea    | 99033 Dead Creek                                        | ٧.          |                 | BTR: 36      | 3629 Test Start | 1 1    | 10/20/99 |                         |
|-----------------------------------|--------------------|---------|-------------|------------|---------------------------------------------------------|-------------|-----------------|--------------|-----------------|--------|----------|-------------------------|
|                                   |                    |         |             |            |                                                         | Day         | Day of Analysis | ysis         |                 |        |          |                         |
| Sample                            | Parameter          | 22      | 23          | 24         | 25                                                      | 26          | 27              | 28           | 29              | 30     | 31       | 32                      |
| 12611                             | T (°C)             | 23.5x   | 15/18/      | 200        | 25.00                                                   | 13.66       | 92.79           | 1200         | 2/2             | 22/201 | 25.66    | 12.56<br>12.66<br>12.66 |
|                                   | Hd                 |         | 43          | 90         |                                                         | ナイ          |                 | 18 Li        |                 | 7,4    |          |                         |
|                                   | DO (mg/L)          |         | 59          |            |                                                         | 5,2         |                 | 5,0          |                 | 2,     |          |                         |
|                                   | Conductivity       | ×       | ×           | ×          | ×                                                       | ×           | ×               | 133          | ×               | ×      | ×        | ×                       |
| 12612                             | T (°C)             |         |             |            |                                                         |             |                 |              |                 |        |          |                         |
|                                   | Hd                 |         | 75          |            |                                                         | 45          |                 | Ht           |                 | 9 1    |          |                         |
|                                   | DO (mg/L)          |         | 6.3         |            |                                                         | 5,3         |                 | 5.0          |                 | 2/5    |          |                         |
|                                   | Conductivity       | ×       | ×           | ×          | ×                                                       | ×           | ×               | 360          | ×               | ×      | ×        | ×                       |
| 12613                             | T (°C)             |         |             |            |                                                         |             |                 |              |                 |        |          |                         |
|                                   | Hd                 |         | 7.6         |            |                                                         | 75          |                 | 75           |                 | 2.6    |          |                         |
|                                   | DO (mg/L)          |         | 9           |            |                                                         | 5,3         |                 | 5.1          |                 | 5.50   |          |                         |
|                                   | Conductivity       | ×       | ×           | ×          | ×                                                       | X           | ×               | 360          | ×               | ×      | ×        | ×                       |
| 12614                             | T (°C)             |         |             |            |                                                         |             |                 |              |                 |        |          |                         |
|                                   | Hd                 |         | 14          |            |                                                         | 7,6         |                 | 4,6          |                 | p/L    |          |                         |
|                                   | DO (mg/L)          |         | 6.3         |            |                                                         | 0'0         |                 | 2,8          |                 | (',')  |          |                         |
|                                   | Conductivity       | ×       | ×           | ×          | ×                                                       | X           | ×               | 359          | ×               | ×      | ×        | ×                       |
|                                   | Init./Date (1999): | 14/1/21 | 翻           | न्निति     | 13/14                                                   | 南阳          | 11/16           | 部            | 11/18           | 31/13  | 14/28-1  | 11/PM                   |
|                                   |                    | o tromb | ) controcon | atative be | ative beater placed within the feet array for this test | d within th | o toct prin     | v for this t | S. O. O. O. O.  |        |          | -                       |

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, then weekly. Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

ctenvchr.doc Laboratory: Aquatec Biological Sciences, South Burlington, Vermont Date: 12/21/49

Review:

000107

Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

| Project: Menzie-   | Project: Menzie-Cura & Associates                                                                                               | Pro      | Project: 99 | 99033 Dea   | Dead Creek | ×           |                 | BTR: 36      | 3629 Test Start | t Start               | 10/20/99 | 6     |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------|----------|-------------|-------------|------------|-------------|-----------------|--------------|-----------------|-----------------------|----------|-------|
|                    |                                                                                                                                 |          |             |             |            | Day         | Day of Analysis | lysis        |                 |                       |          |       |
| Sample             | Parameter                                                                                                                       | 22       | 23          | 24          | 25         | 26          | 27              | 28           | 29              | 30                    | 31       | 32    |
| 12622              | T (°C)                                                                                                                          |          |             |             |            |             |                 |              |                 |                       |          |       |
|                    | Hd                                                                                                                              |          | 70          |             |            | 7,6         |                 | 45           |                 | <i>p</i> <sup>2</sup> |          |       |
|                    | DO (mg/L)                                                                                                                       |          | 1-          |             |            | 0,4         |                 |              |                 | $-\frac{7}{\alpha^2}$ |          |       |
|                    | Conductivity                                                                                                                    | ×        | ×           | ×           | ×          | ×           | ×               | 350          | ×               | )×                    | ×        | ×     |
|                    | (°C)                                                                                                                            |          |             |             |            |             |                 |              |                 |                       |          |       |
|                    | Hd                                                                                                                              |          |             |             |            |             |                 |              |                 |                       |          |       |
|                    | DO (mg/L)                                                                                                                       |          |             |             |            |             |                 |              |                 |                       |          |       |
|                    | Conductivity                                                                                                                    | ×        | ×           | ×           | ×          | ×           | ×               |              | ×               | ×                     | ×        | ×     |
|                    | T (°C)                                                                                                                          |          |             |             |            |             |                 |              |                 |                       |          |       |
|                    | Hd                                                                                                                              |          |             |             |            |             |                 |              |                 |                       |          |       |
|                    | DO (mg/L)                                                                                                                       |          |             |             |            |             |                 |              |                 |                       |          |       |
|                    | Conductivity                                                                                                                    | ×        | ×           | ×           | ×          | ×           | ×               |              | ×               | ×                     | ×        | ×     |
|                    | (°C)                                                                                                                            |          |             |             |            |             |                 |              |                 |                       |          |       |
|                    | Hd                                                                                                                              |          |             |             |            |             |                 |              |                 |                       |          |       |
|                    | DO (mg/L)                                                                                                                       |          |             |             |            |             |                 |              |                 |                       |          |       |
|                    | Conductivity                                                                                                                    | ×        | ×           | ×           | ×          | ×           | ×               |              | ×               | ×                     | ×        | ×     |
|                    | Init./Date (1999):                                                                                                              | 13/1/    | 388         | 17/3        | 13/64      | 22/25       | 11(16)          | -21/16 1/17- | 41/18           | 8/17                  | 11/20    | 13/21 |
| Comments: Measurer | Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group. | ement of | a represe   | ntative bea | aker place | d within th | e test arra     | v for this t | esting aro      | g                     |          |       |

Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, then weekly. Date: 12/21/99

000138

Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

| 12611   T (°C)   22                   | Project: Menzie-    | Project: Menzie-Cura & Associates | Pro       | Project: 990 | 99033 Dea               | Dead Creek | پ            |             | BTR: 3(       | 3629 Tes                                  | Test Start    | 10/20/99  |                                           |
|---------------------------------------|---------------------|-----------------------------------|-----------|--------------|-------------------------|------------|--------------|-------------|---------------|-------------------------------------------|---------------|-----------|-------------------------------------------|
|                                       |                     |                                   |           |              |                         |            | Day          | of Anal     | ysis          |                                           |               |           |                                           |
|                                       | Sample              | Parameter                         | 33        | 34           | 35                      | 36         | 37           | 38          | 39            | 40                                        | 41            | 42        | 43                                        |
|                                       | 12611               |                                   | 75.68     |              | Z :                     | 4.6        | 5            | 14,000      | <b>\</b> .9   | 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. | 25.23.3       | 32.66     | 2. C. C. C. C. C. C. C. C. C. C. C. C. C. |
|                                       |                     | Hd                                | 55        |              | 9/                      |            | 53           | 0           |               | 4.5                                       |               | 74        | Š                                         |
|                                       |                     | DO (mg/L)                         | 5,3       |              | 0                       |            | pig          |             |               | 4.9                                       |               | 3.4       |                                           |
|                                       |                     | Conductivity                      | ×         | ×            | N. C.                   | ×          | ×            | ×           | ×             | ×                                         | ×             | 330       | ×                                         |
|                                       | 12612               | T (°C)                            |           |              |                         |            |              |             |               |                                           | 1             | 1         | 1                                         |
| 1   1   1   1   1   1   1   1   1   1 |                     | Hď                                | 46        |              | 7.6                     |            | 2,0          |             |               | 7.5                                       | 1             | 1         | \                                         |
|                                       |                     | DO (mg/L)                         | 5,8       |              | 9                       |            | 7.0          |             |               | 1                                         | \             | 1         | 1                                         |
|                                       |                     | Conductivity                      | ×         | ×            | \$2.5<br>\$2.5<br>\$2.5 | ×          | ×            | ×           | <b>&gt;</b> < | 338/                                      | ×             | 1         | ×                                         |
|                                       | 12613               | (၁c) T                            |           |              |                         |            |              |             |               |                                           | 1             | (         | 1                                         |
|                                       |                     | Hd                                | 7.(       |              | 7                       |            | 7.           |             |               | 7.5                                       | 1             | {         | (                                         |
|                                       |                     | DO (mg/L)                         | 5.9       |              | 9                       |            | ر-<br>ر-     |             |               | 1, 3                                      | l             | (         | 1                                         |
|                                       |                     | Conductivity                      | ×         | ×            | 355                     | ×          | ×            | ×           | ×             | ×98/                                      | ×             | 1         | ×                                         |
|                                       | 12614               | T (°C)                            |           |              |                         |            |              |             |               |                                           |               | )         |                                           |
| ا القاا                               |                     | Hd                                | 7,6       |              | 41                      |            | 7,5          |             |               | 4.7                                       | 2,6           |           |                                           |
| ا امّا ا                              |                     | DO (mg/L)                         | 5,0       |              | 12                      |            | 0,9          |             |               | 7,0                                       | ري<br>ج       |           | (                                         |
| القاا                                 |                     | Conductivity                      | ×         | ×            | 360                     | ×          | ×            | ×           | ×             | }                                         | 320%          |           | ×                                         |
| ו ומ                                  |                     | Init./Date (1999):                | 1/82      | 11/23        | 11124                   | 11/1/75    | 11/26        | 198         | 11/28         | 11/88                                     | 11/30         | 12/1      | 1248                                      |
| - I                                   | Comments: Measured  | l temperature is a measu          | rement of | l ŭ          | ntative bea             | ıker place | d within th  | e test arra | y for this t  | esting gro                                | dn.           |           |                                           |
|                                       | Measure D.O. and pH | 3 times weekly, conducti          | vity once | 1            | ollect amn              | nonia, alk | alinity, and | hardness    | samples       | on Days u                                 | ), 14, 20, tr | len weeki | _                                         |

Review:
Clenychr.doc
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

1

| Project: Menzie-    | Project: Menzie-Cura & Associates                                                                                               | Pro         | Project: 99 | 99033 Dead Creek                                                                 | ad Creel   | ¥            |                 | BTR: 3     | 3629 Test Start 10/20/99 | t Start     | 10/20/9      |        |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|----------------------------------------------------------------------------------|------------|--------------|-----------------|------------|--------------------------|-------------|--------------|--------|
|                     |                                                                                                                                 |             |             |                                                                                  |            | Day          | Day of Analysis | ysis       |                          |             |              |        |
| Sample              | Parameter                                                                                                                       | 33          | 34          | 35                                                                               | 36         | 37           | 38              | 39         | 40                       | 41          | 42           | 43     |
| 12622               | T (°C)                                                                                                                          |             |             |                                                                                  |            |              |                 |            |                          |             |              |        |
|                     | Hd                                                                                                                              | tt          |             | 1                                                                                |            | 7,7          |                 |            | 4.6                      |             | 45           | 4,4    |
|                     | DO (mg/L)                                                                                                                       | Gist.       |             | (0)                                                                              |            | (.5          |                 |            | 6,9                      |             | 53           | かり     |
|                     | Conductivity                                                                                                                    | ×           | ×           | 1420                                                                             | X          | ×            | ×               | ×          | ×                        | ×           | 350          | ×      |
|                     | T (°C)                                                                                                                          |             |             |                                                                                  |            |              |                 |            |                          |             |              |        |
|                     | Hd                                                                                                                              |             |             |                                                                                  |            |              |                 |            |                          |             |              |        |
|                     | DO (mg/L)                                                                                                                       |             |             |                                                                                  |            |              |                 |            |                          |             |              |        |
|                     | Conductivity                                                                                                                    | ×           | ×           |                                                                                  | ×          | ×            | ×               | ×          | ×                        | ×           |              | ×      |
|                     | T (°C)                                                                                                                          |             |             |                                                                                  |            |              |                 |            |                          |             |              |        |
|                     | Hd                                                                                                                              |             |             |                                                                                  |            |              |                 |            |                          |             |              |        |
|                     | DO (mg/L)                                                                                                                       |             |             |                                                                                  |            |              |                 |            |                          |             |              |        |
|                     | Conductivity                                                                                                                    | ×           | ×           |                                                                                  | ×          | ×            | ×               | ×          | ×                        | ×           |              | ×      |
|                     | T (°C)                                                                                                                          |             |             |                                                                                  |            |              |                 |            |                          |             |              |        |
|                     | Hd                                                                                                                              |             |             |                                                                                  |            |              |                 |            |                          |             |              |        |
|                     | DO (mg/L)                                                                                                                       |             |             |                                                                                  |            |              |                 |            |                          |             |              |        |
|                     | Conductivity                                                                                                                    | ×           | ×           |                                                                                  | ×          | ×            | ×               | ×          | ×                        | ×           |              | ×      |
|                     | Init./Date (1999):                                                                                                              | 11/22       | 11/23       | 11/241                                                                           | 11/25      | 11/26        | 11/27           | 11/28      | 11/29                    | 11/39       | 12/1<br>17/1 | 17% is |
| Comments: Measured  | Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group. | rement of   |             | intative bea                                                                     | aker place | d within th  | e test arra     | y for this | esting gro               | dn.         |              |        |
| Measure D.O. and pH | Measure D.O. and pH 3 times weekly, conductivity once weekly.                                                                   | vity once v |             | Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, then weekly | nonia, alk | alinity, and | i hardnes       | samples    | on Days C                | , 14, 20, t | hen weekl    |        |

Review: Caterial Date: CALLITY Catenochr.doc Catenory: Aquatec Biological Sciences, South Burlington, Vermont

Audge (Chironomus tentans) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

| Project: Menzie-(                       | Project: Menzie-Cura & Associates | Project:                                |         | 99033 De   | Dead Creek | \ \ \       |                                                                                      | BTR: 3     | 3629 Tes   | Test Start | 10/20/99 |       |
|-----------------------------------------|-----------------------------------|-----------------------------------------|---------|------------|------------|-------------|--------------------------------------------------------------------------------------|------------|------------|------------|----------|-------|
|                                         |                                   |                                         |         |            |            | Day         | Day of Analysis                                                                      | ysis       |            |            | -        |       |
| Sample                                  | Parameter                         | 44                                      | 45      | 46         | 47         | 48          | 49                                                                                   | 20         | 51         | 52         | 53       | 54    |
| 12611                                   | T (°C)                            | (C. C. C.)                              | 13.99   | 33.55      | 13.5       |             |                                                                                      |            |            |            |          |       |
|                                         | Hd                                | 4.4                                     |         | 4.3        | 7-3        |             |                                                                                      |            |            |            |          |       |
|                                         | DO (mg/L)                         | 4.7                                     |         | 24         | 3.0        |             |                                                                                      |            |            |            |          |       |
|                                         | Conductivity<br>AtH/Pmon          | ×                                       | ×       | 340        | 333×       | ×           | ×                                                                                    | ×          | ×          | ×          |          | ×     |
| 12612                                   | T (°C)                            |                                         |         |            |            |             |                                                                                      |            |            |            |          |       |
|                                         | Hd                                |                                         |         |            |            |             |                                                                                      |            |            |            |          |       |
|                                         | DO (mg/L)                         |                                         |         |            |            |             |                                                                                      |            | j          |            |          |       |
|                                         | Conductivity                      | ×                                       | ×       |            | ×          | ×           | ×                                                                                    | ×          | ×          | ×          |          | ×     |
| 12613                                   | T (°C)                            |                                         |         |            |            |             |                                                                                      |            |            |            |          |       |
|                                         | Hď                                |                                         |         |            |            | !           | i .                                                                                  | ,          |            |            |          |       |
|                                         | DO (mg/L)                         |                                         |         |            |            |             |                                                                                      |            |            | ,          |          |       |
|                                         | Conductivity                      | ×                                       | ×       |            | ×          | ×           | ×                                                                                    | ×          | ×          | ×          |          | ×     |
| 12614                                   | (C) 1                             | : : : : : : : : : : : : : : : : : : : : |         |            |            |             |                                                                                      |            |            |            |          |       |
|                                         | На                                |                                         |         |            |            |             |                                                                                      |            |            |            |          |       |
|                                         | DO (mg/L)                         |                                         |         |            |            |             |                                                                                      |            | į          | i<br>i     | ,        |       |
|                                         | Conductivity                      | ×                                       | ×       |            | ×          | ×           | ×                                                                                    | ×          | ×          | ×          |          | ×     |
|                                         | Init./Date (1999):                | 12/3                                    | 12/2    | 13/6       | 12/gm      | 12/7        | 12/8                                                                                 | 12/9       | 12/10      | 12/11      | 12/12    | 12/13 |
| Commont: Marriand formarative is a mose |                                   |                                         | ronroco | ptative be | yorla John | 4 within th | ement of a representative heaker placed within the test array for this testing group | v for this | peting aro | 9          |          |       |

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness at end of test for any samples ending. Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group.

Review: Date: 1 L/U /97 ctenychr.doc Capacier Biological Sciences, South Burlington, Vermont

# Midge (Chironomus tentans) Chronic Toxicity Test Day 20 Survival and Dry Weight Data

| Client: Menzie-Cura & Assoc. | Project: 99033 Dead Creek    | BTR: 3641                 |
|------------------------------|------------------------------|---------------------------|
|                              | Test Start: October 21, 1999 | Day 20: November 10, 1999 |
|                              |                              |                           |
|                              |                              | Ashad                     |

|              |       |                     |          | Test Start:      | Octobe                                | r 21, 1999                            | Day          | 20: Nove         | mber 10,                                | 1999                                       |
|--------------|-------|---------------------|----------|------------------|---------------------------------------|---------------------------------------|--------------|------------------|-----------------------------------------|--------------------------------------------|
| Sample       | Repl. | Initial #<br>Larvae | # Alive  | 11/8/99<br>Init. | Larvae<br>preserve<br>d?<br>Y/N       | Crucible #                            | #<br>Weighed | Ashed<br>Pan Wt. | Ashed<br>Pan Wt.<br>+ Larval<br>Dry Wt. | Ashed<br>Pan and<br>Ashed<br>Larval<br>Wt. |
| 12665        | 1     | 12                  | OPILOE   | TM               | Y                                     | 10                                    | }{           | 2.320195         | 2,346,80                                | 2,326.7                                    |
|              | J     | 12                  | OPALIE   |                  | Y                                     | 11                                    | 7            | 2,383,33         | 2,290.05                                | 2, 282.8                                   |
|              | K     | 12                  | IP 8L DE | 1m               | Y                                     | 12                                    | 8            | 2389.34          | 2,420,25                                | 2,395.18                                   |
|              | L     | 12                  | IPIL 8E  | TM               | Υ                                     | 13                                    |              | 2,484.60         | e 2,483,41                              | 2,484,70                                   |
|              |       |                     |          |                  |                                       |                                       |              |                  |                                         |                                            |
|              |       |                     | ,        |                  |                                       |                                       |              |                  | 36                                      |                                            |
| 12668        | 1     | 12                  | 3P3L1E   | TM               | Y                                     | 14                                    | 3            | 2,263.71         | 2 271.\$3                               | = 2,263.7                                  |
|              | J     | 12                  | 6P4L OE  |                  | Y                                     | 15                                    | 1            | 2,385,22         | -3,398.1                                | <del>-</del> 2,386,                        |
|              | K     | 12                  | 31810E   |                  | Y                                     | 16                                    | 8            | 2.426.14         | 2,448,75                                | 2,430,3                                    |
|              | L     | 12                  | a Paloe  | TM               | Υ                                     | 17                                    | <u></u>      | 2444.70          | 3,453,15                                | 2,445.07                                   |
|              |       |                     |          |                  |                                       |                                       |              | ·                |                                         |                                            |
| <del> </del> | 1     | 12                  |          |                  | Y                                     | ]                                     |              |                  |                                         |                                            |
| :            | j     | 12                  |          |                  | <u>·</u><br>Y                         |                                       |              |                  |                                         |                                            |
|              | K     | 12                  |          |                  | Y                                     |                                       |              |                  |                                         |                                            |
|              |       | 12                  |          |                  | Y                                     |                                       |              |                  |                                         |                                            |
|              |       |                     | <u></u>  | L                | · · · · · · · · · · · · · · · · · · · | اــــــــــــــــــــــــــــــــــــ | L            | <u> </u>         | <u> </u>                                | L                                          |
|              |       |                     |          |                  |                                       |                                       |              |                  |                                         |                                            |
|              |       | 12                  |          |                  | Υ                                     |                                       |              |                  |                                         |                                            |
|              | J     | 12                  |          |                  | Υ                                     |                                       |              |                  |                                         |                                            |
| į            | K     | 12                  |          |                  | Υ                                     |                                       |              |                  |                                         |                                            |
| į            | L     | 12                  |          |                  | Υ                                     |                                       |              |                  | 1                                       |                                            |
|              |       |                     |          |                  |                                       |                                       |              |                  |                                         |                                            |

|     | J      | 12       | Y | <u> </u>        |                                        |
|-----|--------|----------|---|-----------------|----------------------------------------|
|     | K      | 12       | Y | 1               |                                        |
|     | L      | 12       | Y |                 |                                        |
|     |        |          |   | <br><del></del> | ······································ |
|     |        |          |   |                 |                                        |
|     |        |          |   |                 |                                        |
|     |        | 12       | Y |                 |                                        |
|     | J      | 12<br>12 | Y |                 |                                        |
| ··· | J<br>K | 12       | Y |                 |                                        |

| Date / Time / Init. Larvae in oven: 11/26/ | 99 16.45  | Date / Time / Init. L | arvae   | out of oven: 11/27 | 15:00 JG |
|--------------------------------------------|-----------|-----------------------|---------|--------------------|----------|
| Date / Time / Init. Larvae in furnace: 1   |           | Date / Time / Ini     | t. Larv | ae out of furnace: |          |
| Balance QC: Initial (20 mg = २००० न        | ) Final ( | 20 mg = 700.06        | ) B     | alance Asset #:    |          |
| Date/time In (1/26, u5 Temp(°C) \$6        | Init.コG   | Date/time outit       | 27      | Temp(°C) Fo        | Init. JG |
| 1 (6.                                      |           |                       |         |                    |          |
|                                            |           |                       |         |                    |          |

Comments: P = pupa, L = larva, E = fly previously emerged (larval casing left behind on water surface).

Date: 12/22/99 Reviewer:

ctday20doc Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Project: 99033 M-C Dead Creek BTR: 3641 Test Start: 10/21/99

| Sample / Repl. | Response                                 | 21          | 22           | 23           | 24             | 25                                               | 26           | 27           | 28       | 29                                               | 30                                               | 31                                               |
|----------------|------------------------------------------|-------------|--------------|--------------|----------------|--------------------------------------------------|--------------|--------------|----------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| 12665 A        | # Males<br>emerged                       |             |              |              |                |                                                  |              |              |          |                                                  |                                                  |                                                  |
|                | Male Time to                             |             |              | 1            |                |                                                  | <del> </del> |              |          |                                                  |                                                  | <del>                                     </del> |
|                | Mortality<br>(days)                      |             |              |              | <u> </u>       |                                                  |              |              |          |                                                  |                                                  |                                                  |
|                | # Females<br>emerged                     |             |              |              |                |                                                  | İ            |              |          |                                                  |                                                  |                                                  |
|                | Females<br>Time to Mortality<br>(days)   |             |              |              |                |                                                  |              |              |          |                                                  |                                                  |                                                  |
|                | Cumulative                               |             |              |              | T              |                                                  | 1            |              |          |                                                  | 1                                                |                                                  |
|                | number<br>emerged                        |             | <del></del>  |              | <del> </del>   | ļ                                                | 1            |              | ļ        | ļ                                                | <u> </u>                                         | ļ                                                |
|                | # Pairings                               |             |              |              |                |                                                  |              |              |          |                                                  |                                                  |                                                  |
|                | # Egg Case                               |             |              |              |                |                                                  |              |              |          |                                                  |                                                  |                                                  |
|                | # Eggs /<br>Time to hatch /<br># hatched |             |              |              |                |                                                  |              |              |          |                                                  |                                                  | <del> </del>                                     |
| 12665 B        | # Males<br>emerged                       |             |              |              |                |                                                  |              |              |          |                                                  |                                                  |                                                  |
|                | Male Time to<br>Mortality                |             |              |              | <u> </u>       |                                                  |              |              |          |                                                  |                                                  |                                                  |
|                | (days)<br># Females                      | <u> </u>    | <del> </del> |              | <del> </del>   | ļ                                                | <u> </u>     | <u> </u>     | <u> </u> |                                                  |                                                  | <del> </del>                                     |
|                | emerged                                  |             |              |              |                |                                                  |              |              |          |                                                  | }                                                |                                                  |
|                | Females<br>Time to Mortality             |             |              |              |                |                                                  |              |              |          | _                                                |                                                  |                                                  |
|                | (days)<br>Cumulative                     | -           | -            | -            | <del> </del>   | -                                                |              | <del> </del> | 1        | <del>                                     </del> | <del> </del>                                     | <del> </del>                                     |
|                | number<br>emerged                        |             |              |              |                |                                                  |              |              |          |                                                  |                                                  |                                                  |
|                | ∓ Pairings                               |             |              |              |                |                                                  |              |              |          |                                                  |                                                  |                                                  |
|                | # Egg Case                               |             |              |              |                |                                                  |              |              |          |                                                  |                                                  |                                                  |
|                | # Eggs /<br>Time to hatch /<br># hatched |             |              |              |                |                                                  |              |              |          |                                                  |                                                  |                                                  |
| 12665 C        | # Males                                  |             |              |              |                |                                                  |              |              |          |                                                  |                                                  |                                                  |
| .2000          | emerged                                  |             |              |              | <u> </u>       |                                                  |              |              |          |                                                  | ļ <u>.</u>                                       | <del> </del>                                     |
|                | Male Time to<br>Mortality<br>(days)      |             |              |              |                |                                                  |              |              |          |                                                  |                                                  |                                                  |
|                | # Females<br>emerged                     |             |              |              |                |                                                  |              |              |          |                                                  |                                                  |                                                  |
|                | Females Time to Mortality (days)         |             |              |              |                |                                                  | <del> </del> |              |          | -                                                |                                                  |                                                  |
|                | Cumulative                               | <del></del> | <del> </del> | <del> </del> | <del> </del> - | <del>                                     </del> |              | <del> </del> | <u> </u> | <del> </del>                                     | <del>                                     </del> |                                                  |
|                | ewerbeg<br>unwper                        |             |              |              | <u> </u>       | ļ                                                | ļ            |              | <u> </u> |                                                  |                                                  | <u> </u>                                         |
|                | # Pairings                               |             |              |              |                |                                                  |              |              |          |                                                  |                                                  |                                                  |
|                | # Egg Case                               |             |              |              |                |                                                  |              |              |          |                                                  |                                                  |                                                  |
|                | # Eggs /<br>Time to hatch /<br># hatched |             |              |              |                |                                                  |              |              |          |                                                  |                                                  |                                                  |
|                | Init./Date<br>(1999)                     | 11/11       | 11/12        | 11/13        | 11/14          | 11/15                                            | 11/16        | 11/17        | 11/18    | 11/19                                            | 11/20                                            | 11/2                                             |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: \_\_\_\_\_ Date: 12/2L/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Egg (26e incuberion Temp 24°C 11/24/99 ctdays21-31

BTR: 3641 Project: 99033 M-C Dead Creek Test Start: 10/21/99 Sample / Repl. Response 21 22 23 24 25 26 27 28 29 30 31 # Males 12665 D emerged Male Time to (0)/1/d Mortality (days) # Females emerged Females pd illit 5d 341130 Time to Mortality (days) Cumulative 5 number emerged WIGGSFOR # Pairings \c # Egg Case 5 what give of # Eggs / 1,670 Time to hatch / 2 junhatohed 11/22 # hatched # Males 12665 E emerged Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12665 F bezd emerged 8011/23 (00/10 Male Time to 60,119 Mortality (days) emerged Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched 11/11 Init./Date 11/12 11/18 11/12 11/21 (1999)Emergence scoring: Record any pupae which die (D) before emergende. D dead for flies which emerge but are not

surviving. P = pupa

Review: \_\_\_\_\_ Date: 12/22/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays21-31

| Sample / Repl.          | Response                                 | 21    | 22      | 23           | 24        | 25                                               | 26          | 27          | 28          | 29          | 30          | 31       |
|-------------------------|------------------------------------------|-------|---------|--------------|-----------|--------------------------------------------------|-------------|-------------|-------------|-------------|-------------|----------|
| 12665 G                 | # Males<br>emerged                       |       |         |              |           |                                                  | -           |             |             |             |             |          |
|                         | Male Time to<br>Mortality<br>(days)      |       |         |              |           |                                                  |             |             |             |             |             |          |
|                         | # Females<br>emerged                     |       |         |              |           |                                                  |             |             |             |             |             |          |
|                         | Females Time to Mortality (days)         |       |         |              |           |                                                  |             |             |             |             |             |          |
|                         | Cumulative<br>number<br>emerged          | ļ     |         |              |           | <u> </u>                                         |             |             |             |             |             |          |
|                         | # Pairings                               |       |         |              |           |                                                  |             |             |             |             |             |          |
|                         | # Egg Case                               |       |         |              |           |                                                  |             |             |             |             |             |          |
|                         | # Eggs /<br>Time to hatch /<br># hatched |       |         |              |           | <del>                                     </del> |             |             |             |             |             |          |
| 12665 H                 | # Maies<br>emerged                       |       |         |              |           |                                                  |             |             |             |             |             |          |
| *)                      | Male Time to<br>Mortality<br>(days)      |       |         |              |           |                                                  |             |             |             |             |             |          |
|                         | # Females<br>emerged                     |       |         |              |           |                                                  |             |             |             |             |             |          |
| ļ                       | Females<br>Time to Mortality<br>(days)   |       |         |              |           |                                                  |             |             |             |             |             |          |
|                         | Cumulative<br>number<br>emerged          | 1*    |         |              |           |                                                  |             |             |             |             |             |          |
|                         | # Pairings                               |       |         |              |           |                                                  |             |             |             |             |             |          |
|                         | # Egg Case                               |       |         |              |           |                                                  |             |             |             |             |             |          |
|                         | # Eggs /<br>Time to hatch /<br># hatched |       |         |              |           |                                                  |             |             |             |             |             |          |
|                         | Init./Date<br>(1999)                     | 1711  | 11/12   | 11/13        | 11/14     | 11/15                                            | 11/16       | 11/17       | 11/18       | 11/19       | 11/20       | 11/21    |
| mergence scor           | ing: Record                              |       | pae wh  | ich die (    | D) before | e emerg                                          | ence. D     | = dead      | for flies   | which e     | merge b     | ut are i |
| urviving. P = punments: | ира                                      |       |         |              |           |                                                  | <del></del> | <del></del> |             | <del></del> | <del></del> |          |
|                         | emergent                                 | case  | found   | in so        | mpie      | 12665                                            | i H         |             |             |             |             |          |
|                         | priorato                                 | Insta | lling e | <u>emerg</u> | ent tro   | $i\rho s$                                        | 11/10/9     | 79 Jm       | <del></del> |             |             |          |
|                         |                                          |       |         |              |           |                                                  |             | <del></del> | <del></del> |             |             |          |
|                         |                                          |       |         |              |           |                                                  |             |             |             |             |             |          |
|                         |                                          |       |         |              |           |                                                  |             |             |             |             |             |          |
|                         |                                          |       |         |              |           |                                                  |             |             |             |             | <del></del> |          |

Review: Date: 12/22/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays21-31

Project: 99033 M-C Dead Creek BTR: 3641 Test Start: 10/21/99

| Sample / Repl. | Response                               | 32          | 33           | 34                                               | 35                                               | 36             | 37           | 38                                               | 39           | 40            | 41                                               | 42                                               |
|----------------|----------------------------------------|-------------|--------------|--------------------------------------------------|--------------------------------------------------|----------------|--------------|--------------------------------------------------|--------------|---------------|--------------------------------------------------|--------------------------------------------------|
| 12665 A        | # Males<br>emerged                     |             |              |                                                  |                                                  |                |              |                                                  |              |               |                                                  |                                                  |
|                | Male Time to                           |             |              | <del>                                     </del> | 1                                                | j              |              |                                                  | 1.           |               | <del>                                     </del> | <del>                                     </del> |
|                | Mortality<br>(days)                    |             |              |                                                  |                                                  |                |              |                                                  | ,            |               |                                                  |                                                  |
|                | # Females                              |             | 1            | T                                                |                                                  | †···           |              |                                                  | <del> </del> |               |                                                  | 1                                                |
|                | emerged                                |             |              | ļ                                                | ļ                                                |                |              |                                                  |              |               |                                                  |                                                  |
|                | Females Time to Mortality (days)       |             |              |                                                  |                                                  |                |              |                                                  |              |               | ļ<br>                                            |                                                  |
|                | Cumulative<br>number                   |             |              | 1                                                |                                                  |                |              |                                                  | ]            | }             | !                                                |                                                  |
|                | emerged                                |             | ļ            | ļ                                                | ļ                                                |                |              | ļ                                                |              |               |                                                  | ļ                                                |
|                | # Pairings                             |             |              |                                                  |                                                  |                |              |                                                  |              |               |                                                  |                                                  |
|                | # Egg Case                             |             |              |                                                  |                                                  |                |              |                                                  |              |               |                                                  |                                                  |
|                | # Eggs /<br>Time to hatch /            |             |              | <del> </del>                                     |                                                  |                |              | <del>                                     </del> |              |               |                                                  |                                                  |
|                | # hatched                              |             | <del></del>  | <del> </del>                                     | <del> </del>                                     |                | <del> </del> | <del> </del>                                     | <del> </del> |               |                                                  | <del> </del> -                                   |
| 12665 B        | # Males<br>emerged                     |             |              |                                                  |                                                  |                |              |                                                  |              | }             |                                                  |                                                  |
|                | Male Time to                           |             | <del> </del> | h                                                | <del> </del>                                     |                |              | <del> </del>                                     | <del> </del> |               |                                                  | <del> </del> -                                   |
|                | Mortality                              |             |              |                                                  |                                                  |                |              | 1                                                |              |               | Ì                                                | 1                                                |
|                | (days)<br># Females                    |             | <del> </del> | <del> </del> -                                   | <del> </del>                                     | <del> </del> - | <del> </del> | <del> </del> -                                   | <del> </del> | <del> </del>  | <del> </del>                                     | <del> </del>                                     |
|                | emerged                                |             |              |                                                  |                                                  | !              |              |                                                  |              |               |                                                  |                                                  |
|                | Females                                |             | 1            |                                                  |                                                  |                |              |                                                  | <u> </u>     |               |                                                  | <del></del>                                      |
|                | Time to Mortality<br>(days)            |             |              |                                                  |                                                  |                |              |                                                  |              |               |                                                  |                                                  |
|                | Cumulative<br>number                   |             |              |                                                  |                                                  |                |              | }                                                |              |               |                                                  |                                                  |
|                | emerged                                |             |              |                                                  | <u> </u>                                         |                |              |                                                  |              |               |                                                  |                                                  |
|                | # Pairings                             |             |              |                                                  |                                                  |                |              |                                                  |              |               |                                                  |                                                  |
|                | # Egg Case                             |             |              |                                                  |                                                  |                |              |                                                  |              |               |                                                  |                                                  |
|                | # Eggs /                               | <del></del> | <del> </del> | <del> </del>                                     | <del> </del>                                     |                | <del> </del> | <del> </del>                                     | <del> </del> | <del> </del>  |                                                  |                                                  |
|                | Time to hatch / # hatched              |             | 1            |                                                  |                                                  |                |              | }                                                |              |               |                                                  | -                                                |
| 40005.0        | # Males                                |             | <del></del>  | <del> </del>                                     | <del>                                     </del> |                | <del> </del> |                                                  |              |               |                                                  |                                                  |
| 12665 C        | emerged                                |             |              | 1                                                | 1                                                |                |              |                                                  |              | ļ             | ļ                                                |                                                  |
|                | Male Time to                           |             |              | <u> </u>                                         | <del> </del>                                     |                |              | <del> </del>                                     | - A          |               | <del> </del>                                     | <del>                                     </del> |
|                | Mortality<br>(days)                    |             | 1            | {                                                | <b>[</b>                                         |                | İ            | Ι.                                               | 012          | $\mathcal{U}$ | 1                                                |                                                  |
|                | # Females<br>emerged                   |             |              |                                                  |                                                  |                |              |                                                  | 00)          | M             |                                                  |                                                  |
|                |                                        |             | <u> </u>     | <u> </u>                                         | ļ                                                | ļ              | <del></del>  | ļ                                                | 1010         | جميا          | ļ                                                |                                                  |
|                | Females<br>Time to Mortality<br>(days) |             |              |                                                  |                                                  | 1              |              |                                                  | Im 39        |               |                                                  |                                                  |
|                | Cumulative                             |             |              | <del></del>                                      |                                                  |                |              |                                                  |              |               |                                                  | 1                                                |
|                | number<br>emerged                      |             |              |                                                  |                                                  |                |              |                                                  |              |               | 1                                                |                                                  |
|                | # Pairings                             |             |              |                                                  |                                                  |                |              |                                                  |              |               |                                                  |                                                  |
|                | # Egg Case                             |             |              |                                                  |                                                  |                |              |                                                  |              |               |                                                  |                                                  |
|                | # Eggs /<br>Time to hatch /            |             |              | <del>                                     </del> | -                                                | -              |              |                                                  |              |               |                                                  |                                                  |
|                | # hatched                              |             | 1            | ļ.,                                              | <u> </u>                                         | ļ <u>.</u>     | ļ            | <del> </del>                                     | <u> </u>     | <del> </del>  | -                                                | <del> </del>                                     |
|                | Init./Date                             | 11/22       | 11/23        | 11/24                                            | 11/25                                            | 11/26          | 11/27        | 11/28                                            | 11/29        | 11/30         | 12/1                                             | 12/2                                             |
|                | (1999)                                 |             | 1            | <u> </u>                                         | 1                                                | }              | 1            | J                                                | 1            | 1             | J                                                | 1                                                |

|                                   | Time to hatch /<br># hatched |       |       |           | 1         |         |       |       | (      |       |         |             |
|-----------------------------------|------------------------------|-------|-------|-----------|-----------|---------|-------|-------|--------|-------|---------|-------------|
|                                   | Init./Date<br>(1999)         | 11/22 | 11/23 | 11/24     | 11/25     | 11/26   | 11/27 | 11/28 | 11/29  | 11/30 | 12/1    | 12/2        |
| Emergence sco<br>surviving. P = 1 |                              |       |       | ich die ( | D) before | e emerg |       | D Wro | te in  | with  | 9       |             |
| Review:                           | Date: 12<br>Biological Sc    |       |       | ington, V | ermont    |         |       | `     | Samp i | e # \ | )<br>29 | ctdays32-42 |

Jm 11/29 0001110

Midge (Chironomus tentans) Chronic Toxicity Test Biological Monitoring Project: 99033 M-C Dead Creek BTR: 3641 Test Start: 10/19/99 Sample / Repi. Response -23 25 761 # Males 12665 D emerged Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12665 E emerged Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12665 F emerged Male Time to i dead Mortality emerging (days) # Females emerged Females SUL 50,799 Time to Mortality unknown (days) Cumulative 5 emerged # Pairings 10 # Egg Case 404 24 unn 13/2 # Eggs / Time to hatch / 8 unh. 12/3 # hatched 11/24 11/27 Init./Date 11/22 11/23 11/25 11/26 11/28 11/29 11/30 12/1 12/2 (1999)

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa Test Der Correction -11/20/99 Review: \_\_\_\_\_ Date: 12/22/94
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont ctdays32-42

CC(14:

|               | Response                                | 21           | -22          | 23           | 24           | 25           | 26           | 27           | 28        | 29           | 39/          | 31           |
|---------------|-----------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|--------------|--------------|--------------|
|               |                                         | 232          | 22           | 34           | 24<br>35     | 25           | 26           | 27/8         | 28        | 320          | TH.          | 3/2          |
| 12665 G       | # Males<br>emerged                      |              | {            |              | {            |              |              |              |           |              |              |              |
|               | Male Time to<br>Mortality               |              |              | 1            | 1            |              |              |              |           |              |              |              |
| 1             | (days)                                  | <u> </u>     |              | <u> </u>     | <del> </del> |              | <u> </u>     | ļ            |           | <u> </u>     |              |              |
|               | # Females<br>emerged                    | }            |              | j            |              |              |              |              |           | }            | ļ            |              |
|               | Females<br>Time to Mortality<br>(days)  |              |              |              |              |              |              |              |           |              |              |              |
|               | Cumulative number                       |              |              |              | }            |              |              |              |           |              |              |              |
| -             | emerged                                 | <del> </del> | +            | <del> </del> | <del> </del> | <del> </del> | !<br>        | <del> </del> |           | <del> </del> |              |              |
|               | # Pairings                              |              | ļ            | ļ            | ļ            | ļ            |              | ļ            |           |              |              |              |
|               | # Egg Case                              |              |              |              |              |              |              |              |           |              |              |              |
| }             | # Eggs /                                |              | <del> </del> | <del> </del> | <del> </del> | <del> </del> |              |              |           | <del> </del> | <del> </del> |              |
| 1             | Time to hatch /<br># hatched            | i            |              |              | 1            | 1            | ĺ            |              |           | 1            | 1            |              |
| 12665 H       | # Males<br>emerged                      |              |              |              |              |              |              |              |           |              |              |              |
| -             | Male Time to                            |              | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del> </del> |              |           | <del> </del> |              |              |
|               | Mortality<br>(days)                     | 1            |              | ļ            |              |              | }            |              |           | <b>[</b>     |              | ļ            |
|               | # Females<br>emerged                    |              |              |              |              |              |              |              |           |              |              |              |
| -<br> -       | Females<br>ime to Mortality (<br>(days) |              | <del> </del> |              |              |              |              |              |           |              |              |              |
| <del>[-</del> | Cumulative                              |              | +            | <del> </del> | <del> </del> | <del></del>  | <del> </del> | <del> </del> | <b></b> - | <del> </del> | <del> </del> | <del> </del> |
|               | number<br>emerged                       |              |              | <u> </u>     |              | ļ            |              |              |           | ļ            |              |              |
|               | #Pairings                               | †            |              |              | !            |              |              |              |           |              |              |              |
|               | # Egg Case                              |              |              |              |              |              |              |              |           |              |              |              |
|               | # Eggs /<br>Time to hatch /             |              | <del> </del> |              |              |              |              |              |           |              |              |              |
|               | # hatched<br>Init./Date                 | 11/22        | 11/23        | 11/24        | 11/25        | 11/26        | 11/27        | 11/28        | 11/29     | 11/30        | 12/1         | 12/2         |
|               | (1999)                                  |              |              |              |              |              |              |              |           | ]            |              | I            |

Review: Date: 12/22/99 Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays32-42

BTR: 3641 Test Start: 10/21/99 Project: 99033 M-C Dead Creek Sample / Repl. Response 43 44 45 46 47 48 49 50 51 52 53 # Males 12665 A emerged Male Time to Mortality (days) # Females emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12665 B emerged Maie Time to Mortality # Females emerged Females Time to Mortality (days) Cumulative number emerged # Pairings # Egg Case # Eggs / Time to hatch / # hatched # Males 12665 C emerged Male Time to Mortality (days) # Females emerged Females Time to Mortality (gays) Cumulative number emergeo # Pairings # Egg Case # Eggs / Time to hatch / 13/4 Init./Date 12/3 12/5 12/6 12/7 12/8 12/9 12/10 12/11 12/12 12/13 (1999)

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: Date: 12/22/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays43-53

Project: 99033 M-C Dead Creek BTR: 3641 Test Start: 10/21/99

| Sample / Repl. | Response                                 | 43   | 44    | 45   | 46   | 47   | 48       | 49       | 50    | 51           | 52           | 53       |
|----------------|------------------------------------------|------|-------|------|------|------|----------|----------|-------|--------------|--------------|----------|
| 12665 D        | # Males<br>emerged                       |      |       | 1    |      |      |          |          |       |              |              |          |
|                | Male Time to<br>Mortality<br>(days)      |      | DL    |      |      |      |          |          |       |              |              |          |
|                | # Females<br>emerged                     |      | OP    |      |      |      |          |          |       |              |              |          |
|                | Females<br>Time to Mortality<br>(days)   |      |       |      |      |      |          |          |       |              |              |          |
|                | Cumulative<br>number<br>emerged          |      |       |      |      |      |          |          |       |              |              |          |
|                | # Pairings                               |      |       |      |      |      |          |          |       |              |              |          |
|                | # Egg Case                               |      |       |      |      |      |          |          |       |              |              |          |
|                | # Eggs /<br>Time to hatch /<br># hatched |      |       |      |      |      |          |          |       |              |              |          |
| 12665 E        | # Males<br>emerged                       |      |       |      |      |      |          |          |       |              |              |          |
|                | Male Time to<br>Mortality<br>(days)      |      | QL    |      |      |      |          |          |       |              |              |          |
|                | # Females<br>emerged                     |      | OP    |      |      |      |          |          |       |              |              |          |
|                | Females<br>Time to Mortality<br>(days)   |      |       |      |      |      |          |          |       |              |              |          |
|                | Cumulative<br>number<br>emerged          |      |       |      |      |      |          |          |       |              |              |          |
|                | # Pairings                               |      |       |      |      |      |          |          |       |              |              |          |
|                | # Egg Case                               |      |       |      |      |      |          |          |       |              | <u>}</u>     |          |
|                | #Eggs /<br>Time to hatch /<br># hatched  |      |       |      |      |      |          |          |       |              |              |          |
| 12665 F        | # Males<br>emerged                       |      |       |      |      |      |          |          |       |              |              |          |
|                | Male Time to<br>Mortality<br>(days)      |      | OL    |      |      |      |          |          |       |              |              |          |
|                | # Females<br>emerged<br>Females          |      | 90    | L    | ļ    | ļ    | <u> </u> | <u> </u> |       | <u> </u>     |              |          |
|                | Time to Mortality (days)  Cumulative     |      |       |      | ļ    | ļ    | ļ        | ļ        |       |              |              |          |
|                | number<br>emerged                        | ·    |       |      |      |      | ļ        | -        |       | <u> </u>     | <u> </u>     |          |
|                | # Pairings                               |      |       |      |      | ļ    | <b></b>  | ļ        | ļ     | <u> </u>     | <u> </u>     |          |
|                | # Egg Case                               |      |       |      |      |      |          |          |       |              |              | {        |
|                | # Eggs /<br>Time to hatch /<br># hatched |      |       |      |      |      | 1        |          |       | <del> </del> | <del> </del> | <b> </b> |
|                | Init./Date<br>(1999)                     | 12/3 | 12/43 | 12/5 | 12/6 | 12/7 | 12/8     | 12/9     | 12/10 | 12/11        | 12/12        | 12/13    |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: \_\_\_\_\_ Date: 12/22/97
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays43-53

| Sample / Repl.                             | Response                                 | 43          | 44         | 45                                               | 46         | 47       | 48             | 49       | 50             | 51             | 52           | 53           |
|--------------------------------------------|------------------------------------------|-------------|------------|--------------------------------------------------|------------|----------|----------------|----------|----------------|----------------|--------------|--------------|
|                                            |                                          |             |            | 10                                               |            |          |                |          |                | ļ ·            |              |              |
| 12665 G                                    | # Males<br>emerged                       |             |            |                                                  |            |          | -              |          |                |                |              |              |
|                                            | Male Time to<br>Mortality                |             | OL         |                                                  |            |          |                |          |                |                |              |              |
|                                            | (days)<br># Females                      |             | 100        | <del>                                     </del> |            |          |                | +        | <del> </del> - | <del> </del> - | <del> </del> | <del> </del> |
|                                            | emerged                                  |             | OP         |                                                  |            |          |                |          |                |                |              |              |
|                                            | Females Time to Mortality (days)         |             |            |                                                  |            |          |                |          |                |                |              |              |
|                                            | Cumulative<br>number<br>emerged          |             |            |                                                  |            |          |                |          |                |                |              |              |
|                                            | # Pairings                               |             |            |                                                  |            |          |                |          |                |                |              |              |
|                                            | # Egg Case                               |             |            |                                                  |            |          |                |          |                |                |              |              |
|                                            | # Eggs /<br>Time to hatch /<br># hatched |             |            |                                                  |            |          | <del>-  </del> | 1        |                |                |              |              |
| 12665 H                                    | # Males<br>emerged                       |             |            |                                                  |            |          |                |          |                |                |              |              |
|                                            | Male Time to<br>Mortality<br>(days)      |             | $\bigcirc$ |                                                  |            |          |                |          |                |                |              |              |
|                                            | # Females<br>emerged                     |             | 100        |                                                  |            |          |                |          |                |                |              |              |
|                                            | Females<br>Time to Mortality<br>(days)   |             |            |                                                  |            |          |                |          |                |                |              |              |
|                                            | Cumulative<br>number                     |             |            |                                                  |            |          |                |          |                |                |              |              |
|                                            | emerged                                  | L           |            |                                                  |            |          | 1              | l        | 1              | <b>}</b> .     |              |              |
|                                            | # Pairings                               |             |            |                                                  |            |          |                |          |                |                |              |              |
|                                            | # Egg Case                               |             |            |                                                  |            |          |                |          |                |                |              |              |
|                                            | # Eggs /<br>Time to hatch /<br># hatched |             |            |                                                  |            |          |                | -        | <del> </del> - | <del> </del>   | <del> </del> |              |
| <u> </u>                                   | Init./Date                               | 12/3        | 12/4       | 12/5                                             | 12/6       | 12/7     | 12/8           | 12/9     | 12/10          | 12/11          | 12/12        | 12/1         |
| mergence sco<br>urviving. P = p<br>nments: | (1999)<br>ring: Recor-<br>upa            | d any p     | upae wh    | ich die                                          | (D) before | re emerç | gence. [       | ) = dead | I for flies    | which e        | merge b      | ut are       |
|                                            |                                          | <del></del> |            |                                                  |            |          |                |          |                |                |              |              |
|                                            |                                          | _           |            |                                                  |            |          |                |          |                |                |              |              |
|                                            |                                          |             |            |                                                  |            |          |                |          |                |                |              |              |
|                                            |                                          |             |            |                                                  |            |          |                |          |                |                |              |              |

Review: \_\_\_\_\_ Date: 12/22/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| Sample / Repl.               | Response                                 | 21                                    | 22       | 23             | 24        | 25        | 26          | 27         | 28                | 29                       | 30               | 31         |   |
|------------------------------|------------------------------------------|---------------------------------------|----------|----------------|-----------|-----------|-------------|------------|-------------------|--------------------------|------------------|------------|---|
| 12668 A                      | # Males<br>emerged                       | ı                                     |          | •              |           |           |             | -          |                   |                          |                  |            | 1 |
|                              | Male Time to<br>Mortality<br>(days)      | 69/12                                 |          |                |           | 40,110    |             |            |                   |                          |                  |            | ] |
|                              | # Females<br>emerged                     |                                       |          | 1              |           | 11        | 1           | 1          |                   | 1.                       |                  |            |   |
|                              | Females<br>Time to Mortality<br>(days)   |                                       |          | ad."16         |           | STATE     | 11/20       | Hotokid    |                   | 69,1/25                  |                  |            |   |
|                              | Cumulative<br>number<br>emerged          | 1                                     |          | 2              |           | 25        | 6           | 7          |                   | 8                        |                  |            |   |
|                              | # Pairings                               |                                       |          | W/668D         |           | 7/658F    | WCESA JES   | 31/4       | D.                | W/668412                 | J . J            |            | ] |
|                              | # Egg Case                               |                                       |          |                | 100 mg    |           | 10 6        |            |                   | اد                       | 1013             | 1200 m     |   |
|                              | # Eggs /<br>Time to hatch /<br># hatched |                                       |          |                | 070 hatel |           | 1,278       | 2          |                   | 432<br>14 What.          | 1175<br>cles 142 | 2100       | 1 |
| 12668 B                      | # Males<br>emerged                       | · · · · · · · · · · · · · · · · · · · |          |                |           |           | ì           |            |                   | 10 2012                  |                  | 11         | 1 |
|                              | Male Time to<br>Mortality<br>(days)      |                                       |          |                |           |           | 4d 11/20    |            |                   |                          | -                | Mad.       |   |
|                              | # Females<br>emerged                     |                                       |          |                |           |           |             |            | 1                 | 1 [                      |                  | Tille      |   |
|                              | Females<br>Time to Mortality<br>(days)   |                                       |          |                |           |           |             | 29/1/2     | 5d 1/13           | 40 40                    |                  |            |   |
|                              | Cumulative<br>number<br>emerged          |                                       |          |                |           |           |             | 2          | 2/ Holio?         | 5                        |                  | 7          |   |
|                              | # Pairings                               |                                       |          |                |           |           |             | wice 4G    | <i>जी प्रकृति</i> | 663 LLSF                 |                  | 11/18 25 4 | 1 |
|                              | # Egg Case                               |                                       |          |                |           |           | <u> </u>    |            | 15/2/3            | ,                        |                  | <u> </u>   | ŀ |
|                              | # Eggs /<br>Time to hatch /<br># hatched |                                       | 1        |                |           |           |             |            | u 150 unha        | Hohed 1125<br>Hohed 1125 | F                |            |   |
| 12668 C                      | # Males<br>emerged                       |                                       |          |                | 1 Dive    | - 1       |             | 11         |                   |                          |                  |            | l |
| 3                            | Male Time to<br>Mortality<br>(days)      |                                       |          |                | 60 0      | 24,2      |             | 7d 50      | 7                 | ·····                    |                  |            | ŀ |
|                              | # Females<br>emerged                     |                                       |          |                |           |           |             | 1          | ŀ                 |                          |                  |            |   |
|                              | Females<br>Time to Mortality<br>(days)   |                                       |          |                |           | 2d,117    |             | 49 1/3     | 40,10             | 6                        |                  |            |   |
|                              | Cumulative<br>number<br>emerged          |                                       |          |                | 2         | 4         | -           | 19/5       | 78                |                          |                  |            |   |
|                              | # Pairings                               |                                       |          |                |           | 1         |             | 1          | 10/60 gd/01       |                          |                  |            |   |
|                              | # Egg Case                               |                                       |          |                |           |           | 1,272       | .12        |                   | > (A)                    |                  |            |   |
|                              | # Eggs /<br>Time to hatch /<br># hatched |                                       |          | <del> </del> - |           | <b>%</b>  | 229         | المحدد الم | 3                 | 7) unha                  | check up         | 5.00       | 1 |
|                              | Init./Date<br>(1999)                     | 13/11                                 | 11/12    | 11/13          | 11/14     | 11715     | 11/16       | 1147       | 19/18             | 11/19                    | 11/20            | 11/21      | 1 |
| ergence sco<br>viving. P = p |                                          | any pu                                | ipae whi | ch die (E      | before    | emerge    | ence. D     | = dead 1   | or flies v        | which en                 | nerge bu         | t åre no   | t |
| atory: Aquatec               | ring: Record                             | Actu                                  | e hard   | ing stil       | ا مصد     | ring 11/2 | <b>&gt;</b> | ine like   | Hen in            | ~46.°                    | ctd              | ays21-31   | , |

Project: 99033 M-C Dead Creek BTR: 3641 Test Start: 10/21/99

| Sample / Repl. | Response                                 | 21    | 22             | 23                                               | 24                                               | 25            | 26             | 27      | 28                   | 29               | 30           | 31           |
|----------------|------------------------------------------|-------|----------------|--------------------------------------------------|--------------------------------------------------|---------------|----------------|---------|----------------------|------------------|--------------|--------------|
| 12668 D        | # Males<br>emerged                       |       | !              |                                                  |                                                  |               | 11             | 1(      | 11 =                 | ^                |              |              |
|                | Male Time to                             |       | Cd             |                                                  |                                                  | 24            | (mal)          | ad ind  | -60                  | 4 11             |              |              |
|                | Mortality<br>(days)                      |       | 5d             |                                                  |                                                  | 30/18         | 1 3 A          | 11/23   | 34 58                |                  |              |              |
|                | # Females                                |       | <del> ``</del> | <del> </del>                                     | <del>                                     </del> | 1,            | 1              |         | 1/10                 |                  |              |              |
|                | emerged                                  | j     |                | ]                                                | 1                                                | }}            | <b>)</b> }     |         |                      |                  |              | }            |
|                | Females                                  |       | <del> </del>   | <del>                                     </del> | <del>                                     </del> | - \           |                |         |                      | <del>-</del>     |              | <del></del>  |
|                | Time to Mortality                        |       |                | 1                                                |                                                  | 30,14         | (Apples)       |         |                      |                  |              |              |
|                | (days)<br>Cumulative                     |       | <del> </del>   | <del> </del>                                     | <del>                                     </del> | - W           | 7              |         | -JM                  |                  | <del> </del> | <del> </del> |
|                | number                                   |       |                | }                                                |                                                  | 1             | 5K             | 11000   | 910                  |                  | į            |              |
|                | emerged                                  |       | <del> </del>   | +                                                | <del> </del>                                     | 10.00         | , , , ,        | 100     | 7 ( 0                |                  |              | <del> </del> |
|                | # Pairings                               |       |                |                                                  |                                                  |               |                |         |                      |                  |              |              |
|                | # Egg Case                               |       |                |                                                  |                                                  |               |                |         |                      |                  |              |              |
|                | # Eggs /<br>Time to hatch /<br># hatched |       |                | <del> </del>                                     |                                                  |               |                |         |                      |                  |              |              |
| 12668 E        | # Males                                  |       |                | 1                                                |                                                  |               | , ,            |         | ۸.                   |                  |              |              |
| 12000 L        | emerged                                  |       |                | 1                                                | -                                                | 1·            | 11             |         | 10                   | 10.              |              | 1 1          |
|                | Male Time to                             |       |                | 70,120                                           |                                                  | 1 11          | 41 52          |         | 21./                 |                  |              | 70,1128      |
|                | Mortality<br>(days)                      |       |                | 11/1/2                                           | 1                                                | 30/11/18      | 43 50          |         | 00,7.8               | 00,119           |              | 40/1/28      |
|                | # Females<br>emerged                     |       | ļ .            | YsG                                              |                                                  |               | 1              |         |                      |                  |              |              |
|                | Females                                  |       |                | <del> </del>                                     | <del> </del> -                                   | ļ <del></del> |                |         | ļ <del></del>        |                  |              | <del> </del> |
|                | Time to Mortality                        |       |                |                                                  |                                                  | ļ             | 24,118         |         |                      |                  |              | }            |
|                | (days)                                   |       | <del> </del>   | <del> </del>                                     |                                                  | ļ             | D 11/10        |         |                      |                  |              | ļ            |
|                | Cumulative<br>number                     |       |                |                                                  | ĺ                                                |               |                |         | <b>{</b>             | 7                |              | 8            |
|                | emerged                                  |       |                |                                                  |                                                  | <u>~</u>      |                |         |                      |                  |              | 0            |
|                | # Pairings                               |       |                |                                                  |                                                  |               | 1              |         | ĺ                    |                  |              |              |
|                | # Egg Case                               |       |                |                                                  |                                                  |               |                |         |                      |                  |              |              |
|                | # Eggs /                                 |       |                | <del> </del>                                     |                                                  |               | ļ              |         | <del> </del>         |                  |              | <del> </del> |
|                | Time to hatch /                          |       | 1              |                                                  | 1                                                | ĺ             |                |         | [                    |                  |              |              |
|                | # hatched                                |       |                | ļ                                                |                                                  |               |                |         |                      |                  |              |              |
| 12668 F        | # Males<br>emerged                       |       |                |                                                  | i1 1                                             | 1             | '              | 1.      |                      | 1                |              |              |
|                |                                          |       | <u> </u>       |                                                  | 777                                              |               | <u> </u>       | 1       | <u> </u>             | 37 6 11 4        |              | ļ            |
|                | Male Time to<br>Mortality                |       | ļ              | ł                                                | 1/20 1/26                                        | NOT.          | 1              | 6d 1/13 | Ge <sup>1</sup> 1/29 | 4d 4d<br>423 423 | ]            | }            |
|                | (days)                                   |       | ļ              | <u> </u>                                         | 1130 1136                                        | LSC.          | [              |         | 0/112.               | 1457 1,152       |              | ļ            |
|                | # Females<br>emerged                     |       |                |                                                  |                                                  | 11            |                |         | 1                    |                  |              |              |
|                | Females                                  | ·     | <u> </u>       | <del> </del>                                     | <del> </del>                                     | lad at        |                |         | 1                    |                  |              |              |
|                | Time to Mortality                        |       |                |                                                  | 1 /                                              | 30/1/34       | 1              | {       | (od 11/34            | 1                | 1            | 40-113       |
|                | (days)<br>Cumulative                     |       | <del> </del>   | <del> </del>                                     | 1                                                | 365           | <del> </del> - |         | <del>- ///-</del>    | 010              |              |              |
|                | number                                   |       |                |                                                  | 121                                              | 11/11         |                | 5       | ( a                  | 145"             | 1            | 11           |
|                | emerged                                  | ·     | <del> </del>   | <del> </del>                                     | 1001                                             | 141           | <del> </del>   |         | <u> </u>             | 1 P              | <del> </del> | 103          |
|                | # Pairings                               |       |                |                                                  | `                                                | W/668E        |                |         | 11                   |                  |              | WING E       |
|                | # Egg Case                               |       |                |                                                  |                                                  |               | 70             |         |                      |                  | )°           |              |
|                | , , ,                                    |       | -              | [                                                |                                                  |               | 528            |         |                      |                  | 1~175        | 1.           |
|                | # Eggs /                                 |       | <u> </u>       |                                                  |                                                  |               | 22 unha        | ched    |                      | <u> </u>         | 0%har        | ch,          |
|                | Time to hatch /<br># hatched             |       |                |                                                  |                                                  |               | 11/22          | 1       |                      | ļ                | disation     | ch ufa       |
|                |                                          | 11/11 | 11/12          | 11/13                                            | 12/12                                            | 11/15         | 11/18          | 1/1/    | 11/18                | 11//19           | 11/20        | 11/21        |
|                | (1999)                                   |       | KIKT           | 1. (+                                            | ノし                                               | 124           | 1 / JAY        | 17/11   | I UM                 | 1/I/N            | とり           | +2KY         |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa

Review: Date: 12/22/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays21-31

| ample / Repl.                         | Response                                 | 21       | 22        | 23        | 24        | 25       | 26                                               | 27           | 28       | 29       | 30       | 31        |
|---------------------------------------|------------------------------------------|----------|-----------|-----------|-----------|----------|--------------------------------------------------|--------------|----------|----------|----------|-----------|
| 12668 G                               | # Males<br>emerged                       |          | 3 (2 dive |           |           | 1        | (di                                              | 1            | ·        | 1        |          |           |
|                                       | Male Time to<br>Mortality                |          | 50 50     | Mis       |           | Adya     | odille                                           | 61           |          | 60,1735  |          |           |
|                                       | (days)<br># Females<br>emerged           |          | INIT III  |           |           |          | 1                                                | 142          |          | 1        |          |           |
|                                       | Females<br>Time to Mortality<br>(days)   |          |           |           |           | 3d 1118  | 24/18                                            |              |          | 69"122   |          |           |
|                                       | Cumulative<br>number<br>emerged          |          | 3         | -         |           | \$5      | 7                                                |              |          | 910      | 3        |           |
|                                       | # Pairings                               |          |           |           |           | 1        | 1 2 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16 |              |          | 1        |          |           |
|                                       | # Egg Case                               |          |           |           |           |          |                                                  |              |          |          |          | -         |
|                                       | # Eggs /<br>Time to hatch /<br># hatched |          |           |           |           |          |                                                  |              |          |          |          |           |
| 12668 H                               | # Males<br>emerged                       |          | 1         |           |           |          |                                                  |              |          | 1        |          |           |
|                                       | Male Time to<br>Mortality<br>(days)      |          | missing?  |           |           |          |                                                  |              |          | 5d 11/24 |          |           |
|                                       | # Females<br>emerged                     |          | l WH      | 1         |           |          |                                                  | <br>         | <br>     |          |          |           |
|                                       | Females<br>Time to Mortality<br>(days)   |          |           | Adjit     |           | <u> </u> |                                                  |              | <u> </u> |          |          | ļ         |
|                                       | Cumulative<br>number<br>emerged          |          |           | 12        |           |          |                                                  |              | <b></b>  | 3        |          |           |
|                                       | # Pairings                               |          |           | m/668 #5  |           | ļ<br>    |                                                  |              |          |          |          |           |
|                                       | # Egg Case                               |          |           |           | 1 19 EST. |          |                                                  |              |          |          |          |           |
|                                       | # Eggs /<br>Time to hatch /<br># hatched |          |           |           | 16 unhat  |          |                                                  |              |          |          |          |           |
|                                       | Init./Date<br>(1999)                     | 11/11    | 11/12     | 11/13     | 11/18     | 11/15    | 11/16<br>1M                                      | 1/1/2        | 1/1/18   | 11/19    | 11/20    | 11/21     |
| ergence sco<br>viving. P = p<br>ents: | ring: Record                             | d any pu | upae whi  | ch die (1 | D) before | emerge   | ence. D                                          | =dead t      | of flies | which en | nerge bu | ut are no |
|                                       |                                          |          |           |           |           |          |                                                  | <del>_</del> |          |          |          |           |
|                                       |                                          |          |           |           |           |          |                                                  |              |          |          |          |           |
|                                       |                                          |          |           |           |           |          |                                                  | <del></del>  |          |          |          |           |
|                                       |                                          |          |           |           | ·         |          |                                                  |              |          |          |          |           |

Review: Date: 12/22/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays21-31

#### Midge (Chironomus tentans) Chronic Toxicity Test Biological Monitoring

Project: 99033 M-C Dead Creek BTR: 3641 Test Start: 10/21/99

| Sample / Repl. | Response                                 | 32             | 33     | 34      | 35    | 36    | 37    | 38    | 39     | 40    | 41   | 42       |
|----------------|------------------------------------------|----------------|--------|---------|-------|-------|-------|-------|--------|-------|------|----------|
| 12668 A        | # Males<br>emerged                       |                |        |         |       |       |       |       |        |       | -    |          |
|                | Male Time to<br>Mortality<br>(days)      |                |        |         |       |       |       |       |        |       |      |          |
|                | # Females<br>emerged                     |                |        |         |       |       |       |       | OL     |       |      |          |
|                | Females<br>Time to Mortality<br>(days)   |                |        |         |       |       |       |       | OP     |       |      |          |
|                | Cumulative<br>number<br>emerged          |                |        |         |       |       |       |       | 11/29/ |       |      |          |
|                | # Pairings                               |                |        |         |       |       |       |       |        |       |      |          |
|                | # Egg Case                               |                |        |         |       |       |       |       |        |       |      |          |
|                | # Eggs /<br>Time to hatch /<br># hatched |                |        |         |       |       |       |       |        |       |      |          |
| 12668 B        | # Males<br>emerged                       |                |        |         |       |       |       |       |        |       |      |          |
|                | Male Time to<br>Mortality<br>(days)      |                |        |         |       |       |       |       |        |       |      |          |
|                | # Females<br>emerged                     |                |        |         |       |       |       |       | OL     |       |      | <u> </u> |
| - oni          | Females Time to Mortality (days)         |                |        | 1       |       |       |       |       | OP     |       |      |          |
| illy pair      | Cumulative<br>number<br>emerged          |                |        |         |       |       |       |       | 11-7m  |       |      |          |
|                | # Pairings                               | ا<br>          |        |         |       |       |       |       |        |       |      |          |
|                | # Egg Gase                               | (a)            |        |         |       |       |       |       |        | ļ     |      |          |
|                | # Eggs /<br>Time to hatch /<br># hatched | 763<br>1200 Wh | 1138   |         |       |       |       |       |        |       |      |          |
| 12668 C        | # Maies<br>emerged                       | rzounn         | Cheins | greting |       |       |       |       |        |       |      |          |
|                | Male Time to<br>Mortality<br>(days)      |                |        |         |       |       |       |       |        |       |      |          |
|                | # Females<br>emerged                     |                |        |         |       |       |       |       | OL     |       |      |          |
|                | Females Time to Mortality (days)         |                |        |         |       |       |       |       | OP     |       |      |          |
|                | Cumulative<br>number<br>emerged          |                |        |         |       |       |       |       | Magn   |       |      |          |
|                | # Pairings                               |                |        |         |       |       |       |       |        |       |      |          |
|                | # Egg Case                               |                |        |         |       |       |       |       |        |       |      |          |
|                | # Eggs /<br>Time to hatch /<br># hatched |                |        |         |       |       |       |       |        |       |      |          |
|                | Init./Date<br>(1999)                     | 11/22          | 11/23  | 11/24   | 11/25 | 11/26 | 11/27 | 11/28 | 11/29  | 11/30 | 12/1 | 12/2     |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not surviving. P = pupa  $f = \frac{1}{2} R I B$ 

Review: Date: 2/22/97
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays32-42

Project: 99033 M-C Dead Creek BTR: 3641 Test Start: 10/19/99

| Sample / Repl. | Response                               | 1-24                                             | 22                                               | 23<br>34     | <del>-24</del><br>35 | 25                                               | 337                                              | 27                                               | 28            | <del>-29</del><br>40 | <del>30</del><br>41 | 31           |
|----------------|----------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|----------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------|----------------------|---------------------|--------------|
| 12668 D        | # Males                                | 1 2                                              | 1-22                                             | 1 37         |                      | 70                                               | 3/                                               | J 3 C                                            | 37            | 40                   | -                   | 42           |
| 12000 D        | emerged                                |                                                  |                                                  |              | ļ                    | ļ                                                |                                                  |                                                  |               |                      |                     |              |
|                | Male Time to<br>Mortality              |                                                  | ĺ                                                |              |                      | 1                                                |                                                  |                                                  | ,             |                      |                     |              |
|                | (days)<br># Females                    |                                                  | <del> </del> -                                   | <del> </del> |                      | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     | ļ             |                      |                     |              |
|                | emerged                                |                                                  |                                                  |              |                      |                                                  |                                                  |                                                  | OL            |                      |                     |              |
|                | Females                                |                                                  |                                                  |              | <del> </del>         |                                                  |                                                  |                                                  |               | L                    |                     |              |
|                | Time to Mortality<br>(days)            |                                                  |                                                  |              | <u> </u>             |                                                  |                                                  |                                                  | 09            |                      |                     |              |
|                | Cumulative<br>number                   |                                                  |                                                  |              |                      |                                                  |                                                  |                                                  | 11/29m        |                      |                     | Ì            |
|                | emerged                                | <u> </u>                                         | <del>                                     </del> | <del> </del> | <del> </del>         | <del> </del>                                     | <u> </u>                                         | ļ. ——                                            | 1 711         |                      | <del> </del>        | <del> </del> |
|                | # Pairings                             |                                                  |                                                  |              |                      |                                                  |                                                  |                                                  |               |                      |                     |              |
|                | # Egg Case                             |                                                  |                                                  |              |                      |                                                  |                                                  |                                                  |               |                      |                     |              |
|                | # Eggs /                               | <del> </del>                                     |                                                  |              | <del> </del>         | <del>                                     </del> |                                                  | <del> </del>                                     | <del> </del>  |                      | -                   |              |
|                | Time to hatch /<br># hatched           |                                                  |                                                  |              |                      |                                                  |                                                  |                                                  |               |                      |                     |              |
| 12668 E        | # Males<br>emerged                     | 1                                                | ,                                                |              |                      |                                                  |                                                  |                                                  |               |                      |                     |              |
|                | Male Time to<br>Mortality              | 4d 11/26                                         |                                                  |              | 1                    |                                                  |                                                  |                                                  |               |                      |                     |              |
|                | # Females                              | <del>                                     </del> |                                                  |              |                      | <del> </del>                                     |                                                  | <del> </del>                                     | 6.            |                      |                     |              |
|                | emerged                                |                                                  |                                                  |              |                      |                                                  |                                                  |                                                  | OL            |                      |                     |              |
|                | Females<br>Time to Mortality<br>(days) |                                                  |                                                  |              |                      |                                                  |                                                  |                                                  | OP            |                      |                     |              |
|                | Cumulative                             | 9                                                | -                                                |              | <u> </u>             | 1                                                | 1                                                | <del>                                     </del> | 11/29         |                      |                     |              |
|                | emerged<br>number                      | 1                                                | <u> </u>                                         |              | ļ                    | ļ                                                | <u>.                                    </u>     | ļ                                                | مهلاً الله    |                      | <u> </u>            |              |
|                | # Pairings                             |                                                  |                                                  |              |                      |                                                  |                                                  |                                                  |               |                      |                     |              |
|                | # Egg Case                             |                                                  |                                                  |              |                      |                                                  |                                                  |                                                  |               |                      |                     |              |
|                | # Eggs /                               |                                                  |                                                  |              |                      | <del> </del>                                     | <del>                                     </del> | <del>                                     </del> |               |                      |                     |              |
|                | Time to hatch /<br># hatched           |                                                  |                                                  |              |                      |                                                  |                                                  |                                                  |               |                      |                     |              |
| 12668 F        | # Males<br>emerged                     |                                                  |                                                  |              |                      |                                                  |                                                  |                                                  |               |                      |                     |              |
|                | Male Time to                           |                                                  |                                                  | -            | -                    | -                                                | <del> </del>                                     |                                                  | <del> </del>  |                      | _                   |              |
|                | Mortality<br>(days)                    |                                                  |                                                  |              |                      | İ                                                |                                                  |                                                  |               |                      | }                   | ļ            |
|                | # Females<br>emerged                   |                                                  |                                                  |              |                      |                                                  |                                                  |                                                  | 67            |                      |                     |              |
|                |                                        |                                                  |                                                  |              | <u> </u>             | ļ <u>.</u>                                       | <u> </u>                                         | ļ                                                | $\mathcal{V}$ |                      | ļ                   | ļ            |
|                | Females<br>Time to Mortality           |                                                  |                                                  |              |                      |                                                  |                                                  |                                                  | DP.           | 1                    |                     |              |
|                | (days)<br>Cumulative                   |                                                  |                                                  | <del> </del> | <del> </del>         | <del> </del> -                                   |                                                  | <del>                                     </del> | 11/6          |                      | <del> </del>        | <del> </del> |
|                | number<br>emerged                      | ·                                                |                                                  |              | ļ                    | Ì                                                | ļ                                                | 1                                                | 11/29         | ]                    |                     | 1            |
|                | # Pairings                             |                                                  |                                                  |              | <del> </del>         |                                                  |                                                  |                                                  | 130           |                      | <del> </del>        |              |
|                | # Fall #193                            |                                                  |                                                  |              |                      | ļ                                                |                                                  | ļ                                                | <u> </u>      |                      |                     | ļ            |
|                | # Egg Case                             |                                                  |                                                  |              |                      |                                                  |                                                  |                                                  |               |                      |                     |              |
|                | # Eggs /                               |                                                  |                                                  |              | <del> </del>         |                                                  | <del> </del>                                     | <u> </u>                                         |               | <del> </del> -       |                     |              |
|                | # cggs /                               | 1                                                |                                                  |              |                      |                                                  |                                                  |                                                  |               |                      |                     |              |
|                | Time to hatch /<br># hatched           |                                                  |                                                  |              |                      | <u> </u>                                         |                                                  |                                                  | <u> </u>      |                      | <u> </u>            |              |

Emergence scoring: Record any pupae which die (D) before emergence. D = dead for flies which emerge but are not Emergence scoring: Record any pupae which die (D) before emergence. D = ueau for mos surviving. P = pupa = | 200 |

Review: Date: 12/22/49
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

ctdays32-42

#### Midge (Chironomus tentans) Chronic Toxicity Test Biological Monitoring

| Sample / Repl.               | Response                     | 21                                               | 22            | 23            | 24-         | 25             | 26<br>37    | 27<br>38                                         | <del>28</del><br>39                              | -29<br>40 | 30-<br>41                                        | - 31<br>42   |
|------------------------------|------------------------------|--------------------------------------------------|---------------|---------------|-------------|----------------|-------------|--------------------------------------------------|--------------------------------------------------|-----------|--------------------------------------------------|--------------|
| 10000                        | # Maies                      | 32                                               | 33            | 34            | 75          | 36             | 37          | 38                                               | 39                                               | 40        | 41                                               | 42           |
| 12668 G                      | emerged                      |                                                  |               |               |             |                |             |                                                  |                                                  |           |                                                  |              |
|                              | Male Time to<br>Mortality    |                                                  |               |               |             | <u> </u>       |             |                                                  |                                                  |           |                                                  |              |
|                              | (days)                       | <u> </u>                                         |               |               |             |                |             |                                                  |                                                  |           |                                                  |              |
|                              | # Females<br>emerged         | 11                                               |               |               |             | 1              |             |                                                  | 02                                               |           |                                                  |              |
|                              | Females                      | <del>                                     </del> |               |               |             |                |             |                                                  | -                                                |           |                                                  | <del> </del> |
|                              | Time to Mortality<br>(days)  | 30,1125                                          | l             |               |             |                | ľ           |                                                  | OP :                                             |           | ĺ                                                | 1            |
|                              | Cumulative<br>number         | 10 IN                                            |               |               |             |                |             |                                                  | 11/1/29                                          |           |                                                  |              |
|                              | amerced 1                    | 1011                                             |               | -             | 1           | <del>\</del> - |             |                                                  | 11/01                                            |           |                                                  | <del> </del> |
|                              | # Pairings                   | Wholes E                                         |               |               | 14chi 30    |                | İ           |                                                  |                                                  |           | }                                                |              |
| the ban                      |                              |                                                  |               | 10,150        |             | <del> </del>   |             |                                                  |                                                  |           | <del>                                     </del> | 1            |
| wir oail                     | # Egg Case                   |                                                  |               | 10/100        | 090         | (x)            | 1           |                                                  |                                                  |           |                                                  |              |
| 110 1                        | # Eggs /                     |                                                  |               | 12/0          | No. 113     |                | <del></del> |                                                  | <u> </u>                                         |           | <del> </del>                                     | <u> </u>     |
|                              | Time to hatch /<br># hatched | ]                                                |               |               |             |                |             |                                                  |                                                  |           |                                                  |              |
| 12668 H                      | # Males                      |                                                  |               |               |             |                | 1           |                                                  |                                                  |           |                                                  | 1            |
|                              | emerged                      |                                                  |               |               | ļ           | ļ              |             |                                                  |                                                  |           |                                                  |              |
|                              | Male Time to<br>Mortality    | ļ                                                |               |               |             |                |             |                                                  |                                                  |           | 1                                                |              |
|                              | (days)<br># Females          |                                                  |               |               |             | <del> </del>   |             | <del>                                     </del> | <u> </u>                                         |           | <del> </del>                                     | 1            |
|                              | emerged                      |                                                  |               |               |             |                |             |                                                  | 02                                               |           |                                                  |              |
|                              | Females Time to Mortality    |                                                  |               |               |             |                |             |                                                  | 00                                               |           |                                                  |              |
|                              | (days)<br>Cumulative         |                                                  |               |               |             |                |             |                                                  | OP.                                              |           |                                                  |              |
|                              | number<br>emerged            |                                                  |               |               |             |                |             | }                                                | 111/29                                           |           | ]                                                |              |
|                              | # Pairings                   |                                                  |               |               |             |                |             |                                                  | <del>                                     </del> |           |                                                  | 1            |
|                              | # Pairings                   |                                                  |               |               |             | ļ <u>.</u>     |             | ļ                                                |                                                  |           | ļ                                                | <u> </u>     |
|                              | # Egg Case                   | :                                                |               |               |             |                |             |                                                  |                                                  |           |                                                  | 1            |
|                              |                              |                                                  |               |               |             |                |             |                                                  |                                                  |           |                                                  |              |
|                              | # Eggs /<br>Time to hatch /  |                                                  |               |               |             |                |             |                                                  |                                                  |           |                                                  |              |
|                              | # hatched                    | 44400                                            | 4.4.00        |               |             | 11100          | 1110        | 111100                                           | 111100                                           | 11100     | 1011                                             | 10/0         |
|                              | Init./Date                   | 11/22                                            | 11/23         | 1,1/24<br>100 | 11/25       | 11/26          | 11/27       | 11/28                                            | 11/29                                            | 11/30     | 12/1                                             | 12/2         |
| ergence sco<br>viving. P = p |                              |                                                  | pae whi       | die ([        |             | e emerge       | ence. D     | = dead                                           | for flies v                                      | vhich er  | nerge b                                          | ut are n     |
| nents:                       |                              |                                                  | ••-           |               |             |                |             |                                                  |                                                  |           |                                                  |              |
|                              |                              | (*I) /                                           | <u>2/1 → </u> | Could.        | n't do      | a do           | y 7         | m-                                               |                                                  |           |                                                  |              |
|                              |                              | <del></del>                                      | <u> na</u>    | Hahing        |             |                | 299         | ·                                                |                                                  |           |                                                  |              |
|                              |                              |                                                  | <del></del>   |               | ruse        | is disc        | arde        | <u>d 11/3</u>                                    | 30                                               |           |                                                  |              |
|                              | <del></del>                  |                                                  |               |               |             |                |             |                                                  |                                                  |           |                                                  |              |
|                              |                              | <del></del>                                      | <del></del>   |               |             |                |             |                                                  |                                                  |           |                                                  |              |
| <u> </u>                     |                              |                                                  |               |               |             |                |             |                                                  |                                                  |           |                                                  |              |
|                              | <del></del>                  |                                                  |               | ·             | <del></del> |                |             |                                                  |                                                  |           | <del></del>                                      | -            |
|                              | <del></del>                  |                                                  |               |               |             |                |             |                                                  |                                                  |           |                                                  |              |
|                              |                              |                                                  |               |               |             |                |             |                                                  |                                                  |           |                                                  |              |
|                              |                              |                                                  |               |               |             |                |             |                                                  |                                                  |           |                                                  |              |
|                              |                              |                                                  |               |               |             |                |             |                                                  |                                                  |           |                                                  |              |

Review: \_\_\_\_\_ Date: 12/22/95
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Test Dage

ctdays32-42

J 11/30/99

### Collection of Chironomus tentans Egg Cases for Chronic Toxicity Tests

| Egg Case       | Deposit Da                 | ate: 10/17          | No. of Egg Cas           | es 2         |             |    |
|----------------|----------------------------|---------------------|--------------------------|--------------|-------------|----|
| Date<br>(1999) | # Days<br>Post-<br>Deposit | Temperature<br>(°C) | Feeding<br>(Selenastrum) | Observations | Test<br>Use |    |
| 10/17          | 0                          | 2075                |                          |              |             |    |
| 10/18          | 1                          | 20-7                |                          |              |             |    |
| 10/19          | 2                          |                     |                          |              |             |    |
| 10/20          | 3                          |                     |                          |              |             |    |
| 10/21          | 4                          | 22.5                |                          |              | C.T. Chan   | id |
|                | 5                          |                     |                          |              |             |    |
| Source of      | egg cases:                 | Aguzrec cu          | INES                     |              |             |    |

### Collection of Chironomus tentans Egg Cases for Chronic Toxicity Tests

| Egg Case       | Deposit Da                 | ate: 10/18          | No. of Egg Cas           | es 8         |             |        |
|----------------|----------------------------|---------------------|--------------------------|--------------|-------------|--------|
| Date<br>(1999) | # Days<br>Post-<br>Deposit | Temperature<br>(°C) | Feeding<br>(Selenastrum) | Observations | Test<br>Use | ·      |
| 10/18          | 0                          |                     |                          |              |             |        |
| 10/19          | 1                          |                     |                          |              |             |        |
| 10/20          | 2                          |                     |                          |              |             |        |
| 10/21          | 3                          | 22.5                |                          |              | C.T. Chro   | nice T |
|                | 4                          |                     |                          |              |             | )      |
|                | 5                          |                     |                          |              |             |        |
| Source of      | egg cases:                 | Aquerec Cu          | INRS                     |              |             |        |

## Collection of Chironomus tentans Egg Cases for Chronic Toxicity Tests

| Egg Case       | Deposit Da                 | ite: 10/29 36       | No. of Egg Cas           | es g         |             |
|----------------|----------------------------|---------------------|--------------------------|--------------|-------------|
| Date<br>(1999) | # Days<br>Post-<br>Deposit | Temperature<br>(°C) | Feeding<br>(Selenastrum) | Observations | Test<br>Use |
| 10/39          | TG 0                       |                     | ~                        |              |             |
| 10/30          | 1                          |                     |                          |              |             |
| 10/31          | 2                          | 23.1                | V                        | Hatching     | tux hales   |
| /              | 3                          |                     |                          | Q            |             |
|                | 4                          |                     |                          |              |             |
|                | 5                          |                     |                          |              |             |
| Source of      | egg cases:                 | Aquatec             |                          |              |             |

| Sample Parameter 0 1 2 3 4 5 6 6 12665 T(°C) 22.7 22.7 22.7 22.7 22.7 22.7 22.7 22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                    |        |       |       |        | Day                                  | Day of Analysis |      |       |          |                |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|--------|-------|-------|--------|--------------------------------------|-----------------|------|-------|----------|----------------|-----------------|
| T (°C)   32.7   23.7   24.5   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |        |       |       |        | `                                    |                 |      |       |          |                |                 |
| T (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample | Parameter          | 0      | ~     | 7     |        | 4                                    |                 | 9    | ^     | 8        | 6              | 10              |
| DO (mg/L)  Conductivity  DO (mg/L)  DO (mg/L)  DO (mg/L)  Conductivity  DO (mg/L)  DO (mg/L)  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12665  |                    | 22.7   | 22.7  | 3     | de Cel | 25.5<br>25.5<br>75.5<br>75.5<br>75.5 | 4,0             | 167  | 14/2  | 20.25    | 4.8            | College College |
| DO (mg/L)  Conductivity  PH  T (°C)  DO (mg/L)  DO (mg/L)  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity  Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | Hd                 | 7.7    | 7.8   | 6     |        | 46                                   |                 | 4.5  |       | 45       | 1              | 10              |
| Conductivity X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | DO (mg/L)          | 7      | 8.0   |       |        | 5.5                                  |                 | 2.0  |       | 0,7      | 1              |                 |
| DO (mg/L)  DO (mg/L)  T (°C)  PH  Conductivity  T (°C)  PH  DO (mg/L)  DO (mg/L)  DO (mg/L)  T (°C)  T (°C)  DO (mg/L)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C)  T (°C) |        | Conductivity 1     | 120052 | ×     | ×     | ×      | ×                                    | ×               | ×    | 330   | ×        | ×              | ×               |
| 23. 6.8<br>3. 6.8<br>× × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12668  | l                  | 73.1   | 37.8  |       |        |                                      |                 |      |       | 234      | 8              |                 |
| (6.8 × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | Hd                 | 12     | 7.4   |       |        | 4.4                                  |                 |      |       | 11       |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | DO (mg/L)          |        | 8.9   |       |        | 80                                   |                 | 6.2  |       | 20       | 1              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Conductivity in    | 1      | ×     | ×     | ×      | ×                                    | ×               | ×    | 345   | ×        | ×              | ×               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | (°C)               |        |       |       |        |                                      |                 |      |       |          |                | ļ               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Hd                 |        |       |       |        |                                      |                 |      |       |          |                |                 |
| × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | DO (mg/L)          |        |       |       |        |                                      |                 |      |       |          |                |                 |
| × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | Conductivity       |        | ×     | ×     | ×      | ×                                    | ×               | ×    |       | ×        | ×              | ×               |
| × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | (°C)               |        |       |       |        |                                      |                 |      |       |          |                |                 |
| × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | Hd                 |        |       |       |        |                                      |                 |      |       |          |                | ļ<br>           |
| × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | DO (mg/L)          |        |       |       |        |                                      |                 |      |       |          |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Conductivity       |        | ×     | ×     | ×      | ×                                    | ×               | ×    |       | ×        | ×              | ×               |
| Init./Date (1999): 10/21, 19/22 19/23 19/24 19/25 19/26 10/27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | Init./Date (1999): | 10/21  | 19/37 | 19/23 | 42,027 | 1925                                 | 19/26           | 1987 | 19/28 | 10<br>88 | 15<br>88<br>88 | 15 E            |

<

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 40, and end of test.

Review: Date: 12/22/99 ctenvchr.doc Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

DAY 9 -- Setup Aux MAle beauers

000101

| Project: Menzie-(  | Project: Menzie-Cura & Associates           | Pro       | Project: 99 | 99033 Dea                                        | Dead Creek | ¥           |                 | BTR: 3        | 3529 Tes                          | Test Start | 10/20/99 |                                            |
|--------------------|---------------------------------------------|-----------|-------------|--------------------------------------------------|------------|-------------|-----------------|---------------|-----------------------------------|------------|----------|--------------------------------------------|
|                    |                                             |           |             |                                                  |            | Day         | Day of Analysis | lysis         |                                   |            | P        |                                            |
| Sample             | Parameter                                   | 11        | 12          | 13                                               | 14         | 15          | 16              | 17            | 18                                | 19         | 20       | 21                                         |
| 12665              | T (°C)                                      | 4         | 22.7        | 30 3/16                                          | Silver     | 200         | 45.66           | 866/          | B 3.5                             | 4.50       | 23.3     | 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 |
|                    | Hd                                          | 7,5       |             | 45                                               |            | 10/2        |                 |               | 100                               | ,          | 7.4      | ì                                          |
|                    | DO (mg/L)                                   | 6,3       |             | 4.7                                              |            | 15.5        |                 |               | 40                                |            | 40       |                                            |
|                    | Conductivity                                | ×         | ×           | ×                                                | 39%        | ×           | ×               | ×             | ×                                 | ×          | 380      | ×                                          |
| 12668              | T (°C) 1 P                                  | •         | 8-cr        |                                                  |            |             |                 |               |                                   |            | 22.8     |                                            |
|                    | Hd                                          | £'t       |             | 47                                               |            | 9%          |                 |               | 2.8                               |            | 7.5      |                                            |
|                    | DO (mg/L)                                   | 9,9       |             | 5,8                                              |            | 6.0         |                 |               | 42                                |            | 53       |                                            |
|                    | Conductivity                                | ×         | ×           | ×                                                | 1/8/2      | ×           | ×               | ×             | ×                                 | ×          | 2/2      | ×                                          |
|                    | T (°C)                                      |           |             |                                                  |            |             |                 |               |                                   |            |          |                                            |
|                    | Hd                                          |           |             |                                                  |            |             |                 |               |                                   |            |          |                                            |
|                    | DO (mg/L)                                   |           |             |                                                  |            |             |                 |               |                                   |            |          |                                            |
|                    | Conductivity                                | ×         | ×           | ×                                                |            | ×           | ×               | ×             | ×                                 | ×          |          | ×                                          |
|                    | T (°C)                                      |           |             |                                                  |            |             |                 |               |                                   |            |          |                                            |
|                    | Hd                                          |           |             |                                                  |            |             |                 |               |                                   |            |          |                                            |
|                    | DO (mg/L)                                   |           |             |                                                  |            |             |                 |               |                                   |            |          |                                            |
|                    | Conductivity                                | ×         | ×           | ×                                                | _          | × /         | ×               | ×             | ×                                 | ×          |          | ×                                          |
|                    | Init./Date (1999):                          | 146-      | 11//Ph      | 11/8                                             | 11/4       | 11/5        | 11/6            | 11/1/N        | 11/8                              | 17%        | 141801   | 13/34                                      |
| Comments: Measured | Comments: Measured temperature is a measure | rement of | adeprese    | ment of adepresentative beaker placed within the | aker place | d within th |                 | ay Kor this t | lest array for this testing group | dn.        |          | 6                                          |

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, 40, and end of test. Review: Date: ( ) Date: ( ) Cannot the ctenychr.doc Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

(\*) lacks H - one emergent case was found on the water surface prior to talking 11/10/199 emergent rops 11/10/199

| Sample Parameter 12665 T (°C) pH DO (mg/L) Conductivity T (°C)                                                                                 |               |            |            |            |             | Day         | Day of Analysis | ٩            |            |              |           |          |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|------------|------------|-------------|-------------|-----------------|--------------|------------|--------------|-----------|----------|
|                                                                                                                                                |               |            |            |            |             |             |                 | ysis         |            |              |           |          |
|                                                                                                                                                |               | 22         | 23         | 24         | 25          | 26          | 27              | 28           | 59         | 30           | 31        | 32       |
|                                                                                                                                                |               | 12,2       | 22.6       | 7.66 22.CE | 23.4        | 83,8        | 32.5            | 256          | 33.8       | 23.0         | 22.9      | 33.6     |
|                                                                                                                                                |               | 7.6        |            |            | 45          |             | 7,0             | 1.8          |            |              |           | 1,5      |
|                                                                                                                                                | J/Gu          | 9          |            |            | 0'9         |             | 5.2             | 8.3          |            |              |           | 17<br>0  |
|                                                                                                                                                | ctivity       | ×          | ×          | ×          | ×           | ×           | ×               | 1/0/2        | ×          | ×            | ×         | ×        |
|                                                                                                                                                | (၁            | 22,6       | 228        | 1.52       | 22.56       | 727         | 4.EC            | 822          | 23.0       | 23,1         | 23.5      | 27.4     |
| Hd                                                                                                                                             | -             | 76         |            |            | 75          |             | 4.4             | 76           |            | ,            |           | 4        |
| DO (mg/L)                                                                                                                                      | ıg/L)         | 0          |            |            | <u>-</u>    |             | 5.5             | 97           |            |              |           | 10 B     |
| Conductivity                                                                                                                                   | ctivity       | ×          | ×          | ×          | ×           | ×           | ×               | 1/2/25       | ×          | ×            | ×         | ×        |
| (2°) T                                                                                                                                         | (C)           |            |            |            |             |             |                 |              |            |              |           |          |
| Hď                                                                                                                                             |               |            |            |            |             |             |                 |              |            |              |           |          |
| DO (mg/L)                                                                                                                                      | ng/L)         |            |            |            |             |             |                 |              |            |              |           |          |
| Conductivity                                                                                                                                   | ctivity       | ×          | ×          | ×          | ×           | ×           | ×               |              | ×          | ×            | ×         | ×        |
| (O <sub>o</sub> ) 1                                                                                                                            | (3)           |            |            |            |             |             |                 |              |            |              |           |          |
| Hd                                                                                                                                             | -             |            |            |            |             |             |                 |              |            |              |           | <u> </u> |
| DO (mg/L)                                                                                                                                      | ıg/L)         |            |            |            |             |             |                 |              |            |              |           |          |
| Conductivity                                                                                                                                   | ctivity       | ×          | ×          | ×          | ×           | ×           | ×               |              | ×          | ×            | ×         | ×        |
| Init./Date (1999):                                                                                                                             |               | 如          | 11/13      | 1414       | 引品          | 11/16       | 以图              | 11/18        | 11/19      | 11/20        | 11/8/1    | 11/22    |
| Comments: Measured temperature is a measurement of a representative beaker placed within the test array for this testing group                 | is a measur   | ement of s | ı represer | fative bea | iker place  | d within th | e test arra     | y for this t | esting gro | up.          | P         |          |
| Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, then weekly | ly, conductiv | ity once w | reekly. Cr | ollect amn | nonia, alka | linity, and | hardness        | sambles (    | on Days 0  | , 14, 20, th | en weekly |          |

000163

Review: Date: ( ) Date: ( ) Control Colonia Sciences, South Burlington, Vermont

16/27/11

Date:

Midge (Chironomus tentans) Overlying Water Environmental Monitoring: Chronic Toxicity Tests

| Project: Menzie-(    | Project: Menzie-Cura & Associates                                                                                                              | Proj        | ect: 99   | Project: 99033 Dead Creek | ad Cree    | ٧            |                 | BTR: 36      | BTR: 3641 Test Start | t Start      | 10/21/99  |      |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------------------------|------------|--------------|-----------------|--------------|----------------------|--------------|-----------|------|
|                      |                                                                                                                                                |             |           |                           |            | Day          | Day of Analysis | ysis         |                      |              |           |      |
| Sample               | Parameter                                                                                                                                      | 33          | 34        | 35                        | 36         | 37           | 38              | 39           | 40                   | 41           | 42        | 43   |
| 12665                | (°C)                                                                                                                                           | 23.2        | 726       | 22.5                      | 22,3       | 22.4         | 22.0            | 33.5         | 22.6                 | 223          | 22.9      | 22,2 |
|                      | Hd                                                                                                                                             |             | ゲー        | 45                        |            |              |                 | 4            |                      | 4.4          | 7.3       | 4.4  |
|                      | DO (mg/L)                                                                                                                                      |             | 15        | 3.8                       |            |              |                 | 63           |                      | 8            |           | 4,0  |
|                      | Conductivity Atti/Phym.                                                                                                                        | ×           | ×         | 330                       | ×          | ×            | ×               | ×            | ×                    | ×            | 340       | ×    |
| 12668                | T (°C)                                                                                                                                         | 9.86        | 22.7      | 23.0                      | 7.00       | 8°CC         | 22.5            | 22.8         | 1                    | (            | (         | (    |
|                      | Hd                                                                                                                                             |             | جر<br>ب   | 74                        |            |              |                 | 4,           | 1                    | 1            | 1         | (    |
|                      | DO (mg/L)                                                                                                                                      |             | 13        | 4.9                       |            |              |                 |              | )                    | )            | 1         | 1    |
|                      | Conductivity                                                                                                                                   | ×           | ×         | 340                       | ×          | ×            | ×               | 33×          | ×                    | ×            | )         | ×    |
|                      | T (°C)                                                                                                                                         |             |           |                           |            |              |                 |              |                      |              |           |      |
|                      | Hd                                                                                                                                             |             |           |                           |            |              |                 |              |                      |              |           |      |
|                      | DO (mg/L)                                                                                                                                      |             |           |                           |            |              |                 |              |                      |              |           |      |
|                      | Conductivity                                                                                                                                   | ×           | ×         |                           | ×          | ×            | ×               | ×            | ×                    | ×            |           | ×    |
|                      | T (°C)                                                                                                                                         |             |           |                           |            |              |                 |              |                      |              |           |      |
|                      | Hd                                                                                                                                             |             |           |                           |            |              |                 |              |                      |              |           |      |
|                      | DO (mg/L)                                                                                                                                      |             |           |                           |            |              |                 |              |                      |              |           |      |
|                      | Conductivity                                                                                                                                   | ×           | ×         |                           | ×          | ×            | ×               | ×            | ×                    | ×            |           | ×    |
|                      | Init./Date (1999):                                                                                                                             | 11/23       | 11/24     | 11/25                     | 11/26      | 11127        | -1,1/28<br>JAWA | 8777         | 1438                 | 13K          | 13/2      | 250  |
| Comments: Measured   | Comments: Measured temperature is a measurement of a representative beaker placed within the lest array for this testing group.                | rement of   | a represe | rifative bea              | aker place | d within th  | exest arra      | y for this t | esting gro           | ā            |           |      |
| Measure D.O. and pH. | Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness samples on Days 0, 14, 20, then weekly | vity once v | veekly.   | Sollect am                | nonia, alk | alinity, and | hardness        | sambles      | on Days 0            | , 14, 20, th | nen weekl |      |

Review: Date: 12/12/99 ctenychr.doc Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

000164

|        |                    |           |         |      |      | Day  | Day of Analysis | lysis |       |       |       |          |
|--------|--------------------|-----------|---------|------|------|------|-----------------|-------|-------|-------|-------|----------|
| Sample | Parameter          | 44        | 45      | 46   | 47   | 48   | 49              | 20    | 51    | 52    | 53    | 54       |
| 12665  | T (°C)             | 22,76     |         |      |      |      |                 |       |       |       |       |          |
|        | Hd                 | X 22      | <u></u> |      |      |      |                 |       |       |       |       |          |
|        | )∑(∏gm) OQ         | 047       | /       |      |      |      |                 |       |       |       |       |          |
|        | Conductivity       | ×2<br>CZZ | ×       |      | ×    | ×    | ×               | ×     | ×     | ×     |       | ×        |
| 12668  | T (°C)             |           | 1       | ,    |      |      |                 |       |       |       |       |          |
|        | Hd                 |           |         |      |      |      |                 |       |       |       |       |          |
|        | DO (mg/L)          |           |         |      |      |      |                 |       |       |       |       | ,        |
|        | Conductivity       | ×         | ×       |      | ×    | ×    | ×               | ×     | ×     | ×     |       | <u> </u> |
|        | 1 (°C)             |           |         |      |      |      |                 |       |       |       |       |          |
|        | Н                  |           |         |      |      |      |                 |       |       |       |       |          |
|        | DO (mg/L)          |           |         |      |      |      |                 |       |       |       |       |          |
|        | Conductivity       | ×         | ×       |      | ×    | ×    | ×               | ×     | ×     | ×     |       | ×        |
|        | (O°) T             |           |         |      |      | ļ    |                 |       |       |       |       |          |
|        | Hd                 |           |         |      |      |      |                 |       |       |       |       |          |
|        | DO (mg/L)          |           |         |      |      |      |                 |       |       |       |       |          |
|        | Conductivity       | ×         | ×       |      | ×    | ×    | ×               | ×     | ×     | ×     |       | ×        |
|        | Init./Date (1999): | 124       | 12/5    | 12/6 | 12/7 | 12/8 | 12/9            | 12/10 | 12/11 | 12/12 | 12/13 | 12/14    |

Comments: Measured temperature is a measurement of a representative beaker placed within the test at ay in this testing group.

Measure D.O. and pH 3 times weekly, conductivity once weekly. Collect ammonia, alkalinity, and hardness at end of test for any samples ending.

Date: 12/11/49

Review Date: 12/2.1/99. ctenvchr.doc Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

# ALKALINITY AND HARDNESS

| Sample<br>Number | Date     | Alkalinity<br>Volume<br>(mls) |      | Final<br>Titrant | Alkalinity<br>(mg/l) | Hardness<br>Volume<br>(mls) |      | Final<br>Titrant | Hardness<br>(mg/l) |
|------------------|----------|-------------------------------|------|------------------|----------------------|-----------------------------|------|------------------|--------------------|
| 12548            |          |                               |      |                  |                      |                             |      |                  |                    |
|                  | 10/19/99 | 50                            | 4.6  | 6.9              | 46                   | 50                          | 17.7 | 26.8             | 182.0              |
|                  | 11/8/99  | 50                            | 28   | 29.6             | 32                   | 30                          | 0.2  | 3.7              | 116.7              |
|                  | 12/9/99  | 50                            | 2.8  | 4.7              | 38                   | 50                          | 4.5  | 10.2             | 114.0              |
| Avg              |          |                               |      |                  | 38.7                 |                             |      |                  | 137.6              |
| Min              |          |                               |      |                  | 32                   |                             |      |                  | 114                |
| Max              |          |                               |      |                  | 46                   |                             |      |                  | 182                |
| 12550            |          |                               |      |                  |                      |                             |      |                  |                    |
|                  | 10/19/99 | 50                            | 9.1  | 11.2             | 42                   | 50                          | 36.7 | 45.7             | 180.0              |
|                  | 11/8/99  | 50                            | 33   | 34.7             | 34                   | 30                          | 10.5 | 14.5             | 133.3              |
|                  | 11/29/99 | 50                            | 25.2 | 26.8             | 32                   | 50                          | 4    | 8.2              | 84.0               |
| Avg              |          |                               |      |                  | 36.0                 |                             |      |                  | 132.4              |
| Min              |          |                               |      |                  | 32                   |                             |      |                  | 84                 |
| Max              |          |                               |      |                  | 42                   |                             |      |                  | 180                |
| 12551            |          |                               |      |                  |                      |                             |      |                  |                    |
|                  | 10/19/99 | 50                            | 11.2 | 13.4             | 44                   | 50                          | 0.1  | 9                | 178.0              |
|                  | 11/8/99  | 50                            | 36.6 | 38.2             | 32                   | 30                          | 18.5 | 21.8             | 110.0              |
|                  | 11/29/99 | 50                            | 26.8 | 28.7             | 38                   | 50                          | 8.2  | 12.4             | 84.0               |
| Avg              |          |                               |      |                  | 38.0                 |                             |      |                  | 124.0              |
| Min              |          |                               |      |                  | 32                   |                             |      |                  | 84                 |
| Max              |          |                               |      |                  | 44                   |                             |      |                  | 178                |
| 12552            |          |                               |      |                  |                      |                             |      |                  |                    |
|                  | 10/19/99 | 50                            | 13.4 | 15.9             | 50                   | 50                          | 9    | 19.6             | 212.0              |
|                  | 11/8/99  | 50                            | 39.8 | 41.4             | 32                   | 30                          | 25.2 | 28.9             | 123.3              |
|                  | 12/3/99  | 50                            | 32.4 | 33.9             | 30                   | 50                          | 0.2  | 5.9              | 114.0              |

Tuesday, December 21, 1999

| Sample<br>Number | Date     | Alkalinity<br>Volume<br>(mls) |      | Final<br>Titrant | Alkalinity<br>(mg/l) | Hardness<br>Volume<br>(mls) |      | Final<br>Titrant | Hardness<br>(mg/l) |
|------------------|----------|-------------------------------|------|------------------|----------------------|-----------------------------|------|------------------|--------------------|
|                  |          |                               |      |                  |                      |                             |      |                  |                    |
| Avg              |          |                               |      |                  | 37.3                 |                             |      |                  | 149.8              |
| Min              |          |                               |      |                  | 30                   |                             |      |                  | 114                |
| Max              |          |                               |      |                  | 50                   |                             |      |                  | 212                |
| 12592            |          |                               |      |                  |                      |                             |      |                  |                    |
|                  | 10/19/99 | 50                            | 21.6 | 23.6             | 40                   | 50                          | 18.2 | 27.5             | 186.0              |
|                  | 11/8/99  | 50                            | 41.4 | 43.3             | 38                   | 30                          | 28.9 | 32.7             | 126.7              |
|                  | 12/6/99  | 50                            | 35.5 | 37.1             | 32                   | 50                          | 11.1 | 16.8             | 114.0              |
| Avg              |          |                               |      |                  | 36.7                 |                             |      |                  | 142.2              |
| Min              |          |                               |      |                  | 32                   |                             |      |                  | 114                |
| Max              |          |                               |      |                  | 40                   |                             |      |                  | 186                |
| 12593            |          |                               |      |                  | •                    |                             |      |                  |                    |
|                  | 10/19/99 | 50                            | 23.6 | 25.4             | 36                   | 50                          | 27.5 | 37.1             | 192.0              |
|                  | 11/8/99  | 50                            | 43.3 | 45.1             | 36                   | 30                          | 32.7 | 36.9             | 140.0              |
|                  | 12/7/99  | 50                            | 38.6 | 40.3             | 34                   | 50                          | 21.8 | 27.1             | 106.0              |
| Avg              |          |                               |      |                  | 35.3                 |                             |      |                  | 146.0              |
| Min              |          |                               |      |                  | 34                   |                             |      |                  | 106                |
| Max              |          |                               |      |                  | 36                   |                             |      |                  | 192                |
| 12609            |          |                               |      |                  |                      |                             |      |                  |                    |
|                  | 10/19/99 | 50                            | 25.4 | 27.5             | 42                   | 50                          | 37.1 | 46.6             | 190.0              |
|                  | 11/8/99  | 50                            | 45.1 | 47.1             | 40                   | 30                          | 36.9 | 41               | 136.7              |
|                  | 11/30/99 | 50                            | 21.9 | 23.7             | 36                   | 50                          | 41.8 | 46.3             | 90.0               |
|                  | 12/13/99 | 50                            | 19.9 | 21.9             | 40                   | 50                          | 36.7 | 41.8             | 102.0              |
| Avg              |          |                               |      |                  | 39.5                 |                             |      |                  | 129.7              |
| Min              |          |                               |      |                  | 36                   |                             |      |                  | 90                 |
| Max              |          |                               |      |                  | 42                   |                             |      |                  | 190                |
| 12611            |          |                               |      |                  |                      |                             |      |                  |                    |
|                  | 10/20/99 | 50                            | 34.2 | 35.8             | 32                   | 50                          | 6.7  | 12.1             | 108.0              |
|                  | 11/3/99  | 50                            | 24.1 | 25.8             | 34                   | 50                          | 41.1 | 48.4             | 146.0              |
|                  | 11/9/99  | 50                            | 41.5 | 43.1             | 32                   | 50                          | 6.4  | 13.2             | 136.0              |

Tuesday, December 21, 1999

| Sample<br>Number | Date     | Alkalinity<br>Volume<br>(mls) |      | Final<br>Titrant | Alkalinity<br>(mg/l) | Hardness<br>Volume<br>(mls) |      | Final<br>Titrant | Hardness<br>(mg/l)<br>- |
|------------------|----------|-------------------------------|------|------------------|----------------------|-----------------------------|------|------------------|-------------------------|
|                  | 12/6/99  | 50                            | 37.1 | 38.6             | 30                   | 50                          | 16.8 | 21.8             | 100.0                   |
| Avg              |          |                               |      |                  | 32.0                 |                             |      |                  | 122.5                   |
| Min              |          |                               |      |                  | 30                   |                             |      |                  | 100                     |
| Max              |          |                               |      |                  | 34                   |                             |      |                  | 146                     |
| 12612            |          |                               |      |                  |                      |                             |      |                  |                         |
|                  | 10/20/99 | 50                            | 35.8 | 37.5             | 34                   | 50                          | 12.1 | 17.7             | 112.0                   |
|                  | 11/3/99  | 50                            | 25.8 | 27.8             | 40                   | 50                          | 0.2  | 8.1              | 158.0                   |
|                  | 11/9/99  | 50                            | 43.1 | 44.5             | 28                   | 50                          | 13.2 | 20               | 136.0                   |
|                  | 11/29/99 | 50                            | 28.7 | 30.3             | 32                   | 50                          | 12.4 | 16.7             | 86.0                    |
| Avg              |          |                               |      |                  | 33.5                 |                             |      |                  | 123.0                   |
| Min              |          |                               |      |                  | 28                   |                             |      |                  | 86                      |
| Max              |          |                               |      |                  | 40                   |                             |      |                  | 158                     |
| 12613            |          |                               |      |                  |                      |                             |      |                  |                         |
|                  | 10/20/99 | 50                            | 37.5 | 39.2             | 34                   | 50                          | 17.7 | 23.6             | 118.0                   |
|                  | 11/3/99  | 50                            | 27.8 | 29.6             | 36                   | 50                          | 8.1  | 15.7             | 152.0                   |
|                  | 11/9/99  | 50                            | 44.5 | 46.2             | 34                   | 50                          | 20   | 26.9             | 138.0                   |
|                  | 11/29/99 | 50                            | 30.3 | 31.9             | 32                   | 50                          | 16.7 | 21               | 86.0                    |
| Avg              |          |                               |      |                  | 34.0                 |                             |      |                  | 123.5                   |
| Min              |          |                               |      |                  | 32                   |                             |      |                  | 86                      |
| Max              |          |                               |      |                  | 36                   |                             |      |                  | 152                     |
| 12614            |          |                               |      |                  |                      |                             |      |                  |                         |
|                  | 10/20/99 | 50                            | 0.1  | 1.8              | 34                   | 50                          | 23.6 | 29.1             | 110.0                   |
|                  | 11/3/99  | 50                            | 29.6 | 31.4             | 36                   | 50                          | 15.7 | 23.1             | 148.0                   |
|                  | 11/9/99  | 50                            | 46.2 | 47.6             | 28                   | 50                          | 26.9 | 33.3             | 128.0                   |
|                  | 11/30/99 | 50                            | 29.2 | 30.8             | 32                   | 50                          | 30.3 | 36.4             | 122.0                   |
| Avg              |          |                               |      |                  | 32.5                 |                             |      |                  | 127.0                   |
| Min              |          |                               |      |                  | 28                   |                             |      |                  | 110                     |
| Max              |          |                               |      |                  | 36                   |                             |      |                  | 148                     |
| 12622            |          |                               |      |                  |                      |                             |      |                  |                         |

Tuesday, December 21, 1999

| Sample<br>Number | Date     | Alkalinity<br>Volume<br>(mls) |      | Final<br>Titrant | Alkalinity<br>(mg/l) | Hardness<br>Volume<br>(mls) |      | Final<br>Titrant | Hardness<br>(mg/l) |
|------------------|----------|-------------------------------|------|------------------|----------------------|-----------------------------|------|------------------|--------------------|
|                  |          |                               |      |                  |                      |                             |      | <del></del>      |                    |
|                  | 10/20/99 | 50                            | 4.2  | 6.1              | 38                   | 50                          | 34.4 | 39.7             | 106.0              |
|                  | 11/3/99  | 50                            | 33.1 | 34.9             | 36                   | 50                          | 29.5 | 36.9             | 148.0              |
|                  | 11/9/99  | 50                            | 48.8 | 50               | 24                   | 50                          | 38.8 | 45.3             | 130.0              |
|                  | 12/2/99  | 50                            | 30.8 | 32.4             | 32                   | 50                          | 36.4 | 41.5             | 102.0              |
| Avg              |          |                               |      |                  | 32.5                 |                             |      |                  | 121.5              |
| Min              |          |                               |      |                  | 24                   |                             |      |                  | 102                |
| Max              |          |                               |      |                  | 38                   |                             |      |                  | 148                |
| 12665            |          |                               |      |                  |                      |                             |      |                  |                    |
|                  | 10/21/99 | 50                            | 6.1  | 7.6              | 30                   | 50                          | 0.5  | 6.1              | 112.0              |
|                  | 11/10/99 | 50                            | 25   | 26.8             | 36                   | 50                          | 33.4 | 40.8             | 148.0              |
|                  | 11/18/99 | 50                            | 20.2 | 22.1             | 38                   | 50                          | 22.5 | 30.2             | 154.0              |
|                  | 12/4/99  | 50                            | 33.9 | 35.5             | 32                   | 50                          | 5.9  | 11.1             | 104.0              |
| Avg              |          |                               |      |                  | 34.0                 |                             |      |                  | 129.5              |
| Min              |          |                               |      |                  | 30                   |                             |      |                  | 104                |
| Max              |          |                               |      |                  | 38                   |                             |      |                  | 154                |
| 12668            |          |                               |      |                  |                      |                             |      |                  |                    |
|                  | 10/21/99 | 50                            | 7.6  | 9.7              | 42                   | 50                          | 6.1  | 11.3             | 104.0              |
|                  | 11/10/99 | 50                            | 29.4 | 31               | 32                   | 50                          | 5.6  | 13               | 148.0              |
|                  | 11/18/99 | 50                            | 25.6 | 27.3             | 34                   | 50                          | 0    | 6.8              | 136.0              |
|                  | 11/29/99 | 50                            | 23.7 | 25.2             | 30                   | 50                          | 0    | 4                | 80.0               |
| Avg              |          |                               |      |                  | 34.5                 |                             |      |                  | 117.0              |
| Min              |          |                               |      |                  | 30                   |                             |      |                  | 80                 |
| Max              |          |                               |      |                  | 42                   |                             |      |                  | 148                |

| Client: Menzy-Cura    | Project: 99033 | BTR: 3615 |
|-----------------------|----------------|-----------|
| Sample Description: , | Davi () 10/19  |           |
|                       | <del></del>    |           |

|        |                          |                                         |             |               | $\bigcup$                                    |                                              |          |                                                  |                                                  |                | •                |
|--------|--------------------------|-----------------------------------------|-------------|---------------|----------------------------------------------|----------------------------------------------|----------|--------------------------------------------------|--------------------------------------------------|----------------|------------------|
|        |                          |                                         |             | ALKA          | LINITY                                       |                                              |          | HARD                                             | NESS                                             |                |                  |
|        |                          |                                         | Sample      | Titrant       | Titrant                                      | Analyst                                      | Sample   | Titrant                                          | Titrant                                          | Analyst        | Data             |
|        | Sample<br>ID             | Sample<br>Date                          | Vol.        | Init.<br>Vol. | Final<br>Vol.                                | Date/<br>Init.                               | Vol.     | Init.<br>Vol.                                    | Final<br>Vol.                                    | Date/<br>Init. | entered<br>Init. |
| 1      | 12546                    |                                         | 50.1        | 02            | 2.3                                          | 12/2 48                                      | 6.1      | 101                                              | 11.6                                             | 12/7 48        | 12/21/28         |
| }      | 47                       | 10/19                                   | 50ml        | 2.3           | 4.6                                          | 10/28                                        | 35 MJ    | 11.6                                             | 17.7                                             | 1177 + 95      | 192133           |
| į      | 48                       |                                         | <del></del> | 4.6           | 6.9                                          |                                              |          | 17.7                                             | 26.8                                             |                |                  |
|        | 1 49                     |                                         |             | 6.9           | Q. 1                                         | -                                            | 50m/     | 26.8                                             | 30.7                                             |                |                  |
| Ì      | .50                      |                                         |             | 91            | 77                                           | 1                                            |          | 30.7                                             | 45.7                                             | <del> </del>   | <u> </u>         |
|        | 51                       |                                         |             | 11.2          | B.4                                          | 1-1                                          |          | 0                                                | 92                                               |                |                  |
|        | 150                      |                                         |             | 13.4          | 159                                          | -                                            |          | 9.0                                              | 19.6                                             |                |                  |
|        | <u> سیر کر کر ا</u><br>ا |                                         |             | 10.4          | 12.                                          |                                              |          | 19.0                                             | 19.0                                             |                |                  |
| ì      |                          |                                         |             |               |                                              | <u>                                     </u> |          | 1                                                | 1                                                | 1              |                  |
| 1      |                          |                                         |             |               |                                              |                                              |          |                                                  | 1                                                |                |                  |
| 1      | <del></del>              |                                         |             |               |                                              |                                              |          | <u> </u>                                         | İ                                                | <u> </u>       |                  |
| Ì      |                          |                                         |             |               |                                              |                                              |          | !<br>!                                           | <del> </del>                                     | 1              |                  |
| į      |                          |                                         |             |               |                                              | <u> </u>                                     |          |                                                  | <u> </u>                                         | <u> </u>       |                  |
| Ì      |                          |                                         |             |               |                                              | 1                                            |          |                                                  |                                                  | <u> </u>       |                  |
| 1      |                          |                                         |             |               |                                              |                                              |          | <u>                                     </u>     | <u> </u>                                         | <del> </del>   |                  |
| 20,000 |                          |                                         |             |               |                                              | <u> </u>                                     |          | <del>                                     </del> | <del> </del>                                     | <del> </del>   |                  |
|        |                          |                                         |             |               |                                              | <u> </u>                                     |          | 1                                                | <del> </del>                                     | <u> </u>       |                  |
| 4      |                          |                                         |             |               |                                              | <u> </u>                                     |          | İ                                                | <del> </del>                                     |                |                  |
| Ì      |                          |                                         | -           |               |                                              |                                              |          | Ì                                                |                                                  | <del> </del>   |                  |
|        |                          |                                         |             |               |                                              |                                              |          | Ì                                                | <del></del>                                      | <u> </u>       |                  |
| Ì      |                          |                                         |             |               |                                              | 1                                            |          |                                                  |                                                  |                |                  |
| į      |                          |                                         |             |               |                                              | <u> </u>                                     |          | )                                                |                                                  |                |                  |
|        | .,_,,                    |                                         |             |               |                                              |                                              |          |                                                  | <del></del>                                      |                |                  |
|        |                          |                                         |             |               |                                              |                                              |          |                                                  |                                                  |                |                  |
|        |                          |                                         |             |               |                                              |                                              |          |                                                  |                                                  |                |                  |
|        |                          |                                         |             |               |                                              |                                              |          |                                                  |                                                  |                |                  |
|        |                          |                                         |             |               |                                              | ĺ                                            |          |                                                  |                                                  |                |                  |
|        | • •                      |                                         |             |               |                                              | ĺ                                            |          |                                                  | 1                                                | 1              |                  |
|        |                          |                                         | -           |               |                                              |                                              | [        |                                                  |                                                  |                |                  |
|        |                          |                                         |             |               |                                              |                                              |          |                                                  | 1                                                | 1              |                  |
|        |                          |                                         |             |               |                                              | 1                                            |          |                                                  |                                                  |                |                  |
|        |                          |                                         |             |               |                                              |                                              | <u> </u> |                                                  | <del>                                     </del> |                | <b>1</b>         |
| 1      |                          | لــــــــــــــــــــــــــــــــــــــ | <u> </u>    | <del></del>   | <u>.                                    </u> | <del></del>                                  |          | <del></del>                                      |                                                  | 1              | <del></del>      |

12/8/99

| Client: Menzie-Cura   | Project: | 99033 |       | BTR: | 3622 |  |
|-----------------------|----------|-------|-------|------|------|--|
| Sample Description: ] | Day D    | H.a   | 10/19 |      |      |  |

ALKALINITY **HARDNESS** Sample Titrant Titrant Analyst Sample Titrant Titrant Analyst Data Sample Sample Vol. init. Final Date/ Vol. Init. Final Date/ entered 1D Date Vol. Vol. Init. Vol. Vol. Init. Init. 5.9 50ml 17.8 وين حراحا 12/7 48 10/19 12/21 YX 90 91 921 \* 103 \* 12609

12/8/99

\*: et

|                      | Client        | : Mens   | zie-Cu             | ra P             | roject:          | 99               | 033            | BTŖ              | : 50             | cupl                                             |                 |
|----------------------|---------------|----------|--------------------|------------------|------------------|------------------|----------------|------------------|------------------|--------------------------------------------------|-----------------|
|                      | Samp          | le Des   | Pie Cu<br>cription | 1: /)            | au O             | H                | . a +C         | T10/2            | <u>'</u>         |                                                  |                 |
|                      | ·             |          |                    |                  | <u> </u>         | Ch               | ronic          |                  |                  |                                                  |                 |
| ,                    |               |          |                    | ALKA             | LINITY           |                  |                |                  | NESS             |                                                  |                 |
| ЛΤ                   | Sample        | Sample   | Sample<br>Vol.     | Titrant<br>Init. | Titrant<br>Final | Analyst<br>Date/ | Sample<br>Vol. | Titrant<br>Init. | Titrant<br>Final | Analyst<br>Date/                                 | Data<br>entered |
| C.T.<br>ISO          | ID            | Date     | VOI.               | Vol.             | Vol.             | Init.            | VOI.           | Vol.             | Vol.             | Init.                                            | Init.           |
|                      | 12589<br>  90 | 10/20    | 50ml               | 22.5             | 24.3             | 12/8 48          | 50m            | 14.8             | 20.6             | PKY                                              | 13/8/45         |
|                      | 90            |          |                    | 24.3             | 26.1             |                  | 7              | 20.0             | 26.6             |                                                  |                 |
|                      | 91            |          | <b> </b>           | 26.1             | 27.7             |                  | 40m            | 26.6             | 35.0             |                                                  |                 |
| 48*                  | 192<br>193    |          | 25.4               | 27.7             | 29.4             |                  | Donl           | 35.0<br>37.3     | 37.3             |                                                  |                 |
| 43.*<br>43.*<br>43.* | 12609         |          | 25ml               | 29.4<br>30.3     | 30,3<br>32.3     |                  | 30m            | 110              | 40,1             |                                                  |                 |
| Y3/#                 | 121001        |          | 50m                | 32.3             | 34.2             |                  | 40m            | 0.2              | 6.7              |                                                  |                 |
| *                    | (011          |          |                    | 342              | 358              |                  | 50ml           | 10.2             | 12.1             |                                                  |                 |
| *                    | 612           |          |                    | 35.8             | 375              |                  |                | 12.1             | 17.7             |                                                  |                 |
| *                    | 413           |          |                    | 37.5             | 392              |                  |                | 17.7             | 23.6             |                                                  |                 |
| *                    | 1014          |          |                    | 0.1              | 18               |                  | -              | 23.6             | 29.1             |                                                  |                 |
|                      | 1015          |          |                    | 1.8              | 4.2              |                  | 40 m           | 29.1             | 34.4             |                                                  |                 |
| *                    | 1 622         |          | <u> </u>           | 4.2              | lo.1             | <u> </u>         | 50m)           | 34.4             | 39. F            | <u> </u>                                         | _ <del></del> _ |
|                      |               |          | v                  |                  |                  |                  |                | <br>             |                  | -                                                |                 |
|                      |               | <u> </u> |                    |                  |                  |                  |                |                  |                  |                                                  |                 |
|                      |               |          |                    |                  |                  |                  |                | <u> </u>         |                  |                                                  |                 |
|                      |               |          |                    |                  |                  |                  |                |                  |                  |                                                  |                 |
|                      |               |          |                    |                  |                  |                  |                |                  |                  |                                                  |                 |
|                      |               |          |                    |                  |                  |                  |                |                  |                  |                                                  |                 |
|                      |               |          |                    |                  |                  |                  |                |                  |                  |                                                  |                 |
|                      |               | <u>·</u> |                    |                  |                  |                  |                |                  |                  |                                                  |                 |
|                      |               |          |                    |                  |                  |                  |                |                  | 1                |                                                  |                 |
|                      |               |          |                    |                  |                  |                  |                |                  |                  | <del></del>                                      |                 |
|                      |               |          |                    |                  |                  |                  |                |                  |                  |                                                  |                 |
|                      |               |          |                    |                  |                  |                  |                |                  |                  |                                                  |                 |
| ı                    |               |          |                    |                  |                  |                  |                |                  |                  |                                                  |                 |
|                      |               |          |                    |                  |                  |                  |                |                  | <del> </del>     |                                                  |                 |
|                      |               |          |                    | -                |                  |                  | <b></b>        | <u> </u>         |                  | <u> </u>                                         | <del> </del>    |
|                      |               |          |                    |                  |                  |                  | -              | -                |                  | <del>                                     </del> | <u> </u>        |
|                      |               |          |                    |                  |                  | l                | L              | <u> </u>         |                  | <u></u>                                          | <u> </u>        |

Client: Man 218 - Cura Project: 9.9033 BTR: Several Sample Description: Day O

|   |        |        |                | ALKA             | LINITY           |                  |                | HARD             | NESS             |                  |                 |
|---|--------|--------|----------------|------------------|------------------|------------------|----------------|------------------|------------------|------------------|-----------------|
|   | Sample | Sample | Sample<br>Vol. | Titrant<br>Init. | Titrant<br>Final | Analyst<br>Date/ | Sample<br>Vol. | Titrant<br>Init. | Titrant<br>Final | Analyst<br>Date/ | Data<br>entered |
|   | ID     | Date   | VO             | Vol.             | Vol.             | Init.            | <b>V</b> OI.   | Vol.             | Vol.             | Init.            | Init.           |
|   | 12665  | 10/21  | 50ml           | 6.1              | 7.6              | 2/848            | Dnu            | 0.5              | 6.1              | 12/8 yg          | 14848           |
| 3 | 12008  | 1_     | 1              | 7.6              | 9.7              | Ţ                | I              | 6.1              | 11.3             | L                |                 |
|   |        |        |                |                  |                  |                  |                |                  |                  |                  |                 |
|   | 12664  | 1022   | 50ml           | 9.7              | 11.2             | P/8 /8           | 50ml           | 11.3             | 173              | 12/848           |                 |
|   | 665    |        |                | 11.2             | 13.1             |                  | <b></b>        | 17.3             | 22.8<br>28.2     |                  |                 |
| ٠ | 10166  |        |                | /3./             | 15.0             |                  |                | 22.8             | 28.2             |                  |                 |
|   | 668    |        |                | 15.0             | 18.3             |                  |                | 28.2             | 33.1             |                  |                 |
|   | 1671   |        | +              | 16.6             | 18.3             |                  |                | 33.1             | 38.0             | !-               |                 |
|   |        |        |                |                  |                  |                  |                | <u> </u>         |                  |                  |                 |
|   |        |        |                |                  |                  | <u> </u>         |                |                  |                  |                  |                 |
|   |        |        |                |                  |                  |                  |                |                  |                  |                  |                 |
|   |        |        |                |                  |                  | <del></del>      |                |                  |                  |                  |                 |
|   |        |        |                |                  |                  |                  |                |                  |                  |                  |                 |
|   |        |        |                |                  | <del></del>      |                  |                |                  |                  |                  |                 |
|   |        |        |                |                  |                  |                  |                |                  |                  |                  |                 |
| ļ |        |        |                |                  |                  |                  |                |                  |                  |                  |                 |
|   |        |        |                |                  |                  |                  |                | <u> </u>         |                  |                  |                 |
|   |        |        |                |                  |                  |                  |                |                  |                  | <u> </u>         |                 |
|   |        |        |                |                  |                  | <u> </u>         |                |                  |                  |                  |                 |
|   |        |        |                |                  |                  |                  |                |                  |                  |                  |                 |
|   |        |        |                |                  |                  |                  | <u> </u>       | 1                |                  |                  |                 |
|   |        |        |                |                  | <u> </u>         |                  | !              |                  | !                | <del> </del>     |                 |
|   |        |        |                | <u> </u>         |                  |                  |                | -                |                  |                  |                 |
|   |        |        |                |                  | <del></del>      |                  |                |                  |                  |                  |                 |
|   |        |        |                |                  | <br>I            |                  | <u> </u>       | <del> </del>     |                  | <del> </del>     |                 |
|   |        |        |                |                  | <del></del>      | -                | <b> </b>       |                  | 1                |                  |                 |
|   |        |        |                |                  |                  |                  |                |                  |                  |                  |                 |
|   |        |        |                | ····             |                  |                  |                |                  |                  |                  |                 |
|   |        |        |                |                  |                  |                  |                |                  |                  |                  |                 |
|   |        |        |                |                  |                  |                  |                |                  |                  |                  |                 |

Client: Menzie Cura Sevent Project: BTR: 99033 Sample Description: + Ct. **ALKALINITY** HARDNESS Data 🛎 Sample Titrant Titrant Titrant Titrant Analyst Analyst Sample \* used Sample Final Date/ entered. Sample Vol. Init. Final Date/ Vol. Init. BUNI sample ID Date Vol. Init. Init. Vol. Vol. Init. Vol. 12/8/43 546 <u>गिक्रप्र8</u> Ha. 11/8 11/30 45 30ml (norming out 50ml of Calgarite 210.0 28.0 C.+. Ha 33.0 34.7 C.t. 36.6 Ha. c.+. Ha. 41.4

Client: Men Decural Project: 99033 BTR: Scient Sample Description: Day 20

|      |              |                |        | ALKA          | LINITY        |                |             | HARD           | NESS          |                |                  |
|------|--------------|----------------|--------|---------------|---------------|----------------|-------------|----------------|---------------|----------------|------------------|
|      |              |                | Sample | Titrant       | Titrant       | Analyst        | Sample      | Titrant        | Titrant       | Analyst        | Data             |
|      | Sample<br>ID | Sample<br>Date | Vol.   | Init.<br>Vol. | Final<br>Vol. | Date/<br>Init. | Vol.        | Init.<br>Vol.  | Final<br>Vol. | Date/<br>Init. | entered<br>Init. |
| H.a  | 12589        |                | 50ml   | 323           | 33.9          | M20 18         | 50ml        | 17.0           | 23.1          | 11/2015        | 12/8 48          |
|      | 12590        | 11             |        | 33.9          | 35.3          | \              |             | 23.1           | ~8.8<br>34.3  |                |                  |
|      | 12592        | $-\mathbb{L}$  |        | 35.3          | 36.7          |                |             | 28.8           | 34.3          |                |                  |
|      | 12593        |                |        | 36.7          | 38.1          |                |             | 34.3           | 405           |                |                  |
|      | 12609        |                |        | 38.1          | 39.9          |                |             | 40.5           | 46.7          | -              |                  |
|      | 12610        |                |        | 39.9          | 41.5          |                |             | 0.0            | 10.4          |                |                  |
| ct.  | 12611        |                |        | 41.5          | 43.1          |                |             | 6.4            | 13.2          |                |                  |
|      | 12/013       |                |        | 42.1          | 46.2          |                |             | 13.2           | 20.0          |                |                  |
|      | 12/014       |                |        | 46.2          | 47.6          |                |             | 200            | 333           |                |                  |
| H.a. | 12615        |                |        | 47.10         | 48.8          |                |             | 26.9<br>33.3   | 38.8          |                |                  |
| c.+  | 12622        |                |        | 47.6<br>48.8  | 50.0          | 4              | ユ           | 38.8           | 45.3          |                |                  |
|      |              |                |        |               |               |                |             |                |               |                |                  |
|      |              |                |        |               |               |                |             |                |               |                |                  |
|      |              |                |        |               |               |                |             | <u> </u>       |               | ·              |                  |
|      |              |                |        |               |               |                |             |                |               |                |                  |
| j    |              |                |        | <del></del> - |               |                |             |                | <u> </u>      |                |                  |
|      |              |                |        |               |               |                |             | <del> </del> - | <u> </u>      |                |                  |
|      |              |                |        |               |               |                | <del></del> |                |               |                |                  |
|      |              |                |        |               |               |                |             | <del> </del>   |               |                |                  |
|      |              |                |        |               |               |                |             | <del> </del>   |               |                |                  |
|      |              |                |        |               |               |                |             | <del> </del>   |               |                |                  |
|      |              |                |        |               |               |                |             |                |               |                |                  |
|      |              |                |        |               |               |                |             |                |               |                |                  |
|      |              |                |        | -             |               |                |             | ļ              |               |                |                  |
|      |              |                |        |               |               |                |             | <del> </del>   | <u> </u>      | <u> </u>       |                  |
|      |              |                |        |               |               |                |             | <del> </del>   | 1             | <u> </u>       | <del> </del>     |
|      |              |                |        |               |               |                |             |                | <del> </del>  | <u> </u>       |                  |
|      | <del></del>  |                |        | <del></del>   |               |                |             | <u> </u>       | <del> </del>  |                | <del>  </del>    |
|      |              |                |        |               |               |                |             | <del> </del>   | <del> </del>  | <del> </del>   |                  |
|      | <del></del>  |                |        |               | <u> </u>      |                |             | 1              |               | <del>'</del>   | <b></b>          |

| Client: Muzie-Cura Project: | 11000 | DIT. | Severa |  |
|-----------------------------|-------|------|--------|--|
| Sample Description: 124 20  | )     | ·    |        |  |

| ALKALINITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | L       |   |             |                                              |          |       |          |                                                  |                                                  |              |                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|---|-------------|----------------------------------------------|----------|-------|----------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|
| Sample   Sample   Date   Vol.   Init.   Final   Date   Vol.   Init.   Vol.   Init.   Final   Date   Init.   Vol.   Init.   Vol.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   Init.   In |     |         |   |             | ALKA                                         | LINITY   |       |          | HARD                                             | NESS                                             |              |                                                  |
| Ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         |   |             | Init.                                        | Final    | Date/ |          | Init.                                            | Final                                            | Date/        | entered                                          |
| Ha    2805   11   11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HΩ  |         |   | 50-1        |                                              |          | 11120 | Foul     |                                                  |                                                  |              |                                                  |
| C+   12805   1   10   25.0   210.8   33.4   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8   40.8  |     |         |   | <u>Unu</u>  |                                              |          | 1     | 1        |                                                  |                                                  | , , , ,      | 70.93                                            |
| Ha 1286 11 11 26.8 38.3 40.8 46.9 4 1268 11 10 28.3 29.4 0.1 5.6 13.0 40.8 1267 11 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |         |   | <del></del> |                                              |          | -     |          | 23.4                                             |                                                  |              |                                                  |
| HA 1268 II II 28.3 29.4 31.0 5.6 13.0 HA. 1267 II II II V 31.0 32.3 - 13.0 19.4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |         |   |             |                                              |          | 1     |          | ·                                                |                                                  |              |                                                  |
| Ct. 12(68   11   10   29.4   31.0   5.6   13.0   14.4   12.67   11   11   11   29.4   31.0   32.3   13.0   19.4   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 12668   |   |             |                                              | 294      |       |          | 0.1                                              |                                                  |              |                                                  |
| Ha. 12671 II II V 31.0 32.3 + 173.0 19.4 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 121do8  |   |             | 29.4                                         |          |       |          | 56                                               |                                                  |              |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ha. | 12671   |   |             | 31.0                                         | 323      | -     |          | 13.D                                             |                                                  | 工            | 1_                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         | 1 | <u>'</u>    |                                              |          | ,     |          |                                                  | ,                                                |              |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |   |             |                                              |          |       |          |                                                  |                                                  |              |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |   |             |                                              |          |       |          |                                                  |                                                  |              |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :   |         |   | <del></del> |                                              |          |       |          |                                                  |                                                  |              |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |   |             |                                              | <u> </u> |       |          |                                                  |                                                  |              |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |   |             |                                              |          |       |          |                                                  | <u> </u><br>                                     | <del> </del> |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   |         |   |             |                                              |          |       |          |                                                  | <u> </u>                                         | <u> </u>     | <del>  </del>                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |   |             |                                              |          |       |          |                                                  | 1                                                |              |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   |         |   |             | **                                           |          |       |          |                                                  |                                                  |              |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |   |             |                                              |          |       |          |                                                  |                                                  |              |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |   |             |                                              |          |       |          |                                                  |                                                  |              |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |   |             |                                              |          |       |          |                                                  | ļ                                                |              |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :   |         |   |             | ~                                            |          |       |          |                                                  | ļ                                                | ļ            |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |   |             |                                              |          |       |          |                                                  | <b>}</b>                                         | <b> </b>     |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |   |             |                                              |          |       |          | <u> </u>                                         | <u> </u>                                         | ļ            |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |   |             | ****                                         |          |       | ļ        | <u> </u>                                         | <del> </del>                                     |              | <b></b>                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |   |             |                                              | [        |       |          |                                                  | 1                                                |              |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | <b></b> |   |             | <del></del>                                  |          |       |          | -                                                | <del>                                     </del> | <del> </del> | <del>                                     </del> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |   |             | <u>.                                    </u> |          |       | <u> </u> | 1                                                |                                                  |              | 1                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |   |             | <del></del>                                  |          |       |          | <del>                                     </del> | <del> </del>                                     | <del> </del> | <del>                                     </del> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |   | _           |                                              |          |       |          |                                                  | 1                                                | <del> </del> |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |   |             |                                              |          |       | <u> </u> |                                                  |                                                  | T            |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |   |             |                                              |          |       |          |                                                  |                                                  |              |                                                  |

| Client: Menzie-Cura | Project: | 99033 | ВТ   | R: Several |  |
|---------------------|----------|-------|------|------------|--|
| Sample Description: |          | KMU C | test | end        |  |

|     |              |                |                | ALKA                     | LINITY                   |                           |                | HARD                     | NESS                     |                           |                          |
|-----|--------------|----------------|----------------|--------------------------|--------------------------|---------------------------|----------------|--------------------------|--------------------------|---------------------------|--------------------------|
| Day | Sample<br>ID | Sample<br>Date | Sample<br>Vol. | Titrant<br>Init.<br>Vol. | Titrant<br>Final<br>Vol. | Analyst<br>Date/<br>Init. | Sample<br>Vol. | Titrant<br>Init.<br>Vol. | Titrant<br>Final<br>Vol. | Analyst<br>Date/<br>Init. | Data<br>entered<br>Init. |
| 41  | 121014       | 1130           | 50 ml          | 29.2                     | 30.8                     | 148 VS                    | 50ml           | 30.3                     | 30.4                     | 12/843                    | :48 48                   |
|     | 121022       | 12/2           |                | 32,7                     | 32.4                     |                           |                | 36.4                     | 41.5                     |                           |                          |
| 48  | 1210105      | 12/6           |                | 35.9<br>35.5             | 35.5<br>37.1             |                           |                | 5.9<br>][.]              | 16.8                     |                           |                          |
| 47  | 12611        | 12/6           | <del></del>    | 37.1<br>38.6             | 38.4<br>40.3             | 1                         | <u> </u>       | 116.8                    | 27.1                     |                           |                          |
|     |              |                |                |                          |                          |                           |                |                          |                          |                           |                          |
|     |              |                |                |                          |                          |                           |                |                          |                          |                           |                          |
|     |              |                |                |                          |                          |                           |                |                          |                          |                           |                          |
|     |              |                |                |                          |                          |                           |                |                          |                          |                           |                          |
|     |              |                |                |                          |                          | ,                         |                |                          |                          |                           |                          |
|     |              |                |                |                          |                          |                           |                |                          |                          |                           |                          |
|     |              |                |                |                          |                          |                           |                |                          |                          |                           |                          |
|     |              |                |                |                          |                          |                           |                |                          |                          |                           |                          |
|     |              |                |                |                          |                          |                           |                |                          |                          |                           |                          |
|     |              |                |                |                          |                          |                           |                |                          |                          |                           |                          |
|     |              |                |                |                          |                          |                           |                |                          |                          |                           |                          |
|     |              |                |                |                          |                          |                           |                |                          |                          |                           |                          |
|     |              |                |                |                          |                          |                           |                |                          |                          |                           |                          |

| Client: Menzie-Cura   | Project: | 99 033 | BTR: Several |
|-----------------------|----------|--------|--------------|
| Sample Description: ( | It test  | end    |              |

**ALKALINITY HARDNESS** Titrant Sample Titrant Titrant Analyst Sample **Titrant** Analyst Data Sample Sample Vol. Vol. Init. Final Date/ entered Init. Final Date/ ID Date Init. Vol. Init. Init. Vol. Vol. Vol. 142148 12/948 50ml 12/9 43 1219 50ml

| Client: Menzil-Cura | Project: | 99033  | BTR: | Several |  |
|---------------------|----------|--------|------|---------|--|
| Sample Description: | 71st en  | a C.t. |      |         |  |

|         |              |          | ALKA        | LINITY         |              |                                                  | HARD         | NESS                                             |                |              |
|---------|--------------|----------|-------------|----------------|--------------|--------------------------------------------------|--------------|--------------------------------------------------|----------------|--------------|
|         |              | Sample   | Titrant     | Titrant        | Analyst      | Sample                                           | Titrant      | Titrant                                          | Analyst        | Data         |
| Sample  | Sample       | Vol.     | Init.       | Final          | Date/        | Vol.                                             | Init.        | Final                                            | Date/          | entered      |
| ID      | Date         |          | Vol.        | Vol.           | Init.        |                                                  | Vol.         | Vol.                                             | Init.          | Init.        |
| 12/009  | 12/13        | 50       | 19.9        | 21.9           | 12/21/28     |                                                  | 36.7         | 41.8                                             | 12/21/2        | 14/2148      |
| 12609   | 11/30        | 50       | 21.9        | 23.7           | la al Tm     | 50                                               | 41.8         | 46.3                                             | 12/21TM        |              |
| 12668   | 11129        | 50       | 23.7        | 25.2           | ialai Tm     | 50                                               | 0.0          | 4.0                                              | 19/31 JM       |              |
| 12550   | 11/29        | 50       | 25.2        | 26.8           | 12/21 Tm     | 50                                               | 4.0          | 8.2                                              | 12/21 TM       |              |
| 12551   | 11/29        | 50       | 26.8        | 28.7           | alaitim      | 50                                               | 8.2          | 12.4                                             | 12)21m         |              |
|         | 11/29        | 50       | 28.7        | 30.3           | METICA       |                                                  | 12.4         | 16.7                                             | 12 21 IM       |              |
| 12613   | 1129         | 50       | 30.3        | 31.9           | ia) ai Tom   |                                                  | 16.7         | 21.0                                             | 12/21TM        |              |
| J       |              | <u> </u> |             |                |              |                                                  |              |                                                  |                |              |
|         |              | -        |             |                |              |                                                  |              |                                                  |                |              |
|         |              |          | <u>'</u>    |                |              | <del></del>                                      | <del> </del> |                                                  | <del> </del> - |              |
| }—      |              |          |             | <del> </del> - | <del> </del> |                                                  | <del>}</del> | <del></del>                                      | <del> </del>   |              |
|         |              |          |             |                | <del> </del> |                                                  |              |                                                  |                |              |
|         | <del></del>  |          | <del></del> |                |              |                                                  | <del></del>  |                                                  | <del> </del>   |              |
|         |              |          |             | <u> </u>       | <del> </del> |                                                  |              |                                                  |                |              |
|         |              |          |             |                | <u> </u>     |                                                  |              | <u> </u>                                         | <del> </del>   |              |
|         |              |          |             |                |              |                                                  | <u> </u>     |                                                  | 1              |              |
| ļ       |              |          |             | <u> </u>       | ļ            | <u> </u>                                         |              |                                                  |                |              |
|         |              |          |             |                | 1            |                                                  | <u></u>      |                                                  |                |              |
|         |              |          |             |                |              |                                                  |              | }                                                |                |              |
|         |              |          |             |                |              |                                                  |              |                                                  | ļ              |              |
|         |              |          |             |                |              |                                                  |              |                                                  |                |              |
|         |              |          |             |                |              |                                                  |              | <u> </u>                                         |                |              |
|         |              |          |             |                |              |                                                  |              |                                                  |                |              |
|         |              |          |             |                |              |                                                  |              |                                                  |                |              |
|         |              |          |             |                |              | <u> </u>                                         |              | ļ                                                |                |              |
|         |              |          |             |                |              |                                                  |              |                                                  |                |              |
|         |              |          |             |                |              |                                                  |              |                                                  |                |              |
|         |              |          |             |                | <del> </del> |                                                  |              | j                                                |                |              |
|         |              |          |             |                |              |                                                  |              | 1                                                |                | 1            |
|         |              |          | <u></u>     | <del></del>    | <del> </del> |                                                  | <del> </del> | <del> </del>                                     | <del> </del>   |              |
| <b></b> |              |          |             |                | <del> </del> | <del>                                     </del> |              | <del> </del>                                     | <del> </del>   | <b></b>      |
| <b></b> |              |          |             |                | <del> </del> | <b> </b>                                         | <del> </del> | <del> </del>                                     | <del> </del>   | <del> </del> |
| }       | <del> </del> |          |             | <del> </del> - | <del> </del> | <del> </del>                                     | <del> </del> | <del>                                     </del> | <del> </del>   | <del> </del> |
| L       |              |          |             | <u> </u>       | l            | I                                                | <u> </u>     | L                                                |                | l            |

| Sample Number | Client Sample<br>Identifier | Species   | Date      | Ammonia<br>Concentration (mg/l) |  |
|---------------|-----------------------------|-----------|-----------|---------------------------------|--|
| 12548         | BTOX-C-3                    | СТ        | 11/30     | 0.1                             |  |
| 12548         | BTOX-C-3                    | СТ        | 12/9      | 0.5                             |  |
| 12548         | BTOX-C-3                    | 1N        | 10/19     | 4.1                             |  |
| 12548         | BTOX-C-3                    | СТ        | 11/16     | 0.6                             |  |
| 12548         | BTOX-C-3                    | СТ        | 11/8      | 2                               |  |
|               |                             | Avg: 1.4  | 6 Max: 4. | 1 · Min: 0.1                    |  |
| 12550         | BTOX-D-2                    | СТ        | 11/16     | 0.4                             |  |
| 12550         | BTOX-D-2                    | СТ        | 11/8      | 0.2                             |  |
| 12550         | BTOX-D-2                    | СТ        | 11/29     | 0.5                             |  |
| 12550         | BTOX-D-2                    | IN        | 10/19     | 2.2                             |  |
|               |                             | Avg: 0.8  | 3 Max: 2. | 2 Min: 0.2                      |  |
| 12551         | BTOX-D-3                    | СТ        | 11/8      | 0                               |  |
| 12551         | BTOX-D-3                    | IN        | 10/19     | 1.5                             |  |
| 12551         | BTOX-D-3                    | СТ        | 11/29     | 0.5                             |  |
| 12551         | BTOX-D-3                    | СТ        | 11/16     | 0.1                             |  |
|               |                             | Avg: 0.5  | 3 Max: 1. | 5 Min: 0                        |  |
| 12552         | HA LCS                      | СТ        | 11/8      | 0.7                             |  |
| 12552         | HA LCS                      | СТ        | 11/16     | 0.1                             |  |
| 12552         | HA LCS                      | IN        | 10/19     | 0.2                             |  |
| 12552         | HA LCS                      | СТ        | 11/30     | 0                               |  |
| 12552         | HA LCS                      | CT        | 12/3      | 0.1                             |  |
|               |                             | Avg: 0.2. | 2 Max: 0. | .7 Min: 0                       |  |
| 12592         | BTOX-B-3                    | СТ        | 11/16     | 0                               |  |
| 12592         | втох-в-з                    | СТ        | 10/19     | 1.6                             |  |

Page 1 of 4

| Sample Number | Client Sample<br>Identifier | Species   | Date       | Ammonia<br>Concentration (mg/l) |
|---------------|-----------------------------|-----------|------------|---------------------------------|
| 12592         | BTOX-B-3                    | СТ        | 12/6       | 0.1                             |
| 12592         | BTOX-B-3                    | СТ        | 11/30      | 0                               |
| 12592         | BTOX-B-3                    | СТ        | 11/8       | 0.1                             |
|               |                             | Avg: 0.38 | Max: 1.6   | 6 Min: 0                        |
| 12593         | BTOX-M                      | СТ        | 11/16      | 0.1                             |
| 12593         | втох-м                      | СТ        | 11/30      | 0.1                             |
| 12593         | втох-м                      | СТ        | 11/8       | 0.1                             |
| 12593         | втох-м                      | СТ        | 10/19      | 3                               |
| 12593         | BTOX-M                      | СТ        | 12/7       | 0,1                             |
|               |                             | Avg: 0.68 | Max: 3     | Min: 0.1                        |
| 12509         | E-1 DEAD CREEK              | СТ        | 11/30      | 0.6                             |
| 12609         | E-1 DEAD CREEK              | СТ        | 11/16      | 1.6                             |
| 12609         | E-1 DEAD CREEK              | СТ        | 11/8       | 2.4                             |
| 12609         | E-1 DEAD CREEK              | СТ        | 12/13      | 0.5                             |
| 12609         | E-1 DEAD CREEK              | CT        | 10/19      | 0.1                             |
|               |                             | Avg: 1.04 | Max: 2.4   | Min: 0.1                        |
| 12611         | E-3 DEAD CREEK              | СТ        | 10/20      | 2.9                             |
| 12611         | E-3 DEAD CREEK              | СТ        | 12/6       | 0.2                             |
| 12611         | E-3 DEAD CREEK              | СТ        | 11/17      | 0.1                             |
| 12611         | E-3 DEAD CREEK              | СТ        | 11/9       | 0                               |
|               |                             | Avg: 0.8  | 8 Max: 2.9 | 9 Min: 0                        |
| 12612         | BP-1 BORROW PIT             | СТ        | 11/9       | 0                               |
| 12612         | BP-1 BORROW PIT             | CT        | 11/17      | 0 1                             |
| 12612         | BP-1 BORROW PIT             | СТ        | 10/20      | 0 6                             |
|               |                             |           |            |                                 |

Page 2 of 4

| Sample Number | Client Sample<br>Identifier | Species |      | Date     | Ammonia<br>Concentrati | on (mg/ |
|---------------|-----------------------------|---------|------|----------|------------------------|---------|
| 12612         | BP-1 BORROW PIT             | СТ      |      | 11/29    |                        | 0.5     |
|               |                             | Avg:    | 0.3  | Max: 0.6 | Min: 0                 |         |
| 12613         | BP-1(DUPE) BORRO            | СТ      |      | 11/9     |                        | 0.1     |
| 12613         | BP-1(DUPE) BORRO            | СТ      |      | 10/20    |                        | 0.8     |
| 12613         | BP-1(DUPE) BORRO            | CT      |      | 11/29    |                        | 0.5     |
| 12613         | BP-1(DUPE) BORRO            | СТ      |      | 11/17    |                        | 0.1     |
|               |                             | Avg:    | 0.38 | Max: 0.8 | Min: 0.1               |         |
| 12614         | BP-3 BORROW PIT             | СТ      |      | 11/3     |                        | 0.1     |
| 12614         | BP-3 BORROW PIT             | СТ      |      | 11/17    |                        | 0       |
| 12614         | BP-3 BORROW PIT             | CT      |      | 11/30    |                        | 0       |
| 12614         | BP-3 BORROW PIT             | СТ      |      | 11/9     |                        | 0       |
| 12614         | BP-3 BORROW PIT             | СТ      |      | 10/20    |                        | 1       |
|               |                             | Avg:    | 0.22 | Max: 1   | Min: 0                 |         |
| 12622         | LCS                         | СТ      |      | 10/20    |                        | 0.1     |
| 12622         | LCS                         | СТ      |      | 11/17    |                        | 0       |
| 12622         | LCS                         | СТ      |      | 11/9     |                        | 0.1     |
| 12622         | LCS                         | СТ      |      | 11/3     |                        | 0.6     |
| 12622         | LCS                         | CT      |      | 12/2     |                        | 0       |
|               |                             | Avg:    | 0.16 | Max: 0.6 | Min: 0                 |         |
| 12665         | PRAIRIE DUPONT CR           | СТ      |      | 10/21    |                        | 0.1     |
| 12665         | PRAIRIE DUPONT CR           | СТ      |      | 11/10    |                        | 0.2     |
| 12665         | PRAIRIE DUPONT CR           | СТ      |      | 12/4     |                        | 0.2     |
| 12665         | PRAIRIE DUPONT CR           | СТ      |      | 11/18    |                        | 0.2     |

Page 3 of 4

| Sample Number | Client Sample<br>Identifier | Species | Date         | Ammonia Concentration (mg/l) |  |
|---------------|-----------------------------|---------|--------------|------------------------------|--|
|               |                             | Avg: 0  | .18 Max: 0.2 | Min: 0.1                     |  |
| 12668         | LCS: 10/8/99@:(SE           | СТ      | 11/29        | 0.5                          |  |
| 12668         | LCS: 10/8/99@:(SE           | СТ      | 10/21        | 0.1                          |  |
| 12668         | LCS: 10/8/99@:(SE           | СТ      | 11/10        | 0.3                          |  |
| 12668         | LCS: 10/8/99@:(SE           | СТ      | 11/18        | 0                            |  |
|               |                             | Avg: 0  | .23 Max: 0.5 | Min: 0                       |  |



Peak Table: ammonia

File name: F:\FLOW\_4\112399B.RST Date: Unknown

Operator: LKS

| w.k | Cup | Name          | Type Dil | Wt       | H           | leight  | Calc. (mg/L) |
|-----|-----|---------------|----------|----------|-------------|---------|--------------|
| 1   | 2   | Sync          | SYNC     | 1        | 1           | 1080420 | 10.019993    |
| 2   | Ō   | Carryover     | CO       | 1        | 1           | 4745    | 0.044935     |
| 3   | Ö   | Carryover     | CO       | ī        | 1           | 813     | 0.008472     |
| В   | 0   | Baseline      | RB       | 1        | î           | 0       | 0.000932     |
| В   | Ö   | Baseline      | RB       | ì        | 1           | 0       | 0.000932     |
| 6   | ĺ   | Cal 0         | C        | ì        | ì           | -201    | -0.000933    |
| 7   | 2   | Cal 1         | C        | i        | i           | 1078264 | 10.000000    |
| 8   | 0   | Blank         | Ū        | ī        | ī           | -541    | -0.004085    |
| 3   | Ö   | Baseline      | RB       | i        | 1           | 0       | 0.000932     |
| 10  | 2   | ICV           | Ū        | ī        | ī           | 1072615 | 9.947621     |
| 11  | 1   | ICB           | Ū .      | ī        | 1           | -547    | -0.004142    |
| 12  | 3   | LCS           | Ū        | ī        | ī           | 576792  | 5.349701     |
| 13  | 91  | 12614 CT 11/3 | Ū        | ī        | ī           | 8767    | 0.082232     |
| 14  | 92  | 12615 HA 11/3 | Ū        | ī        | ī           | 9028    | 0.084654     |
| 15  | 93  | 12622 CT 11/3 | Ū        | ī        | 1           | 59887   | 0.556282     |
| 16  | 94  | 12664 HA 11/5 | Ū        | ī        | _<br>1      | 1670    | 0.016416     |
| 17  | 95  | 12665 HA 11/5 | Ū        | ı<br>1   | ī           | 11474   | 0.107332     |
| 18  | 96  | 12666 HA 11/5 | Ū        | ī        | 1           | 195450  | 1.813402     |
| 19  | 97  | 12667 HA 11/5 | บั       | 1        | <u>1</u>    | 7492    | 0.070412     |
| 20  | 98  | 12671 HA 11/5 | Ū        | ī        | ī           | 4587    | 0.043467     |
| 21  | 99  | 12546 HA 11/8 | Ū        | ī        | 1           | 4716    | 0.044663     |
| 22  | 100 | 12547 HA 11/8 | บี       | ī        | 1           | 48614   | 0.451744     |
| 23  | 3   | CCV           | Ū        | ī        | ī           | 572214  | 5.307250     |
|     | 1   | CCB           | Ū        | ī        | 1           | -453    | -0.003270    |
|     | 0   | Baseline      | RB       | ī        | ī           | 0       | 0.000932     |
| 26  | 101 | 12548 HA 11/8 | Ū        | ī        | 1           | 9860    | 0.092367     |
| 27  | 102 | 12549 HA 11/8 | บ        | 1        | 1           | 2468    | 0.023823     |
| 28  | 103 | 12550 HA 11/8 | Ü        | 1        | 1           | 3427    | 0.032709     |
| 29  | 104 | 12551 HA 11/8 | Ū        | 1        | 1           | 1598    | 0.015747     |
| 30  | 105 | 12552 HA 11/8 | Ŭ        | 1        | 1           | 71      | 0.001588     |
| 31  | 106 | 12548 CT 11/8 | U        | ı        | <u>1</u>    | 211625  | 1.963397     |
| 32  | 107 | 12550 CT 11/8 | U        | l        | 1           | 23297   | 0.216972     |
| 33  | 108 | 12551 CT 11/8 | U        | <u>1</u> | 1           | 4260    | 0.040435     |
| 34  | 109 | 12552 CT 11/8 | U        | 1        | 1           | 74944   | 0.695910     |
| 35  | 110 | 12592 CT 11/8 | U        | 1        | 1           | 2423    | 0.023403     |
| 36  | 3   | CCV           | U        | 1        | <u> 1</u>   | 571459  | 5.300246     |
| 37  | 1   | CCB           | U        | 1        | <u>7</u> ·  | -4745   | -0.043065    |
| 3   | 0   | Baseline      | RB       | 1        | 1<br>1<br>1 | 0       | 0.000932     |
| 39  | 111 | 12593 CT 11/8 | U        | 1<br>1   | 1           | 9947    | 0.093172     |
| 40  | 112 | 12609 CT 11/8 | U        |          | 1           | 254588  | 2.361800     |
| 41  | 113 | 12589 HA 11/9 | Ŭ        | 1        | 1           | 4053    | 0.038513     |
| 42  | 114 | 12590 HA 11/9 | U        | 1        | 1           | -1480   | -0.012794    |
| 43  | 115 | 12592 HA 11/9 | U        | l        | 1           | -2240   | -0.019844    |
| 44  | 116 | 12593 HA 11/9 | Ŭ        | 1        | 1           | -4357   |              |
| 45  | 117 | 12609 HA 11/9 | U        | 1        | ı           | 98380   | 0.913243     |
| 46  | 118 | 12610 HA 11/9 | U        | 1        | l           | -3510   | -0.031613    |
| 47  | 119 | 12611 CT 11/9 | U        | 1        | 1           | -78     |              |
| 48  | 120 | 12612 CT 11/9 | Ŭ        | 1        | 1           | -2093   | -0.018480    |



Peak Cup Flags 1 2

|               |           |                |              |              | <del></del>                            | At                  | sorbar               | се (µА             | л) (E+0      | 6)                    |              |         |                  |             |              |
|---------------|-----------|----------------|--------------|--------------|----------------------------------------|---------------------|----------------------|--------------------|--------------|-----------------------|--------------|---------|------------------|-------------|--------------|
|               | -0.600    | -0.400         | -0.200       | 0.000        | 0.200                                  | 0.400               | 0.600                | 0.800              | 1.000        | 1.200                 | 1.400        | 1.600   | 1.800            | 2.000       | 2.200        |
| >             |           |                |              |              |                                        |                     |                      |                    |              |                       |              |         |                  |             |              |
|               |           |                |              |              |                                        |                     |                      |                    |              |                       |              |         | 3<br>Sync: 9.    | 81748       | ÷            |
|               |           |                |              |              | ນ<br>Carryov<br>ນ້                     | er: 0.0             | 928361               |                    |              |                       | <del>-</del> | · ·     | <b>.</b>         |             | :            |
|               |           |                |              | ١.,١         | arryov<br>D                            |                     |                      |                    |              |                       |              |         |                  |             |              |
| )<br>         |           |                |              | E            | Baseline                               | e: 0.001            | 127833               |                    | . <b></b>    |                       |              |         |                  | - <b></b> - |              |
| 5             |           |                |              | <b>=</b> 5   | aseline<br>Cal 0: -0                   | e: 0.001<br>0.00127 | 127833<br>7881       |                    |              |                       |              |         |                  | •           |              |
|               |           |                |              |              |                                        |                     |                      |                    |              |                       |              |         | Cal 1:           | 10          |              |
|               | <b></b>   |                |              |              | ଘ<br>Blank: -                          | 0.0016              | 8142 -               |                    |              |                       | <b>-</b> -   | <b></b> |                  |             |              |
|               |           |                |              | <b>→</b> . ( | J<br>Baseline                          |                     |                      |                    |              |                       |              |         | <u>ب</u>         |             |              |
| <u>.</u>      |           |                |              |              | <del></del>                            |                     |                      |                    |              |                       |              |         | • ICV: 1         | 0.0389      |              |
| <u>.</u><br>2 | <b></b> - | <b></b>        | <del>.</del> |              | ICB:0.                                 | 00337               | 778                  |                    | <u></u>      |                       | <b></b> -    |         |                  |             | <del>-</del> |
| ز             |           |                |              |              | ū                                      |                     |                      |                    | LCS:         | 5.20956               | 3            |         |                  |             |              |
|               |           |                |              |              | 12548                                  | CT 11/              | 30: 0.0              | 955395             |              |                       |              |         |                  |             |              |
|               | <b></b> . |                |              |              | 4<br>12552 (<br>10<br>12592 (          | CT 44/3             | 30:0.04              | 108047.            |              |                       |              |         |                  |             | <del>-</del> |
|               |           |                |              |              | ນວຍ2 (<br>ດ<br>12593 (                 |                     |                      |                    |              |                       |              |         |                  |             |              |
| 7             |           |                |              |              | 1260                                   | 9 CT 1              | 1/30° 0              | ,5 <u>5703</u>     | 8            |                       |              |         |                  |             |              |
| <u> </u>      |           |                |              | -            | ±2614 €                                | OT 11/3             | 30: 0.04             | 20547              | P            |                       |              |         |                  |             | <u>-</u>     |
|               |           |                |              |              | ს<br>12592 (                           |                     |                      |                    |              |                       |              |         |                  |             |              |
|               |           | <b></b>        |              |              | 0<br>02552 (                           | CT_12/3             | 3: 0.09              | 1506               |              |                       |              |         |                  |             | <b>-</b>     |
|               |           |                |              | -            | -<br>1 <u>2</u> 622 (                  | CT 12/2             | 2: 0.046             | 082                |              |                       |              |         |                  |             | •            |
|               | •         |                |              |              | 12665                                  | CT 12/              | 4: 0.19              | 0228               | N<br>W       |                       |              |         |                  |             |              |
| )<br>}<br>}   |           | <del>-</del> - |              |              | <u> </u>                               |                     |                      |                    | CCV:         | 5.2932                | ?3<br>       | <b></b> |                  |             | <del>-</del> |
| 5             |           |                |              | انصا         | СВ: -0                                 |                     |                      |                    |              |                       |              |         |                  |             |              |
|               |           |                |              | <u> </u>     | Reseline<br>0<br>1 <sub>1</sub> 2592 ( |                     |                      |                    |              |                       |              |         |                  |             |              |
|               |           | <b></b>        | <b></b>      |              | N 2611                                 |                     |                      |                    |              | ·                     |              |         |                  |             | <u>-</u> -   |
|               |           |                |              |              | 0<br>12593 (                           |                     |                      |                    |              |                       |              |         |                  |             |              |
| ن             |           |                |              | 7            | ഗ<br>പൂദ300                            | HA 11/              | 24: 0.1              | 45023              |              |                       |              |         |                  |             |              |
| ა<br>ე<br>ე   | <b></b>   | <b></b>        |              | 🏳            |                                        | HA 11               | /24: 0.2             | 02855              |              |                       |              |         |                  |             |              |
|               |           |                |              |              | N                                      |                     |                      | 849135             |              |                       |              |         |                  |             |              |
|               |           |                |              |              | 18303  <br>ယ်                          |                     |                      |                    |              |                       |              |         |                  |             |              |
|               | -         |                |              |              | 4.                                     |                     |                      | .29058             |              |                       |              |         |                  |             |              |
|               |           |                |              | $\leq$       | ევვე<br>ე<br>1330                      | 10 C F 1            | 11/23: (<br>11/23: ( | 0.56999<br>0.60170 | 5            |                       |              |         |                  |             |              |
| 3000          |           |                |              |              | 1350                                   |                     | 1 1/23. (            | 3.00170            | ,o a<br>≓éc∨ | ′: <del>'5</del> .385 | 72           |         |                  |             |              |
| 5             |           |                |              |              | CCB: -0                                | 0.00264             | 1392                 |                    |              | . 0.000               | -            |         |                  |             |              |
|               |           |                |              |              | ာ<br>Bas <b>မျ</b> ine                 | e: 0.00             | 127833               | 3                  |              |                       |              |         |                  |             |              |
|               |           |                |              |              | <u>&gt; ⊀</u> 233                      | 02-CT-              | 1.1/23:              | 0.7293             | 16           |                       |              |         |                  |             |              |
|               |           |                |              | $\geq$       | <del></del>                            |                     |                      | .415799            |              |                       |              |         |                  |             |              |
| ۵             |           |                |              | 2            | 1330                                   | 04 CT 1             | 1/23: 0              | 0.53933            | 4 E          |                       |              |         |                  |             |              |
| 3500          |           |                |              |              | <u> </u>                               |                     |                      |                    | . TC.C.V     | /: 5. <u>4</u> 00     | 25           |         | . <del>-</del> . | -           |              |
| ٺ             |           |                |              | 1 4          | CCB: -0                                |                     |                      |                    |              |                       |              |         |                  |             |              |
|               |           |                |              |              | Baselin                                | €. U.UU             | 12/03                | •                  |              |                       |              |         |                  | 00          | 0196         |

Peak Table: ammonia

File name: E:\FLOW\_4\120799C.RST Date: December 08, 1999

Operator: nvw

| , | -k       | Cup      | Name                             | Type Dil | Wt          | :                   | Height  | Calc. (mg/L) |
|---|----------|----------|----------------------------------|----------|-------------|---------------------|---------|--------------|
|   | 1        | 2        | Sync                             | SYNC     | 1           | 1                   | 1606045 | 9.817476     |
|   | 2        | 0        | Carryover                        | CO       | ī           | 1                   | 14980   | 0.092836     |
|   | 3        | Ö        | Carryover                        | CO       | ī           | 1                   | 408     | 0.003769     |
|   | В        | Ö        | Baseline                         | RB       | ī           | ī                   | 0       | 0.001278     |
| ŀ | B        | Ö        | Baseline                         | RB       | ī           | 1                   | Ō       | 0.001278     |
|   | B<br>6   | 1        | Cal 0                            | C        | ī           | 1                   | -418    | -0.001279    |
|   | 7        | 2        | Cal 1                            | C        | ī           | 1                   | 1635908 | 10.000000    |
|   | 8        | 0        | Blank                            | Ū        | ī           | 1                   | -484    | -0.001681    |
|   | B        | Ö        | Baseline                         | RB       | ī           | 1                   | 0       | 0.001331     |
|   | 10       | 2        | ICV                              | Ū        | ī           | 1                   | 1642269 | 10.038879    |
|   | 11       | 1        | ICB                              | Ū        | 1           | 1                   | -762    | -0.003378    |
|   | 12       | 3        | LCS                              | ប        | 1           | i                   | 852135  | 5.209557     |
|   | 13       | 91       | 12548 CT 11/30                   | Ū        | 1           | 1                   | 15422   | 0.095540     |
|   | 14       | 92       | 12552 CT 11/30                   | Ū        | i           | 1                   | 6467    | 0.040805     |
|   | 15       | 93       | 12592 CT 11/30                   | Ū        | ì           | <u>.</u><br>1       | 7211    | 0.045350     |
|   | 16       | 94       | 12593 CT 11/30                   | Ü        | 1           | 1                   | 10855   | 0.045350     |
|   | 17       | 95       | 12609 CT 11/30                   | ָט       | 1           |                     | 90929   | 0.557038     |
| _ | 18       | 96       | 12609 CT 11/30<br>12614 CT 11/30 | Ū        | 1           | 1                   | 6671    | 0.042055     |
|   | 19       | 97       | 12514 CT 11/30<br>12592 CT 11/8  | บ        | <u>1</u>    | 는 다 다 다 다           |         | 0.042055     |
|   | 20       |          | •                                |          |             | <u>.</u>            | 10151   |              |
|   | 21       | 98<br>99 | ·                                | U        | ]<br>]      | <u>.</u>            | 14762   | 0.091506     |
|   | 21<br>22 |          |                                  | U        |             | ÷                   | 7330    | 0.046082     |
|   | 7 Z      | 100      | 12665 CT 12/4                    | U        | 1           | <u> </u>            | 30914   | 0.190228     |
|   |          | 3        | CCV                              | Ū        | 1           | 7                   | 865826  | 5.293231     |
| 7 | 1441     | 1        | CCB                              | U        | 1           | 1                   | -548    | -0.002069    |
|   | D C      | 0        | Baseline                         | RB       | 1           | j                   | 0       | 0.001278     |
|   |          | 101      | 12592 CT 12/6                    | Ū        | 1           | j                   | 12179   | 0.075719     |
|   | 27       | 102      | 12611 CT 12/6                    | Ŭ<br>    | 1           | 1                   | 28157   | 0.173374     |
|   | 28       | 103      | 12593 CT 12/7                    | U        | 1           | j                   | 9644    | 0.060220     |
|   | 29       | 104      | 13300 HA 11/24                   | Ū        | 1           | 1                   | 23518   | 0.145023     |
|   |          | 105      | 13301 HA 11/24                   | U        | 1           | 1                   | 32980   | 0.202855     |
|   |          | 106      | 13302 HA 11/24                   | U        | 1           | J                   | 13684   | 0.084914     |
|   |          | 107      | 13303 HA 11/24                   | Ū        | 1           | l                   | 20970   | 0.129446     |
|   |          | 108      | 13304 HA 111/24                  | Ū        | 1           | 1                   | 47333   | 0.290581     |
|   |          | 109      | 13300 CT 11/23                   | Ŭ        | l           | l                   | 93049   | 0.569995     |
|   | 35       | 110      | 13301 CT 11/23                   | Ü        | l           | ī                   | 98237   | 0.601708     |
|   | 36       | 3<br>1   | CCV                              | U        | 1           | 1                   | 880958  | 5.385724     |
|   | 37       |          | CCB                              | ָּט<br>  | 1           | 7                   | -642    | -0.002644    |
|   | В        | Э        | Baseline                         | RB       | ı           | 1                   | 0       | 0.001278     |
|   |          | 111      | 13302 CT 11/23                   | U        | 1           | <u>1</u>            | 119116  | 0.729316     |
|   |          | 112      | 13303 CT 11/23                   | U        | 1<br>1<br>1 | 1                   | 67820   | 0.415799     |
|   | 41       | 113      | 13304 CT 11/23                   | U        | 1           | 1                   | 98032   | 0.539333     |
|   | 42       | 3        | CCV                              | U        | 1           | <u>7</u>            | 883335  | 5.400253     |
|   | 43       | 1        | CCB                              | Ū        | l<br>l      | 1 1 1 1 1 1 1 1 1 1 | -618    | -0.002497    |
|   | B        | 0        | Baseline                         | RB       | 1           | 1                   | C       | 0.001278     |

| Peak | Cup | Flags |
|------|-----|-------|
| ·    |     |       |
|      | 2   |       |
| 2    | 0   |       |
| 3    | 0   |       |
| B    | 0   | BL    |
| B    | 0   | BL    |
|      |     |       |



Peak Table: ammonia

File name: F:\FLOW\_4\112399B1.RST Date: November 23, 1999

Operator: NVW

| k                                            | Cup         | Name           | Type Dil | Wt       |          | Height  | Calc. $(mg/L)$ |
|----------------------------------------------|-------------|----------------|----------|----------|----------|---------|----------------|
| <br>1                                        | 2           | Sync           | SYNC     | 1        | 1        | 1092316 | - 10.035433    |
| 2                                            | 0           | Carryover      | CO       | 1        | 1        | 4572    | 0.040835       |
| 3                                            | 0           | Carryover      | CO       | 1        | 1        | 356     | 0.002098       |
| В                                            | 0           | Baseline       | RB       | 1        | 1        | 0       | -0.001174      |
| В                                            | 0           | Baseline       | RB       | 1        | 1        | 0       | -0.001174      |
| 6                                            | 1           | Cal 0          | С        | 1        | 1        | 255     | 0.001173       |
| 7                                            | 2           | Cal 1          | С        | 1        | 1        | 1088460 | 10.000001      |
| 8                                            | 0           | Blank          | U        | 1        | 1        | -374    | -0.004606      |
| Ξ.                                           | 0           | Baseline       | RB       | 1        | 1        | 0       | -0.001174      |
| 10                                           | 2           | ICV            | Ū        | 1        | 1        | 1088557 | 10.000895      |
| <u> 1 1                                 </u> | 1           | ICB            | U        | 1        | 1        | -931    | -0.009732      |
| 12                                           | 3           | LCS            | Ū        | 1        | 1        | 574766  | 5.279994       |
| 13                                           | 10          | 12613 CT 11/9  | Ü        | 1        | 1        | 7751    | 0.070043       |
| 14                                           | 11          | 12614 CT 11/9  | Ū        | 1        | 1        | 4704    | 0.042045       |
| 15                                           | 12          | 12615 HA 11/9  | U<br>U   | 1        | 1        | 2316    | 0.020110       |
| 16                                           | 13          | 12622 CT 11/9  | Ū        | 1        | <u>1</u> | 13557   | 0.123394       |
| 17                                           | 14          | 12611 HA 11/10 | Ū        | 1        | 1        | 6666    | 0.060073       |
| 18                                           | 15          | 12612 HA 11/10 | Ŭ        | 1        | 1        | 4513    | 0.040296       |
| 19                                           | 16          | 12613 HA 11/10 | Ū        | l        | 1        | 3491    | 0.030905       |
| 25                                           | <u> 1</u> 7 | 12614 HA 11/10 | Ū        | 1        | 1        | 4674    | 0.041772       |
| 21                                           | 18          | 12622 HA 11/10 | Ū        | 1        | <u>1</u> | 2339    | 0.020318       |
| 22                                           | 19          | 12638 HA 11/10 | U        | 1        | 1        | 5649    | 0.050729       |
| 23                                           | 3           | CCV            | Ū        | 1        | 1        | 576336  | 5.294418       |
| W                                            | 1           | CCB            | Ū        | <u>1</u> | l        | -498    | -0.005750      |
|                                              | 0           | Baseline       | RB       | 1        | 1        | 0       | -0.001174      |

| Peak                                    | quO                      | Flags |
|-----------------------------------------|--------------------------|-------|
|                                         |                          |       |
| 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2                        |       |
| 2                                       | 0                        |       |
| 3                                       | 0                        | BL    |
| 3                                       | Ö                        | EL    |
| 6                                       | 1                        |       |
| 7                                       | 2                        |       |
| ê                                       | Э                        | LO    |
| 3                                       | 0                        | BL    |
| 10                                      | 2                        |       |
|                                         | 1                        | LO    |
| -4                                      | 3<br>5 O                 |       |
| - 2                                     | - 0                      |       |
| 12                                      | 12                       |       |
| 16                                      | 13                       |       |
| 17                                      | 14                       |       |
| 18                                      | 15                       |       |
| 7 9                                     | <u> </u>                 |       |
|                                         | 17                       |       |
| 2.2                                     | 200001200213012345678931 |       |
| 42                                      | 19                       |       |
| 20<br>23<br>24                          | خ<br>-                   | T ()  |
| 2=                                      | Τ                        | ro    |



Peak Table: ammonia

File name: F:\FLOW\_4\102799F.RST Date: October 28, 1999 Operator: NVW

| Wak        | Cup       | Name           | Type Dil |           | Wt            | Height  | Calc. (mg/L) |
|------------|-----------|----------------|----------|-----------|---------------|---------|--------------|
| 1          | 2         | Sync           | SYNC     | 1         | 1             | 1683774 | 9.302330     |
| 2          | 0         | Carryover      | CO       | 1         | 1             | 26092   | 0.142000     |
| 3          | 0         | Carryover      | CO       | 1         | 1             | 362     | -0.000183    |
| 3          | 0         | Baseline       | RB       | 1         | 1             | 0       | -0.002186    |
| 3          | 0         | Baseline       | RB       | 1         | 1             | 0       | -0.002186    |
| 6          | 1         | Cal 0          | С        | 1         | ı             | 791     | 0.002186     |
| 7          | 2         | Cal 1          | С        | 1         | 1             | 1810026 | 10.000000    |
| 8          | 0         | Blank          | Ŭ        | 1         | 1             | -2916   | -0.018301    |
| 3          | 0         | Baseline       | RB       | 1         | 1             | 0       | -0.002186    |
| 10         | 2         | ICA            | U        | 1         | 1             | 1814510 | 10.024775    |
| 11         | 1         | ICB            | U        | 1         | 1             | -1504   | -0.010496    |
| 12         | 3         | LCS            | U        | 1         | 1             | 975757  | 5.389835     |
| 13         | 91        | 12611 HA 10/21 | Ū        | 1         | 1             | 391225  | 2.159720     |
| 14         | 92        | 12612 HA 10/21 | U        | 1         | 1             | 100062  | 0.550753     |
| 15         | 93        | 12613 HA 10/21 | U        | 1         | 1             | 107998  | 0.594612     |
| 16         | 94        | 12614 HA 10/21 | U        | 1         | ı             | 151302  | 0.833909     |
| 17         | 95        | 12622 HA 10/21 | U        | 1         | 1             | 16694   | 0.090064     |
| 18         | 96        | 12638 HA 10/21 | U        | <u>1</u>  | 1<br>1<br>1   | 166854  | 0.919846     |
| 19         | 97        | 12639 HA 10/21 | U        | 1         |               | 135945  | 0.749046     |
| 20         | 98        | 12640 HA 10/21 | U        | 1         | 1             | 25243   | 0.137308     |
| 21         | 99        | 12641 HA 10/21 | บ        | 1         | 1             | 387277  | 2.137903     |
| 22         | 100       | 12665 CT 10/21 | U        | <u> 7</u> | 1             | 10124   | 0.053760     |
| ^ <b>२</b> | 3         | CCA            | Ŭ        | 1         | 1             | 896232  | 4.950380     |
|            | <u> 1</u> | CCB            | U        | Ţ         | 1             | -1020   | -0.007825    |
| 3          | 0         | Baseline       | RB       | <u>1</u>  | <u>1</u><br>1 | 0       | -0.002186    |
| 26         | 101       | 12668 10/21    | U        | 1         |               | 11937   | 0.063780     |
| 27         | 102       | 12664 10/22    | U        | 1         | ı             | 2526    | 0.011774     |
| 28         | 103       | 12665 10/22    | U        | 1         | 1             | 377090  | 2.081605     |
| 29         | 104       | 12666 10/22    | Ū        | 1         | 1             | 189860  | 1.046979     |
| 30         | 105       | 12668 10/22    | U        | 1         | 1             | 10183   | 0.054083     |
| 31         | 106       | 12671 10/22    | U        | l         | 1             | 96333   | 0.530148     |
| 32         | 3         | CCV            | Ū        | 1         | 1             | 898288  | 4.961744     |
| 33         | 1         | CCB            | U        | l         | 1             | -1026   | -0.007857    |
| 3          | 0         | Baseline       | RB       | l         | <u> 1</u>     | 0       | -0.002186    |

| Peak                 | Cup         | Flags |
|----------------------|-------------|-------|
|                      |             |       |
| 1                    | 2           |       |
| 2                    | 0           |       |
| - 2 m m m 6 7        | 0           | LO    |
| 3                    | 0           | BL    |
| 3                    | 0<br>1<br>2 | BL    |
| 5                    | 1           |       |
| 7                    | 2           |       |
| 8                    | С           | LO    |
| 3                    | O           | BL    |
| ر.                   | 2           |       |
|                      | ٦.          | LO    |
| 12                   | 3           |       |
| 13                   | 91          |       |
| 12<br>13<br>14<br>15 | 92          |       |
| 15                   | 93          |       |
|                      |             |       |



Peak Table: ammonia

File name: E:\FLOW\_4\102799E.RST Date: October 28, 1999 Operator: LKS

| <b>W</b> ak | Cup              | Name                             | Type Dil | Wt            |             | Height  | Calc. (mg/L) |
|-------------|------------------|----------------------------------|----------|---------------|-------------|---------|--------------|
| 1           | 2                | Sync                             | SYNC     | 1             | 1           | 1827617 | 10.001991    |
| 2           | 0                | Carryover                        | CO       | 1             | 1           | 25041   | 0.136264     |
| 3           | 0                | Carryover                        | CO       | 1             | l           | 756     | 0.003350     |
| В           | 0                | Baseline                         | RB       | 1             | 1           | 0       | -0.000789    |
| В           | 0                | Baseline                         | RB       | 1             | 1           | 0       | -0.000789    |
| 6           | 1                | Cal 0                            | С        | 1             | 1           | 288     | 0.000787     |
| 7           | 2                | Cal 1                            | C        | 1             | l           | 1827253 | 10.000001    |
| 8           | 0                | Blank                            | U        | 1             | 1           | -47     | -0.001044    |
| Ω.          | 0                | Baseline                         | RB       | 1             | 1           | 0       | -0.000789    |
| 10          | 2                | ICV                              | U        | 1             | 1           | 1820698 | 9.964125     |
| 11          | 1                | ICB                              | Ŭ        | 1             | 1           | 474     | 0.001807     |
| 12          | 3                | LCS                              | Ū        | 1             | 1           | 946075  | 5.177200     |
| 13          | 61               | 12609 10/19                      | Ū        | ī             | ī           | 19572   | 0.106333     |
| 14          | 62               | 12610 10/19                      | Ū        | ī             | ī           | 214916  | 1.175473     |
| 15          | 63               | 12611 10/20                      | Ū        | <br>า         | <u>-</u>    | 528736  | 2.893049     |
| 16          | 64               | 12612 10/20                      | Ū        | า             | ī           | 113899  | 0.622594     |
| 17          | 65               | 12613 10/20                      | Ū        | า             | ì           | 143349  | 0.783781     |
| 18          | 66               | 12614 10/20                      | บิ       | 1             | 1           | 181478  | 0.992465     |
| 19          | 67               | 12622 10/20                      | Ū        | †<br>1 ·      | ī           | 19245   | 0.104540     |
| 20          | 68               | 12589 HA 10/20                   | Ū        | า             | ì           | 107284  | 0.586392     |
| 21          | 69               | 12590 HA 10/20                   | Ū        | 1             | ī           | 63518   | 0.346856     |
| 22          | 70               | 12591 HA 10/20                   | Ū        | i             | ì           | 62219   | 0.339743     |
| 25          | 3                | CCV                              | Ū        | 1             | ì           | 996983  | 5.455823     |
| ,<br>       | 1                | CCB                              | Ū        | ה<br>ר        | 1           | 91      | -0.000289    |
| Ÿ           | 0                | Baseline                         | RB       | 1             | 1           | 0       | -0.000789    |
| 26          | 71               | 12692 HA 10/20                   | U        | 1             | ì           | 133525  | 0.730012     |
| 27          | 72               | 12593 HA 10/20                   | บี       | <u>1</u>      | ì           | 367392  | 2.009997     |
| 28          | 73               | 12609 HA 10/20                   | Ŭ        | -<br>1        | 1           | 2840    | 0.014754     |
| 29          | 74               | 12610 HA 10/20                   | Ŭ        | ī             | _<br>1      | 256203  | 1.401440     |
| 30          | 7 <u>-</u><br>75 | 12615 HA 10/20                   | Ū        | 1             | 1           | 15254   | 0.082697     |
| 31          | 76               | 12664 HA 10/20                   | Ū        | 1             | <u> </u>    | 3156    | 0.016483     |
| 32          | 77               | 12664 CT 10/20                   | Ū        | ì             | <u>1</u>    | 15207   | 0.082443     |
| 33          | 78               | 12665 HA 10/20                   | บ        | 1             | 1           | 327542  | 1.791890     |
| 34          | 79               | 12665 CT 10/20                   | Ü        | i<br>1        | 1           | 245075  | 1.340539     |
|             | 80               | 12666 HA 10/20                   | Ū        |               | 1           | 413889  | 2.264477     |
| 35<br>36    | 3                | CCV 11A 10/20                    | Ŭ        | <u>.</u><br>7 | <u> </u>    | 996484  | 5.453096     |
| 37          | 1                | CCB                              | Ū        | <u>+</u><br>7 | 1           | 423     | 0.001527     |
| 3 /         | 0                | Baseline                         | RB       | 1<br>1<br>1   | 1<br>1<br>1 | 923     | -0.001327    |
| 39          | 81               | 12666 CT 10/20                   | U        | ì             | ÷           | 158879  | 0.868775     |
| 40          | 82               | 12668 HA 10/20                   | Ü        |               | 1           | 104857  | 0.573109     |
| 41          | 83               | 12668 CT 10/20                   | Ŭ        | 1<br>1        | -<br>1      | 110728  | 0.605241     |
| 42          | 64               | 12671 HA 10/20                   | Ū        | i<br>i        | 1           | 34611   | 0.188643     |
| 43          | 85               | 12671 RA 10/20<br>12671 CT 10/20 | Ŭ        | 1<br>1<br>1   | ì           | 55855   | 0.304911     |
| 44          | 3                | CCV                              | Ŭ        | i<br>i        | 1           | 1010641 | 5.530580     |
| 45          | 1                | CCB                              | Ü        | 1             | ĺ           | 6481    | 0.034681     |
| E<br>E      | 0                | Baseline                         | RB       | 1             | 1           | 0       | -0.000789    |

| Flags |
|-------|
|       |
|       |
|       |
|       |



Peak Table: ammonia

File name: F:\FLOW\_4\102799D.RST Date: October 28, 1999 Operator: LKS 27

| -                     |            | 610            |             |          |            |           |              |
|-----------------------|------------|----------------|-------------|----------|------------|-----------|--------------|
| <b>W</b> ak           | Cup        | Name           | Type Dil    | Wt<br>   |            | Height    | Calc. (mg/L) |
| -                     | 2          | Sync           | SYNC        | 1        | 1          | - 1828142 | 10.004595    |
| 2                     | Ō          | Carryover      | CO          | ī        | ī          | 27244     | 0.147761     |
| 3                     | Ö          | Carryover      | CO          | 1        | 1          | 682       | 0.002375     |
|                       | 0          | Baseline       | RB          | 1        | _          |           |              |
| B<br>B                | 0          | Baseline       | RB          |          | 1          | 0         | -0.001356    |
| 5<br>6                |            | Cal 0          |             | 1        | 1          | 0         | -0.001356    |
|                       | 1          |                | C           | 1        | 1          | 495       | 0.001355     |
| 7                     | 2          | Cal 1          | C           | 1        | 1          | 1827302   | 10.000000    |
| 8                     | 0          | Blank          | ū           | 1        | 1          | -843      | -0.005968    |
| 3                     | 0          | Baseline       | RB.         | 1        | 1          | 0         | -0.001356    |
| ± ∵                   | 2          | ICV            | บั<br>      | 1        | 1          | 1846458   | 10.104847    |
| <u>-</u> -            | 1          | ICB            | Ŭ           | 1        | 1          | -1194     | -0.007889    |
| - 2                   | 3          | LCS            | Ŭ<br>       | 1        | 1          | 959538    | 5.250472     |
| 13                    | 31         | 12611 HA DAY10 | IJ          | <u>1</u> | 1          | 52528     | 0.286144     |
| <u>1</u>              | 32         | 12611 CT DAY10 | Ū           | <u>1</u> | 1          | _ 139074  | 0.759838     |
| _ 5                   | 33         | 12612 HA DAY10 | ΰ           | 1        | 1          | 104208    | 0.569004     |
| 16                    | 34         | 12612 CT DAY10 | Ū           | <u>1</u> | 1          | 52175     | 0.448412     |
| 17                    | 35         | 12613 HA DAY10 | Ū           | <u>1</u> | 1          | 76598     | 0.417885     |
| 1.5                   | 36         | 12613 CT DAY10 | Ū           | <u> </u> | 1          | 136397    | 0.745184     |
| 19                    | 37         | 12614 HA DAY10 | U           | <u>1</u> | 1          | 78055     | 0.425879     |
| 20                    | 38         | 12614 CT DAY10 | U           | <u>.</u> | 1          | 195324    | 1.067707     |
| 2-                    | 39         | 12622 HA DAY10 | Ū           | <u>1</u> | ī          | 60178     | 0.328016     |
| 22                    | 40         | 12622 CT DAY10 | Ū           | 1        | 1          | 132205    | 0.722242     |
| ~ <u>?</u>            | 3          | CCV            | Ū           | <u>1</u> | 1          | 998992    | 5.466417     |
| Tea. 11               | 1          | CC3            | Ū           | 7        | 1          | -1003     | -0.006847    |
|                       | 0          | Baseline'      | RB          | 1        | 1          | 0         | -0.001356    |
| 26                    | 41         | 12638 HA DAY10 | บ           | -        | 1          | 168841    | 0.922760     |
| 27                    | 42         | 12638 CT DAY10 | บั          | ī        | 1          | 172681    | 0.943775     |
| 23                    | 43         | 12639 HA DAY10 | Ū           | 1        | 1          | 146820    | 0.802235     |
| 29                    | <u>44</u>  | 12639 CT DAY10 | บี          | -<br>1   | <u> </u>   | 64895     | 0.353831     |
| 20                    | 45         | 12640 HA DAY10 | บ           | -<br>5   | 1          | 76847     | 0.419249     |
| 2.5                   | 45         | 12640 CT DAY10 | บ           |          |            | 55300     | 0.301318     |
| 32                    | 47         |                | บ<br>บ      | <u> </u> | 1          | 315631    |              |
| 33                    |            |                | U           | <u> </u> | 1          | 309039    |              |
| 3 4                   | 4.8<br>4.0 |                | บ           | 1        | 1 1        |           | 1.690103     |
|                       | 49         |                |             |          |            | 256130    | 1.400515     |
| 3 3 3 3 3 4 4 4 4 4 4 | 50         | 12547 10/19    | ប<br>ប<br>ប | -        | 4444444444 | 1136070   | 6.216682     |
| 30                    | 3          | CCV            | U<br>•-     | 1        | -          | 982623    | 5.376822     |
| <i>3 /</i>            | <u> </u>   | CCB            |             | 7        | 7          | -81       | -0.001796    |
| =                     | 0          | Baseline       | R3          | 1        | 1          | 0         | -0.001356    |
| 39                    | 51         | 12548 10/19    | U           | 1        | 1          | 754658    | 4.129107     |
| 4.0                   | 52         | 12549 10/19    | Ü           | 2        | Ţ          | 304925    | 1.667588     |
| 4 1                   | 53         | 12550 10/19    | Ū           | 1        | 1          | 400111    | 2.188566     |
| 42                    | 54         | 12551 10/19    | ប           | 1        | 1          | 278030    | 1.520385     |
| 43                    | 55         | 12552 10/19    | U           | 1        | 1          | 35264     | 0.191653     |
| 44                    | 56         | 12589 10/19    | Ū           | ī        | 1          | 119406    | 0.652191     |
| 44<br>45              | 57         | 12590 10/19    | U           | ı        | 1          | 152816    | 0.835053     |
| 45                    | 58         | 12591 10/19    | Ū           | 1        | l          | 96616     | 0.527453     |
| 47                    | 59         | 12592 10/19    | Ŭ           | 1        | 1          | 259912    | 1.585416     |
| 4.5                   | 60         | 12593 10/19    | Ŭ           | 1        | I          | 555099    | - 3.036863   |
| ا تر ا                | 3          | CCV            | U           | l        | 1          | 918593    | 5.026368     |
|                       | 3          | CCB            | U           |          | 1          | 133       | -0.000630    |
| 3                     | O          | Baseline       | RB          | 1        | 1          | C         |              |
|                       |            |                |             |          |            |           |              |

|          | 1         |          |             |           |             | _                     | _               |                           |                  | ance               |               |                                         |        | _     |              |            |                 |            |                | • .               |            |
|----------|-----------|----------|-------------|-----------|-------------|-----------------------|-----------------|---------------------------|------------------|--------------------|---------------|-----------------------------------------|--------|-------|--------------|------------|-----------------|------------|----------------|-------------------|------------|
| 0.500    | 0.400     | 0.300    | 0.200       | 0.100     | 0.000       | 0.100                 | 0.200           | 0.300                     | 0.400            | 0.500              | 0.600         | 0.700                                   | 0.800  | 0.900 | 1.000        | 1.100      | 1.200           | 1.300      | 1.400          | 1.500             | 1.600      |
| >        |           |          |             |           |             |                       |                 |                           |                  |                    |               |                                         |        |       |              |            | → <del></del> - |            | .2016          |                   |            |
|          |           |          |             |           |             | Carry                 |                 |                           |                  |                    |               |                                         |        |       |              |            | Syr             | ic: 10     | .2016          | 5                 |            |
|          |           |          |             |           |             | Garry<br>Basel        | ine: 0          | 0.000                     | 2994             | 46                 |               |                                         |        |       |              |            |                 |            |                |                   |            |
| -        |           |          |             |           |             | Basel<br>Cal 0        | ińē: 0          | 000.0                     | 2994.<br>045     | 46                 |               |                                         |        |       |              | -          | ·               | •          |                |                   |            |
|          |           |          |             |           |             | ਹ<br>Blank            |                 |                           |                  |                    |               |                                         |        |       |              |            | *Cal            | 1: 10      |                |                   |            |
|          |           |          |             |           | 1 🛦         | Base                  |                 |                           |                  | 46                 |               |                                         |        | -     |              |            | <b>→</b> 10.    | V: 10      | .3106          |                   |            |
| 1000     | -         |          |             | <i>.</i>  |             | ĒB:                   | 0.00            | 6659                      |                  |                    |               | <br>N                                   |        |       |              |            |                 |            |                |                   |            |
| ر        |           |          |             |           | -           |                       |                 |                           |                  | 3688               |               | LCS:                                    | 5.38   | 86    |              |            |                 |            |                |                   |            |
|          |           |          |             |           |             |                       |                 |                           |                  | 2531.<br>5793      |               |                                         |        |       |              |            |                 |            |                |                   |            |
|          |           |          |             |           |             | τ̈́266<br>126         | 55 CT           | F 11/1<br>T_11/           | 10: 0.<br>10: 0. | 2099)<br>2811      | 7<br>07       |                                         |        |       |              |            |                 |            |                |                   |            |
|          |           |          |             |           |             | 125<br>1256<br>1266   | 4 HA            | 71/7                      | 1: 0.0<br>1: 0   | 3993.<br>15330     | 87<br>N5      |                                         |        |       |              |            |                 |            |                |                   |            |
|          |           |          |             |           |             |                       | 12              | 666 H                     | 4A 11            | /11:               | 1.364         | 08                                      |        |       |              |            |                 |            |                |                   |            |
| ,        |           |          |             |           |             |                       |                 |                           |                  | 2356<br>3230       | 36            | 23                                      |        |       |              |            |                 |            |                |                   |            |
| 300<br>  |           |          |             |           |             | SCB:                  |                 |                           |                  |                    |               | <u>ČCV</u> :                            | 5.36   | 338   |              | - <b>-</b> |                 |            |                | ·                 |            |
| -        |           |          |             |           | 5           | Ēģse!<br>• 123÷       | ine: 0<br>46 HA | 0.000<br>3.11/1           | 2994<br>15: 0.   | 46<br>2116         | 39            |                                         |        |       |              |            |                 |            |                |                   |            |
|          |           |          |             |           |             | <del>&gt; +</del> ಸ್ತ | 2547            | HA 1                      | 1/16:            | 0.66               | 4405          |                                         |        |       |              |            |                 |            |                |                   |            |
|          |           |          | . <b></b> . |           |             | ž254:                 | 9 HA            | 11/1                      | 6: 0.0           | 3540               | 51            |                                         |        |       |              |            |                 |            |                |                   | - <b></b>  |
|          |           |          |             |           |             | 1255<br>\$255<br>1255 |                 |                           |                  | 3699<br>2913       |               |                                         |        |       |              |            |                 |            |                |                   |            |
|          |           |          |             |           |             | 2 <del>ابات</del>     | 548             | CT 1                      | 1/16:            | 0.589              | 065           |                                         |        |       |              |            |                 |            |                |                   |            |
| د.       |           |          |             |           |             | ក្តី125<br>1255       | 550 C           | T 11.                     | /16: 0<br>6: 0.  | ).3891<br>14168    | 165<br>37     | 3(                                      |        |       |              |            |                 |            |                |                   |            |
| 2000<br> |           |          |             |           |             | ÇCB:                  |                 |                           |                  |                    | <del> 3</del> | čev                                     | :-5.35 | 336 - | <b></b>      |            |                 |            |                | <b>-</b>          |            |
|          |           |          |             |           |             | Ëèse∣                 | ine: (          | 0.000                     | 2994             | 46<br>6498         | 10            |                                         |        |       |              |            |                 |            |                |                   |            |
|          |           |          |             |           | -           | ₹259                  | 2 CT            | 11/1                      | 6: 0.0           | 4478               | 16            |                                         |        |       |              |            |                 |            |                |                   |            |
|          | - <b></b> |          | . <b></b>   |           |             | D                     | 1               | 2509                      | CT.              | 10152<br>11/16     | 1.52          | 202.                                    |        |       |              |            |                 |            |                |                   | <b>-</b> - |
|          |           |          |             |           |             | £259                  | 0 HA            | 11/1                      | 7: 0.0           | 08693<br>02735     | 57            |                                         |        |       |              |            |                 |            |                |                   |            |
|          |           |          |             |           |             | 1 <del>2</del> 59:    | 2 HA<br>13 HA   | 11/1 <sup>°</sup><br>11/1 | 7: 0.0<br>7: 0.  | 1323<br>11037      | 15<br>75      |                                         |        |       |              |            |                 |            |                |                   |            |
| ۵        |           |          |             |           |             | ₹126                  | 609 H           | A 11                      | /17: 0           | 0.3582<br>03876    | 222           | 4                                       |        |       |              |            |                 |            |                | : .               |            |
| 4000<br> |           |          |             |           | - 1         | 0                     |                 |                           |                  | 75070              | =             | ČCV                                     | 5.34   | 756   |              | :          |                 | <br>-      |                |                   |            |
|          |           |          |             |           |             | ÇCB:<br>Base          | line: (         | 0.000                     | 2994             |                    |               |                                         |        |       |              |            |                 |            |                | 1 1               |            |
|          |           |          |             |           |             |                       |                 |                           |                  | )2734<br>11297     |               |                                         |        |       |              |            |                 |            |                |                   |            |
|          |           |          |             |           | 🖵           |                       |                 |                           |                  | 11185<br>06606     |               |                                         |        |       |              |            |                 | . <b>.</b> | · <del>-</del> |                   | -<br>      |
|          |           |          |             |           |             | ब्रॅंट्र61            | 4 CT            | 11/1                      | 7: 0.0           | 3599               | 76            | g                                       |        |       |              |            |                 |            |                |                   |            |
|          |           |          |             |           |             | <del>y</del>          |                 |                           |                  | 2015               | 02            | CC\<br>53<br>53<br>50<br>50<br>50<br>50 | : 5.30 | 989   |              |            |                 |            |                |                   |            |
| 500      |           |          |             |           | _           | €CB:<br>Base          |                 |                           |                  | 46                 |               |                                         |        |       |              |            |                 |            | =              | o o               | . ~ .      |
| ŏ ::     |           | <u> </u> |             | · _ · _ · | <u>   -</u> |                       | <u> </u>        | <del></del>               |                  | <del>- · -</del> - |               |                                         |        | · ·   | <u>·</u> · · | ·          | <u></u>         |            | -6             | <del>. () .</del> | 13(        |

Feak Yable: ammonia

File name: F:\FLOW\_4\112399C.RST Date: November 23, 1999 Operator: nvw

|                      |            |                                   |                | ••               |                                                                                                                                            |                      |
|----------------------|------------|-----------------------------------|----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| a.K                  | Cup        | Name                              | Type Dil       | Wt               | Height                                                                                                                                     | Calc. (mg/L)         |
| 7                    | 2          | Sync                              | SYNC           | 1 -              | 1 1139012                                                                                                                                  | 10.201578            |
| <u>1</u><br>2        | 0          | Carryover                         | CO             | 1                | 1 4260                                                                                                                                     | 0.038450             |
| 3 H H &              | 0          | Carryover                         | CO             | 1                | 228                                                                                                                                        | 0.002345             |
| 3                    | 0          | Baseline                          | RB             |                  | 1 0                                                                                                                                        | 0.000299             |
| 3                    | 0          | Baseline                          | RB             |                  | 1 0                                                                                                                                        | 0.000299             |
| 5                    | l          | Cal 0                             | С              |                  | 1 -67                                                                                                                                      | -0.000300            |
| 7                    | 2          | Cal 1                             | С              |                  | 1 1116505                                                                                                                                  | 10.000001            |
| 8<br>33<br>20        | 0          | Blank                             | Ū              | <u>1</u>         | 3 817                                                                                                                                      | 0.007615             |
| 3                    | 0          | Baseline                          | RB             | <u>1</u>         | 1 0                                                                                                                                        | 0.000299             |
| 10                   | 2          | ICV                               | U              | <u>-</u>         | 1 1151190                                                                                                                                  | 10.310650            |
|                      | 1          | ICB                               | Ū              | 1                | <u>-777</u>                                                                                                                                | -0.006659            |
| 12                   | 3          | LCS                               | Ŭ              |                  | 1 601625                                                                                                                                   | 5.388603             |
| 13                   | 31         | 12639 HA 11/10                    |                |                  | 1 4085                                                                                                                                     | 0.036883             |
| 14                   | 3.2        | 12640 HA 11/10                    | บ<br>          | 1                | 1 2793                                                                                                                                     | 0.025316             |
| 25                   | 33         | 12641 HA 11/10                    | บ<br>บ         | 1                | 1 2793<br>1 6435<br>1 23411                                                                                                                | 0.057931             |
| 24<br>25<br>26<br>27 | 34         | 12665 CT 11/10                    | Ū              | <u> </u>         | 1 23411                                                                                                                                    | 0.209970             |
| - /                  | 35         | 12668 CT 11/10                    | ប<br>          | 1                | 1 31353                                                                                                                                    | 0.281107             |
| 2 9<br>1 2 0<br>2 0  | 36         | 12664 HA 11/11                    | บ<br>บ         | 1                | 1 31353<br>1 4426<br>1 17084<br>1 152272<br>1 2598<br>1 3573<br>1 598809                                                                   | 0.039939             |
| - 5                  | 37         | 12665 HA 11/11                    | ∵<br>          | 1                | 1 17084                                                                                                                                    | 0.153305             |
| 4 U<br>6 5           | 38         | 12666 HA 11/11                    | ប<br>          | <u>-</u>         | 1 152272                                                                                                                                   | 1.364084             |
| 21<br>22             | 39<br>40   | 12668 HA 11/11                    | ਹ<br>          | <u>.</u>         | 1 2598<br>1 3573                                                                                                                           | 0.023567<br>0.032304 |
| 23                   | 3          | 12671 HA 11/11<br>CCV             | ט<br>ט         | 1                | 1 598809                                                                                                                                   | 5.363383             |
| 2 <b>3</b>           | ے<br>1     | CCV                               | Ū              |                  |                                                                                                                                            | 0.005082             |
| اسا                  | Ö          | Baseline                          | RB             | <u> </u>         |                                                                                                                                            | 0.000299             |
| 26                   | 4 <u>1</u> | 12546 HA 11/16                    | T<br>U         | <u>ī</u>         | 1 0<br>1 23604<br>1 74150<br>1 69409                                                                                                       | 0.211699             |
| 27                   | 42         | 12547 HA 11/16                    | Ü              | <u>1</u>         | 1 23604<br>1 74150                                                                                                                         | 0.211695             |
| 28                   | 43         | 12548 HA 11/16                    | IJ             | ÷<br>5           | 1 69409                                                                                                                                    | 0.621947             |
| 29                   | 44         | 12549 HA 11/16                    | ์<br>บ         |                  |                                                                                                                                            | 0.035405             |
| 3 0                  | 45         | 12550 HA 11/16                    | 7              | -                | 1 3920<br>1 4098                                                                                                                           | 0.036999             |
| 3.2                  | 46         | 12551 HA 11/16                    | Ū              | <u> </u>         | 1 3219                                                                                                                                     | 0.029130             |
| 3.2                  | 47         | 12552 HA 11/16                    | บ              | 1                | 1 2085                                                                                                                                     | 0.018975             |
| 3.3                  | 4 â        | 12548 CT 11/16                    | $\overline{U}$ | 1                | 1 65738                                                                                                                                    | 0.589065             |
| 34                   | 49         | 12550 CT 11/16                    | IJ             | <u>1</u>         | 1 43418                                                                                                                                    | 0.389165             |
| 3.5                  | 50         | 12551 CT 11/16                    | ប              | 1                | 1 15786                                                                                                                                    | 0.141687             |
| 3.6                  | 3          | CCA                               | ប<br>ប<br>ប    | <u> 1</u>        | 1 597690                                                                                                                                   |                      |
| 37                   | <u> 1</u>  | CC3                               | ij             | 1                | 1 417                                                                                                                                      |                      |
| 67 90123<br>334443   | 0          | Baseline                          | R3             | 1                | 1 0                                                                                                                                        |                      |
| 3.9                  | 51         | 12552 CT 11/16                    | บ<br>บ         | <u> 1</u>        | 1 7222                                                                                                                                     |                      |
| 40                   | 52         | 12592 CT 11/16                    | Ũ              | <u>1</u>         | 1 4967                                                                                                                                     |                      |
| <u>.</u>             | 53         | 12593 CT 11/16                    | ט<br>ט<br>ט    | <u>1</u>         | 1 11302                                                                                                                                    |                      |
| 42                   | 54         | 12609 CT 11/16                    | IJ             | 1                | 1 181072                                                                                                                                   | 1.622023             |
| 43                   | 55         | 12589 HA 11/17                    | บ<br>•-        | 1                | 2 9673                                                                                                                                     | 0.086932             |
| 4 5 6 7              | 56         | 12590 HA 11/17                    | U<br>          | <u>-</u>         | 1 3021                                                                                                                                     |                      |
| ÷ 0                  | 57         | 12592 HA 11/17                    | บ<br>          | <u> </u>         | 1444                                                                                                                                       |                      |
| 4 D                  | 58<br>E 0  | 12593 HA 11/17                    | U              | 7                | 1 12290                                                                                                                                    |                      |
| 48                   | 59<br>60   | 12609 HA 11/17<br>12610 HA 11/17  | บ<br>บ         | ÷                | 1 15786<br>1 57697<br>1 597697<br>1 2 4967<br>1 227<br>1 23072<br>1 31073<br>1 42967<br>1 122969<br>1 2963<br>1 2963<br>1 2963<br>1 397042 |                      |
| 4.9                  | 3          | CCV FA 11/1/                      | U              | ÷<br>7           | 1 597042                                                                                                                                   |                      |
| و بـ                 | 3<br>1     | CCB                               | U              | ÷<br>1           |                                                                                                                                            |                      |
| ايسا                 | 2          | Baseline                          | RB             | ÷<br>1           | 1 -232<br>1 0                                                                                                                              |                      |
| E 2                  | €1         | 12615 HA 11/17                    | U              | ÷                | 1 3020                                                                                                                                     |                      |
| 53                   | 62         | 12613 ISA 11/17<br>12611 CT 11/17 | Ū              | ਹਰਹਰਹਰਹਰਹਰਹਰਹਰਹਰ | 1 12580                                                                                                                                    |                      |
| 54                   | 63         | 12612 CT 11/17                    | Ü              | ì                | 1 12456                                                                                                                                    | 0.111854             |
|                      |            |                                   | -              |                  |                                                                                                                                            |                      |

| Peak | Crb       | Name           | Type Dil | ìхt      | : | Height | Calc. (mg/L) |
|------|-----------|----------------|----------|----------|---|--------|--------------|
| 55   | 64        | 12613 CT 11/17 |          | 1        | 1 | 7343   | 0.066061     |
| 5.6  | 55        | 12614 CT 11/17 | Ü        | 1        | 1 | 3986   | 0.035998     |
| 57   | 6.5       | 12622 CT 11/17 | IJ       | <u>1</u> | 1 | 2217   | 0.020156     |
| 5.8  | 3         | CCV            | Ü        | 1        | 1 | 592836 | 5.309892     |
| 59   | <u> 1</u> | CCB            | ប៊       | ī        | 1 | 111    | 0.001298     |
| 3    | 0         | Baseline -     | RB       | 1        | 1 | . 0    | 0.000299     |

| Peak                                    | СлБ                                             | Flags             |
|-----------------------------------------|-------------------------------------------------|-------------------|
| SIGNETIC                                | 2 0 0 0 1 2 0                                   | FO<br>BF<br>BF    |
| 3                                       | 0 2                                             | 31                |
|                                         | 200001200013333333334 4444444444444444444444444 | LO                |
| 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 1 2 3 4 5 6 7 6 9 0 3 5                       | <del>5</del> -1-1 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | 90034040907090<br>45 55555555555                | EL                |

#### **AMMONIA ANALYSIS**

client: Meuzie-Ceura Ct. chronic

BTR Number: Sever

| Sample<br>Date | Sample Description      | 10N<br>NaOH<br>(ml) | 50 mL<br>Sample<br>(ml) | Meter<br>Reading<br>NH₃-N (ppm) |               |
|----------------|-------------------------|---------------------|-------------------------|---------------------------------|---------------|
|                | Calibration:            |                     |                         |                                 |               |
|                | 1 ppm                   | <b>/</b>            |                         | 1.55                            |               |
|                | 5 ppm                   |                     |                         | 5.52                            | SLOPE = -58.4 |
|                | 2 ppm EXT, STD.         | V                   | /                       | 1.92                            |               |
|                | O1 510 pm               |                     |                         |                                 |               |
|                | Blank (DI)              |                     | /                       | L0.5                            |               |
|                |                         |                     |                         |                                 |               |
| 11/29          | 12550 BTOX-D-2]         | <u> </u>            | /                       | <b>40.5</b>                     |               |
| 11/29          | 12551 [BIOX-D-3]        |                     | /                       | <b>&lt;</b> 0.5                 |               |
| 11/29          | 12612 BP-1Barow P.H     | /                   |                         | 40.5                            |               |
| 11/29          | 12613 BP   Burrow PHING |                     |                         | <b>≺</b> 0.5                    |               |
|                | 105 STD. check (015)    | _/                  | /                       | 0,491                           |               |
|                | JG ( )                  |                     |                         | ľ,                              |               |
| 11/29          | 12668 [LABOC-US]        |                     | /                       | <b>40.5</b>                     |               |
| 12/9           | 12548[BTOX-C-3]         | /                   | /                       | 40.5                            |               |
| 12/13          | 12609 FE-1 Dead Creek   | V                   | /                       | 40.5                            |               |
| /              | 0,5 STD. check          | /                   | /                       | 0.490                           |               |
|                | Blank (DI)              | /                   | /                       | ~0.5                            |               |
|                | - /                     |                     |                         |                                 |               |
|                |                         |                     |                         |                                 |               |
|                |                         |                     |                         |                                 |               |
|                |                         |                     | <u></u>                 |                                 |               |

| Analyst: | JG | Analysis Date: | 12 | 1221 | 199 |
|----------|----|----------------|----|------|-----|
| _        |    |                |    | 7    |     |

Reviewed by:  $\frac{12/22/99}{2}$ 

ammonia.lwp

10(12/99

|                                       | NVW      | JWW      |
|---------------------------------------|----------|----------|
| # Surle TD                            | 40.5     | 40.5     |
| 2 8 15                                |          |          |
| 1, 18589 0                            |          |          |
| 2 590 φ                               |          |          |
| 3 591 6                               |          |          |
| Y. 592 0                              |          |          |
| 5. 593 0                              |          |          |
| 6. 10609 0                            |          |          |
| 7. 10610 B                            |          |          |
| <u>8. 16615 Ø</u>                     |          |          |
| 9. 12611 0                            |          |          |
| 10. 612 7                             |          |          |
| 613 0                                 |          |          |
| 12. 61Y Ø                             |          |          |
| 13 12672 Ø                            |          |          |
| 1.06 2.0                              |          |          |
| 15 12639                              |          |          |
| 12640 0                               |          |          |
| 16 12546 AW                           |          |          |
| 19 547 PW                             |          |          |
| 26. 548 FW                            | )<br>    |          |
|                                       | NW       |          |
|                                       | 10/17/83 | 13/12/99 |
|                                       |          | 15/1-15  |
| · · · · · · · · · · · · · · · · · · · |          |          |

| • • • • • • • • • • • • • • • • • • • • | 4BS<br>ample ID       | NVW       | JWW<br>20-5  |
|-----------------------------------------|-----------------------|-----------|--------------|
|                                         | a year to             | 40.5 ppm  | -            |
|                                         | 2664 PW,              | <u> </u>  |              |
|                                         | 43 65 PW              |           |              |
|                                         | 671 PW                |           |              |
|                                         | 0546 Ø                | -         | -)           |
|                                         | 576 0                 |           | · · · /      |
|                                         | 9549 0                |           |              |
| _                                       | 550 0                 |           |              |
| . ^                                     | 551 0                 | ·         |              |
|                                         | V 552 (V)<br>2664 (V) |           | -            |
| 12                                      | 665 0                 |           |              |
| 13                                      | 666 Ø                 | :         |              |
| 14                                      | 668 0                 |           |              |
| 15                                      | 671 4                 | <u> </u>  |              |
|                                         |                       | 10/12/9   | () 10/12/99. |
| <u></u>                                 |                       |           |              |
|                                         |                       | · · · · · |              |
|                                         |                       |           |              |

| NVW                        | July                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <0.5 ppin                  | 5 LO-5 ppm5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1. 12549 PW Y              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 550 PW (                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Z 550 PW (<br>3. 12 551 PW |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4. 10 589 PW               | _ /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5. 590 PW                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6, \ 591 PW                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7. 592PW                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5, 593 PW /                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9. 10609 PW                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10. 12610 PW               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - CILPW                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12. 612 PW                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13, 613 PW                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IY. GIY PW                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15, 12638 PW               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16. 639 PW /<br>17. 640 PW |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15, 640 MM / 18, 641 PM /  | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |
| 17. 17666 PW L             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20, 17666 W N              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WW man                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10/12/90                   | () 12/99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| \$ 5.0 ppm MS              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Client: Menzie-C                                                          | Cura & Assoc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pro    | ect: 9903 | 3             | BTR: 3615         |          |  |  |  |  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|---------------|-------------------|----------|--|--|--|--|
| Date sediments                                                            | distributed to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | test & | hambers ( | 100 mL homoge | enized_sediment): |          |  |  |  |  |
| H. azteca acu                                                             | Date sediments distributed to test chambers (100 mL homogenized sediment):  • H. azteca acute test: 10/6/99    10/18/99; ALL SAMPLES SEE TO SAMPLES SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO SEE TO S |        |           |               |                   |          |  |  |  |  |
| • C. tentans ac                                                           | ute test: 10/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /99 ·  |           | •             |                   | į        |  |  |  |  |
| • H. azteca chr                                                           | onic test: 10/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18/99: | ALL SAM   | PLES JGfor 15 | S                 |          |  |  |  |  |
| <ul><li>H. azteca chr</li><li>C. tentans ch</li></ul>                     | ironic test: ්ර                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 548,   | 12550,12  | 551; 10/18/90 | JOGELS            |          |  |  |  |  |
| 10/28/99 - Lozden sodineris for 20x moles<br>(12548, 12550, 12551, 12552, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |               |                   |          |  |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |               |                   |          |  |  |  |  |
| Sample                                                                    | porew p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | orew   | porew     |               | 12542, 12593, 12  | 609) 1/2 |  |  |  |  |

| Sample      | porew    | porew                                 | porew | 12592, 12593, 12609)                                                                                           |
|-------------|----------|---------------------------------------|-------|----------------------------------------------------------------------------------------------------------------|
| Number      | pH       | H2S                                   | Amm   | Sediment Visual Characterization                                                                               |
| 12546       | 6.9      |                                       |       | Visicus mud, 100 Overlying water                                                                               |
|             |          |                                       |       |                                                                                                                |
| 12547       | 7.0      |                                       |       | Liquid, fine mud many freshwater gastropoids 1 removed visible gastropods 1467                                 |
|             |          |                                       |       | - 1                                                                                                            |
| 12548       | 7-0      |                                       |       | Liquid mud, gastropads present, remaind                                                                        |
|             |          |                                       |       |                                                                                                                |
| 12549       | 7.0      |                                       |       | Soft mud, pine nudies, some overlying water                                                                    |
|             |          |                                       |       |                                                                                                                |
| 12550       | 7.0      |                                       |       | soft mud with overlying water fine need les                                                                    |
|             |          |                                       |       |                                                                                                                |
| 12551       | 7.0      | · · · · · · · · · · · · · · · · · · · |       | soft mud with overlying water                                                                                  |
| -           |          |                                       |       |                                                                                                                |
| <del></del> |          | !<br>                                 |       |                                                                                                                |
| <del></del> |          |                                       |       |                                                                                                                |
| <del></del> |          | <del></del>                           |       |                                                                                                                |
|             |          | · · · · · · · · · · · · · · · · · · · |       |                                                                                                                |
| 12552       | 1,149    |                                       |       | EPA artificial control sediment (77% med. and fine sand; 17% kaolinite clay; 5% 0.5 mm-sieved peat; 1% CaCO3). |
| LCS         | m/210199 |                                       |       | Stored dry, then hydrated prior to addition to test chambers.                                                  |

Extract porewater, measure and record pH, decant and preserve sulfide and ammonia

Reviewer: Date: 1/10/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

| Client: Menzie-Cura & Assoc.    | Project: 99033   | BTR: 362          | 22 / 3629            |
|---------------------------------|------------------|-------------------|----------------------|
| Date sediments distributed to t |                  |                   | nent):               |
| • H. azteca acute test: 10/7/99 | 941c/18/99 JG TM | (Hystells rejest) |                      |
| • C. tentans acute test: 10/7/9 | 99 ′             |                   |                      |
| H. azteca chronic test:         |                  |                   | Wassen Incan         |
| • C. tentans chronic test: 10/  | 18/99: 13592,12  | 593.12609 TM      | Sieved to remove     |
|                                 | <i>y</i> ,       | ,                 | indigenous charación |
|                                 |                  |                   | (for C.t. onle       |

| Sample<br>Number | porew<br>pH | porew<br>H2S | porew<br>Amm | Sediment Visual Characterization                                                                               |           |
|------------------|-------------|--------------|--------------|----------------------------------------------------------------------------------------------------------------|-----------|
| 12589            | 7.1         | ·            | d            | chrown muddy selinent with sticks a                                                                            | hoi       |
| 12590            | 6,9         |              | d            | khrown muddy selinent with sticks a vegetative vegetative vegenative mud with veg mat                          | nat<br>eu |
| 12591            | 69          |              |              | birown rund with veg material                                                                                  |           |
| ¥ 12592          | 7.1         |              |              | dk brown mud with little veg mate                                                                              | ].<br>214 |
| 12593            | 7.0         |              |              | black watery much w/petrolium-like ode                                                                         | i         |
| 12609            | 7.1         |              |              | thick ak, brown ashesive much with                                                                             | \re       |
| 12610            | 7.2         |              |              | ak brown very Thick cohesive muid                                                                              |           |
|                  |             |              |              | w/some veg                                                                                                     | ٦         |
|                  |             |              |              | materia                                                                                                        | 1         |
|                  |             |              |              |                                                                                                                |           |
|                  |             |              |              |                                                                                                                |           |
|                  |             |              |              |                                                                                                                |           |
|                  |             |              |              |                                                                                                                |           |
|                  |             |              |              |                                                                                                                | Ì         |
|                  |             |              |              |                                                                                                                | 1         |
|                  |             | <del></del>  |              |                                                                                                                |           |
|                  |             |              |              |                                                                                                                | 1         |
| 12615            |             |              |              | EPA artificial control sediment (77% med. and fine sand; 17% kaolinite clay; 5% 0.5 mm-sieved peat; 1% CaCO3). |           |
| LCS              |             |              | }            | Stored dry, then hydrated prior to addition to test chambers.                                                  |           |

Extract porewater, measure and record pH, decant and preserve sulfide and ammonia samples.

Entered by: 11 ( Date: 10 ) 9 9

Reviewer: Date: 12/10/99 Laboratory. Aquatec Biological Sciences, South Burlington, Vermont

000204

hasurwt.doc

Client: Menzie-Cura & Assoc. Project: 99033 BTR: 3629 / 3633

Date sediments distributed to test chambers (100 mL homogenized sediment):

H. azteca acute test: 10/8/99 C. tentans acute test: 10/8/99

H. azteca chronic test:

|   | _  |       | _     |      |         |
|---|----|-------|-------|------|---------|
| 0 | С. | tenta | ns ch | roni | c test: |

| Sample | porew | porew | porew |                                                                                                                     |
|--------|-------|-------|-------|---------------------------------------------------------------------------------------------------------------------|
| Number | рН    | H2S   | Amm   | Sediment Visual Characterization                                                                                    |
| 12611  | 6.8   |       |       | black mud w/leaf litter                                                                                             |
| 12612  | 7.7   |       |       | Fine Brown mud                                                                                                      |
| 12613  | 7.7   |       |       | Soft Brown mud                                                                                                      |
| 12614  | 7.5   |       |       | Soft Brown mud                                                                                                      |
| 12638  | 7.6   |       |       | Soft Brown mud                                                                                                      |
| 12639  | 7.3   |       |       | sticks + leaves on top + through out conesive mud, dark.                                                            |
| 12640  | 7.2   |       |       | Sticks + leaf litter Dark thick mud                                                                                 |
| 12641  | 72    |       |       | soft Brown mud                                                                                                      |
|        |       |       |       |                                                                                                                     |
|        |       |       |       |                                                                                                                     |
|        |       |       |       |                                                                                                                     |
|        |       |       |       |                                                                                                                     |
|        |       |       |       |                                                                                                                     |
| 12622  |       |       |       | EPA artificial control sediment (77% med. and fine sand;                                                            |
| LCS    |       |       |       | 17% kaolinite clay; 5% 0.5 mm-sieved peat; 1% CaCO3). Stored dry, then hydrated prior to addition to test chambers. |

Extract porewater, measure and record pH, decant and preserve sulfide and ammonia samples.

000205

hasurvwt.doc

| Client: | Menzie-Cura | & Assoc. | Project: | 99033 | BTR: | 3641 |
|---------|-------------|----------|----------|-------|------|------|
|         |             |          |          |       |      |      |

Date sediments distributed to test chambers (100 mL homogenized sediment):

H. azteca acute test: 10/9/99
C. tentans acute test: 10/9/99

H. azteca chronic test:C. tentans chronic test:

| Sample<br>Number   | porew<br>pH | porew<br>H2S | porew<br>Amm | Sediment Visual Characterization                                                                                                                                             |
|--------------------|-------------|--------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12664              | 7.8         |              |              | fine cohesive mid.                                                                                                                                                           |
|                    |             |              |              |                                                                                                                                                                              |
| 12665              | 7.3         |              |              | fine soft mud                                                                                                                                                                |
|                    |             |              |              |                                                                                                                                                                              |
| 12666              | 75          |              |              | fine. Sticky/Cohesive mud                                                                                                                                                    |
|                    |             |              |              |                                                                                                                                                                              |
| -12667-JG<br>12671 | 7.4         |              |              | fine, brown mud-chironomids                                                                                                                                                  |
|                    |             |              |              |                                                                                                                                                                              |
|                    |             |              |              |                                                                                                                                                                              |
|                    |             |              |              |                                                                                                                                                                              |
|                    |             |              |              |                                                                                                                                                                              |
|                    |             |              |              |                                                                                                                                                                              |
|                    |             |              |              |                                                                                                                                                                              |
| 12668<br>LCS       |             |              |              | EPA artificial control sediment (77% med. and fine sand; 17% kaolinite clay; 5% 0.5 mm-sieved peat; 1% CaCO3). Stored dry, then hydrated prior to addition to test chambers. |

Extract porewater, measure and record pH, decant and preserve sulfide and ammonia samples.

Entered by:

Date: 45/6/36

Reviewer: Date: 17/099
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

hasurvwt.doc

## Preparation of Formulated Control Sediment for Freshwater Sediment Toxicity Tests

Procedure based on EPA/600/R-94/024

Batch No. 10/4 Preparation Date: 14/99 Prepared by: 116.

| Ingredient                                          | Amount (g)  | Percent composition |
|-----------------------------------------------------|-------------|---------------------|
| Fine and                                            |             |                     |
| Fine sand<br>Medium sand                            | 1848<br>924 | 77                  |
| Kaolinite clay                                      | 612         | 17                  |
| Blended and 0.3 mm sieved<br>Canadian sphagnum peat | 180         | 5                   |
| CaCO3                                               | 36          | 1                   |
| Total                                               | 3600        | 100                 |
|                                                     |             |                     |

Store well-mixed and dry in a sealed Rubbermaid box. Label by batch number. Store copy of this documentation in project file. Store original in Sed/Water preparation notebook.

Hydrate to a cohesive sediment consistency before use.

#### Week of October 17, 1999

| ACTIVITY / DAY                         | Sun.                             | Mon.         | Tues.    | Wed.   | Thurs. | Fri.  | Sat.     |
|----------------------------------------|----------------------------------|--------------|----------|--------|--------|-------|----------|
| Prior to noon fill reservoirs (1L)     | $\checkmark$                     | /            | /        |        | V      |       | <b>V</b> |
| Noon delivery cycle                    |                                  |              |          | ,      |        | _     |          |
| splitter boxes filling?                | <u> </u>                         | 1            | <b>V</b> | \\\ √. |        | V     |          |
| syringes filling?                      |                                  |              |          | 7      |        | V     |          |
| • needles flowing?                     |                                  |              |          | V      | /      | 7     |          |
| beaker screens clear, flowing?         |                                  | /            | V        | V      | /      |       |          |
| drainage to waste ok?                  |                                  |              | V        |        | 1/     |       |          |
| • empty waste buckets 2 wice           |                                  |              |          |        | 1      | VV    | 11       |
| Test monitoring DAILY                  |                                  |              |          |        |        |       |          |
| • test temperature ok?                 | V                                |              | /        |        |        | V.    |          |
| • D.O. ok?                             | 1/1                              | <b>/</b>     |          |        |        | V .   |          |
| check for floating organisms           |                                  | V ,          | V        | 1      |        | 1     |          |
| • feeding completed?                   | $\overline{}$                    | <b>V</b> (1) | 1        |        |        |       |          |
| Additional activities                  |                                  |              |          |        |        |       |          |
| Prior to midnight fill reservoirs (1L) | _/_                              |              |          | \/,    | V      | V     |          |
| Check sediment water supply            |                                  |              | ./       |        | 1/     |       | 1        |
| Corrective Action / Comments           | <del>-, -, -, -, -, -, -</del> , |              |          |        |        |       |          |
| Initials/Date                          | In sc                            | 73.45        | 767      | 10/30  | 15/21  | 10/38 | 16/23    |
| Procedure: All operating system        |                                  | <del></del>  |          | ·····  |        |       |          |

<u>Procedure</u>: All operating systems listed above must be checked on a daily basis when sediment toxicity tests are in progress. Corrective action must be taken whenever appropriate. Document corrective action on this form. If project-specific documentation is required, write a brief description (on Project Documentation form) and include with the test data package.

| Comments: | C. HARN     | chanic Test | ser ups | nere | ted on | Dry -1 | (dain |      |
|-----------|-------------|-------------|---------|------|--------|--------|-------|------|
| 1100      | TO Olganism | eddimons)   | 1:/1    | 0/69 |        |        |       |      |
| 0         | <i>V</i>    |             | · ·     |      |        |        |       |      |
|           |             |             |         |      | Expesy | e um   | tor   | /+/. |

Reviewer Date 129/99
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

Expessive with for H.2. chining

= Lake / Recon Mix

Experience water by C.T. chinase

= Recon Water. [0]21/99

C. C. Osendelfondor [0]21/99

#### Week of October 31, 1999

| ACTIVITY / DAY                         | Sun.     | Mon.    | Tues.                                  | Wed.                                  | Thurs.  | Fri.                                  | Sat.        |
|----------------------------------------|----------|---------|----------------------------------------|---------------------------------------|---------|---------------------------------------|-------------|
| Prior to noon fill reservoirs          |          |         | <del></del>                            |                                       |         | 7.                                    | <del></del> |
| (1L)                                   | V        |         | V                                      | $\sqrt{}$                             | V       |                                       |             |
|                                        |          |         |                                        |                                       |         |                                       |             |
| Noon delivery cycle                    |          |         |                                        |                                       |         |                                       |             |
| splitter boxes filling?                | /        | ~       | IV.                                    | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | V       |                                       | V           |
| syringes filling?                      |          |         |                                        |                                       |         |                                       |             |
| • needles flowing?                     |          |         | \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ |                                       | /       |                                       |             |
| beaker screens clear, flowing?         | 1        | V       | $\vee$                                 | V                                     | V       | 1                                     |             |
| drainage to waste ok?                  | 4        | 1/      |                                        |                                       | <u></u> | . /                                   | 4           |
| • empty waste buckets?                 | VV       | VV      |                                        | VV                                    | 1/1/    | VV                                    | 1           |
| Test monitoring  test temperature ok?  |          | V       | · ·                                    | V                                     | V       | ~                                     | 1           |
| • D.O. ok?                             |          | V       | · ·                                    |                                       |         |                                       | -           |
| check for floating organisms           | 1//      |         |                                        |                                       |         |                                       | 1           |
| • feeding completed?                   |          | V       |                                        |                                       | 3/      |                                       |             |
| Additional activities                  |          |         |                                        |                                       |         | ·                                     |             |
| Prior to midnight fill reservoirs (1L) | <b>\</b> | V       |                                        | I V                                   | 1       | 1 1/                                  |             |
| Check sediment water supply            |          | V       |                                        |                                       |         | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |             |
|                                        |          |         |                                        |                                       |         |                                       |             |
| Corrective Action /<br>Comments        |          |         |                                        |                                       |         |                                       |             |
| Initials/Date                          | 10/31    | 11/1=1€ | 1/2/10                                 | 11/3                                  | 114     | 11/5                                  | 11/6        |
|                                        | /        | ,       |                                        |                                       |         | •                                     | ,           |

<u>Procedure</u>: All operating systems listed above must be checked on a daily basis when sediment toxicity tests are in progress. Corrective action must be taken whenever appropriate. Document corrective action on this form. If project-specific documentation is required, write a brief description (on Project Documentation form) and include with the test data package.

| Comments: 11/5/99/midnist | renewal missed Renewal init       | iated at 09:20 |
|---------------------------|-----------------------------------|----------------|
| "N∞3",                    | enewal conducted at 14:00 11/6 JG | 11/6/99 JJG    |
|                           |                                   |                |

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

#### Week of November 7, 1999

| ACTIVITY / DAY                                                                                                                        | Sun.                      | Mon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tues.                                   | Wed.        | Thurs.       | Fri.                                   | Sat.                    |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------|--------------|----------------------------------------|-------------------------|
| Prior to noon fill reservoirs                                                                                                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |             |              |                                        |                         |
| (1L)                                                                                                                                  |                           | <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                                |             | <u> </u>     |                                        |                         |
| Noon delivery cycle                                                                                                                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |             |              |                                        | _                       |
| • splitter boxes filling?                                                                                                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V,                                      | V           |              | ;/                                     | V                       |
| <ul><li>syringes filling?</li></ul>                                                                                                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | <b>V</b>    |              |                                        | V                       |
| • needles flowing?                                                                                                                    |                           | V ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>'</b>                                | <b>\</b>    |              |                                        |                         |
| beaker screens clear, flowing?                                                                                                        | <b>/</b>                  | V /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V.                                      |             |              |                                        |                         |
| drainage to waste ok?                                                                                                                 |                           | V .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/                                      | 1           | / /          | i/                                     | 1                       |
| empty waste buckets?                                                                                                                  |                           | VV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VV                                      | VIV         | IVIV         | V V                                    | V                       |
| Test monitoring                                                                                                                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , — — — — — — — — — — — — — — — — — — — | ,           |              |                                        | ······                  |
| test temperature ok?                                                                                                                  | <b>/</b>                  | V .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | ·/          | V            |                                        |                         |
| • D.O. ok?                                                                                                                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |             |              |                                        |                         |
| <ul> <li>check for floating organisms</li> </ul>                                                                                      | V                         | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V                                       | V           | V            |                                        | 1                       |
| feeding completed?                                                                                                                    |                           | <i>\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}</i> |                                         | V           | \ \ \        |                                        |                         |
| Additional activities                                                                                                                 | ,                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |             |              | ,                                      |                         |
| Prior to midnight fill reservoirs (1L)                                                                                                |                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/                                      | V           | V            |                                        |                         |
| Check sediment water supply                                                                                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.                                      | <i></i>     |              |                                        |                         |
| ·                                                                                                                                     | ·                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | ·           | <del>!</del> | ······································ | <del>!</del>            |
| Corrective Action /<br>Comments                                                                                                       | 18                        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |             |              |                                        |                         |
| Initials/Date                                                                                                                         | TM 7749                   | 10/8 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m 5                                     | 11,10       | 1m           | 1412                                   | J <del>e</del><br>11/13 |
| Procedure: All operating system tests are in progress. Corrective on this form. If project-specific d Documentation form) and include | e action mu<br>locumentat | ist be takei<br>tion is requ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n wheneve<br>iired, write               | er appropri | ate. Docur   | ment corre                             |                         |
| Comments:                                                                                                                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |             |              |                                        |                         |
|                                                                                                                                       | 7                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |             |              |                                        |                         |
|                                                                                                                                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |             |              |                                        |                         |

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

#### Week of November 14, 1999

| ACTIVITY / DAY                                                                                                                      | Sun.                     | Mon.                        | Tues.                     | Wed.        | Thurs.                                | Fri.       | Sat.  |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|---------------------------|-------------|---------------------------------------|------------|-------|
| Prior to noon fill reservoirs (1L)                                                                                                  | V                        |                             | V                         | <b>\</b>    |                                       |            |       |
| Noon delivery cycle                                                                                                                 |                          |                             |                           |             |                                       |            | _     |
| • splitter boxes filling?                                                                                                           | V                        | <b>√</b>                    | 1                         |             | \.                                    | · V        |       |
| syringes filling?                                                                                                                   |                          |                             |                           |             | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |            |       |
| • needles flowing?                                                                                                                  |                          |                             |                           |             |                                       | V          |       |
| beaker screens clear, flowing?                                                                                                      | 1                        | 1                           | 1                         |             | - /                                   | /          |       |
| drainage to waste ok?                                                                                                               | 1/                       | Y                           | 4 /                       | 4           |                                       | 4          |       |
| empty waste buckets?                                                                                                                | VV                       | VV                          |                           | VV          | VV                                    | V V        | VV    |
| Test monitoring                                                                                                                     | ,                        |                             |                           | 1           | Ι,                                    |            |       |
| • test temperature ok?                                                                                                              | V                        | 1                           |                           | V           | 1                                     |            |       |
| • D.O. ok?                                                                                                                          |                          |                             |                           |             |                                       | 1/6        | -,    |
| check for floating organisms                                                                                                        | V.                       | 1/                          | 1                         |             |                                       | V/         |       |
| feeding completed?                                                                                                                  | V                        |                             | i                         |             |                                       | V          |       |
| Additional activities  Prior to midnight fill reservoirs (1L)  Check sediment water supply                                          | V                        |                             |                           | V           |                                       |            |       |
| Check sediment water supply                                                                                                         | <b>√</b>                 | ·/                          |                           |             |                                       | <u></u>    |       |
| Corrective Action /<br>Comments                                                                                                     | - 16                     | - ir                        | 100                       | 16          |                                       | 10         |       |
| Initials/Date                                                                                                                       | m 1499                   | 1/15/99                     | 11/16/1961                | 1717        | 45                                    | 1119       | Leibo |
| Procedure: All operating system tests are in progress. Corrective on this form. If project-specific documentation form) and include | e action mu<br>locumenta | ist be take<br>tion is requ | n wheneve<br>uired, write | r appropri  | ate. Docur                            | nent corre |       |
| Comments:                                                                                                                           |                          |                             |                           |             |                                       |            |       |
|                                                                                                                                     |                          |                             |                           | <del></del> |                                       |            |       |
|                                                                                                                                     |                          |                             |                           |             |                                       |            |       |

Reviewer Date 129/99
seddelfw.doc
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

#### Week of November 21, 1999

| ACTIVITY / DAY                                                            | Sun.             | Mon.         | Tues.            | Wed.                                  | Thurs.                                | Fri.        | Sat.            |
|---------------------------------------------------------------------------|------------------|--------------|------------------|---------------------------------------|---------------------------------------|-------------|-----------------|
|                                                                           |                  |              |                  |                                       | 1                                     | //          |                 |
| Prior to noon fill reservoirs (1L)                                        | $\checkmark$     |              | <b>√</b>         | i/                                    | i/                                    | $\bigvee$   |                 |
|                                                                           |                  | <u> </u>     | <u> </u>         | <del> </del>                          | ·                                     | <del></del> | <del></del>     |
| Noon delivery cycle                                                       |                  |              |                  |                                       | AT                                    |             |                 |
| • splitter boxes filling?                                                 | \ <u>\</u>       |              | /                |                                       | 11:00m                                |             |                 |
| syringes filling?                                                         |                  |              | V                |                                       | 1//-                                  |             |                 |
| • needles flowing?                                                        |                  | <u> </u>     | V                |                                       | /_                                    |             |                 |
| beaker screens clear, flowing?                                            | V,               | V            | 1/               |                                       |                                       | 1/          |                 |
| drainage to waste ok?                                                     | ✓ <u> </u>       | 1/           | 1                |                                       | 1                                     | [ حمار      | / //            |
| empty waste buckets?                                                      | VV               |              | $V \mid V$       | 47                                    | 1/1/                                  | 11/         | VIV             |
|                                                                           |                  |              |                  |                                       |                                       |             |                 |
| Test monitoring                                                           | <u></u>          |              |                  | ·                                     | ,                                     |             |                 |
| • test temperature ok?                                                    | $\sqrt{}$        | <u>/</u>     |                  | 1                                     |                                       | \ \ \ \     |                 |
| • D.O. ok?                                                                | ~                |              | //               | 1                                     | 1                                     | ارتحما      |                 |
| <ul> <li>check for floating organisms</li> </ul>                          |                  |              |                  |                                       |                                       |             |                 |
| • feeding completed?                                                      | $\sqrt{}$        | ~            | 1                |                                       | 1705                                  | <i>'</i>    |                 |
|                                                                           |                  |              |                  |                                       |                                       |             |                 |
| Additional activities                                                     | 1                |              |                  |                                       |                                       |             |                 |
| Prior to midnight fill reservoirs (1L)                                    | <del></del> √, - | V            |                  | 1                                     |                                       |             | 7               |
| Check sediment water supply                                               | $\overline{}$    |              |                  | V                                     | 1                                     |             | V               |
|                                                                           |                  | <del> </del> | <u> </u>         | · · · · · · · · · · · · · · · · · · · | <del></del>                           | ·           |                 |
| Corrective Action /                                                       |                  |              |                  | }                                     | <del></del>                           | 1           |                 |
| Comments                                                                  |                  | ]            |                  |                                       | }                                     |             |                 |
| ,                                                                         |                  |              | 7 21.2           | <br>                                  | 111                                   | 2           | <del>-11/</del> |
|                                                                           | W/51             | 16           | 11/23            | Jm 124                                | MX.                                   | 10/         | 792             |
| Initials/Date                                                             | Me.              | 11/22        | 11/23            | p man                                 | 11/27                                 | 11/26       | 14/4            |
| December All expensions systems                                           | a liatad ah      |              | l<br>aa ah aakaa | انسسمانا                              | والمراد والمواد                       | .<br>       | l<br>Administra |
| <u>Procedure</u> : All operating system tests are in progress. Corrective |                  |              |                  |                                       | •                                     |             | •               |
| on this form. If project-specific d                                       |                  |              |                  |                                       |                                       |             | 401.011         |
| Documentation form) and include                                           |                  |              |                  | ·                                     | · · · · · · · · · · · · · · · · · · · | ·           |                 |
| Comments:                                                                 |                  |              |                  |                                       |                                       |             |                 |
|                                                                           |                  |              |                  |                                       |                                       |             |                 |
|                                                                           |                  |              |                  |                                       |                                       |             |                 |

Reviewer Date 12999
Seddelfw.doc
Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

000012

#### Week of November 28, 1999

| ACTIVITY / DAY                                                                                                                        | Sun.                      | Mon.                         | Tues.                      | Wed.                                   | Thurs.                                      | Fri.        | Sat.                                             |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------|----------------------------|----------------------------------------|---------------------------------------------|-------------|--------------------------------------------------|
| Prior to noon fill reservoirs                                                                                                         |                           |                              |                            |                                        |                                             |             |                                                  |
| (1L)                                                                                                                                  | V                         | \ \ \                        | V                          | <u> </u>                               |                                             | V           | V                                                |
| Noon delivery cycle                                                                                                                   |                           |                              |                            |                                        |                                             |             |                                                  |
| <ul> <li>splitter boxes filling?</li> </ul>                                                                                           | V                         | V'_                          |                            | \ \ \ \ .                              |                                             |             |                                                  |
| • syringes filling?                                                                                                                   |                           | <b>V</b>                     |                            |                                        |                                             |             |                                                  |
| • needles flowing?                                                                                                                    |                           | V                            | V                          | V                                      |                                             | V           | <b>/</b>                                         |
| beaker screens clear, flowing?                                                                                                        | V                         | V                            | V                          |                                        |                                             |             |                                                  |
| drainage to waste ok?                                                                                                                 | 4                         | $\sqrt{}$                    |                            | 1/                                     | Jy'                                         |             | 141                                              |
| empty waste buckets?                                                                                                                  | V V                       | V V                          | $\sqrt{}$                  | VV                                     | V/~                                         | VIV         | VIV                                              |
| Test monitoring                                                                                                                       | <del>/</del>              | <del></del>                  |                            | <del></del>                            | <del></del>                                 | <del></del> | <del></del>                                      |
| • test temperature ok?                                                                                                                | V                         |                              | V                          | Y                                      | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \       | 1/          | <u> </u>                                         |
| • D.O. ok?                                                                                                                            |                           | 1                            | 1                          | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | <u>'                                   </u> |             | 1-/-                                             |
| check for floating organisms                                                                                                          |                           | <del></del>                  | V                          | <del>  '//</del>                       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \       | LV/         | <del>                                     </del> |
| • feeding completed?                                                                                                                  |                           | <u> </u>                     |                            | l V                                    |                                             | I V         |                                                  |
| Additional activities                                                                                                                 |                           | /                            |                            |                                        | <b>4</b> _                                  | <i>L_</i>   |                                                  |
| Prior to midnight fill reservoirs (1L)                                                                                                | V/                        |                              |                            |                                        |                                             | i/,         |                                                  |
| Check sediment water supply                                                                                                           |                           | 7                            |                            | V                                      |                                             |             |                                                  |
|                                                                                                                                       | <del></del>               | <u> </u>                     |                            | 4                                      |                                             | <u></u>     | <del></del>                                      |
| Corrective Action /<br>Comments                                                                                                       |                           |                              |                            |                                        |                                             |             |                                                  |
| Initials/Date                                                                                                                         | 11725199                  | 11/29 m                      | m30                        | 13/1                                   | 13/3-                                       | 143         | JG,<br>12/4                                      |
| Procedure: All operating system tests are in progress. Corrective on this form. If project-specific d Documentation form) and include | e action mu<br>documental | ust be take<br>ation is requ | en wheneve<br>uired, write | er appropri                            | iate. Docur                                 | ment corre  |                                                  |
| Comments:                                                                                                                             |                           |                              |                            |                                        |                                             |             |                                                  |
|                                                                                                                                       |                           |                              |                            |                                        |                                             |             |                                                  |
|                                                                                                                                       |                           |                              |                            |                                        |                                             |             |                                                  |

Reviewer Date 12/9/99 seddelfw.doc

Laboratory: Aquatec Biological Sciences, South Burlington, Vermont

000213

#### Week of December 5, 1999

| ACTIVITY / DAY                                                                                                                         | Sun.                                  | Mon.                                  | Tues.                                        | Wed.        | Thurs.      | Fri.                                   | Sat.         |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------------|-------------|-------------|----------------------------------------|--------------|
| Prior to noon fill reservoirs                                                                                                          |                                       | /                                     | 7                                            |             |             |                                        |              |
| (1L)                                                                                                                                   |                                       | V                                     | <u> </u>                                     | V           |             |                                        | $\checkmark$ |
| Noon delivery cycle                                                                                                                    |                                       |                                       |                                              |             |             |                                        |              |
|                                                                                                                                        |                                       | <del></del>                           |                                              |             | 1           |                                        | <del></del>  |
| • splitter boxes filling?                                                                                                              | ! /                                   | V                                     |                                              |             | V           | V                                      | V            |
| • syringes filling?                                                                                                                    |                                       | V                                     |                                              | V           |             |                                        |              |
| • needles flowing?                                                                                                                     | 1 /                                   | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | V                                            | V           |             | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |              |
| • beaker screens clear, flowing?                                                                                                       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | /                                     | <u>                                     </u> | V/          |             | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  |              |
| drainage to waste ok?                                                                                                                  | ! // /                                | 7/                                    |                                              | X           | -4-/        | -/-                                    |              |
| empty waste buckets?                                                                                                                   | YV                                    | V V                                   | $ \wedge \wedge$                             | VV          | VV          | VV                                     |              |
| Test monitoring                                                                                                                        | ,                                     | ,                                     | ,                                            |             | •           | ,                                      | 1            |
| test temperature ok?                                                                                                                   | 1/                                    | 1                                     | Van                                          | V           |             |                                        |              |
| • D.O. ok? # 5244/4                                                                                                                    | 611 /ow,                              |                                       |                                              | (1) V       |             |                                        |              |
| check for floating organisms                                                                                                           |                                       | V.                                    |                                              |             | 1 /         |                                        |              |
| feeding completed?                                                                                                                     |                                       |                                       |                                              | V           |             | Shipped                                |              |
|                                                                                                                                        | ·                                     |                                       | <del></del>                                  | ·           | <del></del> | <del>* 3</del> E-                      |              |
| Additional activities                                                                                                                  |                                       | ,                                     |                                              | ,           |             | ,                                      |              |
| Prior to midnight fill reservoirs (1L)                                                                                                 |                                       | 1/                                    |                                              |             | 11/         | 1                                      |              |
| Check sediment water supply                                                                                                            |                                       | ·V                                    |                                              | 1           |             |                                        |              |
| <u> </u>                                                                                                                               |                                       |                                       | 1                                            | <u> </u>    | <del></del> |                                        | <u> </u>     |
| Corrective Action /                                                                                                                    |                                       |                                       |                                              |             |             |                                        |              |
| Comments                                                                                                                               | 1                                     |                                       |                                              |             |             |                                        |              |
|                                                                                                                                        | 16                                    | -16-00                                | 11/                                          | <u> </u>    | 1700        | -6-                                    | 16           |
| Initials/Date                                                                                                                          | 13/5/99                               | 13/2                                  | 19/3                                         | Tm<br>ialy  | 12/9        | 12/10                                  | 12-111       |
|                                                                                                                                        | 1 1                                   | 1 1 5 1 5                             | 1 1 1                                        | 1 14-       | <u></u>     | <del>'/</del>                          | <del></del>  |
| Procedure: All operating system tests are in progress. Corrective on this form. If project-specific of Documentation form) and include | e action mu<br>locumenta              | ist be take<br>tion is requ           | n wheneve<br>uired, write                    | er appropri | ate. Docu   | ment corre                             | •            |
| Comments: Je Samile                                                                                                                    | · ·                                   | zerede                                |                                              | 43 100      | rewol.      | 12/5 70                                | 10ंस्ट्रट    |
|                                                                                                                                        |                                       | eved (                                |                                              |             |             | 12/8 TW                                |              |
|                                                                                                                                        | <u> </u>                              |                                       |                                              |             |             |                                        |              |

Reviewer Date 12/22/99 seddelfw.doc Laboratory: Aquatec Biological Sciences. South Burlington, Vermont

000214

#### Week of December 12, 1999

| ACTIVITY / DAY                                          | Sun.     | Mon.     | Tues.    | Wed.         | Thurs.   | Fri.         | Sat.         |
|---------------------------------------------------------|----------|----------|----------|--------------|----------|--------------|--------------|
|                                                         | /        | -1       |          |              |          |              |              |
| Prior to noon fill reservoirs (1L)                      |          |          |          |              |          |              |              |
| Noon delivery cycle                                     |          |          |          |              |          |              |              |
| <ul> <li>splitter boxes filling?</li> </ul>             |          |          |          |              |          |              |              |
| • syringes filling?                                     |          |          |          |              |          |              |              |
| • needles flowing?                                      |          |          |          |              |          |              |              |
| beaker screens clear, flowing                           | ? \      |          |          |              |          |              |              |
| • drainage to waste ok?                                 | 1        |          |          |              |          |              |              |
| <ul> <li>empty waste buckets?</li> </ul>                |          |          |          | 1            |          |              |              |
| <ul><li>test temperature ok?</li><li>D.O. ok?</li></ul> | 1        | <u> </u> |          |              |          |              | <u> </u>     |
|                                                         | <u> </u> |          | 1        |              |          |              | <u> </u>     |
| check for floating organisms                            | +-/      | <u> </u> | <u> </u> | <u>!</u>     |          |              | 1            |
| feeding completed?                                      | SKipped  | <u> </u> |          | <u>!</u>     | <u> </u> |              | 1            |
| recoming completed.                                     | 1 50 FT  |          | <u> </u> | <u></u>      | <u></u>  | <del>'</del> | 1            |
| Additional activities                                   |          |          |          |              |          |              |              |
| Prior to midnight fill reservoirs (1L)                  |          |          |          |              |          |              |              |
| Check sediment water supply                             |          | 1        | 1        |              | 1        |              | <u> </u>     |
|                                                         |          | <u> </u> | <u>'</u> | <u> </u>     | 1        |              | <del>!</del> |
| Corrective Action /<br>Comments                         |          |          |          |              |          |              |              |
|                                                         | m        |          | i        | <u> </u><br> |          | <u> </u>     |              |

<u>Procedure</u>: All operating systems listed above must be checked on a daily basis when sediment toxicity tests are in progress. Corrective action must be taken whenever appropriate. Document corrective action on this form. If project-specific documentation is required, write a brief description (on Project Documentation form) and include with the test data package.

| Comments: |  |          |  |
|-----------|--|----------|--|
|           |  | <u>-</u> |  |
|           |  |          |  |

Reviewer Date 12/21/49
sedde!fw.doc
Laboratory: Aquatec Biological Sciences. South Burlington, Vermont

#### SEDIMENT TEST MANUAL RENEWAL

#### DAILY SCHEDULE: MORNING (0700 - 0800) AND EVENING (1800-1900)

#### October, 1999

| Day of Month | AM Renewal<br>Time | Initials    | PM Renewal<br>Time | Initials     |
|--------------|--------------------|-------------|--------------------|--------------|
| 1            | 11116              |             | 111116             |              |
| 2            | <del> </del>       |             | <del> </del>       |              |
|              |                    |             | 1                  |              |
| 3            | <u> </u>           |             |                    |              |
| 4            |                    |             |                    |              |
| 5            |                    | <del></del> | <u> </u>           |              |
| 6            |                    |             | <u> </u>           |              |
| 7            | ļ                  |             | <u> </u>           |              |
| 8            |                    |             |                    |              |
| 9            |                    |             | 2230               |              |
| 10           | 09:00              | てゴG         | 17:00 C.T.         | ~ m          |
| 11           | 09:00              | 77G<br>77G  | 19.00              | P.B          |
| 12           | 0715               |             | \$7:00             | 777          |
| 13           | 07:00              | TM          | 1830               |              |
| 14           | 07:00              | 7727        | 1830               |              |
| 15           | 07:40              | 33G         | 1815               | A            |
| 16           | 07:20              | AS .        | 18:30              | JJG          |
| 17           | 07:30              | 325         |                    |              |
| 18           | 07:30              | m           |                    |              |
| 19           |                    |             |                    |              |
| 20           | 07:30              | 326-        |                    |              |
| 21           | 0.72184            | 1           | 1167:00 19:D       | TM           |
| 22           | 07:20              | 4.5         | 19:00              | TM           |
| 23           | 07:3c              | 1156        | 18,00              | 45           |
| 24           | 07:30              | 375         | 19.00              | 717          |
| 25           | 07:00              | 771         | 1900               |              |
| 26           | 07:00              | TM          | OF CORI            | 00 7 3       |
| 27           | 07:00              | TM          | -07:00/9:          |              |
| 28           | 17:00              | TM          | C7.00 9            |              |
| 29           | 07:00              | 771)        | 19:00              | 36-          |
| 30           | 17:15              | 15          | 18:30              | 30           |
| 31           | (17:30)            | 7/2         | 17:00              | 32           |
|              |                    |             |                    | <u> </u>     |
| <del></del>  |                    | <del></del> | <del></del>        |              |
|              |                    |             |                    |              |
| L            | <del></del>        | <del></del> | <del></del>        | <del>l</del> |

12/22/91

#### SEDIMENT TEST MANUAL RENEWAL

#### DAILY SCHEDULE: MORNING (0700 - 0800) AND EVENING (1800-1900)

#### November, 1999

| Day of Month |            | Initials        | PM Renewal     | Initials    |              |
|--------------|------------|-----------------|----------------|-------------|--------------|
|              | Time       |                 | Time           |             |              |
| 1            | 07:30      | 76              | 19:00          | 7M          |              |
| 2            | 07:15      | Im              | 18:45          | JG-         |              |
| 3            | 07:10      |                 | 18:45          | Im          |              |
| 4            | 27:25      |                 | 19:00          | Tm          |              |
| 5            | 07:25      |                 | 18:30          | JA          |              |
| 6            | 08:30      | JG              | (B. (B)        | 15          |              |
| 7            | 08:00      | IM              | 18130          | 76          |              |
| 8            | 04:00      | 16              | 18130<br>19.30 | 1 7m        |              |
| 9            | 07:00      | 7m              | 19:00          | 30          |              |
| 10           | 07.00      | 7771            | 13:30          |             |              |
| 11           | 07:00      | Tm              | 1900           |             | _]           |
| 12           | 28:00      |                 | 19:00          | 36-         |              |
| 13           | 07:00      | JS.             | 19500          | 76          |              |
| 14           | 07:00      | im              | 19:15          | スピー         |              |
| 15           | 08:00      | JG              | 19:00          | TM          |              |
| 16           | 07:00      | TM              | 19:00          | 1G          |              |
| 17           | 07:30      | 76              | 19:00          | 7m          |              |
| 18           | 07:00      | TM              | 18:30          | 12          | ] On "la     |
| 19           | 07:C0      | un              |                |             | All seame    |
| 20           |            |                 |                |             | placed wh    |
| 21           |            |                 | 19:15 Sysia    | clear I     | ا ماندده سال |
| 22           | <u>-</u>   |                 | 19:00 System   | lovedic The | 2000 mercia  |
| 23           | 07:00      | Im system chear | 18500          | 76-         | renewed sy   |
| 24           | 07:00      | My System Check | 1900           | TM          | - wy renewal |
| 25           | 07:00      | 77m             | 1915           |             | 14:00        |
| 26           | OFICE      | JE for Cd       | 1955           |             | azily or     |
| 27           | 09:30      | JG-SW           | tomcheck       |             | ] _3         |
| 28           | 08:30      | Mn system stock | 18.0           | JG          | _            |
| 29           |            | System check    |                | Mys         |              |
| 30           | 07.30 TM S | stein check     | 18:00          | 76          |              |
| 31           |            |                 |                |             |              |
|              |            |                 |                |             |              |
|              |            | 1               | <br>           |             |              |
|              |            |                 | :<br>          |             |              |

#### List of events where data for time to mortality of emergent flies was not generated

| SAMPLE | REPLICATE | PARAMETER | DAY | EVENT |
|--------|-----------|-----------|-----|-------|
| 12548  | C         | FS        | 36  | NR    |
| 12548  | D         | MS        | 27  | ESC   |
| 12548  | D         | MS        | 28  | NR    |
| 12552  | Α         | FS        | 26  | NR    |
| 12552  | D         | FS        | 24  | ESC   |
| 12552  | E         | MS        | 26  | NR    |
| 12592  | H         | FS        | 31  | NR    |
| 12592  | Н         | MS        | 31  | NR    |
| 12592  | H         | MS        | 31  | NR    |
| 12593  | F         | MS        | 23  | ESC   |
| 12593  | E         | MS        | 24  | ESC   |
| 12593  | E         | MS        | 25  | NR    |
| 12593  | D         | FS        | 31  | ESC   |
| 12609  | В         | MS        | 32  | ESC   |
| 12609  | D         | MS        | 37  | ESC   |
| 12609  | E         | MS        | 33  | NR    |
| 12614  | G         | FS        | 27  | ESC   |
| 12622  | Α         | MS        | 23  | ESC   |
| 12622  | E         | FS        | 24  | NR    |
| 12622  | F         | FS        | 27  | NR    |
| 12668  | A         | FS        | 27  | NR    |
| 12668  | D         | FS        | 26  | NR    |
| 12668  | D         | MS        | 26  | NR    |
| 12668  | F         | MS        | 25  | NR    |
| 12668  | Н         | MS        | 22  | ESC   |

#### Note:

- -On day 37 a fly of unknown sex emerged from sample 12665 F, it was not recorded on the data sheet due to its unknown sex. The fly was included in the total number of emergent flies.
- -An emergence case was found in sample 12665 H prior to the installation of emergence traps. Survival and sex of the fly were not recorded but the fly was included in the total number of emergent flies.
- -A female from 12668 C produced a primary egg case prior to being collected. Egg data was not recorded.

MS= Male Survival

FS= Female Survival

UE= Unhatched Eggs

INJ= Injured

NC= Not Counted

NR= Not Recorded

ESC= Escaped



# Reference Toxicant Control Chart Chironomus tentans in Potassium chloride (g/L)

|                |              | Organism      |                |              |                |                |                                                         |
|----------------|--------------|---------------|----------------|--------------|----------------|----------------|---------------------------------------------------------|
| Test<br>Number | Test<br>Date | Age<br>(Days) | 96-Hr.<br>LC50 | Mean<br>LC50 | Lower<br>Limit | Upper<br>Limit | Organism<br>Source                                      |
| 1              | 10/31/97     | 9             | 5.612          | 5.61         |                |                | Aguston Biological Colonson                             |
| 2              | 11/02/97     | 9             | 3.466          | 4.54         | 1.50           | 7.57           | Aquatec Biological Sciences Aquatec Biological Sciences |
| 3              | 11/02/97     |               | 5.400<br>6.484 | 5.19         | 2.08           | 8.29           |                                                         |
|                |              | 10<br>9       |                | - · · -      |                |                | Aquatec Biological Sciences                             |
| 4              | 11/10/97     |               | 5.000          | 5.14         | 2.60           | 7.68           | Aquatec Biological Sciences                             |
| 5              | 08/23/98     | 11            | 6.484          | 5.41         | 2.90           | 7.92           | Aquatec Biological Sciences                             |
| 6              | 09/15/98     | 9             | 6.674          | 5.62         | 3.15           | 8.09           | Aquatec Biological Sciences                             |
| 7              | 10/23/98     | 10            | 6.484          | 5.74         | 3.40           | 8.09           | Aquatec Biological Sciences                             |
| 8              | 11/10/98     | 9             | 3.827          | 5.50         | 2.94           | 8.07           | Aquatec Biological Sciences                             |
| 9              | 06/20/99     | 9             | 6.804          | 5.65         | 3.10           | 8.20           | Aquatec Biological Sciences                             |
| 10             | 06/24/99     | 11 and 12     | 5.946          | 5.68         | 3.27           | 8.09           | Aquatec Biological Sciences                             |
| 11             | 06/26/99     | 9 and 11      | 6.804          | 5.78         | 3.40           | 8.17           | Aquatec Biological Sciences                             |
| 12             | 07/15/99     | 13            | 6.484          | 5.84         | 3.53           | 8.15           | Env. Consulting & Testing                               |
| 13             | 07/16/99     | 10            | 6.771          | 5.91         | 3.64           | 8.18           | Aquatec Biological Sciences                             |
| 14             | 07/16/99     | 9             | 3,400          | 5.73         | 3.17           | 8.29           | Aquatec Biological Sciences                             |
| 15             | 07/16/99     | 8             | 6.804          | 5.80         | 3.27           | 8.33           | Env. Consulting & Testing                               |
| 16             | 09/13/99     | 10            | 6.095          | 5.82         | 3.37           | 8.27           | Aquatec Biological Sciences                             |
| 17             | 10/07/99     | 11            | 7.071          | 5.89         | 3.45           | 8.34           | Aquatec Biological Sciences                             |
| 18             | 10/11/99     | 10            | 6.804          | 5.95         | 3.53           | 8.36           | Aquatec Biological Sciences                             |
| 19             | 10/27/99     | 8             | 7.071          | 6.00         | 3.60           | 8.40           | Aquatec Biological Sciences                             |
| 20             | 11/13/99     | 12            | 6.804          | 6.04         | 3.68           | 8.41           | Aquatec Biological Sciences                             |

